WorldWideScience

Sample records for particle imaging velocimetry

  1. Particle Image Velocimetry

    DEFF Research Database (Denmark)

    Zhang, Chen; Vasilevskis, Sandijs; Kozlowski, Bartosz

    Particle image velocimetry (PIV) is a non-intrusive, whole filed optical method providing instantaneous velocity information in fluids. The flow is seeded with tracer particles. The particles are illuminated in the target area with a light sheet at least twice within a short time interval....... The camera images the target area and captures each light pulse in separate image frames. The displacement of the particle between the light pulses can be used to determine the velocity vectors. This guideline introduces the principle of the PIV system and the system configuration. The measurement procedure...

  2. Rainbow Particle Imaging Velocimetry

    KAUST Repository

    Xiong, Jinhui

    2017-04-27

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. This work tackles this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. With this setup, a single color camera is sufficient to track 3D trajectories of particles by combining 2D spatial and 1D color information. For reconstruction, this thesis derives an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. The proposed method is evaluated by both simulations and an experimental prototype setup.

  3. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    Science.gov (United States)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  4. Analysis of particle kinematics in spheronization via particle image velocimetry.

    Science.gov (United States)

    Koester, Martin; Thommes, Markus

    2013-02-01

    Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  6. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  7. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  8. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  9. Digital Particle Image Velocimetry: Partial Image Error (PIE)

    International Nuclear Information System (INIS)

    Anandarajah, K; Hargrave, G K; Halliwell, N A

    2006-01-01

    This paper quantifies the errors due to partial imaging of seeding particles which occur at the edges of interrogation regions in Digital Particle Image Velocimetry (DPIV). Hitherto, in the scientific literature the effect of these partial images has been assumed to be negligible. The results show that the error is significant even at a commonly used interrogation region size of 32 x 32 pixels. If correlation of interrogation region sizes of 16 x 16 pixels and smaller is attempted, the error which occurs can preclude meaningful results being obtained. In order to reduce the error normalisation of the correlation peak values is necessary. The paper introduces Normalisation by Signal Strength (NSS) as the preferred means of normalisation for optimum accuracy. In addition, it is shown that NSS increases the dynamic range of DPIV

  10. Particle image velocimetry - Principles and first results

    International Nuclear Information System (INIS)

    Laporta, A.; Marechal, J.P.

    1997-01-01

    Particle Image Velocimetry (PIV) is a measurement technique elaborated towards the end of the 1970's, but which has developed considerably in recent years. The general principle of PIV is very simple and enables access to instantaneous velocity fields. It consists in recording images of tracer-particles injected into the flow and determining the distance covered by these particles. Since we know the time lapse between successive images of the same particle, we can derive the local fluid velocity. Among the many existing image acquisition and processing methods, the image inter-correlation analysis techniques, used with a pulsed laser source, is the most effective. Since we know the influence of different parameters (number of particles, beam power, time lapse between two successive images, size of query zones, etc.) on the quality of the final result, we can optimize practical adjustment of the PIV measurement scheme. The PIV was tested on the LAVITA hydraulic mockup (simulating the operation of a tangential fan). First results are, all in all, highly satisfactory. These have enabled the rapid drafting of instantaneous mean velocity field maps (20 images acquired in less than 90 seconds, with a post-processing time of about 10 minutes). Observation of the instantaneous fields has evidenced the presence of low frequency non-stationary phenomena which are not revealed by Laser Doppler Velocimetry (LDV). Quantitative comparison between LDV and PIV, concerning average fields, showed close results, with, however, local divergences which could be relatively marked. It must nevertheless be noted that the PIV measurements performed on LAVITA have not been optimized with a view to obtaining a consistently good accuracy level. Priority in the present case was given to the scope of the field explored, with a view to observing the large non-stationary structures within a flow. The PIV measurement technique is thus operational for prompt flow characterization. However

  11. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  12. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging

    KAUST Repository

    Xiong, Jinhui

    2017-07-21

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a

  13. QUANTITATIVE FLOW-ANALYSIS AROUND AQUATIC ANIMALS USING LASER SHEET PARTICLE IMAGE VELOCIMETRY

    NARCIS (Netherlands)

    STAMHUIS, EJ; VIDELER, JJ

    Two alternative particle image velocimetry (PIV) methods have been developed, applying laser light sheet illumination of particle-seeded flows around marine organisms, Successive video images, recorded perpendicular to a light sheet parallel to the main stream, were digitized and processed to map

  14. Particle image velocimetry a practical guide

    CERN Document Server

    Raffel, Marcus; Wereley, Steve T; Kompenhans, Jürgen

    2007-01-01

    The development of Particle Image Velocimetry (PIV), a measurement technique, which allows for capturing velocity information of whole ?ow ?elds in fractions of a second, has begun in the eighties of the last century. In 1998, when this book has been published ?rstly, the PIV technique emerged from laboratories to applications in fundamental and industrial research, in par- lel to the transition from photo-graphicalto video recording techniques. Thus this book, whose objective was and is to serve as a practical guide to the PIV technique, found strong interest within the increasing group of us

  15. Application of particle imaging velocimetry in windtunnels

    International Nuclear Information System (INIS)

    Kompenhans, J.; Reichmuth, J.

    1987-01-01

    Recently the instantaneous and nonintrusive measurement of the flow velocity in a large area of the flow field (two-dimensional plane) became possible by means of particle imaging velocimetry (PIV). Up to now PIV has mainly been used for model experiments at low flow velocities in order to test and to improve the measuring technique. The present aim is the application of PIV in large wind tunnels at high flow velocities. 7 references

  16. Demonstration of Clean Particle Seeding for Particle Image Velocimetry in a Closed Circuit Supersonic Wind Tunnel

    National Research Council Canada - National Science Library

    McNiel, Charles M

    2007-01-01

    The purpose of this research was to determine whether solid carbon dioxide (CO2) particles might provide a satisfactory, and cleaner, alternative to traditional seed material for Particle Image Velocimetry (PIV...

  17. Analysis of propeller-induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV).

  18. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NARCIS (Netherlands)

    van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2017-01-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences

  19. Real-time particle image velocimetry based on FPGA technology

    International Nuclear Information System (INIS)

    Iriarte Munoz, Jose Miguel

    2008-01-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach. [es

  20. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  1. Peak-locking reduction for particle image velocimetry

    International Nuclear Information System (INIS)

    Michaelis, Dirk; Wieneke, Bernhard; Neal, Douglas R

    2016-01-01

    A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to  ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f -number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes. (paper)

  2. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  3. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

    Science.gov (United States)

    Patalano, Antoine; García, Carlos Marcelo; Rodríguez, Andrés

    2017-12-01

    LSPIV (Large Scale Particle Image Velocimetry) and LSPTV (Large Scale Particle Tracking Velocimetry) are used as relatively low-cost and non-intrusive techniques for water-surface velocity analysis and flow discharge measurements in rivers or large-scale hydraulic models. This paper describes a methodology based on state-of-the-art tools (for example, that apply classical PIV/PTV analysis) resulting in large-scale surface-flow characterization according to the first operational version of the RIVeR (Rectification of Image Velocity Results). RIVeR is developed in Matlab and is designed to be user-friendly. RIVeR processes large-scale water-surface characterization such as velocity fields or individual trajectories of floating tracers. This work describes the wide range of application of the techniques for comparing measured surface flows in hydraulic physical models to flow discharge estimates for a wide range of flow events in rivers (for example, low and high flows).

  4. Full-field particle velocimetry with a photorefractive optical novelty filter

    International Nuclear Information System (INIS)

    Woerdemann, Mike; Holtmann, Frank; Denz, Cornelia

    2008-01-01

    We utilize the finite time constant of a photorefractive optical novelty filter microscope to access full-field velocity information of fluid flows on microscopic scales. In contrast to conventional methods such as particle image velocimetry and particle tracking velocimetry, not only image acquisition of the tracer particle field but also evaluation of tracer particle velocities is done all-optically by the novelty filter. We investigate the velocity dependent parameters of two-beam coupling based optical novelty filters and demonstrate calibration and application of a photorefractive velocimetry system. Theoretical and practical limits to the range of accessible velocities are discussed

  5. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging

    KAUST Repository

    Xiong, Jinhui

    2017-04-11

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. For reconstruction, we derive an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. We evaluate our method with both simulations and an experimental prototype setup.

  6. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  7. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  8. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  9. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  10. Image-preprocessing method for near-wall particle image velocimetry (PIV) image interrogation with very large in-plane displacement

    International Nuclear Information System (INIS)

    Zhu, Yiding; Yuan, Huijing; Zhang, Chuanhong; Lee, Cunbiao

    2013-01-01

    Accurate particle image velocimetry (PIV) measurements very near the wall are still a great challenge. The problem is compounded by the very large in-plane displacement on PIV images commonly encountered in measurements in hypersonic boundary layers. An improved image-preprocessing method is presented in this paper which expands the traditional window deformation iterative multigrid scheme to PIV images with very large displacement. Before the interrogation, stationary artificial particles of uniform size are added homogeneously in the wall region. The mean squares of the intensities of signals in the flow and in the wall region are postulated to be equal when half the initial interrogation window overlaps the wall region. The initial estimation near the wall is then smoothed by data from both sides of the shear layer to reduce the large random uncertainties. Interrogations in the following iterative steps then converge to the correct results to provide accurate predictions for particle tracking velocimetries. Significant improvement is seen in Monte Carlo simulations and experimental tests. The algorithm successfully extracted the small flow structures of the second-mode wave in the hypersonic boundary layer from PIV images with low signal-noise-ratios when the traditional method was not successful. (paper)

  11. Holographic Particle Image Velocimetry and its Application in Engine Development

    International Nuclear Information System (INIS)

    Coupland, J M; Garner, C P; Alcock, R D; Halliwell, N A

    2006-01-01

    This paper reviews Holographic Particle Image Velocimetry (HPIV) as a means to make three-component velocity measurements throughout a three-dimensional flow-field of interest. A simplified treatment of three-dimensional scalar wave propagation is outlined and subsequently used to illustrate the principles of complex correlation analysis. It is shown that this type of analysis provides the three-dimensional correlation of the propagating, monochromatic fields recorded by the hologram. A similar approach is used to analyse the Object Conjugate Reconstruction (OCR) technique to resolve directional ambiguity by introducing an artificial image shift to the reconstructed particle images. An example of how these methods are used together to measure the instantaneous flow fields within a motored Diesel engine is then described

  12. Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Blazniak Andreasen, Marcin; Andresen, Henrik Assenholm

    2010-01-01

    The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode...

  13. Particle and speckle imaging velocimetry applied to a monostatic LIDAR

    Science.gov (United States)

    Halldorsson, Thorsteinn; Langmeier, Andreas; Prücklmeier, Andreas; Banakh, Viktor; Falits, Andrey

    2006-11-01

    A novel backscatter-lidar imaging method of visualization of air movement in the atmosphere is discussed in the paper. The method is based on the particle image velocimetry (PIV) principle, namely: pairs of image of laser illuminated thin atmospheric layers are recorded by CCD camera and then are cross correlated to obtain velocity information from these records. Both the way of computer simulation of atmospheric version of PIV technique and the first concept proof experiments are described in the paper. It is proposed that the method can find an application for visualization of wake vortices arising behind large aircrafts.

  14. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  15. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  16. Performing particle image velocimetry using artificial neural networks: a proof-of-concept

    Science.gov (United States)

    Rabault, Jean; Kolaas, Jostein; Jensen, Atle

    2017-12-01

    Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.

  17. Three-dimensional particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-09-01

    Full Text Available The three-dimensional flow field inside a generic can-type, forward flow, experimental combustor was measured. A stereoscopic Particle Image Velocimetry (PIV) system was used to obtain the flow field of the combustor in the non-reacting condition...

  18. The application of particle image velocimetry for the analysis of high-speed craft hydrodynamics

    NARCIS (Netherlands)

    Jacobi, G.; Thill, C.H.; Huijsmans, R.H.M.; Huijsmans, R.H.M.

    2016-01-01

    The particle image velocimetry (PIV) technique has become a reliable method for capturing the velocity field and its derivatives, even in complex flows and is now also widely used for validation of numerical codes. As the imaging system is sensitive to vibrations, the application in environments

  19. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  20. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity

    NARCIS (Netherlands)

    Ten Cate, A.; Nieuwstad, C.H.; Derksen, J.J.; Van den Akker, H.E.A.

    2002-01-01

    A comparison is made between experiments and simulations on a single sphere settling in silicon oil in a box. Cross-correlation particle imaging velocimetry measurements were carried out at particle Reynolds numbers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and at

  1. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    Science.gov (United States)

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  2. Improvement in the independence of relaxation method-based particle tracking velocimetry

    International Nuclear Information System (INIS)

    Jia, P; Wang, Y; Zhang, Y

    2013-01-01

    New techniques are developed to improve the independence of relaxation method-based particle tracking velocimetry (RM-PTV). Firstly, Delaunay tessellation (DT) is employed to form clusters of neighboring particles with similar motion in the same frame; and then a bidirectional calculation concept is adopted to improve the way of particle pairing. These new techniques are tested with both self-defined particle images and the particle image velocimetry standard synthetic particle images. The results indicate that the DT method performs well and efficiently in determining the particle clusters, and the particle pairing process is well optimized by the bidirectional calculation concept. With these methods, three computation parameters are eliminated, which makes RM-PTV more autonomous in applications. (paper)

  3. New Developments In Particle Image Velocimetry (PIV) For The Study Of Complex Plasmas

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Fisher, Ross; Shaw, Joseph; Jefferson, Robert; Cianciosa, Mark; Williams, Jeremiah

    2011-01-01

    Particle Image Velocimetry (PIV) is a fluid measurement technique in which the average displacement of small groups of particles is made by comparing a pair of images that are separated in time by an interval Δt. For over a decade, a several variations of the PIV technique, e.g., two-dimensional, stereoscopic, and tomographic PIV, have been used to characterize particle transport, instabilities, and the thermal properties of complex plasmas. This paper describes the basic principles involved in the PIV analysis technique and discusses potential future applications of PIV to the study of complex plasmas.

  4. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  5. New adaptive sampling method in particle image velocimetry

    International Nuclear Information System (INIS)

    Yu, Kaikai; Xu, Jinglei; Tang, Lan; Mo, Jianwei

    2015-01-01

    This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)

  6. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  7. Fluid Flow Characterization of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry

    Science.gov (United States)

    2015-08-01

    completed in order to begin further experimentation. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser ...9 2.3.2 Planar Laser Induced Fluorescence (PLIF...35 Figure 4.4: Solenoid valve (a), proportional control valve (b) and flowmeter (c) ...................................... 36 Figure 4.5

  8. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

    Science.gov (United States)

    Lee, Yong; Yang, Hua; Yin, Zhouping

    2017-12-01

    Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

  9. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  10. Development and assessment of transparent soil and particle image velocimetry in dynamic soil-structure interaction

    Science.gov (United States)

    2007-02-01

    This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...

  11. Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry

    Science.gov (United States)

    Wernet, Mark P.

    2000-01-01

    A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.

  12. Stereo-particle image velocimetry uncertainty quantification

    International Nuclear Information System (INIS)

    Bhattacharya, Sayantan; Vlachos, Pavlos P; Charonko, John J

    2017-01-01

    Particle image velocimetry (PIV) measurements are subject to multiple elemental error sources and thus estimating overall measurement uncertainty is challenging. Recent advances have led to a posteriori uncertainty estimation methods for planar two-component PIV. However, no complete methodology exists for uncertainty quantification in stereo PIV. In the current work, a comprehensive framework is presented to quantify the uncertainty stemming from stereo registration error and combine it with the underlying planar velocity uncertainties. The disparity in particle locations of the dewarped images is used to estimate the positional uncertainty of the world coordinate system, which is then propagated to the uncertainty in the calibration mapping function coefficients. Next, the calibration uncertainty is combined with the planar uncertainty fields of the individual cameras through an uncertainty propagation equation and uncertainty estimates are obtained for all three velocity components. The methodology was tested with synthetic stereo PIV data for different light sheet thicknesses, with and without registration error, and also validated with an experimental vortex ring case from 2014 PIV challenge. Thorough sensitivity analysis was performed to assess the relative impact of the various parameters to the overall uncertainty. The results suggest that in absence of any disparity, the stereo PIV uncertainty prediction method is more sensitive to the planar uncertainty estimates than to the angle uncertainty, although the latter is not negligible for non-zero disparity. Overall the presented uncertainty quantification framework showed excellent agreement between the error and uncertainty RMS values for both the synthetic and the experimental data and demonstrated reliable uncertainty prediction coverage. This stereo PIV uncertainty quantification framework provides the first comprehensive treatment on the subject and potentially lays foundations applicable to volumetric

  13. The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Many tasks in fluids engineering require prediction of turbulence of jet flows. The present document documents the single-point statistics of velocity, mean and variance, of cold and hot jet flows. The jet velocities ranged from 0.5 to 1.4 times the ambient speed of sound, and temperatures ranged from unheated to static temperature ratio 2.7. Further, the report assesses the accuracies of the data, e.g., establish uncertainties for the data. This paper covers the following five tasks: (1) Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. (2) Compare PIV data with hotwire and laser Doppler velocimetry (LDV) data published in the open literature. (3) Compare different datasets acquired at the same flow conditions in multiple tests to establish uncertainties. (4) Create a consensus dataset for a range of hot jet flows, including uncertainty bands. (5) Analyze this consensus dataset for self-consistency and compare jet characteristics to those of the open literature. The final objective was fulfilled by using the potential core length and the spread rate of the half-velocity radius to collapse of the mean and turbulent velocity fields over the first 20 jet diameters.

  14. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  15. A review on noise suppression and aberration compensation in holographic particle image velocimetry

    Directory of Open Access Journals (Sweden)

    K.F. Tamrin

    2016-12-01

    Full Text Available Understanding three-dimensional (3D fluid flow behaviour is undeniably crucial in improving performance and efficiency in a wide range of applications in engineering and medical fields. Holographic particle image velocimetry (HPIV is a potential tool to probe and characterize complex flow dynamics since it is a truly three-dimensional three-component measurement technique. The technique relies on the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow for subsequent reconstruction of the same the event afterward. However, extraction of useful 3D displacement data from these particle images is usually aggravated by noise and aberration which are inherent within the optical system. Noise and aberration have been considered as major hurdles in HPIV in obtaining accurate particle image identification and its corresponding 3D position. Major contributions to noise include zero-order diffraction, out-of-focus particles, virtual image and emulsion grain scattering. Noise suppression is crucial to ensure that particle image can be distinctly differentiated from background noise while aberration compensation forms particle image with high integrity. This paper reviews a number of HPIV configurations that have been proposed to address these issues, summarizes the key findings and outlines a basis for follow-on research.

  16. Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows

    NARCIS (Netherlands)

    Stamhuis, Eize J.

    2006-01-01

    Particle image velocimetry (PIV) has proven to be a very useful technique in mapping animal-generated flows or flow patterns relevant to biota. Here, theoretical background is provided and experimental details of 2-dimensional digital PIV are explained for mapping flow produced by or relevant to

  17. Analysis of bubbly flow using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A. [Texas A and M University, Nuclear Engineering Dept., College Stagion, TX (United States); Sanchez-Silva, F. [ESIME, INP (Mexico)

    2001-07-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  18. Analysis of bubbly flow using particle image velocimetry

    International Nuclear Information System (INIS)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.

    2001-01-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  19. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  20. Particle image velocimetry new developments and recent applications

    CERN Document Server

    Willert, Christian E

    2008-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive optical measurement technique which allows capturing several thousand velocity vectors within large flow fields instantaneously. Today, the PIV technique has spread widely and differentiated into many distinct applications, from micro flows over combustion to supersonic flows for both industrial needs and research. Over the past decade the measurement technique and the hard- and software have been improved continuously so that PIV has become a reliable and accurate method for "real life" investigations. Nevertheless there is still an ongoing process of improvements and extensions of the PIV technique towards 3D, time resolution, higher accuracy, measurements under harsh conditions and micro- and macroscales. This book gives a synopsis of the main results achieved during the EC-funded network PivNet 2 as well as a survey of the state-of-the-art of scientific research using PIV techniques in different fields of application.

  1. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  2. Computational fluid dynamics and particle image velocimetry assisted design tools for a new generation of trochoidal gear pumps

    Directory of Open Access Journals (Sweden)

    M Garcia-Vilchez

    2015-06-01

    Full Text Available Trochoidal gear pumps produce significant flow pulsations that result in pressure pulsations, which interact with the system where they are connected, shortening the life of both the pump and circuit components. The complicated aspects of the operation of a gerotor pump make computational fluid dynamics the proper tool for modelling and simulating its flow characteristics. A three-dimensional model with deforming mesh computational fluid dynamics is presented, including the effects of the manufacturing tolerance and the leakage inside the pump. A new boundary condition is created for the simulation of the solid contact in the interteeth radial clearance. The experimental study of the pump is carried out by means of time-resolved particle image velocimetry, and results are qualitatively evaluated, thanks to the numerical simulation results. Time-resolved particle image velocimetry is developed in order to adapt it to the gerotor pump, and it is proved to be a feasible alternative to obtain the instantaneous flow of the pump in a direct mode, which would allow the determination of geometries that minimize the non-desired flow pulsations. Thus, a new methodology involving computational fluid dynamics and time-resolved particle image velocimetry is presented, which allows the obtaining of the instantaneous flow of the pump in a direct mode without altering its behaviour significantly.

  3. A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air–water interface

    International Nuclear Information System (INIS)

    Turney, Damon E; Anderer, Angelika; Banerjee, Sanjoy

    2009-01-01

    A new stereoscopic method for collecting particle image velocimetry (PIV) measurements within ∼1 mm of a wavy air–water interface with simultaneous measurements of the morphology of the interface is described. The method, termed three-dimensional interfacial particle image velocimetry (3D-IPIV), is tested in a wind wave channel with a wind speed of 5.8 m s −1 , water depth of 10 cm and a fetch of ∼9 m. Microscale breaking waves populate the interface and their flow patterns are clearly visible in the velocimetry results. The associated capillary waves and surface divergence patterns are observed. Several statistical measurements of the flow are compared with independent measurements and good agreement is found. The method shows great promise for investigating the transfer of momentum, heat and gases across an air–water interface, both in the laboratory and in field settings. Additional methods are described for manufacturing the flow tracers needed for the 3D-IPIV method. These tracers are likely to be useful for other researchers, and have the characteristics of being fluorescent, neutrally buoyant, non-toxic, monodisperse, inexpensive and easy to manufacture

  4. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  5. Particle image velocimetry investigation of a finite amplitude pressure wave

    Science.gov (United States)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  6. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  7. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  8. Particle Image Velocimetry (PIV) Measurements of Suspension-Feeding Velocities

    Science.gov (United States)

    Du Clos, K.; Jones, I. T.; Carrier, T. J.; Jumars, P. A.

    2016-02-01

    Active suspension feeders, such as bivalves and tunicates, connect benthic and pelagic ecosystems by packaging suspended matter into larger fecal and pseudofecal particles, greatly enhancing the flux of carbon and nutrients from the water column to the benthos. The volume of water processed by a population of suspension feeders is commonly estimated by scaling up results from experiments that measure the clearance rate (the volume of water cleared of particles per time) of one or a few individual suspension feeders. Clearance rates vary, however, between species, within a species, and over time for a single individual; and the velocity fields produced by suspension feeders are likely to interact in complex ways. We measured the water velocity fields produced by two species of bivalve, Mya arenaria and Mercenaria mercenaria, and the tunicate Ciona intestinalis, using particle image velocimetry (PIV). We used these measurements to calculate flow rates and Reynolds numbers of inhalant and exhalant siphons. We also observed strong entrainment of water by M. arenaria's exhalant siphon jet that may help to explain how the clam avoids depleting the water around it of particles and oxygen as it feeds. We are using these measurements to inform computational fluid mechanics (CFD) models of suspension feeding, allowing us to examine the interactions of flow fields produced by multiple suspension feeders and other effects not quantified by clearance-rate measurements.

  9. Drag coefficient accuracy improvement by means of particle image velocimetry for a transonic NACA0012 airfoil

    International Nuclear Information System (INIS)

    Ragni, D; Van Oudheusden, B W; Scarano, F

    2011-01-01

    A method to improve the reliability of the drag coefficient computation by means of particle image velocimetry measurements is made using experimental data acquired on a NACA0012 airfoil tested in the transonic regime, using the combination of a variable pulse separation with a new high-order Poisson spectral pressure reconstruction algorithm. (technical design note)

  10. Study of flow around model of cooling tower by means of 2D Particle Image Velocimetry measurement

    Science.gov (United States)

    Barraclough, Veronika; Novotný, Jan; Šafařík, Pavel

    This paper deals with flow around a bluff body of hyperboloid shape. It combines results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV and the Reynolds number was 43 000.

  11. Study of flow around model of cooling tower by means of 2D Particle Image Velocimetry measurement

    Directory of Open Access Journals (Sweden)

    Barraclough Veronika

    2017-01-01

    Full Text Available This paper deals with flow around a bluff body of hyperboloid shape. It combines results gathered in the course of research by means of Particle Image Velocimetry (PIV. The experiments were carried out by means of low-frequency 2D PIV and the Reynolds number was 43 000.

  12. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  13. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    Science.gov (United States)

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  14. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Digital particle image thermometry/velocimetry: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Dana [University of Washington, Department of Aeronautics and Astronautics, Seattle, WA (United States)

    2009-02-15

    Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14-32, 1990; Baughn in Int J Heat Fluid Flow 16:365-375, 1995; Roberts and East in J Spacecr Rockets 33:761-768, 1996; Wozniak et al. in Appl Sci Res 56:145-156, 1996; Behle et al. in Appl Sci Res 56:113-143, 1996; Stasiek in Heat Mass Transf 33:27-39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1-10, 2002; Stasiek et al. in Opt Laser Technol 38:243-256, 2006; Smith et al. in Exp Fluids 30:190-201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487-561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology's most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications. (orig.)

  16. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  17. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  18. Time-resolved Particle Image Velocimetry measurements of the 3D random Richtmyer-Meshkov Instability

    Science.gov (United States)

    Sewell, Everest; Krivets, Vitaliy; Jacobs, Jeffrey

    2017-11-01

    The vertical shock tube at the University of Arizona is used to perform experiments on the multi-mode three-dimensional Richtmyer-Meshkov Instability (RMI). An interface of air and sulfur hexafluoride is formed in a counter flow configuration, and is excited using voice coils to produce faraday-like multi-modal perturbations.This interface is shock accelerated by an approximately Mach 1.2 shockwave to form the RMI. Time resolved Particle Image Velocimetry (PIV) is used to perform analysis of the evolving instability.

  19. Aeroacoustic analysis of an airfoil with Gurney flap based on time-resolved particle image velocimetry measurements

    Science.gov (United States)

    Zhang, Xueqing; Sciacchitano, Andrea; Pröbsting, Stefan

    2018-05-01

    Particle image velocimetry for the experimental assessment of trailing edge noise sources has become focus of research in recent years. The present study investigates the feasibility of the noise prediction for high-lift devices based on time-resolved particle image velocimetry (PIV). The model under investigation is a NACA 0015 airfoil with a Gurney flap with a height of 6% of the chord length. The velocity fields around and downstream of the Gurney flap were measured by PIV and used to compute the corresponding pressure fields by solving the Poisson equation for incompressible flows. The reconstructed pressure fluctuations on the airfoil surface constitute the source term for Curle's aeroacoustic analogy, which was employed in both the distributed and compact formulation to estimate the noise emission from PIV. The results of the two formulations are compared with the simultaneous far-field microphone measurements in the temporal and spectral domains. Both formulations of Curle's analogy yield acoustic sound pressure levels in good agreement with the simultaneous microphone measurements for the tonal component. The estimated far-field sound power spectra (SPL) from the PIV measurements reproduce the peak at the vortex shedding frequency, which also agrees well with the acoustic measurements.

  20. Development of a compact x-ray particle image velocimetry for measuring opaque flows.

    Science.gov (United States)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-03-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  1. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    International Nuclear Information System (INIS)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-01-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  2. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    Science.gov (United States)

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  3. Development of flow velocity measurement techniques in visible images. Improvement of particle image velocimetry techniques on image process

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki; Hishida, Koichi

    1999-10-01

    Noise reduction system was developed to improve applicability of Particle Image Velocimetry (PIV) to complicated configure bounded flows. For fast reactor safety and thermal hydraulic studies, experiments are performed in scale models which usually have rather complicated geometry and structures such as fuel subassemblies, heat exchangers, etc. The structures and stuck dusts on the view window of the models obscure the particle image. Thus the image except the moving particles can be regarded as a noise. In the present study, two noise reduction techniques are proposed. The one is the Time-averaged Light Intensity Subtraction method (TIS) which subtracts the time-averaged light intensity of each pixel in the sequential images from the each corresponding pixel. The other one is the Minimum Light Intensity Subtraction method (MIS) which subtracts the minimum light intensity of each pixel in the sequential images from the each corresponding pixel. Both methods are examined on their capabilities of noise reduction. As for the original 'bench mark' image, the image made from Large Eddy Simulation was used. To the bench mark image, noises are added which are referred as sample images. Both methods reduce the rate of vector with the error of more than one pixel from 90% to less than 5%. Also, more than 50% of the vectors have the error of less than 0.2 pixel. The analysis of uncertainty shows that these methods enhances the accuracy of vector measurement 3 ∼ 12 times if the image with noise were processed, and the MIS method has 1.1 ∼ 2.1 times accuracy compared to the TIS. Thus the present noise reduction methods are quite efficient to enhance the accuracy of flow velocity fields measured with particle images including structures and deposits on the view window. (author)

  4. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  5. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    Science.gov (United States)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  6. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  7. Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Li, Xiaoyan; Lam, Kitming; Wang, Dongsheng

    2012-01-01

    The hydrodynamic behavior of diatom aggregates has a significant influence on the interactions and flocculation kinetics of algae. However, characterization of the hydrodynamics of diatoms and diatom aggregates in water is rather difficult. In this laboratory study, an advanced visualization technique in particle image velocimetry (PIV) was employed to investigate the hydrodynamic properties of settling diatom aggregates. The experiments were conducted in a settling column filled with a suspension of fluorescent polymeric beads as seed tracers. A laser light sheet was generated by the PIV setup to illuminate a thin vertical planar region in the settling column, while the motions of particles were recorded by a high speed charge-coupled device (CCD) camera. This technique was able to capture the trajectories of the tracers when a diatom aggregate settled through the tracer suspension. The PIV results indicated directly the curvilinear feature of the streamlines around diatom aggregates. The rectilinear collision model largely overestimated the collision areas of the settling particles. Algae aggregates appeared to be highly porous and fractal, which allowed streamlines to penetrate into the aggregate interior. The diatom aggregates have a fluid collection efficiency of 10%-40%. The permeable feature of aggregates can significantly enhance the collisions and flocculation between the aggregates and other small particles including algal cells in water.

  8. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  9. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    Science.gov (United States)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  10. Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source

    International Nuclear Information System (INIS)

    Ng, I.; Fouras, A.; Paganin, D. M.

    2012-01-01

    Phase contrast particle image velocimetry (PIV) using a laboratory x-ray microfocus source is investigated using a numerical model. Phase contrast images of 75 μm air bubbles, embedded within water exhibiting steady-state vortical flow, are generated under the paraxial approximation using a tungsten x-ray spectrum at 30 kVp. Propagation-based x-ray phase-contrast speckle images at a range of source-object and object-detector distances are generated, and used as input into a simulated PIV measurement. The effects of source-size-induced penumbral blurring, together with the finite dynamic range of the detector, are accounted for in the simulation. The PIV measurement procedure involves using the cross-correlation between temporally sequential speckle images to estimate the transverse displacement field for the fluid. The global error in the PIV reconstruction, for the set of simulations that was performed, suggests that geometric magnification is the key parameter for designing a laboratory-based x-ray phase-contrast PIV system. For the modeled system, x-ray phase-contrast PIV data measurement can be optimized to obtain low error ( 15 μm) of the detector, high geometric magnification (>2.5) is desired, while for large source size system (FWHM > 30 μm), low magnification (<1.5) would be suggested instead. The methods developed in this paper can be applied to optimizing phase-contrast velocimetry using a variety of laboratory x-ray sources.

  11. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  12. Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers

    Science.gov (United States)

    Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.

    2018-05-01

    Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.

  13. Acceleration Characteristics of a Rock Slide Using the Particle Image Velocimetry Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2016-01-01

    Full Text Available The Particle Image Velocimetry (PIV technique with high precision and spatial resolution is a suitable sensor for flow field experiments. In this paper, the PIV technology was used to monitor the development of a displacement field, velocity field and acceleration field of a rock slide. It was found that the peak acceleration of the sliding surface appeared earlier than the peak acceleration of the sliding body. The characteristics of the rock slide including the short failure time, high velocities, and large accelerations indicate that the sliding forces and energy release rate of the slope are high. The deformation field showed that the sliding body was sliding outwards along the sliding surface while the sliding bed moved in an opposite direction. Moving upwards at the top of the sliding bed can be one of the warning signs for rock slide failure.

  14. Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Goharzadeh, Afshin; Molki, Arman

    2015-01-01

    In this paper we present a non-intrusive experimental approach for obtaining a two-dimensional velocity distribution around a 22 mm diameter circular cylinder mounted in a water tunnel. Measurements were performed for a constant Reynolds number of 7670 using a commercial standard particle image velocimetry (PIV) system. Different flow patterns generated behind the circular cylinder are discussed. Both instantaneous and time-averaged velocity distributions with corresponding streamlines are obtained. Key concepts in fluid mechanics, such as contra-rotating vortices, von Kármán vortex street, and laminar-turbulent flow, are discussed. In addition, brief historical information pertaining to the development of flow measurement techniques—in particular, PIV—is described. (paper)

  15. Experimental Assessment of Flow Fields Associated with Heart Valve Prostheses Using Particle Image Velocimetry (PIV): Recommendations for Best Practices.

    Science.gov (United States)

    Raghav, Vrishank; Sastry, Sudeep; Saikrishnan, Neelakantan

    2018-03-12

    Experimental flow field characterization is a critical component of the assessment of the hemolytic and thrombogenic potential of heart valve substitutes, thus it is important to identify best practices for these experimental techniques. This paper presents a brief review of commonly used flow assessment techniques such as Particle image velocimetry (PIV), Laser doppler velocimetry, and Phase contrast magnetic resonance imaging and a comparison of these methodologies. In particular, recommendations for setting up planar PIV experiments such as recommended imaging instrumentation, acquisition and data processing are discussed in the context of heart valve flows. Multiple metrics such as residence time, local velocity and shear stress that have been identified in the literature as being relevant to hemolysis and thrombosis in heart valves are discussed. Additionally, a framework for uncertainty analysis and data reporting for PIV studies of heart valves is presented in this paper. It is anticipated that this paper will provide useful information for heart valve device manufacturers and researchers to assess heart valve flow fields for the potential for hemolysis and thrombosis.

  16. Optical fibre laser velocimetry: a review

    International Nuclear Information System (INIS)

    Charrett, Thomas O H; James, Stephen W; Tatam, Ralph P

    2012-01-01

    The applications of optical fibre technology to laser velocimetry are diverse and often critical to their successful implementation, particularly in harsh environments. Applications range from the use of optical fibres for beam delivery and scattered light collection, aiding the miniaturization of instrument probes, to the use of imaging fibre bundles for imaging the flow field in planar velocimetry systems. Optical fibre techniques have also been used in signal processing, for example fibre frequency shifters, and optical fibre devices such as amplifiers and lasers have been exploited. This paper will review the use of optical fibres in point-wise laser velocimetry techniques such as laser Doppler velocimetry and laser transit anemometry, as well as in planar measurement techniques such as particle imaging velocimetry and planar Doppler velocimetry. (topical review)

  17. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  18. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine

    Directory of Open Access Journals (Sweden)

    Drobek Christoph

    2015-09-01

    Full Text Available Particle Image Velocimetry (PIV measurements of a water-jet for water-assisted liposuction (WAL are carried out to investigate the distribution of velocity and therefore momentum and acting force on the human sub-cutaneous fat tissue. These results shall validate CFD simulations and force sensor measurements of the water-jet and support the development of a new WAL device that is able to harvest low volumes of fat tissue for regenerative medicine even gentler than regular WAL devices.

  19. Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.

  20. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    Science.gov (United States)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  1. Particle image velocimetry and infrared thermography in a levitated droplet with nanosilica suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek; Kumar, Ranganathan [University of Central Florida, Department of Mechanical Materials and Aerospace Engineering, Orlando, FL (United States); Basu, Saptarshi [Indian Institute of Science, Department of Mechanical Engineering, Bangalore (India)

    2012-03-15

    Preferential accumulation and agglomeration kinetics of nanoparticles suspended in an acoustically levitated water droplet under radiative heating has been studied. Particle image velocimetry performed to map the internal flow field shows a single cell recirculation with increasing strength for decreasing viscosities. Infrared thermography and high speed imaging show details of the heating process for various concentrations of nanosilica droplets. Initial stage of heating is marked by fast vaporization of liquid and sharp temperature rise. Following this stage, aggregation of nanoparticles is seen resulting in various structure formations. At low concentrations, a bowl structure of the droplet is dominant, maintained at a constant temperature. At high concentrations, viscosity of the solution increases, leading to rotation about the levitator axis due to the dominance of centrifugal motion. Such complex fluid motion inside the droplet due to acoustic streaming eventually results in the formation of a ring structure. This horizontal ring eventually reorients itself due to an imbalance of acoustic forces on the ring, exposing larger area for laser absorption and subsequent sharp temperature rise. (orig.)

  2. Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves

    International Nuclear Information System (INIS)

    Siddiqui, M.H. Kamran; Loewen, Mark R.; Richardson, Christine; Asher, William E.; Jessup, Andrew T.

    2001-01-01

    We report the results from a laboratory investigation in which microscale breaking waves were detected using an infrared (IR) imager and two-dimensional (2-D) velocity fields were simultaneously measured using particle image velocimetry (PIV). In addition, the local heat transfer velocity was measured using the controlled flux technique. To the best of our knowledge these are the first measurements of the instantaneous 2-D velocity fields generated beneath microscale breaking waves. Careful measurements of the water surface profile enabled us to make accurate estimates of the near-surface velocities using PIV. Previous experiments have shown that behind the leading edge of a microscale breaker the cool skin layer is disrupted creating a thermal signature in the IR image [Jessup et al., J. Geophys. Res. 102, 23145 (1997)]. The simultaneously sampled IR images and PIV data enabled us to show that these disruptions or wakes are typically produced by a series of vortices that form behind the leading edge of the breaker. When the vortices are first formed they are very strong and coherent but as time passes, and they move from the crest region to the back face of the wave, they become weaker and less coherent. The near-surface vorticity was correlated with both the fractional area coverage of microscale breaking waves and the local heat transfer velocity. The strong correlations provide convincing evidence that the wakes produced by microscale breaking waves are regions of high near-surface vorticity that are in turn responsible for enhancing air-water heat transfer rates

  3. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Azuma Takahashi

    Full Text Available The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D distribution of strain using tomographic particle image velocimetry (Tomo-PIV and compares the measurement accuracy with the gauge strain in tensile tests.The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen.We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy.

  4. Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2018-04-01

    Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution

  5. Particle image velocimetry investigation of flow over unsteady airfoil with trailing-edge strip

    Energy Technology Data Exchange (ETDEWEB)

    Gerontakos, P.; Lee, T. [McGill University, Montreal, QC (Canada)

    2008-04-15

    The flow over a flapped NACA 0012 airfoil, oscillated slightly through the static-stall angle, was investigated by using particle image velocimetry, and was supplemented by surface pressure and dynamic-load measurements. A significant increase in the dynamic lift force and nose-down pitching moment was observed. The most pronounced flow phenomenon was the formation and detachment of an energetic leading-edge vortex compared to the no-flapped airfoil. The details of the underlying physical mechanisms responsible for the various light-stall flow processes were provided via the instantaneous velocity and vorticity fields measurements. In contrast to the Gurney flap, the inverted trailing-edge strip led to an improved negative damping while a reduced lift force. The addition of an inverted strip always led to the appearance of a Karman-type vortex shedding street immediately downstream of the strip over the entire oscillation cycle. (orig.)

  6. Identification of hydrodynamic forces around 3D surrogates using particle image velocimetry in a microfluidic channel

    Science.gov (United States)

    Afshar, Sepideh; Nath, Shubhankar; Demirci, Utkan; Hasan, Tayyaba; Scarcelli, Giuliano; Rizvi, Imran; Franco, Walfre

    2018-02-01

    Previous studies have demonstrated that flow-induced shear stress induces a motile and aggressive tumor phenotype in a microfluidic model of 3D ovarian cancer. However, the magnitude and distribution of the hydrodynamic forces that influence this biological modulation on the 3D cancer nodules are not known. We have developed a series of numerical and experimental tools to identify these forces within a 3D microchannel. In this work, we used particle image velocimetry (PIV) to find the velocity profile using fluorescent micro-spheres as surrogates and nano-particles as tracers, from which hydrodynamic forces can be derived. The fluid velocity is obtained by imaging the trajectory of a range of florescence nano-particles (500-800 μm) via confocal microscopy. Imaging was done at different horizontal planes and with a 50 μm bead as the surrogate. For an inlet current rate of 2 μl/s, the maximum velocity at the center of the channel was 51 μm/s. The velocity profile around the sphere was symmetric which is expected since the flow is dominated by viscous forces as opposed to inertial forces. The confocal PIV was successfully employed in finding the velocity profile in a microchannel with a nodule surrogate; therefore, it seems feasible to use PIV to investigate the hydrodynamic forces around 3D biological models.

  7. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  8. A blood-mimicking fluid for particle image velocimetry with silicone vascular models

    Science.gov (United States)

    Yousif, Majid Y.; Holdsworth, David W.; Poepping, Tamie L.

    2011-03-01

    For accurate particle image velocimetry measurements in hemodynamics studies, it is important to use a fluid with a refractive index ( n) matching that of the vascular models (phantoms) and ideally a dynamic viscosity matching human blood. In this work, a blood-mimicking fluid (BMF) composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers ( n = 1.40-1.43) and with corresponding dynamic viscosity within the average cited range of healthy human blood (4.4 ± 0.5 cP). Both refractive index and viscosity were attained at room temperature (22.2 ± 0.2°C), which eliminates the need for a temperature-control system. An optimally matched BMF, suitable for use in a vascular phantom ( n = 1.4140 ± 0.0008, Sylgard 184), was demonstrated with composition (by weight) of 47.38% water, 36.94% glycerol (44:56 glycerol-water ratio), and 15.68% sodium iodide salt, resulting in a dynamic viscosity of 4 .31 ± 0 .03 cP.

  9. Estimating Horizontal Displacement between DEMs by Means of Particle Image Velocimetry Techniques

    Directory of Open Access Journals (Sweden)

    Juan F. Reinoso

    2015-12-01

    Full Text Available To date, digital terrain model (DTM accuracy has been studied almost exclusively by computing its height variable. However, the largely ignored horizontal component bears a great influence on the positional accuracy of certain linear features, e.g., in hydrological features. In an effort to fill this gap, we propose a means of measurement different from the geomatic approach, involving fluid mechanics (water and air flows or aerodynamics. The particle image velocimetry (PIV algorithm is proposed as an estimator of horizontal differences between digital elevation models (DEM in grid format. After applying a scale factor to the displacement estimated by the PIV algorithm, the mean error predicted is around one-seventh of the cell size of the DEM with the greatest spatial resolution, and around one-nineteenth of the cell size of the DEM with the least spatial resolution. Our methodology allows all kinds of DTMs to be compared once they are transformed into DEM format, while also allowing comparison of data from diverse capture methods, i.e., LiDAR versus photogrammetric data sources.

  10. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate

    International Nuclear Information System (INIS)

    Pan, Chong; Wang, Hongping; Wang, Jinjun

    2013-01-01

    This work mainly deals with the proper orthogonal decomposition (POD) time coefficient method used for extracting phase information from quasi-periodic flow. The mathematical equivalence between this method and the traditional cross-correlation method is firstly proved. A two-dimensional circular cylinder wake flow measured by time-resolved particle image velocimetry within a range of Reynolds numbers is then used to evaluate the reliability of this method. The effect of both the sampling rate and Reynolds number on the identification accuracy is finally discussed. It is found that the POD time coefficient method provides a convenient alternative for phase identification, whose feasibility in low-sampling-rate measurement has additional advantages for experimentalists. (paper)

  11. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  12. Improvement of image velocimetry based on a spatio-temporal correlation method; Jikukan sokan ni motozuku ryushi gazo sokudoba keisokuho no kaiseki seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. [Tokuyama College of Technology, Yamaguchi (Japan); Arifuku, T. [Komatsu Ltd., Tokyo (Japan); Koga, K. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering

    1998-05-31

    In the image velocimetry, it is generally required to detect the various velocity in each position of the flow field. But the maximum velocity which the usual velocimetry can detect has been limited in about 1 pixel per frame. Then, in order to measure the wide range of velocity vectors from the dynamic image, the improvement of performance in the image velocimetry based on a spatio-temporal correlation method would be attempted by enlarging the analytical region and by interpolating the new frame. The analytical performance of velocimetry was estimated by measuring the velocity from the flow dynamic image made artificially on the personal computer so as to simulate the flow of fluid containing a lot of small particles. As the results, the velocity range of the improved velocimetry became larger than that of the usual velocimetry. 21 refs., 13 figs., 1 tab.

  13. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  14. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki; Sato, Kazuho; Ito, Tomoyoshi; Yamamoto, Keisuke

    2007-01-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontally placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine

  15. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    International Nuclear Information System (INIS)

    Xue, Zhenyu; Charonko, John J; Vlachos, Pavlos P

    2014-01-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, U 68.5 uncertainties are estimated at the 68.5% confidence level while U 95 uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements. (paper)

  16. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    Science.gov (United States)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  17. Visualization of air flow around soccer ball using a particle image velocimetry

    Science.gov (United States)

    Hong, Sungchan; Asai, Takeshi; Seo, Kazuya

    2015-10-01

    A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory.

  18. Thermal hydraulics-I. 1. Phasic Discrimination in Two-Phase-Flow Measurements Using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.

    2001-01-01

    Information about the dispersed phase parameters -such as location, displacement, and interfacial area -are very important in the analysis of two-phase flows. Local flow disturbances in the continuous phase can be quite significant when the dispersed phase (i.e., a particle, drop, or bubble) passes through the medium. Application of point-wise measurement methods such as hot wire anemometry and laser anemometry suffer significant limitations in two-phase-flow measurements when these local disturbances are strong. Also, these two methods typically lack the ability to quantify the dispersed phase. Previous work has shown that meaningful analysis of the instantaneous continuous phase velocity field requires knowledge of the dispersed phase parameters, especially location and trajectory. Continuous phase parameters such as the local instantaneous vorticity and local turbulence fluctuations are influenced by the passage of the dispersed phase. Thus, development of two-phase-flow models (such as a bubble wake model) requires knowledge of the relative location of a local continuous phase parameter to the dispersed flow object (i.e., directly behind or off the side of the object). Also, conditional sampling must be performed using a meaningful parameter as the sampling point, i.e., the passage of a specific size of bubble. A system has been developed at Texas A and M University to quantify the dispersed phase parameters for two-phase bubbly flow in a vertical pipe with co-current upward flow. This system uses an orthogonal shadow particle image velocimetry (SPIV) technique, which instantaneously measures three-dimensional bubble locations, volumes, and interfacial areas -while measuring the three-dimensional bubble velocities and accelerations over a sequence of discrete measurements. The SPIV system is capable of analyzing flows with a large number of bubbles in close proximity. A set of sample images has been collected as part of the preliminary testing and development

  19. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    Science.gov (United States)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  20. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  1. Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data

    International Nuclear Information System (INIS)

    Ferreira, C J Simao; Bijl, H; Bussel, G van; Kuik, G van

    2007-01-01

    The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: .comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-ε) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) .verifying the sensitivity of the model to its grid refinement (space and time), .evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simao Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement

  2. Applying digital particle image velocimetry to animal-generated flows : Traps, hurdles and cures in mapping steady and unsteady flows in Re regimes between 10(-2) and 10(5)

    NARCIS (Netherlands)

    Stamhuis, EJ; Videler, JJ; van Duren, LA; Muller, UK

    2002-01-01

    Digital particle image velocimetry (DPIV) has been applied to animal-generated flows since 1993 to map the flow patterns and vortex wakes produced by a range of feeding and swimming aquatic animals, covering a Re range of 10(-2)-10(5). In this paper, the special circumstances, problems and some

  3. Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry

    International Nuclear Information System (INIS)

    Grayson, K; De Silva, C M; Hutchins, N; Marusic, I

    2017-01-01

    The characteristics and causes of Nd:YAG laser warm-up transients and steady state beam stability effects are investigated in this study. Dynamic laser performance has a particularly noticeable impact on particle image velocimetry (PIV) and other laser-based flow visualisation techniques, where changes in beam pointing can influence the overlap between laser light sheets and thereby degrade the correlation of PIV image pairs. Despite anecdotal knowledge or experience of laser warm-up effects, they have not been formally documented or quantified to date for PIV applications. In this study, the nature of these laser transients are analysed and compared among a selection of typical PIV laser equipment. An investigation into the cause of these transients during the laser warm-up sequence is also presented. Furthermore, the degree of dual cavity transient coupling within a PIV laser system is analysed to determine a practical limit to the laser light sheet overlap that can be expected from PIV experiments. Finally, the results from this study inform a series of recommendations for PIV best practice, which aim to minimise the impact of laser transients on experimental data. (paper)

  4. Stereoscopic particle image velocimetry investigations of the mixed convection exchange flow through a horizontal vent

    Science.gov (United States)

    Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier

    2017-10-01

    The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.

  5. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    Science.gov (United States)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  6. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.

    Science.gov (United States)

    Kim, Ji-Woong; Phuong, Nguyen Lu; Aramaki, Shin-Ichiro; Ito, Kazuhide

    2018-05-01

    Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  8. A tracer liquid image velocimetry for multi-layer radial flow in bioreactors.

    Science.gov (United States)

    Gao, Yu-Bao; Liang, Jiu-Xing; Luo, Yu-Xi; Yan, Jia

    2015-02-13

    This paper presents a Tracer Liquid Image Velocimetry (TLIV) for multi-layer radial flow in bioreactors used for cells cultivation of tissue engineering. The goal of this approach is to use simple devices to get good measuring precision, specialized for the case in which the uniform level of fluid shear stress was required while fluid velocity varied smoothly. Compared to the widely used Particles Image Velocimetry (PIV), this method adopted a bit of liquid as tracer, without the need of laser source. Sub-pixel positioning algorithm was used to overcome the adverse effects of the tracer liquid deformation. In addition, a neighborhood smoothing algorithm was used to restrict the measurement perturbation caused by diffusion. Experiments were carried out in a parallel plates flow chamber. And mathematical models of the flow chamber and Computational Fluid Dynamics (CFD) simulation were separately employed to validate the measurement precision of TLIV. The mean relative error between the simulated and measured data can be less than 2%, while in similar validations using PIV, the error was around 8.8%. TLIV avoided the contradiction between the particles' visibility and following performance with tested fluid, which is difficult to overcome in PIV. And TLIV is easier to popularize for its simple experimental condition and low cost.

  9. Investigation on convective mixing of triple-jet. Evaluation of turbulent quantities using particle image velocimetry and direct numerical simulation

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Igarashi, Minoru; Kamide, Hideki

    2002-01-01

    We performed a water experiment on parallel triple-jet and a calculation using a direct numerical simulation (DNS) for a quantification of thermal striping. The local temperatures and velocities were measured by using thermocouples and the particle image velocimetry (PIV), respectively. The calculation was carried out using the quasi-DNS code, DINUS-3, which was based on the finite difference method. The oscillation of the jets obtained from the flow visualization was related to the movements of the twin vortices between the jets by using the PIV. The experimental temperatures/velocities results were close to the numerical results. The heat transportation among the jets was evaluated by using the turbulent heat fluxes obtained from the quasi-DNS. (author)

  10. Wall shear stress measurement of near-wall flow over inclined and curved boundaries by stereo interfacial particle image velocimetry

    International Nuclear Information System (INIS)

    Nguyen, Thien Duy; Wells, John Craig; Nguyen, Chuong Vinh

    2010-01-01

    In investigations of laminar or turbulent flows, wall shear is often important. Nevertheless, conventional particle image velocimetry (PIV) is difficult in near-wall regions. A near-wall measurement technique, named interfacial PIV (IPIV) [Nguyen, C., Nguyen, T., Wells, J., Nakayama, A., 2008. Proposals for PIV of near-wall flow over curved boundaries. In: Proceedings of 14th International Symposium on Applications of Laser Technique to Fluid Mechanics], handles curved boundaries by means of conformal transformation, directly measures the wall gradient, and yields the near-wall tangential velocity profile at one-pixel resolution. In this paper, we show the feasibility of extending IPIV to measure wall gradients by stereo reconstruction. First, we perform a test on synthetic images generated from a direct numerical simulation (DNS) snapshot of turbulent flow over sinusoidal bed. Comparative assessment of wall gradients derived by IPIV, stereo-IPIV and particle image distortion (PID) [Huang, H.T., Fiedler, H.E., Wang, J.J., 1993. Limitation and improvement of PIV. Experiments in Fluids 15(4), 263-273] is evaluated with DNS data. Also, the sensitivity of IPIV and stereo-IPIV results to the uncertainty of identified wall position is examined. As a practical application of IPIV and stereo-IPIV to experimental images, results from turbulent open channel flow over a backward-facing step are discussed in detail.

  11. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  12. Iced airfoil separation bubble measurements by particle image velocimetry

    Science.gov (United States)

    Jacobs, Jason J.

    Not long after the birth of aviation, pilots began to recognize the dangers posed by aircraft icing. Since that time, research has improved the awareness of this problem and the scientific understanding of the associated aerodynamic impacts, however, few studies have involved detailed, quantitative, flowfield measurements. For this reason, the current investigation was conducted in which high spatial-resolution flowfield measurements were acquired of a NACA 0012 airfoil with two- and three-dimensional, simulated, leading-edge, horn-ice accretions utilizing particle image velocimetry (PIV). These measurements complemented existing iced airfoil performance measurements, revealed previously unknown details regarding the structure and behavior of these flowfields, and could potentially facilitate the development and improvement of computational schemes used to predict largely separated flows, including that of an iced airfoil near stall. Previous iced airfoil investigations have demonstrated somewhat reduced aerodynamic penalties resulting from a three-dimensional ice simulation, compared to those of a two-dimensional ice simulation of a representative cross section. Correspondingly, the current measurements revealed accelerated transition of the separated shear layer emanating from a three-dimensional ice simulation and therefore enhanced pressure recovery and reduced mean separation bubble length, each relative to the flowfield of a representative two-dimensional ice simulation. These effects appeared to result from the quasi-steady distribution of discrete, streamwise vortices which aided the turbulent entrainment of fluid from the recirculation region of the three-dimensional ice simulation separation bubble flowfield. These vortices were generated by a streamwise-vortex instability excited by roughness along the three-dimensional ice simulation and produced spanwise-cell structures throughout this flowfield, as well as significant spanwise variation in peak

  13. Pressure from particle image velocimetry for convective flows: a Taylor’s hypothesis approach

    International Nuclear Information System (INIS)

    De Kat, R; Ganapathisubramani, B

    2013-01-01

    Taylor’s hypothesis is often applied in turbulent flow analysis to map temporal information into spatial information. Recent efforts in deriving pressure from particle image velocimetry (PIV) have proposed multiple approaches, each with its own weakness and strength. Application of Taylor’s hypothesis allows us to counter the weakness of an Eulerian approach that is described by de Kat and van Oudheusden (2012 Exp. Fluids 52 1089–106). Two different approaches of using Taylor’s hypothesis in determining planar pressure are investigated: one where pressure is determined from volumetric PIV data and one where pressure is determined from time-resolved stereoscopic PIV data. A performance assessment on synthetic data shows that application of Taylor’s hypothesis can improve determination of pressure from PIV data significantly compared with a time-resolved volumetric approach. The technique is then applied to time-resolved PIV data taken in a cross-flow plane of a turbulent jet (Ganapathisubramani et al 2007 Exp. Fluids 42 923–39). Results appear to indicate that pressure can indeed be obtained from PIV data in turbulent convective flows using the Taylor’s hypothesis approach, where there are no other methods to determine pressure. The role of convection velocity in determination of pressure is also discussed. (paper)

  14. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  15. Experimental investigation of the dynamics of a hybrid morphing wing: time resolved particle image velocimetry and force measures

    Science.gov (United States)

    Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration

    2016-11-01

    A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.

  16. A tomographic particle image velocimetry investigation of the flow development over dual step cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Morton, C., E-mail: chris.morton@ucalgary.ca [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4 (Canada); Yarusevych, S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1 (Canada); Scarano, F. [Department of Aerospace Engineering, Delft University of Technology, 2628 Delft (Netherlands)

    2016-02-15

    This experimental study focuses on the near wake development of a dual step cylinder geometry consisting of a long base cylinder of diameter d to which a larger diameter (D) cylinder of length L is attached coaxially at mid-span. The experiments cover a range of Reynolds numbers, 2000 ≤ Re{sub D} ≤ 5000, diameter ratios, 1.33 ≤ D/d ≤ 2.0 and large cylinder aspect ratios, 0.5 ≤ L/D ≤ 5 using Tomographic particle image velocimetry. Distinct changes in wake topology are observed varying the above parameters. Supporting previous experimental studies on the same geometry involving flow visualization and planar measurements, four distinct flow regimes are identified to which a distinct three-dimensional wake topology can be associated. The vortex-dominated wake dynamical behaviour is investigated with Proper Orthogonal Decomposition (POD) and conditional averaging of three-dimensional velocity fields is used to exemplify the different shedding regimes. The conditionally averaged flow fields are shown to quantitatively resolve flow features equivalent to those obtained from a reduced order model consisting of the first ten to twenty POD modes, identifying the dominant vortex shedding cells and their interactions.

  17. A synchronized particle image velocimetry and infrared thermography technique applied to convective mass transfer in champagne glasses

    Science.gov (United States)

    Beaumont, Fabien; Liger-Belair, Gérard; Bailly, Yannick; Polidori, Guillaume

    2016-05-01

    In champagne glasses, it was recently suggested that ascending bubble-driven flow patterns should be involved in the release of gaseous carbon dioxide (CO2) and volatile organic compounds. A key assumption was that the higher the velocity of the upward bubble-driven flow patterns in the liquid phase, the higher the volume fluxes of gaseous CO2 desorbing from the supersaturated liquid phase. In the present work, simultaneous monitoring of bubble-driven flow patterns within champagne glasses and gaseous CO2 escaping above the champagne surface was performed, through particle image velocimetry and infrared thermography techniques. Two quite emblematic types of champagne drinking vessels were investigated, namely a long-stemmed flute and a wide coupe. The synchronized use of both techniques proved that the cloud of gaseous CO2 escaping above champagne glasses strongly depends on the mixing flow patterns found in the liquid phase below.

  18. Real-time particle image velocimetry based on FPGA technology;Velocimetria PIV en tiempo real basada en logica programable FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Iriarte Munoz, Jose Miguel [Universidad Nacional de Cuyo, Instituto Balseiro, Centro Atomico Bariloche (Argentina)

    2008-07-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach.;La velocimetria por imagenes de particulas (PIV), basada en plano laser, es una potente herramienta de medicion en dinamica de fluidos, capaz de medir sin grandes errores, un campo de velocidades distribuido en liquidos, gases y flujo multifase.Los altos requerimientos computacionales de los algoritmos PIV dificultan su empleo en tiempo-real.En este trabajo presentamos el diseno de una plataforma basada en tecnologia FPGA para capturar video y procesar en tiempo real el algoritmo de correlacion cruzada bidimensional.Mostramos resultados de un primer abordaje de la captura de imagenes y procesamiento de un campo fisico de velocidades en tiempo real.

  19. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms

    Directory of Open Access Journals (Sweden)

    Prinz Christian

    2012-06-01

    Full Text Available Abstract Aims To validate Echo Particle Image Velocimetry (PIV Methods High fidelity string and rotating phantoms moving with different speed patterns were imaged with different high-end ultrasound systems at varying insonation angles and frame rates. Images were analyzed for velocity and direction and for complex motion patterns of blood flow with dedicated software. Post-processing was done with MATLAB-based tools (Dflow, JUV, University Leuven. Results Velocity estimation was accurate up to a velocity of 42 cm/s (r = 0.99, p  Conclusion Echo-PIV appears feasible. Velocity estimates are accurate, but the maximal detectable velocity depends strongly on acquisition parameters. Direction estimation works sufficiently, even at higher velocities. Echo-PIV appears to be a promising technical approach to investigate flow patterns by echocardiography.

  20. Comparison of particle image velocimetry and phase contrast MRI in a patient-specific extracardiac total cavopulmonary connection.

    Science.gov (United States)

    Kitajima, Hiroumi D; Sundareswaran, Kartik S; Teisseyre, Thomas Z; Astary, Garrett W; Parks, W James; Skrinjar, Oskar; Oshinski, John N; Yoganathan, Ajit P

    2008-08-01

    Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.

  1. Mean Characteristics of Conical Vortices Above Roof Eaves of Low–Rise Cubic Buildings Using Particle Image Velocimetry

    Directory of Open Access Journals (Sweden)

    M. Gamboa–Marrufo

    2009-04-01

    Full Text Available Fluctuating low pressures near the edges of flat roofs are often caused when the wind impinges on one corner of the building so that conical vortices form above the diagonal roof edges. In turbulent flow, these vortices vary in position and strength and the underlying surface pressures fluctuate accordingly. A preliminary approach to the study of the mechanism linking instantaneous roof edge pressures with the wind vortical structures involves the evaluation of mean characteristics and positions of the latter. However the flow examination has so far been severely limited by the restriction of available anemometers to single–point sampling. In this experimental study, a 200mm cube has been used to model a building with a flat square roof set at an angle of 45° to the oncoming flow direction, and a Particle Image Velocimetry system was used to capture instantaneous two–dimensional velocity vector images of entire flow cross–sections, both normal to the vortex axis and in planes parallel to that axis. The se vector maps were used to estimate the mean characteristics of the vortices and appropriate observation–plane directions to measure wind velocities in the study of the instantaneous problem.

  2. Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning

    International Nuclear Information System (INIS)

    Klein, S A; Moran, J L; Posner, J D; Frakes, D H

    2012-01-01

    We present a diagnostic platform for measuring three-dimensional three-component (3D3C) velocity fields in microscopic volumes. The imaging system uses high-speed Nipkow spinning disk confocal microscopy. Confocal microscopy provides optical sectioning using pinhole spatial filtering which rejects light originating from out-of-focus objects. The system accomplishes volumetric scanning by rapid translation of the high numerical aperture objective using a piezo objective positioner. The motion of fluorescent microspheres is quantified using 3D3C super resolution particle-imaging velocimetry with instantaneous spatial resolutions of the order of 5 µm or less in all three dimensions. We examine 3D3C flow in a PDMS microchannel with an expanding section at 3D acquisition rates of 30 Hz, and find strong agreement with a computational model. Equations from the PIV and PTV literature adapted for a scanning objective provide estimates of maximum measurable velocity. The technique allows for isosurface visualization of 3D particle motion and robust high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. (paper)

  3. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    Science.gov (United States)

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  4. Particle image velocimetry (PIV) study of rotating cylindrical filters for animal cell perfusion processes.

    Science.gov (United States)

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda; de Andrade Medronho, Ricardo

    2012-01-01

    In the present work, the main fluid flow features inside a rotating cylindrical filtration (RCF) system used as external cell retention device for animal cell perfusion processes were investigated using particle image velocimetry (PIV). The motivation behind this work was to provide experimental fluid dynamic data for such turbulent flow using a high-permeability filter, given the lack of information about this system in the literature. The results shown herein gave evidence that, at the boundary between the filter mesh and the fluid, a slip velocity condition in the tangential direction does exist, which had not been reported in the literature so far. In the RCF system tested, this accounted for a fluid velocity 10% lower than that of the filter tip, which could be important for the cake formation kinetics during filtration. Evidence confirming the existence of Taylor vortices under conditions of turbulent flow and high permeability, typical of animal cell perfusion RCF systems, was obtained. Second-order turbulence statistics were successfully calculated. The radial behavior of the second-order turbulent moments revealed that turbulence in this system is highly anisotropic, which is relevant for performing numerical simulations of this system. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    International Nuclear Information System (INIS)

    Charonko, John J; Vlachos, Pavlos P

    2013-01-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost. (paper)

  6. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study

    Science.gov (United States)

    Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L.

    2004-04-01

    The vortex ring generated subsequent to the diffraction of a shock wave from the open end of a shock tube is studied using particle image velocimetry. We examine the early evolution of the compressible vortex ring for three-exit shock Mach numbers, 1.1, 1.2, and 1.3. For the three cases studied, the ring formation is complete at about tUb/D=2, where t is time, Ub is fluid velocity behind shock as it exits the tube and D is tube diameter. Unlike in the case of piston generated incompressible vortex rings where the piston velocity variation with time is usually trapezoidal, in the shock-generated vortex ring case the exit fluid velocity doubles from its initial value Ub before it slowly decays to zero. At the end of the ring formation, its translation speed is observed to be about 0.7 Ub. During initial formation and propagation, a jet-like flow exists behind the vortex ring. The vortex ring detachment from the tailing jet, commonly referred to as pinch-off, is briefly discussed.

  7. Microfluidic rheometry of a polymer solution by micron resolution particle image velocimetry: a model validation study

    International Nuclear Information System (INIS)

    Hemaka Bandalusena, H C; Zimmerman, William B; Rees, Julia M

    2009-01-01

    The main purpose of this study is to model non-Newtonian fluid flows in microgeometries. Velocity fields of dilute xanthan gum solutions in a microfluidic T-junction have been measured for pressure-driven flow using micron resolution particle image velocimetry (µ-PIV). Xanthan gum at a fixed concentration is a power-law fluid. Varying the concentration changes the rheology, effectively altering the power-law parameters reflecting the changes in the fluid's shear response since viscoelasticity and extensional viscosity are negligible for dilute solutions of this substance. As the flow is forced to turn the corner of the T-junction, a range of shear rates, and hence viscosities, is produced. If this feature could be incorporated into a viscometer, then potentially the constitutive parameters of a complex fluid could be ascertained from a single experiment. A mathematical model based on a finite element technique has been developed to simulate the fluid flow in the experimental system. Model predictions of the velocity field are found to agree well (less than 5% error) with observations, thus validating the model

  8. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G J M [Hamner Institutes for Health Sciences, NC (United States); Mitchell, G [The Queens University of Belfast, Belfast (United Kingdom); Bailie, N [The Queens University of Belfast, Belfast (United Kingdom); Thornhill, D [The Queens University of Belfast, Belfast (United Kingdom); Watterson, J [The Queens University of Belfast, Belfast (United Kingdom); Kimbell, J S [Hamner Institutes for Health Sciences, NC (United States)

    2007-10-15

    The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.

  9. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.; Sakakibara, J.; Thoroddsen, Sigurdur T

    2013-01-01

    planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise

  10. Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin

    NARCIS (Netherlands)

    Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.

    2005-01-01

    We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the

  11. Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV)

    International Nuclear Information System (INIS)

    Oishi, M; Kinoshita, H; Fujii, T; Oshima, M

    2011-01-01

    This paper presents a micro-multiphase flow measurement technique, 'multicolour confocal micro-particle image velocimetry (PIV), and its application to the internal and surrounding flow measurement of a droplet moving through a microchannel. The present system measures the dynamic interaction between flows in two different phases, such as solid–liquid or liquid–liquid, simultaneously and separately. Unlike conventional confocal micro-PIV, this system features a wavelength separation optical device. The optical components (e.g., filters and dichroic mirror) are designed to separate fluorescent lights of tracer particles and to eliminate unnecessary scattered light depending on the characteristic wavelengths. The system can record a sequence of images at up to 2000 frames per second. It also has an in-plane spatial resolution of 0.284 µm/pixel in a field of 227.2 µm × 170.4 µm and a confocal depth of 3.43 µm using 1.0 µm particles and a 40× objective lens. This paper examines the performance of the present system, such as its ability to separate wavelengths. Furthermore, this system is applied to liquid–liquid two-phase flow, which consists of a water droplet and surrounding oil flow, in a microchannel. We succeeded in measuring each phase movement separately and simultaneously. As a result of the estimation of the out-of-plane velocity component, a three-dimensional flow structure is obtained and the interaction between each phase is investigated

  12. An innovative experimental setup for Large Scale Particle Image Velocimetry measurements in riverine environments

    Science.gov (United States)

    Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore

    2014-05-01

    Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens

  13. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  14. Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry

    International Nuclear Information System (INIS)

    McPhail, M J; Fontaine, A A; Krane, M H; Goss, L; Crafton, J

    2015-01-01

    Color crosstalk and chromatic aberration can bias estimates of fluid velocity measured by color particle shadow velocimetry (CPSV), using multicolor illumination and a color camera. This article describes corrections to remove these bias errors, and their evaluation. Color crosstalk removal is demonstrated with linear unmixing. It is also shown that chromatic aberrations may be removed using either scale calibration, or by processing an image illuminated by all colors simultaneously. CPSV measurements of a fully developed turbulent pipe flow of glycerin were conducted. Corrected velocity statistics from these measurements were compared to both single-color PSV and LDV measurements and showed excellent agreement to fourth-order, to well into the viscous sublayer. Recommendations for practical assessment and correction of color aberration and color crosstalk are discussed. (paper)

  15. Investigation of the shape change of bio-flocs and its influence on mass transport using particle image velocimetry.

    Science.gov (United States)

    Ren, T T; Xiao, F; Sun, W J; Sun, F Y; Lam, K M; Li, X Y

    2014-01-01

    In this laboratory study, an advanced flow visualization technique - particle image velocimetry (PIV) - was employed to investigate the change of shape of activated sludge flocs in water and its influence on the material transport characteristics of the flocs. The continuous shape change of the bio-flocs that occurred within a very short period of time could be captured by the PIV system. The results demonstrate that the fluid turbulence caused the shift of parts of a floc from one side to the other in less than 200 ms. During the continuous shape change, the liquid within the floc was forced out of the floc, which was then refilled with the liquid from the surrounding flow. For the bio-flocs saturated with a tracer dye, it was shown that the dye could be released from the flocs at a faster rate when the flocs were swayed around in water. The experimental results indicate that frequent shape change of bio-flocs facilitates the exchange of fluid and materials between the floc interior and the surrounding water. This mass transfer mechanism can be more important than molecular diffusion and internal permeation to the function and behavior of particle aggregates, including bio-flocs, in natural waters and treatment systems.

  16. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  17. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry.

    Science.gov (United States)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Milligan, Nicole C; Vasilyev, Nikolay V; Yoganathan, Ajit P

    2012-08-01

    The congenital bicuspid aortic valve (BAV) is associated with increased leaflet calcification, ascending aortic dilatation, aortic stenosis (AS) and regurgitation (AR). Although underlying genetic factors have been primarily implicated for these complications, the altered mechanical environment of BAVs could potentially accelerate these pathologies. The objective of the current study is to characterize BAV hemodynamics in an in vitro system. Two BAV models of varying stenosis and jet eccentricity and a trileaflet AV (TAV) were constructed from excised porcine AVs. Particle Image Velocimetry (PIV) experiments were conducted at physiological flow and pressure conditions to characterize fluid velocity fields in the aorta and sinus regions, and ensemble averaged Reynolds shear stress and 2D turbulent kinetic energy were calculated for all models. The dynamics of the BAV and TAV models matched the characteristics of these valves which are observed clinically. The eccentric and stenotic BAV showed the strongest systolic jet (V = 4.2 m/s), which impinged on the aortic wall on the non-fused leaflet side, causing a strong vortex in the non-fused leaflet sinus. The magnitudes of TKE and Reynolds stresses in both BAV models were almost twice as large as comparable values for TAV, and these maximum values were primarily concentrated around the central jet through the valve orifice. The in vitro model described here enables detailed characterization of BAV flow characteristics, which is currently challenging in clinical practice. This model can prove to be useful in studying the effects of altered BAV geometry on fluid dynamics in the valve and ascending aorta. These altered flows can be potentially linked to increased calcific responses from the valve endothelium in stenotic and eccentric BAVs, independent of concomitant genetic factors.

  18. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    Science.gov (United States)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  19. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    Science.gov (United States)

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  20. Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)

    2012-11-15

    The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)

  1. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    International Nuclear Information System (INIS)

    Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°

  2. ICALEO '89 - Optical methods in flow and particle diagnostics; Proceedings of the Meeting, Orlando, FL, Oct. 15-20, 1989

    Science.gov (United States)

    Long, Marshall B.

    Various papers on optical methods in flow and particle diagnostics are presented. Individual topics addressed include: swirl effects on confined flows in a model of a dump combustor, new analog optical method for data evaluation in laser Doppler anemometry, catadioptric optics for laser Doppler velocimeter applications, mapping of velocity flow field using the laser two-focus technique, engineering applications of particle image velocimeters, quantitative fluid flow analysis by laser velocimetry and numerical processing, optical analysis of particle image velocimetry data. Also discussed are: measuring turbulence in reversing flows by particle image velocimeter, two-color particle velocimetry, data evaluation in particle image velocimetry using spatial light modulator, statistical investigation of errors in particle image velocimetry, optimization of particle image velocimeters, visualization of internal structure in volumetric data, scalar measurements in two, three, and four dimensions.

  3. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  4. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  5. Vortex dynamics behind a self-oscillating inverted flag placed in a channel flow: Time-resolved particle image velocimetry measurements

    Science.gov (United States)

    Yu, Yuelong; Liu, Yingzheng; Chen, Yujia

    2017-12-01

    The unsteady flow behind an inverted flag placed in a water channel and then excited into a self-oscillating state is measured using time-resolved particle image velocimetry. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Three modes are discovered with the successive decrease in the dimensionless bending stiffness: the biased mode, the flapping mode, and the deflected mode. The distinctly different flow behavior is discussed in terms of instantaneous velocity field, phase-averaged vorticity field, time-mean flow field, and turbulent kinetic energy. The results demonstrated that the biased mode generated abundant vortices at the oscillating side of the inverted flag. In the deflected mode, the inverted flag is highly deflected to one side of the channel and remains almost stationary, inducing two stable recirculation zones and a considerably inversed flow between them. In the flapping mode, the strongly oscillating flag periodically provides a strengthened influence on the fluid near the two sidewalls. The reverse von Kármán vortex street is well formed and energetic in the wake, and a series of high-speed impingement jets between the neighboring vortices are directed toward the sidewalls in a staggered fashion.

  6. Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy

    Science.gov (United States)

    Aryal, Arjun; Brooks, Benjamin A.; Reid, Mark E.; Bawden, Gerald W.; Pawlak, Geno

    2012-01-01

    Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser Scanners (TLS) will allow better understanding of the physical processes governing landslide motion at detailed spatial and temporal scales. Problems arise, however, when estimating continuous displacement fields from TLS point-clouds because reflecting points from sequential scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track individual reflectors. Here, we implemented the cross-correlation-based Particle Image Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We estimated associated errors using the shape of the cross-correlation function and tested the method's performance with synthetic displacements applied to a TLS point cloud. We applied the method to the toe of the episodically active Cleveland Corral Landslide in northern California using TLS data acquired in June 2005–January 2007 and January–May 2010. Estimated displacements ranged from decimeters to several meters and they agreed well with independent measurements at better than 9% root mean squared (RMS) error. For each of the time periods, the method provided a smooth, nearly continuous displacement field that coincides with independently mapped boundaries of the slide and permits further kinematic and mechanical inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a diffuse zone of displacement that preceded by over a month the development of a new lateral shear zone. Additionally, the upslope and downslope displacement gradients delineated by the dense PIV field elucidated the non-rigid behavior of the slide.

  7. Particle image velocimetry measurements of the flow in the converging region of two parallel jets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu; Lee, Saya, E-mail: sayalee@tamu.edu; Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-09-15

    Highlights: • The flow behaviors in the converging region were non-intrusively investigated using PIV. • The PIV results using two measuring scales and LDV data matched very well. • Significant momentum transfer was observed in the merging region right after the merging point. • Instantaneous vector field revealed characteristic interacting patterns of the jets. - Abstract: The interaction between parallel jets plays a critical role in determining the characteristics of the momentum and heat transfer in the flow. Specifically for next generation VHTR, the output temperature will be about 900 °C, and any thermal oscillations will create safety issues. The mixing variations of the coolants in the reactor core may influence these power oscillations. Numerous numerical tools such as computational fluid dynamics (CFD) simulations have been used to support the reactor design. The validation of CFD method is important to ensure the fidelity of the calculations. This requires high-fidelity, qualified benchmark data. Particle image velocimetry (PIV), a non-intrusive measuring technique, was used to provide benchmark data for resolving a simultaneous flow field in the converging region of two submerged parallel jets issued from rectangular channels. The jets studied in this work had an equal discharge velocity at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses and z-component vorticity were studied. The streamwise mean velocity measured by PIV and LDV were compared, and they agreed very well.

  8. Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design.

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2014-01-01

    We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.

  9. Multiple Δt strategy for particle image velocimetry (PIV) error correction, applied to a hot propulsive jet

    Science.gov (United States)

    Nogueira, J.; Lecuona, A.; Nauri, S.; Legrand, M.; Rodríguez, P. A.

    2009-07-01

    PIV (particle image velocimetry) is a measurement technique with growing application to the study of complex flows with relevance to industry. This work is focused on the assessment of some significant PIV measurement errors. In particular, procedures are proposed for estimating, and sometimes correcting, errors coming from the sensor geometry and performance, namely peak-locking and contemporary CCD camera read-out errors. Although the procedures are of general application to PIV, they are applied to a particular real case, giving an example of the methodology steps and the improvement in results that can be obtained. This real case corresponds to an ensemble of hot high-speed coaxial jets, representative of the civil transport aircraft propulsion system using turbofan engines. Errors of ~0.1 pixels displacements have been assessed. This means 10% of the measured magnitude at many points. These results allow the uncertainty interval associated with the measurement to be provided and, under some circumstances, the correction of some of the bias components of the errors. The detection of conditions where the peak-locking error has a period of 2 pixels instead of the classical 1 pixel has been made possible using these procedures. In addition to the increased worth of the measurement, the uncertainty assessment is of interest for the validation of CFD codes.

  10. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.

    2017-06-12

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  11. Multiple Δt strategy for particle image velocimetry (PIV) error correction, applied to a hot propulsive jet

    International Nuclear Information System (INIS)

    Nogueira, J; Lecuona, A; Nauri, S; Legrand, M; Rodríguez, P A

    2009-01-01

    PIV (particle image velocimetry) is a measurement technique with growing application to the study of complex flows with relevance to industry. This work is focused on the assessment of some significant PIV measurement errors. In particular, procedures are proposed for estimating, and sometimes correcting, errors coming from the sensor geometry and performance, namely peak-locking and contemporary CCD camera read-out errors. Although the procedures are of general application to PIV, they are applied to a particular real case, giving an example of the methodology steps and the improvement in results that can be obtained. This real case corresponds to an ensemble of hot high-speed coaxial jets, representative of the civil transport aircraft propulsion system using turbofan engines. Errors of ∼0.1 pixels displacements have been assessed. This means 10% of the measured magnitude at many points. These results allow the uncertainty interval associated with the measurement to be provided and, under some circumstances, the correction of some of the bias components of the errors. The detection of conditions where the peak-locking error has a period of 2 pixels instead of the classical 1 pixel has been made possible using these procedures. In addition to the increased worth of the measurement, the uncertainty assessment is of interest for the validation of CFD codes

  12. Micro-PIV (micro particle image velocimetry) visualization of red blood cells (RBCs) sucked by a female mosquito

    International Nuclear Information System (INIS)

    Kikuchi, K; Mochizuki, O

    2011-01-01

    A mosquito's pump is a highly effective system in the small suction domain. To understand a mosquito's blood suction mechanism, we analysed the characteristics of red blood cells (RBCs) in human blood during and after suction by a female mosquito. Focussing on the flow patterns of the RBCs in human blood being sucked by a mosquito, we visualized blood flow by using a micro-particle image velocimetry (μ-PIV) system, which combines an optical microscope and a PIV method. In an ex vivo experiment, a female mosquito was supplied diluted blood at the tip of the proboscis. We examined the blood flow around the tip of the proboscis and observed that RBCs were periodically sucked towards a hole around the tip. The sucked RBCs then homogeneously flowed parallel to the inner surface of the proboscis without adhering to the wall. Furthermore, using a bioelectric recording system, we directly measured electrical signals generated during suction by the pump muscles located in the mosquito's head. We found that the electrical signal power was synchronized with the acceleration of the RBCs in the sucking phase. A histological stain method was adapted for the observation of the form and internal structure of RBCs in the mosquito. Although the blood flow analysis revealed that the RBCs underwent shear stress during suction, RBCs in the mosquito's stomach maintained their original shape

  13. Turbulent Structure of a Simplified Urban Fluid Flow Studied Through Stereoscopic Particle Image Velocimetry

    Science.gov (United States)

    Monnier, Bruno; Goudarzi, Sepehr A.; Vinuesa, Ricardo; Wark, Candace

    2018-02-01

    Stereoscopic particle image velocimetry was used to provide a three-dimensional characterization of the flow around a simplified urban model defined by a 5 by 7 array of blocks, forming four parallel streets, perpendicular to the incoming wind direction corresponding to a zero angle of incidence. Channeling of the flow through the array under consideration was observed, and its effect increased as the incoming wind direction, or angle of incidence ( AOI), was changed from 0° to 15°, 30°, and 45°. The flow between blocks can be divided into two regions: a region of low turbulence kinetic energy (TKE) levels close to the leeward side of the upstream block, and a high TKE area close to the downstream block. The centre of the arch vortex is located in the low TKE area, and two regions of large streamwise velocity fluctuation bound the vortex in the spanwise direction. Moreover, a region of large spanwise velocity fluctuation on the downstream block is found between the vortex legs. Our results indicate that the reorientation of the arch vortex at increasing AOI is produced by the displacement of the different TKE regions and their interaction with the shear layers on the sides and top of the upstream and downstream blocks, respectively. There is also a close connection between the turbulent structure between the blocks and the wind gusts. The correlations among gust components were also studied, and it was found that in the near-wall region of the street the correlations between the streamwise and spanwise gusts R_{uv} were dominant for all four AOI cases. At higher wall-normal positions in the array, the R_{uw} correlation decreased with increasing AOI, whereas the R_{uv} coefficient increased as AOI increased, and at {it{AOI}}=45° all three correlations exhibited relatively high values of around 0.4.

  14. Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Iowa State University, Aerospace Engineering Department, Ames, IA (United States); University of Minnesota, Saint Anthony Falls Laboratory, Minneapolis, MN (United States); Sarkar, Partha P. [Iowa State University, Aerospace Engineering Department, Ames, IA (United States)

    2012-02-15

    The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03-0.3 (vane angle {theta}{sub v} = 15 -60 ), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, {theta}{sub v} = 15 ) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1-0.3, {theta}{sub v} = 30 -60 ). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio ({theta}{sub v} = 45 ) that at the low swirl ratio ({theta}{sub v} = 15 ), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the

  15. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  16. Further development of microparticle image velocimetry analysis for characterisation of gas streams as a novel method of fuel cell development. Final report; Weiterentwicklung des Mikro-Particle Image Velocimetry Analyseverfahrens zur Charakterisierung von Gasstroemungen als neuartige Entwicklungsmethodik fuer Brennstoffzellen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The project aimed at a better understanding of the complex fluid-mechanical processes in the small ducts of bipolar plates. So far, an appropriate technology for in-situ measurement was lacking. The project therefore focused on the further development of microparticle image velocimetry in order to enable analyses of the local velocity distribution of a gas stream in a microduct. Further, measurements were carried out in the microducts of a fuel cell in the more difficult conditions of actual operation. (orig./AKB) [German] Anlass des Forschungsvorhabens war die komplizierten stroemungsmechanischen Zusammenhaenge in den kleinen Kanaelen der Bipolarplatten zu verstehen. Bisher stand keine Messtechnik zur Verfuegung, dies es erlaubt, die stroemungsmechanischen Prozesse in den Mikrokanaelen unter Realbedingungen in situ zu vermessen und mit der instantanen Zellleistung zu korrelieren, Ziel des Projektes war es daher, die Methode der Mikro-Partikel-Image-Velocimetry in der Art weiterzuentwickeln, dass eine Analyse der lokalen Geschwindigkeitsverteilung einer Gasstroemung in einem Mikrokanal ermoeglicht wird. Darueber hinaus wird als zweites Ziel des Projekts eine solche Messung unter den erschwerten Bedingungen einer betriebenen Brennstoffzelle in Mikrokanaelen einer Zelle durchgefuehrt.

  17. Characterization of an evaporating direct-injected gasoline spray using laser-induced exciplex fluorescence and particle image velocimetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dong-Seok Choi; Choongsik Bae [Korea Advanced Institute of Science and Technology, Taejon (Korea). Dept. of Mechanical Engineering; Duck-Jool Kim [Pusan National University (Korea). School of Mechanical Engineering

    2004-07-01

    The purpose of this study is to characterize an evaporating direct-injected (DI) gasoline spray from a high-pressure swirl injector using the laser-induced exciplex fluorescence (LIEF) technique and particle image velocimetry (PIV). A fluorobenzene/diethylmethylamine (DEMA) system was used as the exciplex-forming dopants. The behaviour of the liquid and vapour phases was analysed by image processing. For the analysis of vorticity inside the spray, droplet velocity data obtained by PIV were used. The experiments were performed at two ambient temperatures (293 and 473 K) and three different ambient pressures (0.1, 0.5 and 1.0 MPa). It was found that ambient temperature had a significant effect on the axial and radial growth of the liquid phase of the evaporating spray at atmospheric pressure while it had little effect under elevated pressures. Radial growth of the vapour phase of the evaporating spray was more dominant than axial growth under high temperature and pressure conditions. As the ambient pressure was elevated, the liquid phase of the spray transformed from a hollow cone to a solid cone of bell shape, while the vapour phase varied from a widespread distribution to a compact shape with a locally richer mixture. The evaporating spray could be divided into two spray regions from the analysis of vorticity and the distributions of liquid and vapour phases. The cone region (penetrations of 0.3-0.5) was mainly liquid phase and disappeared rapidly at the end of injection. The mixing region contained the active interaction between entrained air and fuel vapour. (author)

  18. Application of particle image velocimetry measurement techniques to study turbulence characteristics of oscillatory flows around parallel-plate structures in thermoacoustic devices

    International Nuclear Information System (INIS)

    Mao, Xiaoan; Jaworski, Artur J

    2010-01-01

    This paper describes the development of the experimental setup and measurement methodologies to study the physics of oscillatory flows in the vicinity of parallel-plate stacks by using the particle image velocimetry (PIV) techniques. Parallel-plate configurations often appear as internal structures in thermoacoustic devices and are responsible for the hydrodynamic energy transfer processes. The flow around selected stack configurations is induced by a standing acoustic wave, whose amplitude can be varied. Depending on the direction of the flow within the acoustic cycle, relative to the stack, it can be treated as an entrance flow or a wake flow. The insight into the flow behaviour, its kinematics, dynamics and scales of turbulence, is obtained using the classical Reynolds decomposition to separate the instantaneous velocity fields into ensemble-averaged mean velocity fields and fluctuations in a set of predetermined phases within an oscillation cycle. The mean velocity field and the fluctuation intensity distributions are investigated over the acoustic oscillation cycle. The velocity fluctuation is further divided into large- and small-scale fluctuations by using fast Fourier transform (FFT) spatial filtering techniques

  19. A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model.

    Science.gov (United States)

    Clauser, Johanna; Knieps, Marius S; Büsen, Martin; Ding, Andreas; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta; Cattaneo, Giorgio

    2018-02-27

    Particle image velocimetry (PIV) is a commonly used method for in vitro investigation of fluid dynamics in biomedical devices, such as flow diverters for intracranial aneurysm treatment. Since it is limited to transparent blood substituting fluids like water-glycerol mixture, the influence of coagulation and platelet aggregation is neglected. We aimed at the development and the application of a modified platelet rich plasma as a new PIV fluid with blood-like rheological and coagulation properties. In standardized intracranial aneurysm silicone models, the effect of this new PIV plasma on the fluid dynamics before and after flow diverter implantation was evaluated and compared with water-glycerol measurements. The flow diverting effect was strongly dependent on the used fluid, with considerably lower velocities achieved using PIV plasma, despite the same starting viscosity of both fluids. Moreover, triggering coagulation of PIV plasma allowed for intra-aneurysmal clot formation. We presented the first in vitro PIV investigation using a non-Newtonian, clottable PIV plasma, demonstrating a mismatch to a standard PIV fluid and allowing for thrombus formation.

  20. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  1. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    International Nuclear Information System (INIS)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  2. A new paradigm for particle tracking velocimetry, based on graph-theory and pulsed neural network

    International Nuclear Information System (INIS)

    Derou, D.; Herault, L.

    1994-01-01

    The Particle Tracking Velocimetry (PTV) technique works by recording, at different instances in time, positions of small tracers particles following a flow and illuminated by a sheet, or pseudo sheet, of light. It aims to recognize each particle trajectory, constituted of n different spots and determine thus each particle velocity vector. In this paper, we devise a new method, taking into account a global consistency of the trajectories to be extracted, in terms of visual perception and physical properties. It is based on a graph-theoretic formulation of the particle tracking problem and the use of an original neural network, called pulsed neural network. (authors). 4 figs

  3. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  4. Velocity Deficits in the Wake of Model Lemon Shark Dorsal Fins Measured with Particle Image Velocimetry

    Science.gov (United States)

    Terry, K. N.; Turner, V.; Hackett, E.

    2017-12-01

    Aquatic animals' morphology provides inspiration for human technological developments, as their bodies have evolved and become adapted for efficient swimming. Lemon sharks exhibit a uniquely large second dorsal fin that is nearly the same size as the first fin, the hydrodynamic role of which is unknown. This experimental study looks at the drag forces on a scale model of the Lemon shark's unique two-fin configuration in comparison to drag forces on a more typical one-fin configuration. The experiments were performed in a recirculating water flume, where the wakes behind the scale models are measured using particle image velocimetry. The experiments are performed at three different flow speeds for both fin configurations. The measured instantaneous 2D distributions of the streamwise and wall-normal velocity components are ensemble averaged to generate streamwise velocity vertical profiles. In addition, velocity deficit profiles are computed from the difference between these mean streamwise velocity profiles and the free stream velocity, which is computed based on measured flow rates during the experiments. Results show that the mean velocities behind the fin and near the fin tip are smallest and increase as the streamwise distance from the fin tip increases. The magnitude of velocity deficits increases with increasing flow speed for both fin configurations, but at all flow speeds, the two-fin configurations generate larger velocity deficits than the one-fin configurations. Because the velocity deficit is directly proportional to the drag force, these results suggest that the two-fin configuration produces more drag.

  5. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  6. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    Science.gov (United States)

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Bilsky, A V; Lozhkin, V A; Markovich, D M; Tokarev, M P

    2013-01-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART. (paper)

  8. Characterization of the activity of ultrasound emitted in a perpendicular liquid flow using Particle Image Velocimetry (PIV) and electrochemical mass transfer measurements.

    Science.gov (United States)

    Barthès, Magali; Mazue, Gerald; Bonnet, Dimitri; Viennet, Remy; Hihn, Jean-Yves; Bailly, Yannick

    2015-05-01

    The present work is dedicated to the study of the interactions between a liquid circulation and a perpendicular acoustic wave propagation. A specific experimental setup was designed to study one transducer operating at 20 kHz, with the help of electrochemical mass transfer measurements combined with Particle Image Velocimetry (PIV) determination. Electrodes were located on the wall opposite to the acoustic emission. Experiments were performed for various Reynolds numbers: from 0 to 21700 (different liquid flow rates and viscosities). Both PIV and electrochemical measurements methods were found to be relevant, and had delivered complementary information. Even if PIV showed that the plume due to streaming was highly deflected by the additional flow, electrochemical measurements showed that there was still an activity, higher than in silent conditions, on the wall facing the transducer. Thus the ultrasound contribution remained noticeable on the surface opposite to the transducer even for a disturbed hydrodynamic environment due to the presence of a liquid circulation perpendicular to the wave propagation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Estudos de Reaeração com Velocimetria por Imagens de Partículas - Sistema S-PIV-3D Rearation Studies with Particle Image Velocimetry - S-PIV-3D System

    Directory of Open Access Journals (Sweden)

    Marcos Rogério Szeliga

    2009-12-01

    Full Text Available Particle Image Velocimetry (PIV é uma técnica recente de medição não-intrusiva de campos de velocidades em escoamentos. Neste trabalho, foi desenvolvido um equipamento de medição com características similares aos convencionais, porém com algumas características exclusivas, como o método óptico de aquisição de imagens e a calibração de coordenadas, que resultaram na utilização de uma única câmera convencional para obtenção de imagens e dados tridimensionais em escoamentos de baixa turbulência, proporcionando significativa economia na implantação. Foi desenvolvido um software específico e os resultados consistem em campos de velocidades tridimensionais. A aplicação destinou-se à medição de velocidades na superfície do escoamento em um tanque de grades oscilantes de forma a correlacionar a turbulência superficial com a capacidade de reaeração dos corpos da água.Particle Image Velocimetry (PIV is a recent technique of flow measurement labeled as a non-intrusive methodology. The system developed in this paper used principles similar to conventional systems including some exclusive characteristics as the optical method of image acquisition and the calibration process of the coordinate system. The measurement system, resulted from these characteristics, uses a single conventional digital video camera to obtain three-dimensional data in low turbulence flow, which provided significant economy in the system implantation. A specific software was developed and the results consist of fields of three-dimensional velocities obtained from the digital video file. The application was destined to the measurement of velocities on the flow surface in a tank of oscillating grids in order to correlate the surface turbulence with the rearation capacity of the bodies of water.

  10. Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry

    International Nuclear Information System (INIS)

    Olsen, Michael G

    2009-01-01

    An analytical model for the microscopic particle image velocimetry (microPIV) correlation signal peak in a purely shearing flow was derived for the case of in-plane shearing (out-of-plane shearing was not considered). This model was then used to derive equations for the measured velocity weighting functions for the two velocity components, and the weighting functions were in turn used to define the depths of correlation associated with the two measured velocity components. The depth of correlation for the velocity component perpendicular to the shear was found to be unaffected by the shear rate. However, the depth of correlation for the velocity component in the direction of the shear was found to be highly dependent on the shear rate, with the depth of correlation increasing as the shear rate increased. Thus, in a flow with shear, there is not a single value for the depth of correlation within an interrogation region. Instead, the depth of correlation exhibits directional dependence, with a different depth of correlation for each of the two measured velocity components. The increase in the depth of correlation due to the shear rate is greater for large numerical aperture objectives than for small numerical aperture objectives. This increase in the depth of correlation in a shearing flow can be quite large, with increases in the depth of correlation exceeding 100% being very possible for high numerical aperture objectives. The effects of out-of-plane shear are beyond the capabilities of this analysis, although the possible consequences of out-of-plane shear are discussed

  11. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.

    Science.gov (United States)

    Babu, Mannam Naga Praveen; Mallikarjuna, J M; Krishnankutty, P

    Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish's morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L  = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5-1.5 times of body length per second. The kinematic analysis and pressure distribution of carangiform fish are presented here. The fish body and fin undulations create circular flow patterns (vortices) that travel along with the body waves and change the flow around its tail to increase the swimming efficiency. The wake of different fins of the swimming fish consists of two counter-rotating vortices about the mean path of fish motion. These wakes resemble like reverse von Karman vortex street which is nothing but a thrust-producing wake. The velocity vectors around a C-start (a straight swimming fish bends into C-shape) maneuvering fish are also discussed in this paper. Studying flows around flapping fins will contribute to design of bioinspired propulsors for marine vehicles.

  12. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Science.gov (United States)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  13. On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Discetti, Stefano; Ianiro, Andrea; Astarita, Tommaso; Cardone, Gennaro

    2013-01-01

    This work deals with the critical aspects related to cost reduction of a Tomo PIV setup and to the bias errors introduced in the velocity measurements by the coherent motion of the ghost particles. The proposed solution consists of using two independent imaging systems composed of three (or more) low speed single frame cameras, which can be up to ten times cheaper than double shutter cameras with the same image quality. Each imaging system is used to reconstruct a particle distribution in the same measurement region, relative to the first and the second exposure, respectively. The reconstructed volumes are then interrogated by cross-correlation in order to obtain the measured velocity field, as in the standard tomographic PIV implementation. Moreover, differently from tomographic PIV, the ghost particle distributions of the two exposures are uncorrelated, since their spatial distribution is camera orientation dependent. For this reason, the proposed solution promises more accurate results, without the bias effect of the coherent ghost particles motion. Guidelines for the implementation and the application of the present method are proposed. The performances are assessed with a parametric study on synthetic experiments. The proposed low cost system produces a much lower modulation with respect to an equivalent three-camera system. Furthermore, the potential accuracy improvement using the Motion Tracking Enhanced MART (Novara et al 2010 Meas. Sci. Technol. 21 035401) is much higher than in the case of the standard implementation of tomographic PIV. (paper)

  14. Measurements of wall-shear-stress distribution on an NACA0018 airfoil by liquid-crystal coating and near-wall particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Fujisawa, N; Oguma, Y; Nakano, T

    2009-01-01

    Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s −1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV

  15. Holographic particle image velocimetry using Bacteriorhodopsin

    NARCIS (Netherlands)

    Koek, W.D.

    2006-01-01

    To gain better insight into the behaviour of turbulent flow there is a demand for a practical measurement instrument to perform three-dimensional flow measurements. Holography is a three-dimensional imaging technique, and as such is ideally suited for this purpose. Because flow media (such as water

  16. PIV measurement at the blowdown pipe outlet. [Particle Image Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A.; Pyy, L.; Telkkae, J. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the findings of the PIV measurement tests carried out in January - February 2013 with the scaled down PPOOLEX test facility at LUT. The main objective of the tests was to find out the operational limits of the PIV system regarding suitable test conditions and correct values of different adjustable PIV parameters. An additional objective was to gather CFD grade data for verification/validation of numerical models. Both water and steam injection tests were carried out. PIV measurements with cold water injection succeeded well. Raw images were of high quality, averaging over the whole measurement period could be done and flow fields close to the blowdown pipe outlet could be determined. In the warm water injection cases the obtained averaged velocity field images were harder to interpret, especially if the blowdown pipe was also filled with warm water in the beginning of the measurement period. The absolute values of the velocity vectors seemed to be smaller than in the cold water injection cases. With very small steam flow rates the steam/water interface was inside the blowdown pipe and quite stable in nature. The raw images were of good quality but due to some fluctuation in the velocity field averaging of the velocity images over the whole measured period couldn't be done. Condensation of steam in the vicinity of the pipe exit probably caused these fluctuations. A constant outflow was usually followed by a constant inflow towards the pipe exit. Vector field images corresponding to a certain phase of the test could be extracted and averaged but this would require a very careful analysis so that the images could be correctly categorized. With higher steam flow rates rapid condensation of large steam bubbles created small gas bubbles which were in front of the measurement area of the PIV system. They disturbed the measurements by reflecting laser light like seeding particles and therefore the raw images were of poor quality and they couldn

  17. Implementation of vibration correction schemes to the evaluation of a turbulent flow in an open channel by tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Earl, T A; Thomas, L; David, L; Cochard, S; Tremblais, B

    2015-01-01

    The aim of this paper is to investigate and quantify the effect of vibration on experimental tomographic particle image velocimetry (TPIV) measurements. The experiment consisted of turbulence measurements in an open channel flow. Specifically, five trash rack assemblies, composed of regular grids, divided a 5 m long flume into four sequential, identical pools. This set-up established a globally stationary flow, with each pool generating a controlled amount of turbulence that is reset at every trash rack. TPIV measurements were taken in the central pool. To eliminate the vibration from the measurements, three vibration correction regimes are proposed and compared to a global volume self-calibration (Wieneke 2008 Exp. Fluids 45 549–56), a now standard calibration procedure in TPIV. As the amplitude of the vibrations was small, it was possible to extract acceptable reconstruction re-projection qualities (Q I  > 75%) and velocity fields from the standard treatment. This paper investigates the effect of vibration on the cross-correlation signal and turbulence statistics, and shows the improvement to velocity field data by several correction schemes. A synthetic model was tested that simulated camera vibration to demonstrate its effects on key velocity parameters and to observe the effects on reconstruction and cross-correlation metrics. This work has implications for experimental measurements where vibrations are unavoidable and seemingly undetectable such as those in large open channel flows. (paper)

  18. Validation and application of Acoustic Mapping Velocimetry

    Science.gov (United States)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army

  19. Time-resolved image analysis for turbulent flows

    NARCIS (Netherlands)

    Kähler, C.J.; Cierpka, C.; Scharnowski, S.; Manhart, M.; Sciacchitano, A.; Lynch, K.; Scarano, F.; Wieneke, B.; Willert, C.; Jeon, Y. J.; Chatellier, L.; Augereau, L.; Tremblais, B.; David, L.

    2013-01-01

    Classical Particle Image Velocimetry (PIV) uses two representations of the particle image distribution to determine the displacement of the particle image pattern by spatial cross-correlation. The accuracy and the robustness are however limited by the fact that only two representations at t and t

  20. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.

    Science.gov (United States)

    Hariharan, Prasanna; Giarra, Matthew; Reddy, Varun; Day, Steven W; Manning, Keefe B; Deutsch, Steven; Stewart, Sandy F C; Myers, Matthew R; Berman, Michael R; Burgreen, Greg W; Paterson, Eric G; Malinauskas, Richard A

    2011-04-01

    This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available

  1. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  2. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.

    Science.gov (United States)

    Gurung, Arati; Gates, Phillip E; Mazzaro, Luciano; Fulford, Jonathan; Zhang, Fuxing; Barker, Alex J; Hertzberg, Jean; Aizawa, Kunihiko; Strain, William D; Elyas, Salim; Shore, Angela C; Shandas, Robin

    2017-08-01

    Measurement of hemodynamic wall shear stress (WSS) is important in investigating the role of WSS in the initiation and progression of atherosclerosis. Echo particle image velocimetry (echo PIV) is a novel ultrasound-based technique for measuring WSS in vivo that has previously been validated in vitro using the standard optical PIV technique. We evaluated the repeatability and reproducibility of echo PIV for measuring WSS in the human common carotid artery. We measured WSS in 28 healthy participants (18 males and 10 females, mean age: 56 ± 12 y). Echo PIV was highly repeatable, with an intra-observer variability of 1.0 ± 0.1 dyn/cm 2 for peak systolic (maximum), 0.9 dyn/cm 2 for mean and 0.5 dyn/cm 2 for end-diastolic (minimum) WSS measurements. Likewise, echo PIV was reproducible, with a low inter-observer variability (max: 2.0 ± 0.2 dyn/cm 2 , mean: 1.3 ± 0.1 dyn/cm 2 , end-diastolic: 0.7 dyn/cm 2 ) and more variable inter-scan (test-retest) variability (max: 7.1 ± 2.3 dyn/cm 2 , mean: 2.9 ± 0.4 dyn/cm 2 , min: 1.5 ± 0.1 dyn/cm 2 ). We compared echo PIV with the reference method, phase-contrast magnetic resonance imaging (PC-MRI); echo PIV-based WSS measurements agreed qualitatively with PC-MRI measurements (r = 0.89, p PIV vs. PC-MRI): WSS at peak systole: 21 ± 7.0 dyn/cm 2 vs. 15 ± 5.0 dyn/cm 2 ; time-averaged WSS: 8.9 ± 3.0 dyn/cm 2 vs. 7.1 ± 3.0 dyn/cm 2 (p  0.05). For the first time, we report that echo PIV can measure WSS with good repeatability and reproducibility in adult humans with a broad age range. Echo PIV is feasible in humans and offers an easy-to-use, ultrasound-based, quantitative technique for measuring WSS in vivo in humans with good repeatability and reproducibility. Copyright © 2017. Published by Elsevier Inc.

  3. Comparison of Simultaneous PIV and Hydroxyl Tagging Velocimetry in Low Velocity Flows

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging velocimetry (MTV) technique that relies on the photo- dissociation of water vapor into OH radicals and their subsequent tracking using laser-induced fluorescence. At ambient temperature in air, the OH species lifetime is about 50 micro-s. The feasibility of using HTV for probing low- speed flows (a few m/s) is investigated by using an inert, heated gas as a means to increase the OH species lifetime. Unlike particle-based techniques, MTV does not suffer from tracer settling, which is particularly problematic at low speeds. Furthermore, the flow needs to be seeded with only a small mole fraction of water vapor, making it safer for both the user and facilities than other MTV techniques based on corrosive or toxic chemical tracers. HTV is demonstrated on a steam-seeded nitrogen jet at approximately 75 C in the laminar (Umean=3.31 m/s, Re=1,540), transitional (Umean=4.48 m/s, Re=2,039), and turbulent (Umean=6.91 m/s, Re=3,016) regimes at atmospheric pressure. The measured velocity profiles are compared with particle image velocimetry (PIV) measurements performed simultaneously with a second imager. Seeding for the PIV is achieved by introducing micron-sized water droplets into the flow with the steam; the same laser sheet is used for PIV and HTV to guarantee spatial and temporal overlap of the data. Optimizing each of these methods, however, requires conflicting operating conditions: higher temperatures benefit the HTV signals but reduce the available seed density for the PIV through evaporation. Nevertheless, data are found to agree within 10% for the instantaneous velocity profiles and within 5% for the mean profiles and demonstrate the feasibility of HTV for low-speed flows at moderate to high temperatures.

  4. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  5. Track benchmarking method for uncertainty quantification of particle tracking velocimetry interpolations

    International Nuclear Information System (INIS)

    Schneiders, Jan F G; Sciacchitano, Andrea

    2017-01-01

    The track benchmarking method (TBM) is proposed for uncertainty quantification of particle tracking velocimetry (PTV) data mapped onto a regular grid. The method provides statistical uncertainty for a velocity time-series and can in addition be used to obtain instantaneous uncertainty at increased computational cost. Interpolation techniques are typically used to map velocity data from scattered PTV (e.g. tomographic PTV and Shake-the-Box) measurements onto a Cartesian grid. Recent examples of these techniques are the FlowFit and VIC+  methods. The TBM approach estimates the random uncertainty in dense velocity fields by performing the velocity interpolation using a subset of typically 95% of the particle tracks and by considering the remaining tracks as an independent benchmarking reference. In addition, also a bias introduced by the interpolation technique is identified. The numerical assessment shows that the approach is accurate when particle trajectories are measured over an extended number of snapshots, typically on the order of 10. When only short particle tracks are available, the TBM estimate overestimates the measurement error. A correction to TBM is proposed and assessed to compensate for this overestimation. The experimental assessment considers the case of a jet flow, processed both by tomographic PIV and by VIC+. The uncertainty obtained by TBM provides a quantitative evaluation of the measurement accuracy and precision and highlights the regions of high error by means of bias and random uncertainty maps. In this way, it is possible to quantify the uncertainty reduction achieved by advanced interpolation algorithms with respect to standard correlation-based tomographic PIV. The use of TBM for uncertainty quantification and comparison of different processing techniques is demonstrated. (paper)

  6. Study of particles clouds ejected under shock: the contributions of Photonic Doppler Velocimetry

    International Nuclear Information System (INIS)

    Prudhomme, Gabriel

    2014-01-01

    A metal plate subjected to a shock (tin, 10 GPa) undergoes a variety of damages such as spalling or the ejection of a cloud of particles. Two main mechanisms govern the formation of this cloud: the micro-jetting and the melting under shock. Photonic Doppler Velocimetry (PDV, a.k.a. LDV or het-V) is a multi-velocity time-resolved diagnostic. Developed from 2000's, the all-fibered conception makes its integration easy into shock experiments. The purpose of the thesis is to describe the contributions of PDV systems for high-velocity (several km/s) particle-cloud characterization, including micro-jetting cloud. This document presents a state of the art of shock generators, diagnostics and (numerical and experimental) studies involved in metallic micro-machined jetting. An extensive study of a PDV system is proposed. It leads to the definition of time-velocity spectrogram, evaluated in units of collected power, and a detection capability limit. Thanks to photon diffusion models, a threshold in the diameter of the measured particle is estimated. A PDV spectrogram simulation program is shown within the framework of particle clouds. Finally, several experimental campaigns are exposed. They emphasize the remarkable capacities of the system; results are compared to simulations. Diameter distributions are inferred using slowing down in air or in other gazes. Some radiometric analyses are also performed. (author) [fr

  7. Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data

    International Nuclear Information System (INIS)

    Casa, L D C; Krueger, P S

    2013-01-01

    Unstructured three-dimensional fluid velocity data were interpolated using Gaussian radial basis function (RBF) interpolation. Data were generated to imitate the spatial resolution and experimental uncertainty of a typical implementation of defocusing digital particle image velocimetry. The velocity field associated with a steadily rotating infinite plate was simulated to provide a bounded, fully three-dimensional analytical solution of the Navier–Stokes equations, allowing for robust analysis of the interpolation accuracy. The spatial resolution of the data (i.e. particle density) and the number of RBFs were varied in order to assess the requirements for accurate interpolation. Interpolation constraints, including boundary conditions and continuity, were included in the error metric used for the least-squares minimization that determines the interpolation parameters to explore methods for improving RBF interpolation results. Even spacing and logarithmic spacing of RBF locations were also investigated. Interpolation accuracy was assessed using the velocity field, divergence of the velocity field, and viscous torque on the rotating boundary. The results suggest that for the present implementation, RBF spacing of 0.28 times the boundary layer thickness is sufficient for accurate interpolation, though theoretical error analysis suggests that improved RBF positioning may yield more accurate results. All RBF interpolation results were compared to standard Gaussian weighting and Taylor expansion interpolation methods. Results showed that RBF interpolation improves interpolation results compared to the Taylor expansion method by 60% to 90% based on the average squared velocity error and provides comparable velocity results to Gaussian weighted interpolation in terms of velocity error. RMS accuracy of the flow field divergence was one to two orders of magnitude better for the RBF interpolation compared to the other two methods. RBF interpolation that was applied to

  8. Extraction of density distributions and particle locations from hologram images

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji; Ikeda, Koh; Madarame, Haruki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the two information could be separated using low-pass and high-pass filter. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  9. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry

    Science.gov (United States)

    Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.

    2011-03-01

    A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between

  10. Particle displacement tracking for PIV

    Science.gov (United States)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  11. Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses.

    Science.gov (United States)

    Akutsu, Toshinosuke; Fukuda, Takamasa

    2005-01-01

    Dynamic particle image velocimetry (PIV) was applied to the study of the flow field associated with prosthetic heart valves. The results were compared with those of laser Doppler anemometry (LDA). Anatomically and antianatomically oriented Jyros (JR) and St. Jude Medical (SJM) valves were compared in the mitral position to study the effects of valve design on the downstream flow field. The experimental program used a dynamic PIV system utilizing high-speed, high-resolution video to map the true time-resolved velocity field inside the simulated ventricle. This system was complemented by a study using the more traditional LDA system for comparison. Based on the experimental data, the following general conclusions can be made. High-resolution dynamic PIV can capture true chronological changes in the velocity and turbulence fields. It also produces very detailed velocity and turbulence information comparable to the LDA results. In the vertical measuring plane that passes both the center of the aortic and mitral valves (A-A section), the two valves (the SJM and the JR) show distinct circulatory flow patterns when the valve is installed in the antianatomical orientation. Small differences in valve design can generate noticeable differences, particularly during the accelerating flow phase. The SJM valve maintains a relatively high velocity through the central orifice; the curved leaflets of the JR valve generate higher velocities with a divergent flow during the accelerating and peak flow phases. In the velocity field directly below the mitral valve and normal to the previous measuring plane (B-B section), where characteristic differences in valve design will be visible, symmetrical twin circulations were observed because of the divergent nature of the flow generated by the two inclined half-disks installed in the antianatomical orientation. The SJM valve, with a central downward flow near the valve, is contrasted with the JR valve, which has a peripheral downward

  12. Particle Data Management Software for 3DParticle Tracking Velocimetry and Related Applications – The Flowtracks Package

    Directory of Open Access Journals (Sweden)

    Yosef Meller

    2016-06-01

    Full Text Available The Particle Tracking Velocimetry (PTV community employs several formats of particle information such as position and velocity as function of time, i.e. trajectory data, as a result of diverging needs unmet by existing formats, and a number of different, mostly home-grown, codes for handling the data. Flowtracks is a Python package that provides a single code base for accessing different formats as a database, i.e. storing data and programmatically manipulating them using format-agnostic data structures. Furthermore, it offers an HDF5-based format that is fast and extensible, obviating the need for other formats. The package may be obtained from https://github.com/OpenPTV/postptv and used as-is by many fluid-dynamics labs, or with minor extensions adhering to a common interface, by researchers from other fields, such as biology and population tracking.

  13. Extraction of density distributions and particle locations from hologram images

    International Nuclear Information System (INIS)

    Ikeda, Koh; Okamoto, Koji; Kato, Fumitake; Shimizu, Isao.

    1996-01-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. In the hologram, the interferogram between reference beam and particle scattering were recorded. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the plane wave was reconstructed with the low-pass filter, resulting in the information of the density distributions to be obtained. With the high-pass filter, the particle three-dimensional positions was determined, i.e., the same procedure with the original HPIV technique. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  14. Design considerations for large field particle image velocimetery (LF-PIV)

    International Nuclear Information System (INIS)

    Pol, S U; Balakumar, B J

    2013-01-01

    We discuss the challenges and limitations associated with the development of a large field of view particle image velocimetry (LF-PIV) diagnostic, capable of resolving large-scale motions (>1 m per camera) in gas phase laboratory and field experiments. While this diagnostic is developed for the measurement of wakes and local inflow conditions around research wind turbines, the design considerations provided here are also relevant for the application of LF-PIV to atmospheric boundary layer, rotorcraft dynamics and large-scale wind tunnel flows. Measurements over an area of 0.75 m × 1.0 m on a confined vortex were obtained using a standard 2MP camera, with the potential for increasing this area significantly using 11MP cameras. The cameras in this case were oriented orthogonal to the measurement plane receiving only the side-scattered component of light from the particles. Scaling laws associated with LF-PIV systems are also presented along with the performance analysis of low-density, large diameter Expancel particles, that appear to be promising candidates for LF-PIV seeding. (paper)

  15. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  16. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry

    Science.gov (United States)

    Atkinson, Callum; Soria, Julio

    2009-10-01

    To date, Tomo-PIV has involved the use of the multiplicative algebraic reconstruction technique (MART), where the intensity of each 3D voxel is iteratively corrected to satisfy one recorded projection, or pixel intensity, at a time. This results in reconstruction times of multiple hours for each velocity field and requires considerable computer memory in order to store the associated weighting coefficients and intensity values for each point in the volume. In this paper, a rapid and less memory intensive reconstruction algorithm is presented based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Reconstructions of simulated images are presented for two simultaneous algorithms (SART and SMART) as well as the now standard MART algorithm, which indicate that the same accuracy as MART can be achieved 5.5 times faster or 77 times faster with 15 times less memory if the processing and storage of the weighting matrix is considered. Application of MLOS-SMART and MART to a turbulent boundary layer at Re θ = 2200 using a 4 camera Tomo-PIV system with a volume of 1,000 × 1,000 × 160 voxels is discussed. Results indicate improvements in reconstruction speed of 15 times that of MART with precalculated weighting matrix, or 65 times if calculation of the weighting matrix is considered. Furthermore the memory needed to store a large weighting matrix and volume intensity is reduced by almost 40 times in this case.

  17. Calculation of the weighting function and determination of the depth of correlation in micro-PIV from experimental particle images

    International Nuclear Information System (INIS)

    Hein, M; Seemann, R; Wieneke, B

    2014-01-01

    Micro-particle image velocimetry (µPIV) uses volume-illumination and imaging of particles through a single microscope objective. Displacement fields are obtained by image correlation and depend on all imaged particles, including defocused particles. The measured in-plane displacement is a weighted spatial average of the true displacement, with a weighting function W(z) that depends on the optical system and flow-gradients. The characteristic width of the weighting function W(z) is also referred to as depth of correlation (DOC) and is a measure up to which distance from the focal plane particles influence the measurement, which is crucial for the interpretation of measured flow fields. We present procedures to determine the W(z) from which the DOC can be derived and to directly determine the DOC from PIV double images, generated from experimentally recorded particle images. Both procedures provide comparable DOC results. Our approach allows determination of the DOC and W(z)as a function of out of plane gradients, optical setup parameters and PIV-analysis parameters. Experimental results for different objectives and particle sizes are discussed, revealing substantial deviations from theoretical predictions for high NA air-objectives. Moreover, using the determined weighting function W(z), the correction of measured flow profiles for errors introduced by the spatial averaging is demonstrated. (paper)

  18. Proper orthogonal decomposition-based estimations of the flow field from particle image velocimetry wall-gradient measurements in the backward-facing step flow

    International Nuclear Information System (INIS)

    Nguyen, Thien Duy; Wells, John Craig; Mokhasi, Paritosh; Rempfer, Dietmar

    2010-01-01

    In this paper, particle image velocimetry (PIV) results from the recirculation zone of a backward-facing step flow, of which the Reynolds number is 2800 based on bulk velocity upstream of the step and step height (h = 16.5 mm), are used to demonstrate the capability of proper orthogonal decomposition (POD)-based measurement models. Three-component PIV velocity fields are decomposed by POD into a set of spatial basis functions and a set of temporal coefficients. The measurement models are built to relate the low-order POD coefficients, determined from an ensemble of 1050 PIV fields by the 'snapshot' method, to the time-resolved wall gradients, measured by a near-wall measurement technique called stereo interfacial PIV. These models are evaluated in terms of reconstruction and prediction of the low-order temporal POD coefficients of the velocity fields. In order to determine the estimation coefficients of the measurement models, linear stochastic estimation (LSE), quadratic stochastic estimation (QSE), principal component regression (PCR) and kernel ridge regression (KRR) are applied. We denote such approaches as LSE-POD, QSE-POD, PCR-POD and KRR-POD. In addition to comparing the accuracy of measurement models, we introduce multi-time POD-based estimations in which past and future information of the wall-gradient events is used separately or combined. The results show that the multi-time estimation approaches can improve the prediction process. Among these approaches, the proposed multi-time KRR-POD estimation with an optimized window of past wall-gradient information yields the best prediction. Such a multi-time KRR-POD approach offers a useful tool for real-time flow estimation of the velocity field based on wall-gradient data

  19. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  20. Spheronization process particle kinematics determined by discrete element simulations and particle image velocimentry measurements.

    Science.gov (United States)

    Koester, Martin; García, R Edwin; Thommes, Markus

    2014-12-30

    Spheronization is an important pharmaceutical manufacturing technique to produce spherical agglomerates of 0.5-2mm diameter. These pellets have a narrow size distribution and a spherical shape. During the spheronization process, the extruded cylindrical strands break in short cylinders and evolve from a cylindrical to a spherical state by deformation and attrition/agglomeration mechanisms. Using the discrete element method, an integrated modeling-experimental framework is presented, that captures the particle motion during the spheronization process. Simulations were directly compared and validated against particle image velocimetry (PIV) experiments with monodisperse spherical and dry γ-Al2O3 particles. demonstrate a characteristic torus like flow pattern, with particle velocities about three times slower than the rotation speed of the friction plate. Five characteristic zones controlling the spheronization process are identified: Zone I, where particles undergo shear forces that favors attrition and contributes material to the agglomeration process; Zone II, where the static wall contributes to the mass exchange between particles; Zone III, where gravitational forces combined with particle motion induce particles to collide with the moving plate and re-enter Zone I; Zone IV, where a subpopulation of particles are ejected into the air when in contact with the friction plate structure; and Zone V where the low poloidal velocity favors a stagnant particle population and is entirely controlled by the batch size. These new insights in to the particle motion are leading to deeper process understanding, e.g., the effect of load and rotation speed to the pellet formation kinetics. This could be beneficial for the optimization of a manufacturing process as well as for the development of new formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Continuous and simultaneous measurement of the tank-treading motion of red blood cells and the surrounding flow using translational confocal micro-particle image velocimetry (micro-PIV) with sub-micron resolution

    International Nuclear Information System (INIS)

    Oishi, M; Utsubo, K; Kinoshita, H; Fujii, T; Oshima, M

    2012-01-01

    In this study, a translational confocal micro-particle image velocimetry (PIV) system is introduced to measure the microscopic interaction between red blood cells (RBCs) and the surrounding flow. Since the macroscopic behavior of RBCs, such as the tank-treading motion, is closely related to the axial migration and other flow characteristics in arterioles, the measurement method must answer the conflicting demands of sub-micron resolution, continuous measurement and applicability for high-speed flow. In order to avoid loss of the measurement target, i.e. RBCs, from the narrow field of view during high-magnification measurement, the translation stage with the flow device moves in the direction opposite the direction of flow. The proposed system achieves the measurement of higher absolute velocities compared with a conventional confocal micro-PIV system without the drawbacks derived from stage vibration. In addition, we have applied a multicolor separation unit, which can measure different phases simultaneously using different fluorescent particles, in order to clarify the interaction between RBCs and the surrounding flow. Based on our measurements, the tank-treading motion of RBCs depends on the shear stress gradient of the surrounding flow. Although, the relationship between the tank-treading frequency and the shear rate of the surrounding flow is of the same order as in the previous uniform shear rate experiments, our results reveal the remarkable behavior of the non-uniform membrane velocities and lateral velocity component of flow around the RBCs. (paper)

  2. Comparison of PIV measurements and a discrete particle model in a rectangular 3D spout-fluid bed

    NARCIS (Netherlands)

    Link, J.M.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    Particle image velocimetry and a 3D hard sphere discrete particle model were applied to determine particle velocity profiles in the plane around a spout in a spoutfluid bed for various initial bed heights, spout and background fluidization velocities. Comparison between experimental and numerical

  3. Adaptive image interrogation for PIV : Application to compressible flows and interfaces

    NARCIS (Netherlands)

    Theunissen, R.

    2010-01-01

    As an experimental tool, Particle Image Velocimetry has quickly superseded traditional point-wise measurements. The inherent image processing has become standardized though the performances are strongly dependent on user experience. Moreover, the arduously selected image interrogation parameters are

  4. Rainbow Particle Imaging Velocimetry

    KAUST Repository

    Xiong, Jinhui

    2017-01-01

    dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics

  5. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.; Alarfaj, Meshal K.; Li, Erqiang; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T

    2017-01-01

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets

  6. Ghost Particle Velocimetry implementation in millimeters devices and comparison with μPIV

    Science.gov (United States)

    Riccomi, Marco; Alberini, Federico; Brunazzi, Elisabetta; Vigolo, Daniele

    2016-11-01

    Micro/milli-fluidic devices are becoming an important reference for several disciplines and are quickly increasing their applications in scientific, as well as industrial, environment. As a consequence, the development of techniques able to analyse these kinds of systems is required to allow their progress. Here we show the implementation of the Ghost Particle Velocimetry (GPV) for the flow velocity field investigation in milli-fluidic devices. This innovative technique has been recently introduced, and has been already proven to be useful in describing rapid phenomenon at a small scale. In this work, the GPV has been used to characterize the trapping of light suspended material in a branching junction. Experiments have been performed to identify the flow velocity field close to a millimeters scale T-junction, at different Reynolds numbers. Particularly interesting are the complex structures, such as vortices and recirculation zones, induced by the vortex breakdown phenomenon. The results obtained have been deeply validated and compared with the well-established μPIV, highlighting the differences in terms of qualitative and quantitative parameters. A performance comparison has been designed to underline the strengths and weaknesses of the two experimental techniques.

  7. Development and application of a particle image velocimeter for high-speed flows

    Science.gov (United States)

    Molezzi, M. J.; Dutton, J. C.

    1992-01-01

    A particle image velocimetry (PIV) system has been developed for use in high-speed separated air flows. The image acquisition system uses two 550 mJ/pulse Nd:YAG lasers and is fully controlled by a host Macintosh computer. The interrogation system is also Macintosh-based and performs interrogations at approximately 2.3 sec/spot and 4.0 sec/spot when using the Young's fringe and autocorrelation methods, respectively. The system has been proven in preliminary experiments using known-displacement simulated PIV photographs and a simple axisymmetric jet flow. Further results have been obtained in a transonic wind tunnel operating at Mach 0.4 to 0.5 (135 m/s to 170 m/s). PIV experiments were done with an empty test section to provide uniform flow data for comparison with pressure and LDV data, then with a two-dimensional base model, revealing features of the von Karman vortex street wake and underlying small scale turbulence.

  8. Measurement and Image Processing Techniques for Particle Image Velocimetry Using Solid-Phase Carbon Dioxide

    Science.gov (United States)

    2014-03-27

    stereoscopic PIV: the angular displacement configuration and the translation configuration. The angular displacement configuration is most commonly used today...images were processed using ImageJ, an open-source, Java -based image processing software available from the National Institute of Health (NIH). The

  9. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  10. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration.

    Directory of Open Access Journals (Sweden)

    Sarah Kefayati

    Full Text Available Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration. The level of laminar (ensemble-averaged shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS and approximately double (4-36 Pa for wall shear stress (WSS. Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.

  11. Displacement of particles in microfluidics by laser-generated tandem bubbles

    Science.gov (United States)

    Lautz, Jaclyn; Sankin, Georgy; Yuan, Fang; Zhong, Pei

    2010-11-01

    The dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m/s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.

  12. Spatio-temporal patterns of sediment particle movement on 2D and 3D bedforms

    Science.gov (United States)

    Tsubaki, Ryota; Baranya, Sándor; Muste, Marian; Toda, Yuji

    2018-06-01

    An experimental study was conducted to explore sediment particle motion in an open channel and its relationship to bedform characteristics. High-definition submersed video cameras were utilized to record images of particle motion over a dune's length scale. Image processing was conducted to account for illumination heterogeneity due to bedform geometric irregularity and light reflection at the water's surface. Identification of moving particles using a customized algorithm was subsequently conducted and then the instantaneous velocity distribution of sediment particles was evaluated using particle image velocimetry. Obtained experimental results indicate that the motion of sediment particles atop dunes differs depending on dune geometry (i.e., two-dimensional or three-dimensional, respectively). Sediment motion and its relationship to dune shape and dynamics are also discussed.

  13. Tomographic PIV: particles versus blobs

    International Nuclear Information System (INIS)

    Champagnat, Frédéric; Cornic, Philippe; Besnerais, Guy Le; Plyer, Aurélien; Cheminet, Adam; Leclaire, Benjamin

    2014-01-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels. (paper)

  14. Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels.

    Science.gov (United States)

    Margaris, Konstantinos N; Nepiyushchikh, Zhanna; Zawieja, David C; Moore, James; Black, Richard A

    2016-02-01

    We describe the development of an optical flow visualization method for resolving the flow velocity vector field in lymphatic vessels in vitro. The aim is to develop an experimental protocol for accurately estimating flow parameters, such as flow rate and shear stresses, with high spatial and temporal resolution. Previous studies in situ have relied on lymphocytes as tracers, but their low density resulted in a reduced spatial resolution whereas the assumption that the flow was fully developed in order to determine the flow parameters of interest may not be valid, especially in the vicinity of the valves, where the flow is undoubtedly more complex. To overcome these issues, we have applied the time-resolved microparticle image velocimetry (μ -PIV) technique, a well-established method that can provide increased spatial and temporal resolution that this transient flow demands. To that end, we have developed a custom light source, utilizing high-power light-emitting diodes, and associated control and image processing software. This paper reports the performance of the system and the results of a series of preliminary experiments performed on vessels isolated from rat mesenteries, demonstrating, for the first time, the successful application of the μ -PIV technique in these vessels.

  15. Cardiac resynchronization therapy by multipoint pacing improves response of left ventricular mechanics and fluid dynamics: a three-dimensional and particle image velocimetry echo study.

    Science.gov (United States)

    Siciliano, Mariachiara; Migliore, Federico; Badano, Luigi; Bertaglia, Emanuele; Pedrizzetti, Gianni; Cavedon, Stefano; Zorzi, Alessandro; Corrado, Domenico; Iliceto, Sabino; Muraru, Denisa

    2017-11-01

    To characterize the effect of multipoint pacing (MPP) compared to biventricular pacing (BiV) on left ventricle (LV) mechanics and intraventricular fluid dynamics by three-dimensional echocardiography (3DE) and echocardiographic particle imaging velocimetry (Echo-PIV). In 11 consecutive patients [8 men; median age 65 years (57-75)] receiving cardiac resynchronization therapy (CRT) with a quadripolar LV lead (Quartet,St.Jude Medical,Inc.), 3DE and Echo-PIV data were collected for each pacing configuration (CRT-OFF, BiV, and MPP) at follow-up after 6 months. 3DE data included LV volumes, LV ejection fraction (LVEF), strain, and systolic dyssynchrony index (SDI). Echo-PIV was used to evaluate the directional distribution of global blood flow momentum, ranging from zero, when flow force is predominantly along the base-apex direction, up to 90° when it becomes transversal. MPP resulted in significant reduction in end-diastolic and end-systolic volumes compared with both CRT-OFF (P = 0.02; P = 0.008, respectively) and BiV (P = 0.04; P = 0.03, respectively). LVEF and cardiac output were significant superior in MPP compared with CRT-OFF, but similar between MPP and BiV. Statistical significant differences when comparing global longitudinal and circumferential strain and SDI with MPP vs. CRT-OFF were observed (P = 0.008; P = 0.008; P = 0.01, respectively). There was also a trend towards improvement in strain between BiV and MPP that did not reach statistical significance. MPP reflected into a significant reduction of the deviation of global blood flow momentum compared with both CRT-OFF and BiV (P = 0.002) indicating a systematic increase of longitudinal alignment from the base-apex orientation of the haemodynamic forces. These preliminary results suggest that MPP resulted in significant improvement of LV mechanics and fluid dynamics compared with BiV. However, larger studies are needed to confirm this hypothesis. © Crown copyright 2016.

  16. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).

    Science.gov (United States)

    Berg, Emily J; Weisman, Jessica L; Oldham, Michael J; Robinson, Risa J

    2010-04-19

    Inhaled particles reaching the alveolar walls have the potential to cross the blood-gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. 3D Rainbow Particle Tracking Velocimetry

    Science.gov (United States)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  18. Objective speckle velocimetry for autonomous vehicle odometry.

    Science.gov (United States)

    Francis, D; Charrett, T O H; Waugh, L; Tatam, R P

    2012-06-01

    Speckle velocimetry is investigated as a means of determining odometry data with potential for application on autonomous robotic vehicles. The technique described here relies on the integration of translation measurements made by normalized cross-correlation of speckle patterns to determine the change in position over time. The use of objective (non-imaged) speckle offers a number of advantages over subjective (imaged) speckle, such as a reduction in the number of optical components, reduced modulation of speckles at the edges of the image, and improved light efficiency. The influence of the source/detector configuration on the speckle translation to vehicle translation scaling factor for objective speckle is investigated using a computer model and verified experimentally. Experimental measurements are presented at velocities up to 80  mm s(-1) which show accuracy better than 0.4%.

  19. Design, Construction, Alignment, and Calibration of a Compact Velocimetry Experiment

    International Nuclear Information System (INIS)

    Morris I Kaufman; Robert M Malone; Brent C Frogget; David L Esquibel; Vincent T Romero; Gregory A Lare; Bart Briggs; Adam J Iverson; Daniel K Frayer; Douglas DeVore Brian Cata

    2007-01-01

    A velocimetry experiment has been designed to measure shock properties for small cylindrical metal targets (8-mm-diameter by 2-mm thick). A target is accelerated by high explosives, caught, and retrieved for later inspection. The target is expected to move at a velocity of 0.1 to 3 km/sec. The complete experiment canister is approximately 105 mm in diameter and 380 mm long. Optical velocimetry diagnostics include the Velocity Interferometer System for Any Reflector (VISAR) and Photon Doppler Velocimetry (PDV). The packaging of the velocity diagnostics is not allowed to interfere with the catchment or an X-ray imaging diagnostic. A single optical relay, using commercial lenses, collects Doppler-shifted light for both VISAR and PDV. The use of fiber optics allows measurement of point velocities on the target surface during accelerations occurring over 15 mm of travel. The VISAR operates at 532 nm and has separate illumination fibers requiring alignment. The PDV diagnostic operates at 1550 nm, but is aligned and focused at 670 nm. The VISAR and PDV diagnostics are complementary measurements and they image spots in close proximity on the target surface. Because the optical relay uses commercial glass, the axial positions of the optical fibers for PDV and VISAR are offset to compensate for chromatic aberrations. The optomechanical design requires careful attention to fiber management, mechanical assembly and disassembly, positioning of the foam catchment, and X-ray diagnostic field-of-view. Calibration and alignment data are archived at each stage of the assembly sequence

  20. Automated Reduction of Data from Images and Holograms

    Science.gov (United States)

    Lee, G. (Editor); Trolinger, James D. (Editor); Yu, Y. H. (Editor)

    1987-01-01

    Laser techniques are widely used for the diagnostics of aerodynamic flow and particle fields. The storage capability of holograms has made this technique an even more powerful. Over 60 researchers in the field of holography, particle sizing and image processing convened to discuss these topics. The research program of ten government laboratories, several universities, industry and foreign countries were presented. A number of papers on holographic interferometry with applications to fluid mechanics were given. Several papers on combustion and particle sizing, speckle velocimetry and speckle interferometry were given. A session on image processing and automated fringe data reduction techniques and the type of facilities for fringe reduction was held.

  1. A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction

    International Nuclear Information System (INIS)

    Barker, Douglas; Zhang, Yuanhui; Lifflander, Jonathan; Arya, Anshu

    2012-01-01

    Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories

  2. Implementation of a Particle Image Velocimetry (PIV) system. An example application of PIV to wake-flows behind objects

    International Nuclear Information System (INIS)

    Tokuhiro, A.; Hishida, K.; Ohki, Y.

    1996-10-01

    In the present work an introduction to PIV is given by way of an example. The selected flow configuration is that of wake-flow behind a bubble and its solid equivalent. By solid equivalent we mean a solid model with approximately the equivalent bubble breadth and volume. This two-component, two-phase flow aptly demonstrates the applicability of PIV to spatio-temporal flows. Use was additionally made of an Infrared Shadow Technique (IST) in order to capture the unlit image (shadow) of the bubble or solid within the flow field. By triggering both the laser and infrared light sources with the CCD camera, the shape of the object as well as the flow field was simultaneously recorded. Besides the 2D vector field, calculations of the vorticity, Reynolds stress and turbulent kinetic energy (tke) distributions were made. The results indicate that for counter-current flow (U avg ∼0.245m/s) of water in a square channel (100mm) with a single air bubble of roughly 10mm diameter (Re Db ∼10 4 ) one could conclude the following: 1) PIV can detect differences in the wake flow field behind a bubble and that behind an equivalently sized solid, 2) the wake flow field behind the bubble is spatio-temporal due to the oscillation of the bubble, 3) as the bubble tries to minimize the energy-loss associated with its inherent motion it does so by distributing the hydrodynamic tke uniformly in the wake-field whereas in the case of the solid, the energy is distributed in a confined region in the near-wake. The order of magnitude of the tke is however similar which strongly suggests leads us to believe that the energy dissipation mechanisms are different in the two cases. We also made a limited comparison of velocity data obtained via DPIV and ultrasound Doppler velocimetry. (J.P.N.)

  3. Investigations into the Impact of the Equivalence Ratio on Turbulent Premixed Combustion Using Particle Image Velocimetry and Large Eddy Simulation Techniques: “V” and “M” Flame Configurations in a Swirl Combustor

    KAUST Repository

    Kewlani, Gaurav

    2016-03-24

    Turbulent premixed combustion is studied using experiments and numerical simulations in an acoustically uncoupled cylindrical sudden-expansion swirl combustor, and the impact of the equivalence ratio on the flame–flow characteristics is analyzed. In order to numerically capture the inherent unsteadiness exhibited in the flow, the large eddy simulation (LES) technique based on the artificial flame thickening combustion model is employed. The experimental data are obtained using particle image velocimetry. It is observed that changes in heat loading, in the presence of wall confinement, significantly influence the flow field in the wake region, the stabilization location of the flame, and the flame intensity. Specifically, increasing the equivalence ratio drastically reduces the average inner recirculation zone size and causes transition of the flame macrostructure from the “V” configuration to the “M” configuration. In other words, while the flame stabilizes along the inner shear layer for the V flame, a persistent diffuse reaction zone is also manifested along the outer shear layer for the M flame. The average chemiluminescence intensity increases in the case of the M flame macrostructure, while the axial span of the reaction zone within the combustion chamber decreases. The predictions of the numerical approach resemble the experimental observations, suggesting that the LES framework can be an effective tool for examining the effect of heat loading on flame–flow interactions and the mechanism of transition of the flame macrostructure with a corresponding change in the equivalence ratio.

  4. Modification of the ultrasound induced activity by the presence of an electrode in a sono-reactor working at two low frequencies (20 and 40 kHz). Part II: Mapping flow velocities by particle image velocimetry (PIV).

    Science.gov (United States)

    Mandroyan, A; Doche, M L; Hihn, J Y; Viennet, R; Bailly, Y; Simonin, L

    2009-01-01

    Sonoelectrochemical experiments differ from sonochemical ones by the introduction of electrodes in the sonicated reaction vessel. The aim of the study is to characterize the changes in the ultrasonic activity induced by the presence of an electrode located in front of the transducer. The scope of our investigations concerns two low frequency vibration modes: 20 and 40 kHz. For this purpose, two laser visualization techniques have been used. The first part of the study, described in a previous paper (Part I), deals with the laser tomography technique which provides an accurate picture of the reactor active zones, related to numerous cavitation events. The second part of the paper (Part II) will describe the particle image velocimetry (PIV) technique used to measure the velocity vector field in the fluid portion between the horn and the electrode. As for the previous study, two parameters were studied: the electrical power supplied to the transducer and the electrode/transducer distance. The velocity vector fields show a main flow in the reactor axis. This flow seems to correspond to the conical cavitation bubbles structure which is observed on the laser tomography pictures. When an electrode is introduced into the reactor, two additional symmetric transversal flows can be quantified on both sides of the electrode.

  5. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    Science.gov (United States)

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics

  6. Intrinsic speckle noise in in-line particle holography due to polydisperse and continuous particle sizes

    Science.gov (United States)

    Edwards, Philip J.; Hobson, Peter R.; Rodgers, G. J.

    2000-08-01

    In-line particle holography is subject to image deterioration due to intrinsic speckle noise. The resulting reduction in the signal to noise ratio (SNR) of the replayed image can become critical for applications such as holographic particle velocimetry (HPV) and 3D visualisation of marine plankton. Work has been done to extend the mono-disperse model relevant to HPV to include poly-disperse particle fields appropriate for the visualisation of marine plankton. Continuous and discrete particle fields are both considered. It is found that random walk statistics still apply for the poly-disperse case. The speckle field is simply the summation of the individual speckle patters due to each scatter size. Therefor the characteristic speckle parameter (which encompasses particle diameter, concentration and sample depth) is alos just the summation of the individual speckle parameters. This reduces the SNR calculation to the same form as for the mono-disperse case. For the continuous situation three distributions, power, exponential and Gaussian are discussed with the resulting SNR calcuated. The work presented here was performed as part of the Holomar project to produce a working underwater holographic camera for recording plankton.

  7. DeepPIV: Particle image velocimetry measurements using deep-sea, remotely operated vehicles

    Science.gov (United States)

    Katija, Kakani; Sherman, Alana; Graves, Dale; Klimov, Denis; Kecy, Chad; Robison, Bruce

    2015-11-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Although significant advances in underwater vehicle technologies have improved access to midwater, small-scale, in situ fluid mechanics measurement methods that seek to quantify the interactions that midwater organisms have with their physical environment are lacking. Here we present DeepPIV, an instrumentation package affixed to remotely operated vehicles that quantifies fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient suspended particulate, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function. Funding is gratefully acknowledged from the Packard Foundation.

  8. Krypton tagging velocimetry of an underexpanded jet.

    Science.gov (United States)

    Parziale, N J; Smith, M S; Marineau, E C

    2015-06-01

    In this work, we present the excitation/emission strategy, experimental setup, and results of an implementation of krypton tagging velocimetry (KTV). KTV is performed as follows: (i) seed a base flow with krypton; (ii) photosynthesize metastable krypton atoms with a frequency-doubled dye laser to form the tagged tracer; (iii) record the translation of the tagged metastable krypton by imaging the laser-induced fluorescence (LIF) that is produced with an additional dye laser. The principle strength of KTV, relative to other tagging velocimetry techniques, is the use of a chemically inert tracer. KTV results are presented for an underexpanded jet of three mixtures of varying Kr/N2 concentration. It is demonstrated that KTV can be used in gas mixtures of relatively low krypton mole fraction (0.5% Kr/99.5% N2), and the KTV data from that experiment are found to be in good agreement with an empirical fit found in the literature. We find that KTV is useful to perform instantaneous velocity measurements with metastable krypton as a chemically inert, dilute, long-lifetime tracer in gas-phase flows.

  9. A PTV method based on ultrasound imaging and feature tracking in a low-concentration sediment-laden flow

    Science.gov (United States)

    Ma, Zhimin; Hu, Wenbin; Zhao, Xiaohong; Tao, Weiliang

    2018-02-01

    This study aims to provide a particle tracking velocimetry (PTV) method based on ultrasound imaging and feature-tracking in a low-concentration sediment-laden flow. A phased array probe is used to generate a 2D ultrasound image at different times. Then, the feature points are extracted to be tracked instead of the centroids of the particle image. In order to better identify the corresponding feature point, each feature is described by an oriented angle and its location. Then, a statistical interpolation procedure is used to yield the displacement vector on the desired grid point. Finally a correction procedure is adopted because the ultrasound image is sequentially acquired line by line through the field of view. A simple test experiment was carried out to evaluate the performance. The ultrasound PTV system was applied to a sediment-laden flow with a low concentration of 1‰, and the speed was up to 10 cm s-1. In comparison to optical particle image velocimetry (PIV), ultrasound imaging does not have a limitation in optical access. The feature-tracking method does not have a binarisation and segmentation procedure, which can result in overlapping particles or a serious loss of particle data. The feature-tracking algorithm improves the peak locking effect and measurement accuracy. Thus, the ultrasound PTV algorithm is a feasible alternative and is significantly more robust against gradients than the correlation-based PIV algorithms in a low-concentration sediment-laden fluid.

  10. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  11. PIV as a method for quantifying root cell growth and particle displacement in confocal images.

    Science.gov (United States)

    Bengough, A Glyn; Hans, Joachim; Bransby, M Fraser; Valentine, Tracy A

    2010-01-01

    Particle image velocimetry (PIV) quantifies displacement of patches of pixels between successive images. We evaluated PIV as a tool for microscopists by measuring displacements of cells and of a surrounding granular medium in confocal laser scanning microscopy images of Arabidopsis thaliana roots labeled with cell-membrane targeted green fluorescent protein. Excellent accuracy (e.g., displacement standard deviation PIV-predicted and actual displacements (r(2) > 0.83). Root mean squared error for these distorted images was 0.4-1.1 pixels, increasing at higher magnification factors. Cell growth and rhizosphere deformation were tracked with good temporal (e.g., 1-min interval) and spatial resolution, with PIV patches located on recognizable cell features being tracked more successfully. Appropriate choice of GFP-label was important to decrease small-scale biological noise due to intracellular motion. PIV of roots grown in stiff 2% versus 0.7% agar showed patterns of cell expansion consistent with physically impeded roots of other species. Roots in glass ballotini underwent rapid changes in growth direction on a timescale of minutes, associated with localized arching of ballotini. By tracking cell vertices, we monitored automatically cell length, width, and area every minute for 0.5 h for cells in different stages of development. In conclusion, PIV measured displacements successfully in images of living root cells and the external granular medium, revealing much potential for use by microscopists. (c) 2009 Wiley-Liss, Inc.

  12. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    Science.gov (United States)

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.

  13. On the applicability of numerical image mapping for PIV image analysis near curved interfaces

    International Nuclear Information System (INIS)

    Masullo, Alessandro; Theunissen, Raf

    2017-01-01

    This paper scrutinises the general suitability of image mapping for particle image velocimetry (PIV) applications. Image mapping can improve PIV measurement accuracy by eliminating overlap between the PIV interrogation windows and an interface, as illustrated by some examples in the literature. Image mapping transforms the PIV images using a curvilinear interface-fitted mesh prior to performing the PIV cross correlation. However, degrading effects due to particle image deformation and the Jacobian transformation inherent in the mapping along curvilinear grid lines have never been deeply investigated. Here, the implementation of image mapping from mesh generation to image resampling is presented in detail, and related error sources are analysed. Systematic comparison with standard PIV approaches shows that image mapping is effective only in a very limited set of flow conditions and geometries, and depends strongly on a priori knowledge of the boundary shape and streamlines. In particular, with strongly curved geometries or streamlines that are not parallel to the interface, the image-mapping approach is easily outperformed by more traditional image analysis methodologies invoking suitable spatial relocation of the obtained displacement vector. (paper)

  14. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  15. Application of an Automated Discharge Imaging System and LSPIV during Typhoon Events in Taiwan

    OpenAIRE

    Wei-Che Huang; Chih-Chieh Young; Wen-Cheng Liu

    2018-01-01

    An automated discharge imaging system (ADIS), which is a non-intrusive and safe approach, was developed for measuring river flows during flash flood events. ADIS consists of dual cameras to capture complete surface images in the near and far fields. Surface velocities are accurately measured using the Large Scale Particle Image Velocimetry (LSPIV) technique. The stream discharges are then obtained from the depth-averaged velocity (based upon an empirical velocity-index relationship) and cross...

  16. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  17. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    NARCIS (Netherlands)

    Ragni, D.; Van Oudheusden, B.W.; Scarano, F.

    2011-01-01

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes

  18. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    Science.gov (United States)

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  19. Inertial particles in a turbulent premixed Bunsen flame

    International Nuclear Information System (INIS)

    Battista, F.; Picano, F.; Casciola, C.M.

    2012-01-01

    Many fields of engineering and physics are characterized by reacting flows seeded with particles of different inertia and dimensions, e.g. solid-propellant rockets, reciprocating engines where carbon particles form due to combustion, vulcano eruptions. Particles are also used as velocity transducers in Particle Image Velocimetry (PIV) of turbulent flames. The effects of combustion on inertial particle dynamics is still poorly understood, despite its relevance for its effects on particle collisions and coalescence, phenomena which have a large influence in soot formation and growth. As a matter of fact, the flame front induces abrupt accelerations of the fluid in a very thin region which particles follow with different lags depending on their inertia. This phenomenon has a large impact on the particle spatial arrangement. The issuing clustering is here analyzed by a DNS of Bunsen turbulent flame coupled with particle Lagrangian tracking with the aim of evaluating the effect of inertia on particle spatial localization in combustion applications. The Eulerian algorith is based on Low-Mach number expansion of Navier-Stokes equations that allow arbitrary density variations neglecting acoustics waves. (orig.)

  20. Inertial particles in a turbulent premixed Bunsen flame

    Energy Technology Data Exchange (ETDEWEB)

    Battista, F.; Picano, F.; Casciola, C.M. [Sapienza Univ., Rome (Italy). Dipt. di Meccanica e Aeronautica; Troiani, G. [ENEA C.R. Casaccia, Rome (Italy)

    2012-07-01

    Many fields of engineering and physics are characterized by reacting flows seeded with particles of different inertia and dimensions, e.g. solid-propellant rockets, reciprocating engines where carbon particles form due to combustion, vulcano eruptions. Particles are also used as velocity transducers in Particle Image Velocimetry (PIV) of turbulent flames. The effects of combustion on inertial particle dynamics is still poorly understood, despite its relevance for its effects on particle collisions and coalescence, phenomena which have a large influence in soot formation and growth. As a matter of fact, the flame front induces abrupt accelerations of the fluid in a very thin region which particles follow with different lags depending on their inertia. This phenomenon has a large impact on the particle spatial arrangement. The issuing clustering is here analyzed by a DNS of Bunsen turbulent flame coupled with particle Lagrangian tracking with the aim of evaluating the effect of inertia on particle spatial localization in combustion applications. The Eulerian algorith is based on Low-Mach number expansion of Navier-Stokes equations that allow arbitrary density variations neglecting acoustics waves. (orig.)

  1. Shifted knife-edge aperture digital in-line holography for fluid velocimetry.

    Science.gov (United States)

    Palero, Virginia; Lobera, Julia; Andrés, Nieves; Arroyo, M Pilar

    2014-06-01

    We describe a digital holography technique that, with the simplicity of an in-line configuration, produces holograms where the real and virtual images are completely separated, as in an off-axis configuration. An in-line setup, in which the object is imaged near the sensor, is modified by placing a shifted knife-edge aperture that blocks half the frequency spectrum at the focal plane of the imaging lens. This simple modification of the in-line holographic configuration allows discriminating the virtual and real images. As a fluid velocimetry technique, the use of this aperture removes the minimum defocusing distance requisite and reduces the out-of-plane velocity measurement errors of classical in-line holography. Results with different test objects are shown.

  2. Experimental investigation of the velocity field in buoyant diffusion flames using PIV and TPIV algorithm

    Science.gov (United States)

    L. Sun; X. Zhou; S.M. Mahalingam; D.R. Weise

    2005-01-01

    We investigated a simultaneous temporally and spatially resolved 2-D velocity field above a burning circular pan of alcohol using particle image velocimetry (PIV). The results obtained from PIV were used to assess a thermal particle image velocimetry (TPIV) algorithm previously developed to approximate the velocity field using the temperature field, simultaneously...

  3. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry

    Science.gov (United States)

    Keshavarz-Motamed, Zahra; Garcia, Julio; Gaillard, Emmanuel; Maftoon, Nima; Di Labbio, Giuseppe; Cloutier, Guy; Kadem, Lyes

    2014-03-01

    Blood flow in the aorta has been of particular interest from both fluid dynamics and physiology perspectives. Coarctation of the aorta (COA) is a congenital heart disease corresponding to a severe narrowing in the aortic arch. Up to 85 % of patients with COA have a pathological aortic valve, leading to a narrowing at the valve level. The aim of the present work was to advance the state of understanding of flow through a COA to investigate how narrowing in the aorta (COA) affects the characteristics of the velocity field and, in particular, turbulence development. For this purpose, particle image velocimetry measurements were conducted at physiological flow and pressure conditions, with three different aorta configurations: (1) normal case: normal aorta + normal aortic valve; (2) isolated COA: COA (with 75 % reduction in aortic cross-sectional area) + normal aortic valve and (3) complex COA: COA (with 75 % reduction in aortic cross-sectional area) + pathological aortic valve. Viscous shear stress (VSS), representing the physical shear stress, Reynolds shear stress (RSS), representing the turbulent shear stress, and turbulent kinetic energy (TKE), representing the intensity of fluctuations in the fluid flow environment, were calculated for all cases. Results show that, compared with a healthy aorta, the instantaneous velocity streamlines and vortices were deeply changed in the presence of the COA. The normal aorta did not display any regions of elevated VSS, RSS and TKE at any moment of the cardiac cycle. The magnitudes of these parameters were elevated for both isolated COA and complex COA, with their maximum values mainly being located inside the eccentric jet downstream of the COA. However, the presence of a pathologic aortic valve, in complex COA, amplifies VSS (e.g., average absolute peak value in the entire aorta for a total flow of 5 L/min: complex COA: = 36 N/m2; isolated COA = 19 N/m2), RSS (e.g., average peak value in the entire aorta for a total flow of 5

  4. Evaluation of pulsed laser holograms of flashing sprays by digital image processing and holographic particle image velocimetry

    International Nuclear Information System (INIS)

    Feldmann, O.; Gebhard, P.; Mayinger, F.

    1998-01-01

    This study deals with the application of the pulsed laser holography and the digital image processing in the analysis of flashing sprays. Both the information about the macroscopic structures of a spray, such as the breakup-length and the spray-angle, and about its microscopic structures, such as the number, the size, and the location of the generated droplets is stored three-dimensionally on a single pulsed hologram. In addition to that, the velocity of the droplets can be obtained from double pulsed holograms. In every experiment, two holograms are taken, resulting in two three-dimensional reconstructions of the test section, seen from different directions. These reconstructions are scanned by video-cameras with a small depth of field and subdivided into several two-dimensional images. These images are digitized and binarized, and the information about the droplets depicted sharply on each image is saved. In case of a double pulsed hologram, a Fourier-analysis based algorithm creates a search volume to determine the droplets' second position and thus their velocity in each view. A stereo matching modulus correlates both views and determines the position and/or the velocity of each droplet highly accurate. The applicability of the employed holographic technique and the filtering and correlating moduli is proven by the presented results. (author)

  5. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  6. Computationally efficient storage of 3D particle intensity and position data for use in 3D PIV and 3D PTV

    International Nuclear Information System (INIS)

    Atkinson, C; Buchmann, N A; Soria, J

    2013-01-01

    Three-dimensional (3D) volumetric velocity measurement techniques, such as tomographic or holographic particle image velocimetry (PIV), rely upon the computationally intensive formation, storage and localized interrogation of multiple 3D particle intensity fields. Calculation of a single velocity field typically requires the extraction of particle intensities into tens of thousands of 3D sub-volumes or discrete particle clusters, the processing of which can significantly affect the performance of 3D cross-correlation based PIV and 3D particle tracking velocimetry (PTV). In this paper, a series of popular and customized volumetric data formats are presented and investigated using synthetic particle volumes and experimental data arising from tomographic PIV measurements of a turbulent boundary layer. Results show that the use of a sub-grid ordered non-zero intensity format with a sub-grid size of 16 × 16 × 16 points provides the best performance for cross-correlation based PIV analysis, while a particle clustered non-zero intensity format provides the best format for PTV applications. In practical tomographic PIV measurements the sub-grid ordered non-zero intensity format offered a 29% improvement in reconstruction times, while providing a 93% reduction in volume data requirements and a 28% overall improvement in cross-correlation based velocity analysis and validation times. (paper)

  7. Automated image analysis of atomic force microscopy images of rotavirus particles

    International Nuclear Information System (INIS)

    Venkataraman, S.; Allison, D.P.; Qi, H.; Morrell-Falvey, J.L.; Kallewaard, N.L.; Crowe, J.E.; Doktycz, M.J.

    2006-01-01

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM

  8. Automated image analysis of atomic force microscopy images of rotavirus particles

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Allison, D.P. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996 (United States); Molecular Imaging Inc. Tempe, AZ, 85282 (United States); Qi, H. [Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Morrell-Falvey, J.L. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kallewaard, N.L. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Crowe, J.E. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Doktycz, M.J. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)]. E-mail: doktyczmj@ornl.gov

    2006-06-15

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM.

  9. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  10. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

    International Nuclear Information System (INIS)

    Cardwell, Nicholas D; Vlachos, Pavlos P; Thole, Karen A

    2011-01-01

    Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas–solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of

  11. Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry

    Science.gov (United States)

    Gu, Yan

    2017-06-01

    Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.

  12. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  13. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  14. Software for Acquiring Image Data for PIV

    Science.gov (United States)

    Wernet, Mark P.; Cheung, H. M.; Kressler, Brian

    2003-01-01

    PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.

  15. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    Science.gov (United States)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  16. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  17. X-ray doppler velocimetry for diagnosis of fluid motion in ICF implosions

    Science.gov (United States)

    Koch, J. A.; King, J. A.; Huffman, E.; Freeman, R. R.; Dutra, E. C.; Field, J. E.; Kilkenny, J. D.; Hall, G. N.; Harding, E.; Rochau, G. A.; Porter, J. L.; Covington, A. M.; Beg, F. N.

    2017-08-01

    We are developing a novel diagnostic for measurement of bulk fluid motion in materials, that is particularly applicable to very hot, x-ray emitting plasmas in the High Energy Density Physics (HEDP) regime. The X-ray Doppler Velocimetry (XDV) technique relies on monochromatic imaging in multiple x-ray energy bands near the center of an x-ray emission line in a plasma, and utilizes bent imaging crystals. Higher energy bands are preferentially sensitive to plasma moving towards the viewer, while lower energy bands are preferentially sensitive to plasma moving away from the viewer. Combining multiple images in different energy bands allows for a reconstruction of the fluid velocity field integrated along the line of sight. We review the technique, and we discuss progress towards benchmarking the technique with proof-of-principle HEDP experiments.

  18. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  19. Evaluation of magnetic resonance velocimetry for steady flow.

    Science.gov (United States)

    Ku, D N; Biancheri, C L; Pettigrew, R I; Peifer, J W; Markou, C P; Engels, H

    1990-11-01

    Whole body magnetic resonance (MR) imaging has recently become an important diagnostic tool for cardiovascular diseases. The technique of magnetic resonance phase velocity encoding allows the quantitative measurement of velocity for an arbitrary component direction. A study was initiated to determine the ability and accuracy of MR velocimetry to measure a wide range of flow conditions including flow separation, three-dimensional secondary flow, high velocity gradients, and turbulence. A steady flow system pumped water doped with manganese chloride through a variety of test sections. Images were produced using gradient echo sequences on test sections including a straight tube, a curved tube, a smoothly converging-diverging nozzle, and an orifice. Magnetic resonance measurements of laminar and turbulent flows were depicted as cross-sectional velocity profiles. MR velocity measurements revealed such flow behavior as spatially varying velocity, recirculation and secondary flows over a wide range of conditions. Comparisons made with published experimental laser Doppler anemometry measurements and theoretical calculations for similar flow conditions revealed excellent accuracy and precision levels. The successful measurement of velocity profiles for a variety of flow conditions and geometries indicate that magnetic resonance imaging is an accurate, non-contacting velocimeter.

  20. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  1. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  2. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  3. Iodine Tagging Velocimetry in a Mach 10 Wake

    Science.gov (United States)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  4. Design of new dusty plasma apparatus to view 3D particle dynamics of fluorescent dust clouds

    Science.gov (United States)

    Thome, Kathreen; Fontanetta, Alexandra; Zwicker, Andrew

    2008-11-01

    Particles suspended in dusty plasmas represent both contamination in industrial plasmas and a primary interstellar medium component. Typically, dusty plasma behavior is studied by laser scattering techniques that provide 2D dust cloud images. However, the 3D structure of the dust cloud is essential to understand the waves, group dynamics, and stabilities of the cloud. Techniques used to study this structure include stereoscopic particle image velocimetry and rapid laser scanning. Our UV illumination technique reveals translational and rotational velocities of fluorescent dust particles as a function of UV intensity. The new argon DC glow discharge experiment designed to study the 3D aspects of fluorescent dust consists of a 13.25'' diameter chamber, two 8'' window ports for CCD cameras, one along the plasma and another transverse to it, two additional 8'' window ports transverse to the plasma for laser or UV light illumination of the dust cloud, and a diagnostic probe port. Results from different electrodes--including mesh and ring--observations and imaging will be presented.

  5. Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide

    Science.gov (United States)

    Danehy, P. M.; OByrne, S.; Houwing, A. F. P.

    2001-01-01

    We investigate a new type of flow-tagging velocimetry technique for hypersonic flows. The technique involves exciting a thin line of nitric oxide molecules with a laser beam and then, after some delay, acquiring an image of the displaced line. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National Universities T2 free-piston shock tunnel. The velocity is measured with an uncertainty of approximately 2%. Comparison with a CFD simulation of the flow shows reasonable agreement.

  6. Gas and particle motions in a rapidly decompressed flow

    Science.gov (United States)

    Johnson, Blair; Zunino, Heather; Adrian, Ronald; Clarke, Amanda

    2017-11-01

    To understand the behavior of a rapidly decompressed particle bed in response to a shock, an experimental study is performed in a cylindrical (D = 4.1 cm) glass vertical shock tube of a densely packed (ρ = 61%) particle bed. The bed is comprised of spherical glass particles, ranging from D50 = 44-297 μm between experiments. High-speed pressure sensors are incorporated to capture shock speeds and strengths. High-speed video and particle image velocimetry (PIV) measurements are collected to examine vertical and radial velocities of both the particles and gas to elucidate features of the shock wave and resultant expansion wave in the lateral center of the tube, away from boundaries. In addition to optically analyzing the front velocity of the rising particle bed, interaction between the particle and gas phases are investigated as the flow accelerates and the particle front becomes more dilute. Particle and gas interactions are also considered in exploring mechanisms through which turbulence develops in the flow. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  7. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Science.gov (United States)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  8. Visualizing Ebolavirus Particles Using Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS).

    Science.gov (United States)

    Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H

    2017-01-01

    This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.

  9. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    International Nuclear Information System (INIS)

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  10. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  11. Lens-free imaging of magnetic particles in DNA assays.

    Science.gov (United States)

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  12. Velocimetry Overview for visitors from the DOD

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Matthew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division; Holtkamp, David Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-08-19

    We are in the midst of a transformative period in which technological advances are making fundamental changes in the measurement techniques that form the backbone of nuclear weapon certification. Optical velocimetry has replaced electrical shorting pins in “Hydrotests,” which measure the dynamic implosion process. This advance has revolutionized nuclear weapons certification during the last 5 years. We can now measure the implosion process that drives a nuclear detonation with many orders of magnitude more resolution in both space and time than was possible just 10 years ago. It has been compared to going from Morse Code to HDTV, resulting in a dozen or more improvements in models of these weapons. These Hydrotests are carried out at LANL, LLNL and the NNSS, with the later holding the important role of allowing us to test with nuclear materials, in sub-critical configurations (i.e., no yield.) Each of these institutions has largely replaced pins with hundreds of channels of optical velocimetry. Velocimetry is non-contact and is used simultaneously with the X-ray capability of these facilities. The U1-a facility at NNSS pioneered this approach in the Gemini series in 2012, and continues to lead, both in channel count and technological advances. Close cooperation among LANL, LLNL and NSTec in these advances serves the complex by leveraging capabilities across sites and accelerating the pace of technical improvements.

  13. Instantaneous planar pressure determination from particle image velocimetry

    NARCIS (Netherlands)

    De Kat, R.

    2012-01-01

    Forces on flapping or rotating wings, like flapping wings of micro air vehicles or blades of wind turbines are of great interest to engineers. To investigate the ways birds and insects fly, forces created by flapping wings are of importance to biologists. The pressure field, combined with the

  14. Magnetic particle imaging an introduction to imaging principles and scanner instrumentation

    CERN Document Server

    Knopp, Tobias

    2012-01-01

    This is an overview of recent progress in magnetic particle imaging, which uses various static and oscillating magnetic fields and tracer materials made from iron oxide nanoparticles to perform background-free measurements of the particles' local concentration.

  15. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  16. Magnetic particle imaging of blood coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kenya, E-mail: murase@sahs.med.osaka-u.ac.jp; Song, Ruixiao; Hiratsuka, Samu [Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka 565-0871 (Japan)

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  17. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  18. Effects of Turbulence on Settling Velocities of Synthetic and Natural Particles

    Science.gov (United States)

    Jacobs, C.; Jendrassak, M.; Gurka, R.; Hackett, E. E.

    2014-12-01

    For large-scale sediment transport predictions, an important parameter is the settling or terminal velocity of particles because it plays a key role in determining the concentration of sediment particles within the water column as well as the deposition rate of particles onto the seabed. The settling velocity of particles is influenced by the fluid dynamic environment as well as attributes of the particle, such as its size, shape, and density. This laboratory study examines the effects of turbulence, generated by an oscillating grid, on both synthetic and natural particles for a range of flow conditions. Because synthetic particles are spherical, they serve as a reference for the natural particles that are irregular in shape. Particle image velocimetry (PIV) and high-speed imaging systems were used simultaneously to study the interaction between the fluid mechanics and sediment particles' dynamics in a tank. The particles' dynamics were analyzed using a custom two-dimensional tracking algorithm used to obtain distributions of the particle's velocity and acceleration. Turbulence properties, such as root-mean-square turbulent velocity and vorticity, were calculated from the PIV data. Results are classified by Stokes number, which was based-on the integral scale deduced from the auto-correlation function of velocity. We find particles with large Stokes numbers are unaffected by the turbulence, while particles with small Stokes numbers primarily show an increase in settling velocity in comparison to stagnant flow. The results also show an inverse relationship between Stokes number and standard deviation of the settling velocity. This research enables a better understanding of the interdependence between particles and turbulent flow, which can be used to improve parameterizations in large-scale sediment transport models.

  19. Swirl and blade wakes in the interaction between gas turbines and exhaust diffusers investigated by endoscopic particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Opilat, Victor

    2011-10-21

    Exhaust diffusers studied in this thesis are installed behind the last turbine stage of gas turbines, including those used in combined cycle power plants. Extensive research made in recent years proved that effects caused by an upstream turbine need to be taken into account when designing efficient diffusers. Under certain conditions these effects can stabilize the boundary layer in diffusers and prevent separation. In this research the impact of multiple parameters, such as tip leakage flow, swirl, and rotating blade wakes, on the performance of a diffuser is studied. Experiments were conducted using a diffuser test rig with a rotating bladed wheel as a turbine effect generator and with an additional tip leakage flow insert. The major advantages of this test rig are modularity and easy variation of the main parameters. To capture the complexity and understand the physics of diffuser flow, and to clarify the phenomenon of the flow stabilisation, the 2D endoscopic laser optical measurement technique Partide Image Velocimetry (PIV) was adopted to the closed ''rotating'' diffuser test rig. Intensity and distribution of vortices in the blade tip area are decisive for diffuser performance. Large vortices in the annular diffuser inlet behind the blade tips interact with the boundary layer in diffusers. At design point these vortices are very early suppressed by the main flow. For the operating point with a low value of the flow coefficient (negative swirl), vortices are ab out two tim es stronger than for design point and the boundary layer is destabilized. V mtices develop in the direction contrary to swirl in the main flow and just cause flow destabilization. Coherent back flow zones are induced and reduction of diffuser performance occurs. For the operating point with positive swirl (for a high flow coefficient value), these vortices are also strong but do not counteract the main flow because they develop in the same direction with the swirl in the

  20. Future Development for Laser-Induced Thermal Acoustics

    National Research Council Canada - National Science Library

    Schlamp, Stefan

    2002-01-01

    .... Consider Particle Image Velocimetry (PIV), which started by double-exposing a photographic film with the image of an illuminated particle-laden flow and where today turn-key, off-the-shelf CCD systems are available for purchase...

  1. New developments in image-based characterization of coated particle nuclear fuel

    Science.gov (United States)

    Price, Jeffery R.; Aykac, Deniz; Hunn, John D.; Kercher, Andrew K.; Morris, Robert N.

    2006-02-01

    We describe in this paper new developments in the characterization of coated particle nuclear fuel using optical microscopy and digital imaging. As in our previous work, we acquire optical imagery of the fuel pellets in two distinct manners that we refer to as shadow imaging and cross-sectional imaging. In shadow imaging, particles are collected in a single layer on an optically transparent dish and imaged using collimated back-lighting to measure outer surface characteristics only. In cross-sectional imaging, particles are mounted in acrylic epoxy and polished to near-center to reveal the inner coating layers for measurement. For shadow imaging, we describe a curvaturebased metric that is computed from the particle boundary points in the FFT domain using a low-frequency parametric representation. We also describe how missing boundary points are approximated using band-limited interpolation so that the FFT can be applied. For cross-section imaging, we describe a new Bayesian-motivated segmentation scheme as well as a new technique to correct layer measurements for the fact that we cannot observe the true mid-plane of the approximately spherical particles.

  2. A review of the associated particle imaging technique

    International Nuclear Information System (INIS)

    Hurley, J.P.; Beyerle, A.; Durkee, R.; Headley, G.; Tunnell, L.

    1992-01-01

    Associated particle imaging (API) is a fast-neutron reaction imaging system. An object is illuminated with 14-MeV neutrons and these neutron interaction sites are imaged. The T(d,n) 4 He reaction is used to produce a neutron and an alpha particle which move apart in opposite directions. By detecting the alpha particle, the direction of travel of the neutron is known. When the neutron strikes any material (except hydrogen and helium) it causes the material to emit gamma radiation. If one of the gamma-rays is detected it is then known that a reaction has taken place. By measuring the time between alpha detection and gammadetection, it is known how long the neutron traveled before reacting. By constructing a tally (or histogram) of these reaction sites an image is constructed. By examining the gamma-ray spectra corresponding to each region of space, elemental analysis of that region can be performed. This technique and it's applications are discussed in this paper

  3. The IBAS image analyser and its use in particle size measurement

    International Nuclear Information System (INIS)

    Snelling, K.W.

    1984-10-01

    The Kontron image analyser (IBAS) is used at Winfrith primarily for size analysis of aerosol particles. The system incorporates two computers, IBAS 1 for system communication and control, and IBAS 2 containing the main image memories. The first is accessed via a keyboard or digitiser tablet, and output can be displayed on a monitor or in printed form. The contents of the image memories are displayed on a colour monitor. Automatic image analysis is described, with typical applications, including the measurement of monodisperse particles, sodium fire aerosols, reactor crud particles and cadmium-silver aerosol particles. (U.K.)

  4. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    Science.gov (United States)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  5. PIV measurements of flow structures in a spray dryer

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Velte, Clara Marika; Ullum, Thorvald

    2011-01-01

    Stereoscopic Particle Image Velocimetry (PIV) measurements are made in horizontal planes in a simplified scale model of a spray dryer using water as fluid. The sample rate was sufficient to resolve phenomena at lower frequencies. Data reveal asymmetric velocity fields in both mean fields and dyna......Stereoscopic Particle Image Velocimetry (PIV) measurements are made in horizontal planes in a simplified scale model of a spray dryer using water as fluid. The sample rate was sufficient to resolve phenomena at lower frequencies. Data reveal asymmetric velocity fields in both mean fields...

  6. Tracking and imaging elementary particles

    International Nuclear Information System (INIS)

    Breuker, H.; Drevermann, H.; Grab, C.; Rademakers, A.A.; Stone, H.

    1991-01-01

    The Large Electron-Positron (LEP) Collider is one of the most powerful particle accelerators ever built. It smashes electrons into their antimatter counterparts, positrons, releasing as much as 100 billion electron volts of energy within each of four enormous detectors. Each burst of energy generates a spray of hundreds of elementary particles that are monitored by hundreds of thousands of sensors. In less than a second, an electronic system must sort through the data from some 50,000 electron-positron encounters, searching for just one or two head-on collisions that might lead to discoveries about the fundamental forces and the elementary particles of nature. When the electronic systems identify such a promising event, a picture of the data must be transmitted to the most ingenious image processor ever created. The device is the human brain. Computers cannot match the brain's capacity to recognize complicated patterns in the data collected by the LEP detectors. The work of understanding subnuclear events begins therefore through the visualization of objects that are trillions of times smaller than the eye can see and that move millions of times faster than the eye can follow. During the past decade, the authors and their colleagues at the European laboratory for particle physics (CERN) have attempted to design the perfect interface between the minds of physicists and the barrage of electronic signals from the LEP detectors. Using sophisticated computers, they translate raw data - 500,000 numbers from each event - into clear, meaningful images. With shapes, curves and colors, they represent the trajectories of particles, their type, their energy and many other properties

  7. Second International Workshop on Magnetic Particle Imaging

    CERN Document Server

    Borgert, Jörn; Magnetic Particle Imaging : A Novel SPIO Nanoparticle Imaging Technique

    2012-01-01

    Magnetic Particle Imaging (MPI) is a novel imaging modality. In MPI superparamagnetic iron oxide nanoparticles are used as tracer materials. The volume is the proceeding of the 2nd international workshop on magnetic particle imaging (IWMPI). The workshop aims at covering the status and recent developments of both, the instrumentation and the tracer material, as each of them is equally important in designing a well performing MPI. For instance, the current state of the art in magnetic coil design for MPI is discussed. With a new symmetrical arrangement of coils, a field-free line (FFL) can be produced that promises a significantly higher sensitivity compared with the standard arrangement for a FFP. Furthermore, the workshop aims at presenting results from phantom and pre-clinical studies.

  8. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  9. Four-dimensional image display for associated particle imaging

    International Nuclear Information System (INIS)

    Headley, G.; Beyerle, A.; Durkee, R.; Hurley, P.; Tunnell, L.

    1994-01-01

    Associated particle imaging (API) is a three-dimensional neutron gamma imaging technique which provides both spatial and spectral information about an unknown. A local area network consisting of a UNIX fileserver and multiple DOS workstations has been chosen to perform the data acquisition and display functions. The data are acquired with a CAMAC system, stored in list mode, and sorted on the fileserver for display on the DOS workstations. Three of the display PCs, interacting with the fileserver, provide coordinated views as the operator ''slices'' the image. The operator has a choice of: a one-dimensional shadowgram from any side, two-dimensional shadowgrams from any side; a three-dimensional view (either perspective projection or stereoscopic). A common color scheme is used to carry energy information into the spatial images. ((orig.))

  10. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  11. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  12. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  13. Effect of suspension characteristics on in-flight particle properties and coating microstructures achieved by suspension plasma spray

    Science.gov (United States)

    Aubignat, E.; Planche, M. P.; Allimant, A.; Billières, D.; Girardot, L.; Bailly, Y.; Montavon, G.

    2014-11-01

    This paper focuses on the influence of suspension properties on the manufacturing of coatings by suspension plasma spraying (SPS). For this purpose, alumina suspensions were formulated with two different liquid phases: water and ethanol. Suspensions were atomized with a twin-fluid nozzle and injected in an atmospheric plasma jet. Suspension injection was optimized thanks to shadowgraphy observations and drop size distribution measurements performed by laser diffraction. In-flight particle velocities were evaluated by particle image velocimetry. In addition, splats were collected on glass substrates, with the same conditions as the ones used during the spray process. Scanning electron microscopy (SEM) and profilometry analyses were then performed to observe the splat morphology and thus to get information on plasma / suspension interactions, such as particle agglomeration. Finally, coatings were manufactured, characterized by SEM and compared to each other.

  14. Laser doppler velocimetry and confined flows

    Directory of Open Access Journals (Sweden)

    Ilić Jelena T.

    2017-01-01

    Full Text Available Finding the mode, in which two component laser Doppler velocimetry can be applied to flows confined in cylindrical tubes or vessels, was the aim of this study. We have identified principle issues that influence the propagation of laser beams in laser Doppler velocimetry system, applied to flow confined in cylindrical tube. Among them, the most important are influences of fluid and wall refractive indices, wall thickness and internal radius ratio and beam intersection angle. In analysis of the degrees of these influences, we have applied mathematical model, based on geometrical optics. The separation of measurement volumes, that measure different velocity components, has been recognized as the main drawback. To overcome this, we propose a lens with dual focal length – primary focal length for the measurement of one velocity component and secondary focal length for the measurement of the other velocity component. We present here the procedure for calculating the optimal value of secondary focal length, depending on experimental set-up parameters. The mathematical simulation of the application of the dual focal length lens, for chosen cases presented here, confirmed the accuracy of the proposed procedure.

  15. Handbook of particle detection and imaging

    CERN Document Server

    Buvat, Irène

    2012-01-01

    The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.

  16. Handbook of particle detection and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus [Siegen Univ. (Germany). Fachbereich 7 - Physik; Buvat, Irene (eds.) [Paris 7 et 11 Univ., Orsay (France). IMNC-UMR 8165 CNRS

    2012-07-01

    The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given. Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science. (orig.)

  17. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging

    KAUST Repository

    Xiong, Jinhui; Idoughi, Ramzi; Aguirre-Pablo, Andres; Aljedaani, Abdulrahman Barakat; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T; Heidrich, Wolfgang

    2017-01-01

    , to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component

  18. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  19. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  20. Evaluation of Microflow Digital Imaging Particle Analysis for Sub-Visible Particles Formulated with an Opaque Vaccine Adjuvant.

    Directory of Open Access Journals (Sweden)

    Grant E Frahm

    Full Text Available Microflow digital imaging (MDI has become a widely accepted method for assessing sub-visible particles in pharmaceutical formulations however, to date; no data have been presented on the utility of this methodology when formulations include opaque vaccine adjuvants. This study evaluates the ability of MDI to assess sub-visible particles under these conditions. A Fluid Imaging Technologies Inc. FlowCAM® instrument was used to assess a number of sub-visible particle types in solution with increasing concentrations of AddaVax™, a nanoscale squalene-based adjuvant. With the objective (10X used and the limitations of the sensor resolution, the instrument was incapable of distinguishing between sub-visible particles and AddaVax™ droplets at particle sizes less than 5 μm. The instrument was capable of imaging all particle types assessed (polystyrene beads, borosilicate glass, cellulose, polyethylene protein aggregate mimics, and lysozyme protein aggregates at sizes greater than 5 μm in concentrations of AddaVax™ up to 50% (vol:vol. Reduced edge gradients and a decrease in measured particle sizes were noted as adjuvant concentrations increased. No significant changes in particle counts were observed for polystyrene particle standards and lysozyme protein aggregates, however significant reductions in particle counts were observed for borosilicate (80% of original and cellulose (92% of original particles. This reduction in particle counts may be due to the opaque adjuvant masking translucent particles present in borosilicate and cellulose samples. Although the results suggest that the utility of MDI for assessing sub-visible particles in high concentrations of adjuvant may be highly dependent on particle morphology, we believe that further investigation of this methodology to assess sub-visible particles in challenging formulations is warranted.

  1. Effect of non-Poisson samples on turbulence spectra from laser velocimetry

    Science.gov (United States)

    Sree, Dave; Kjelgaard, Scott O.; Sellers, William L., III

    1994-01-01

    Spectral analysis of laser velocimetry (LV) data plays an important role in characterizing a turbulent flow and in estimating the associated turbulence scales, which can be helpful in validating theoretical and numerical turbulence models. The determination of turbulence scales is critically dependent on the accuracy of the spectral estimates. Spectral estimations from 'individual realization' laser velocimetry data are typically based on the assumption of a Poisson sampling process. What this Note has demonstrated is that the sampling distribution must be considered before spectral estimates are used to infer turbulence scales.

  2. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  3. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    Science.gov (United States)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was

  4. Flow Profile Study using miniature Laser-Doppler velocimetry

    NARCIS (Netherlands)

    Booij, W.E.; Booij, W.E.; de Jongh, A.; de Mul, F.F.M.

    1995-01-01

    We present a physics experiment, in which laser - Doppler velocimetry is used to make first - year university physics students realize that the idealized solutions offered by standard text books seldom are applicable without corrections, which often are numerical. This is demonstrated by carefully

  5. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  7. Development of a Large Field-of-View PIV System for Rotorcraft Testing in the 14- x 22-Foot Subsonic Tunnel

    Science.gov (United States)

    Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Harris, Jerome; Allan, Brian; Wong, Oliver; Mace, W. Derry

    2009-01-01

    A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements.

  8. Local System Matrix Compression for Efficient Reconstruction in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    T. Knopp

    2015-01-01

    Full Text Available Magnetic particle imaging (MPI is a quantitative method for determining the spatial distribution of magnetic nanoparticles, which can be used as tracers for cardiovascular imaging. For reconstructing a spatial map of the particle distribution, the system matrix describing the magnetic particle imaging equation has to be known. Due to the complex dynamic behavior of the magnetic particles, the system matrix is commonly measured in a calibration procedure. In order to speed up the reconstruction process, recently, a matrix compression technique has been proposed that makes use of a basis transformation in order to compress the MPI system matrix. By thresholding the resulting matrix and storing the remaining entries in compressed row storage format, only a fraction of the data has to be processed when reconstructing the particle distribution. In the present work, it is shown that the image quality of the algorithm can be considerably improved by using a local threshold for each matrix row instead of a global threshold for the entire system matrix.

  9. Stereoscopic measurements of particle dispersion in microgravity turbulent flow

    Science.gov (United States)

    Groszmann, Daniel Eduardo

    2001-08-01

    The presence of particles in turbulent flows adds complexity to an already difficult subject. The work described in this research dissertation was intended to characterize the effects of inertia, isolated from gravity, on the dispersion of solid particles in a turbulent air flow. The experiment consisted of releasing particles of various sizes in an enclosed box of fan- generated, homogenous, isotropic, and stationary turbulent airflow and examining the particle behavior in a microgravity environment. The turbulence box was characterized in ground-based experiments using laser Doppler velocimetry techniques. Microgravity was established by free-floating the experiment apparatus during the parabolic trajectory of NASA's KC-135 reduced gravity aircraft. The microgravity generally lasted about 20 seconds, with about fifty parabolas per flight and one flight per day over a testing period of four days. To cover a broad range of flow regimes of interest, particles with Stokes numbers (St) of 1 to 300 were released in the turbulence box. The three- dimensional measurements of particle motion were made using a three-camera stereo imaging system with a particle-tracking algorithm. Digital photogrammetric techniques were used to determine the particle locations in three-dimensional space from the calibrated camera images. The epipolar geometry constraint was used to identify matching particles from the three different views and a direct spatial intersection scheme determined the coordinates of particles in three-dimensional space. Using velocity and acceleration constraints, particles in a sequence of frames were matched resulting in particle tracks and dispersion measurements. The goal was to compare the dispersion of different Stokes number particles in zero gravity and decouple the effects of inertia and gravity on the dispersion. Results show that higher inertia particles disperse less in zero gravity, in agreement with current models. Particles with St ~ 200

  10. PIV Measurements in Pumps

    National Research Council Canada - National Science Library

    Wulff, Detlev L

    2006-01-01

    .... In contrast to Particle Image Velocimetry (PIV), which utilizes analogue imaging and therefore time-consuming post processing, for DPIV digital video recording is encountered which is ideally suited for digital data processing...

  11. Development of Detailed and Reduced Kinetics Mechanisms for Surrogates of Petroleum-Derived and Synthetic Jet Fuels

    Science.gov (United States)

    2014-12-04

    flexible energy conversion and design) needs of air-breathing propulsion are addressed. The research efforts of the completed program are directly...particle riser to tune the seeding particle density for the particle image velocimetry (PIV) measurements. To reach approximately ambient air temperature

  12. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  13. Associated particle imaging (API)

    International Nuclear Information System (INIS)

    1998-05-01

    Associated Particle Imaging (API) is an active neutron probe technique that provides a 3-D image with elemental composition of the material under interrogation, and so occupies a unique niche in the interrogation of unknown objects. The highly penetrating nature of neutrons enables API to provide detailed information about targets of interest that are hidden from view. Due to the isotropic nature of the induced reactions, radiation detectors can be set on the same side of the object as the neutron source, so that the object can be interrogated from a single side. At the heat of the system is a small generator that produces a continuous, monoenergetic flux of neutrons. By measuring the trajectory of coincident alpha particles that are produced as part of the process, the trajectory of the neutron can be inferred. Interactions between a neutron and the material in its path often produce a gamma ray whose energy is characteristic of that material. When the gamma ray is detected, its energy is measured and combined with the trajectory information to produce a 3-D image of the composition of the object being interrogated. During the course of API development, a number of improvements have been made. A new, more rugged sealed Tube Neutron Generator (STNG) has been designed and fabricated that is less susceptible to radiation damage and better able to withstand the rigors of fielding than earlier designs. A specialized high-voltage power supply for the STNG has also been designed and built. A complete package of software has been written for the tasks of system calibration, diagnostics and data acquisition and analysis. A portable system has been built and field tested, proving that API can be taken out of the lab and into real-world situations, and that its performance in the field is equal to that in the lab

  14. Application of an Image Tracking Algorithm in Fire Ant Motion Experiment

    Directory of Open Access Journals (Sweden)

    Lichuan Gui

    2009-04-01

    Full Text Available An image tracking algorithm, which was originally used with the particle image velocimetry (PIV to determine velocities of buoyant solid particles in water, is modified and applied in the presented work to detect motion of fire ant on a planar surface. A group of fire ant workers are put to the bottom of a tub and excited with vibration of selected frequency and intensity. The moving fire ants are captured with an image system that successively acquires image frames of high digital resolution. The background noise in the imaging recordings is extracted by averaging hundreds of frames and removed from each frame. The individual fire ant images are identified with a recursive digital filter, and then they are tracked between frames according to the size, brightness, shape, and orientation angle of the ant image. The speed of an individual ant is determined with the displacement of its images and the time interval between frames. The trail of the individual fire ant is determined with the image tracking results, and a statistical analysis is conducted for all the fire ants in the group. The purpose of the experiment is to investigate the response of fire ants to the substrate vibration. Test results indicate that the fire ants move faster after being excited, but the number of active ones are not increased even after a strong excitation.

  15. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    Science.gov (United States)

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  16. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.

    Science.gov (United States)

    Ben Haj Slama, Rafika; Gilles, Bruno; Ben Chiekh, Maher; Béra, Jean-Christophe

    2017-04-01

    This research evaluates the use of Particle Image Velocimetry (PIV) technique for characterizing acoustic streaming flow generated by High Intensity Focused Ultrasound (HIFU). PIV qualification tests, focusing on the seeding particle size (diameter of 5, 20 and 50μm) were carried out in degassed water subjected to a focused field of 550kHz-frequency with an acoustic pressure amplitude of 5.2, 10.5 and 15.7bar at the focus. This study shows that the ultrasonic field, especially the radiation force, can strongly affect seeding particle behavior. Large particles (50μm-diameter) are repelled from the focal zone and gathered at radiation pressure convergence lines on either side of the focus. The calculation of the acoustic radiation pressure applied on these particles explains the observed phenomenon. PIV measurements do not, therefore, properly characterize the streaming flow in this case. On the contrary, small particles (5μm-diameter) velocity measurements were in good agreement with the Computational Fluid Dynamics (CFD) simulations of the water velocity field. A simple criterion approximating the diameter threshold below which seeding particles are qualified for PIV in presence of focused ultrasound is then proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  18. CCD image sensor induced error in PIV applications

    Science.gov (United States)

    Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.

    2014-06-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.

  19. CCD image sensor induced error in PIV applications

    International Nuclear Information System (INIS)

    Legrand, M; Nogueira, J; Vargas, A A; Ventas, R; Rodríguez-Hidalgo, M C

    2014-01-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (∼0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described. (paper)

  20. A low-cost, high-magnification imaging system for particle sizing applications

    International Nuclear Information System (INIS)

    Tipnis, Tanmay J; Lawson, Nicholas J; Tatam, Ralph P

    2014-01-01

    A low-cost imaging system for high magnification and high resolution was developed as an alternative to long-working-distance microscope-based systems, primarily for particle sizing applications. The imaging optics, comprising an inverted fixed focus lens coupled to a microscope objective, were able to provide a working distance of approximately 50 mm. The system magnification could be changed by using an appropriate microscope objective. Particle sizing was achieved using shadow-based techniques with the backlight illumination provided by a pulsed light-emitting diode light source. The images were analysed using commercial sizing software which gave the particle sizes and their distribution. A range of particles, from 6 to 8 µm to over 100 µm, was successfully measured with a minimum spatial resolution of approximately 2.5 µm. This system allowed measurement of a wide range of particles at a lower cost and improved operator safety without disturbing the flow. (technical design note)

  1. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  2. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  3. The fundamentals of imaging from particles to galaxies

    CERN Document Server

    Woolfson, Michael M

    2012-01-01

    It is through images that we understand the form and function of material objects, from the fundamental particles that are the constituents of matter to galaxies that are the constituents of the Universe. Imaging must be thought of in a flexible way as varying from just the detection of objects — a blip on a screen representing an aircraft or a vapour trail representing the passage of an exotic particle — to displaying the fine detail in the eye of an insect or the arrangement of atoms within or on the surface of a solid. The range of imaging tools, both in the type of wave phenomena used and in the devices that utilize them, is vast. This book will illustrate this range, with wave phenomena covering the entire electromagnetic spectrum and ultrasound, and devices that vary from those that just detect the presence of objects to those that image objects in exquisite detail. The word ‘fundamentals’ in the title has meaning for this book. There will be no attempt to delve into the fine technical details ...

  4. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  5. Real-time magnetic resonance imaging of highly dynamic granular phenomena

    Science.gov (United States)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    Probing non-intrusively the interior of three-dimensional granular systems is a challenging task for which a number of imaging techniques have been applied including positron emission particle tracking, X-ray tomography and magnetic resonance imaging (MRI). A particular advantage of MRI is its versatility allowing quantitative velocimetry through phase contrast encoding and tagging, arbitrary slice orientations and the flexibility to trade spatial for temporal resolution and vice versa during image reconstruction. However, previous attempts to image granular systems using MRI were often limited to (pseudo-) steady state systems due to the poor temporal resolution of conventional imaging methodology. Here we present an experimental approach that overcomes previous limitations in temporal resolution by implementing a variety of methodological advances, viz. parallel data acquisition through tailored multiple receiver coils, fast gradient readouts for time-efficient data sampling and engineered granular materials that contain signal sources of high proton density. Achieving a spatial and temporal resolution of, respectively, 2 mm x 2 mm and 50 ms, we were able to image highly dynamic phenomena in granular media such as bubble coalescence and granular compaction waves.

  6. Video measurements of fluid velocities and water levels in breaking waves

    CSIR Research Space (South Africa)

    Govender, K

    2002-01-01

    Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...

  7. Comparison of Tomo-PIV and 3D-PTV for microfluidic flows

    International Nuclear Information System (INIS)

    Kim, Hyoungsoo; Westerweel, Jerry; Elsinga, Gerrit E

    2013-01-01

    Two 3D-3C velocimetry techniques for micro-scale measurements are compared: tomographic particle image velocimetry (Tomo-PIV) and 3D particle-tracking velocimetry (3D-PTV). Both methods are applied to experimental data from a confined shear-driven liquid droplet over a moving surface. The droplet has 200 μm height and 2 mm diameter. Micro 3D-PTV and Tomo-PIV are used to obtain the tracer particle distribution and the flow velocity field for the same set of images. It is shown that the reconstructed particle distributions are distinctly different, where Tomo-PIV returns a nearly uniform distribution over the height of the volume, as expected, and PTV reveals a clear peak in the particle distribution near the plane of focus. In Tomo-PIV, however, the reconstructed particle peak intensity decreases in proportion to the distance from the plane of focus. Due to the differences in particle distributions, the measured flow velocities are also different. In particular, we observe Tomo-PIV to be in closer agreement with mass conservation. Furthermore, the random noise level is found to increase with distance to the plane of focus at a higher rate for 3D-PTV as compared to Tomo-PIV. Thus, for a given noise threshold value, the latter method can measure reliably over a thicker volume. (paper)

  8. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Science.gov (United States)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  9. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Directory of Open Access Journals (Sweden)

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  10. Projection x-space magnetic particle imaging.

    Science.gov (United States)

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  11. Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models

    Energy Technology Data Exchange (ETDEWEB)

    Bruschewski, Martin; Schiffer, Heinz-Peter [Technische Universitaet Darmstadt, Institute of Gas Turbines and Aerospace Propulsion, Darmstadt (Germany); Freudenhammer, Daniel [Technische Universitaet Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, Darmstadt (Germany); Buchenberg, Waltraud B. [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Grundmann, Sven [University of Rostock, Institute of Fluid Mechanics, Rostock (Germany)

    2016-05-15

    Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75% is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented. (orig.)

  12. Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models

    Science.gov (United States)

    Bruschewski, Martin; Freudenhammer, Daniel; Buchenberg, Waltraud B.; Schiffer, Heinz-Peter; Grundmann, Sven

    2016-05-01

    Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75 % is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented.

  13. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    International Nuclear Information System (INIS)

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P

    2006-01-01

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio

  14. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Michael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weber, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.

  15. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    International Nuclear Information System (INIS)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G.; Heinen, U.; Reitmeier, A.

    2015-01-01

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  16. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Weber, O. [Philips Medical Systems DMC GmbH, Hamburg (Germany); Heinen, U. [Bruker BioSpin MRI GmbH, Ettlingen (Germany); Reitmeier, A. [Medical Center Hamburg-Eppendorf, Hamburg (Germany). Animal Facility; Knopp, T. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Hamburg University of Technology, Hamburg (Germany)

    2015-05-15

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  17. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  18. Imaging of the strain field around precipitate particles using transmission ion channeling

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Meekeson, D; Smulders, PJM; Wilshaw, PR; Grime, GW

    1996-01-01

    This paper shows ion channeling images of the strain field produced by precipitate particles in a crystal matrix. Images have been produced by mapping the energy of 3 MeV protons transmitted through a thinned silicon crystal containing colonies of copper silicide particles, with the incident beam at

  19. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    Science.gov (United States)

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    Science.gov (United States)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent

  1. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  2. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    Full Text Available Nikolaos Panagiotopoulos,1 Robert L Duschka,1 Mandy Ahlborg,2 Gael Bringout,2 Christina Debbeler,2 Matthias Graeser,2 Christian Kaethner,2 Kerstin Lüdtke-Buzug,2 Hanne Medimagh,2 Jan Stelzner,2 Thorsten M Buzug,2 Jörg Barkhausen,1 Florian M Vogt,1 Julian Haegele1 1Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, 2Institute of Medical Engineering, University of Lübeck, Lübeck, Germany Abstract: Magnetic particle imaging (MPI is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs. The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number

  3. Image segmentation and particles classification using texture analysis method

    Directory of Open Access Journals (Sweden)

    Mayar Aly Atteya

    Full Text Available Introduction: Ingredients of oily fish include a large amount of polyunsaturated fatty acids, which are important elements in various metabolic processes of humans, and have also been used to prevent diseases. However, in an attempt to reduce cost, recent developments are starting a replace the ingredients of fish oil with products of microalgae, that also produce polyunsaturated fatty acids. To do so, it is important to closely monitor morphological changes in algae cells and monitor their age in order to achieve the best results. This paper aims to describe an advanced vision-based system to automatically detect, classify, and track the organic cells using a recently developed SOPAT-System (Smart On-line Particle Analysis Technology, a photo-optical image acquisition device combined with innovative image analysis software. Methods The proposed method includes image de-noising, binarization and Enhancement, as well as object recognition, localization and classification based on the analysis of particles’ size and texture. Results The methods allowed for correctly computing cell’s size for each particle separately. By computing an area histogram for the input images (1h, 18h, and 42h, the variation could be observed showing a clear increase in cell. Conclusion The proposed method allows for algae particles to be correctly identified with accuracies up to 99% and classified correctly with accuracies up to 100%.

  4. 3D Flow Field Measurements using Aerosol Correlation Velocimetry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroMancer Technologies proposes to develop a 3D Global Lidar Airspeed Sensor (3D-LGAS) using Aerosol Correlation Velocimetry for standoff sensing of high-resolution...

  5. Vortex-induced buckling of a viscous drop impacting a pool

    KAUST Repository

    Li, Erqiang; Beilharz, Daniel; Thoroddsen, Sigurdur T

    2017-01-01

    on the inner side of the vortex ring, while their folds can be stretched and straightened on the outside edge. We characterize the total stretching from high-speed video imaging and use particle image velocimetry to track the formation and evolution

  6. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  7. Speckle and fringe dynamics in imagingspeckle-pattern interferometry for spatial-filtering velocimetry

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Iversen, Theis F. Q.; Yura, Harold T.

    2011-01-01

    This paper analyzes the dynamics of laser speckles and fringes, formed in an imaging-speckle-pattern interferometer with the purpose of sensing linear three-dimensional motion and out-of-plane components of rotation in real time, using optical spatial-filtering-velocimetry techniques. The ensemble......-average definition of the cross-correlation function is applied to the intensity distributions, obtained in the observation plane at two positions of the object. The theoretical analysis provides a description for the dynamics of both the speckles and the fringes. The analysis reveals that both the magnitude...... and direction of all three linear displacement components of the object movement can be determined. Simultaneously, out-ofplane rotation of the object including the corresponding directions can be determined from the spatial gradient of the in-plane fringe motion throughout the observation plane. The theory...

  8. Active Control of Jet Engine Inlet Flows

    National Research Council Canada - National Science Library

    Rediniotis, Othon; Bowersox, Rodney; Kirk, Aaron; Kumar, Abhinav; Tichenor, Nathan

    2007-01-01

    ...), flow visualization tests, particle image velocimetry (PIV), pressure probe and wall static tap experiments at various locations, the development and evolution of the secondary flow structures were observed...

  9. Separation method of heavy-ion particle image from gamma-ray mixed images using an imaging plate

    CERN Document Server

    Yamadera, A; Ohuchi, H; Nakamura, T; Fukumura, A

    1999-01-01

    We have developed a separation method of alpha-ray and gamma-ray images using the imaging plate (IP). The IP from which the first image was read out by an image reader was annealed at 50 deg. C for 2 h in a drying oven and the second image was read out by the image reader. It was found out that an annealing ratio, k, which is defined as a ratio of the photo-stimulated luminescence (PSL) density at the first measurement to that at the second measurement, was different for alpha rays and gamma rays. By subtracting the second image multiplied by a factor of k from the first image, the alpha-ray image was separated from the alpha and gamma-ray mixed images. This method was applied to identify the images of helium, carbon and neon particles of high energies using the heavy-ion medical accelerator, HIMAC. (author)

  10. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  11. Data simulation for the Associated Particle Imaging system

    International Nuclear Information System (INIS)

    Tunnell, L.N.

    1994-01-01

    A data simulation procedure for the Associated Particle Imaging (API) system has been developed by postprocessing output from the Monte Carlo Neutron Photon (MCNP) code. This paper compares the simulated results to our experimental data

  12. Microstructures for high-energy x-ray and particle-imaging applications

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Stone, G.F.; Hawryluk, A.M.

    1981-05-01

    Coded imaging techniques using thick, micro-Fresnel zone plates as coded apertures have been used to image x-ray emissions (2-20 keV) and 3.5 MeV Alpha particle emissions from laser driven micro-implosions. Image resolution in these experiments was 3-8 μm. Extension of this coded imaging capability to higher energy x-rays (approx. 100 keV) and more penetrating charged particles (e.g. approx. 15 MeV protons) requires the fabrication of very thick (50-200 μm), high aspect ratio (10:1), gold Fresnel zone plates with narrow linewidths (5-25 μm) for use as coded aperatures. A reactive ion etch technique in oxygen has been used to produce thick zone plate patterns in polymer films. The polymer patterns serve as electroplating molds for the subsequent fabrication of the free-standing gold zone plate structures

  13. A two-wavelength imaging pyrometer for measuring particle temperature, velocity and size in thermal spray processes

    International Nuclear Information System (INIS)

    Craig, J.E.; Parker, R.A.; Lee, D.Y.; Biancaniello, F.; Ridder, S.

    1999-01-01

    An imaging pyrometer has been developed to measure the surface temperature of hot metal objects and to measure particle temperature, velocity and size in thermal spray, spray-fonning and atomization processes. The two-wavelength surface imaging pyrometer provides true temperature measurement with high resolution, even when the surface has emissivity variation caused by roughness or oxidation. The surface imaging pyrometer has been calibrated for use in a material processing lab calibration over the range of 1000 to 3000 deg K, and these results are described. The particle imaging pyrometer has a field of view that spans the entire particle stream in typical thermal spray devices, and provides continuous measurement of the entire particle stream. Particle temperature and velocity are critical parameters for producing high quality spray coatings efficiently and reliably. The software locates the particle streaks in the image, and determines the intensity ratio for each particle streak pair to obtain the temperature. The dimensions of the particle streak image are measured to determine the velocity and size. Because the vision-based sensor samples the entire particle stream in every video frame, the particle temperature, velocity and size data are updated at 30 Hz at all points in the particle stream. Particle measurements in a plasma spray at NIST are described. In this paper, we will describe our experiments with ceramic powders, in which measurements have been made at several positions along the particle stream. The particle data are represented as profiles across the particle stream, histograms of the full particle stream or time histories of the full-stream average. The results are compared and calibrated with other temperature and diagnostic measurement systems. (author)

  14. A detailed comparison of single-camera light-field PIV and tomographic PIV

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.

    2018-03-01

    This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.

  15. Symmetries of the 2D magnetic particle imaging system matrix

    International Nuclear Information System (INIS)

    Weber, A; Knopp, T

    2015-01-01

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. (paper)

  16. Evaluation of iron oxide nanoparticle micelles for Magnetic Particle Imaging (MPI) of thrombosis

    NARCIS (Netherlands)

    Starmans, L.W.E.; Moonen, R.P.M.; Aussems-Custers, E.; Daemen, M.J.A.P.; Strijkers, G. J.; Nicolay, K.; Grüll, H.

    2015-01-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the

  17. Digital PIV Measurements in the Diffuser of a High Speed Centrifugal Compressor

    Science.gov (United States)

    Wernet, Mark P.

    1998-01-01

    Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Obtaining ample optical access, sufficiently high seed particle concentrations and accurate synchronization of image acquisition relative to impeller position are the most formidable tasks in the successful implementation of PIV in turbomachinery. Preliminary results from the successful application of the standard 2-D digital PIV technique in the diffuser of a high speed centrifugal compressor are presented. Instantaneous flow. measurements were also obtained during compressor surge.

  18. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in

  19. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    Science.gov (United States)

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  20. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    Science.gov (United States)

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  1. PIV Analysis of Ludwig Prandtl's Historic Flow Visualization Films

    OpenAIRE

    Willert, Christian; Kompenhans, Jürgen

    2010-01-01

    Around 1930 Ludwig Prandtl and his colleagues O. Tietjens and W. M\\"uller published two films with visualizations of flows around surface piercing obstacles to illustrate the unsteady process of flow separation. These visualizations were achieved by recording the motion of fine particles sprinkled onto the water surface in water channels. The resulting images meet the relevant criteria of properly seeded recordings for particle image velocimetry (PIV). Processing these image sequences with mo...

  2. Three-dimensional particle tracking velocimetry using dynamic vision sensors

    Science.gov (United States)

    Borer, D.; Delbruck, T.; Rösgen, T.

    2017-12-01

    A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.

  3. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  4. Decompositions of bubbly flow PIV velocity fields using discrete wavelets multi-resolution and multi-section image method

    International Nuclear Information System (INIS)

    Choi, Je-Eun; Takei, Masahiro; Doh, Deog-Hee; Jo, Hyo-Jae; Hassan, Yassin A.; Ortiz-Villafuerte, Javier

    2008-01-01

    Currently, wavelet transforms are widely used for the analyses of particle image velocimetry (PIV) velocity vector fields. This is because the wavelet provides not only spatial information of the velocity vectors, but also of the time and frequency domains. In this study, a discrete wavelet transform is applied to real PIV images of bubbly flows. The vector fields obtained by a self-made cross-correlation PIV algorithm were used for the discrete wavelet transform. The performances of the discrete wavelet transforms were investigated by changing the level of power of discretization. The images decomposed by wavelet multi-resolution showed conspicuous characteristics of the bubbly flows for the different levels. A high spatial bubble concentrated area could be evaluated by the constructed discrete wavelet transform algorithm, in which high-leveled wavelets play dominant roles in revealing the flow characteristics

  5. Fluvial particle characterization using artificial neural network and spectral image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  6. Contactless grasp of a magnetic particle in a fluid and its application to quantifications of forces affecting its behavior

    International Nuclear Information System (INIS)

    Tokura, S.; Hara, M.; Kawaguchi, N.; Amemiya, N.

    2014-01-01

    In this study, the contactless grasp of a magnetic particle suspended in a fluid at rest or in motion by coil current control, and a method for estimating these forces quantitatively were developed. Four electromagnets were used to apply magnetic fields to magnetic ferrite particles (diameter, 300 nm–300 µm) in a fluid in a vessel. Particle-tracking velocimetry with high-speed image processing was used to visualize the behavior of the magnetic particles in the fluid. In addition, contactless grasp of a magnetic particle using the feedback control was accomplished. Furthermore, by making the magnetic force and the resultant force of the other forces affecting a magnetic particle be in balance, the vertical and horizontal forces affecting the minute magnetic particle, such as the viscous force or the magnetic force between magnetized particles, could be estimated quantitatively from the current in the coil of each electromagnet, without any physical contact with the particle itself. These results constitute useful information for studies on the issues in the handling of micro- or nano-particles. - Highlights: • Four electromagnets are used to apply magnetic field to magnetic ferrite particles. • Motion of magnetic particles suspended in a resting or flowing fluid is visualized. • Contactless grasp of a magnetic particle using feedback control was accomplished. • Vertical and horizontal forces affecting a particle can be estimated quantitatively. • Force between magnetized particles which approach to each other was measured

  7. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  8. Mapping of the lateral flow field in typical subchannels of a support grid with vanes

    International Nuclear Information System (INIS)

    McClusky, Heather L.; Holloway, Mary V.; Conover, Timothy A.; Beasley, Donald E.; Conner, Michael E.; Smith III, L. David

    2003-01-01

    Lateral flow fields in four subchannels of a model rod bundle fuel assembly are measured using particle image velocimetry. Vanes (split-vane pairs) are located on the downstream edge of the support grids in the rod bundle fuel assembly and generate swirling flow. Measurements are acquired at a nominal Reynolds number of 28,000 and for seven streamwise locations ranging from 1.4 to 17.0 hydraulic diameters downstream of the grid. The streamwise development of the lateral flow field is divided into two regions based on the lateral flow structure. In Region I, multiple vortices are present in the flow field and vortex interactions occur. Either a single circular vortex or a hairpin shaped flow structure is formed in Region II. Lateral kinetic energy, maximum lateral velocity, centroid of vorticity, radial profiles of azimuthal velocity, and angular momentum are employed as measures of the streamwise development of the lateral flow field. The particle image velocimetry measurements of the present study are compared with laser doppler velocimetry measurements taken for the identical support grids and flow condition. (author)

  9. Veiligheidsrapport voor de PIV-goot in het Laboratorium voor Vloeistofmechanica

    NARCIS (Netherlands)

    Hofland, B.

    2002-01-01

    Bevat een veiligheidsvoorschrift voor de PIV (particle-image velocimetry) goot. Het rapport is vooral gericht op het gebruik van de krachtige Nd: YAG laser (veiligheidsklasse 4) die gebruikt wordt voor de PIV techniek.

  10. The Control of Junction Flows

    National Research Council Canada - National Science Library

    Smith, Charles

    1997-01-01

    An experimental study of the effects of spatially-limited (i.e. localized) surface suction on unsteady laminar and turbulent junction flows was performed using hydrogen bubble flow visualization and Particle Image Velocimetry (PIV...

  11. Copepod feeding currents : flow patterns, filtration rates and energetics

    NARCIS (Netherlands)

    van Duren, L.A; Stamhuis, E.J; Videler, J.J

    Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T.

  12. Influence of gravity on inertial particle clustering in turbulence

    Science.gov (United States)

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  13. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  14. PIV-based load determination in aircraft propellers

    OpenAIRE

    Ragni, D.

    2012-01-01

    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by PIV velocimetry. The technique offers important advantages in aircraft propellers, since the loads can be locally inspected without the need to install pressure sensors and momentum balances in rot...

  15. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Science.gov (United States)

    Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-08-17

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  16. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Directory of Open Access Journals (Sweden)

    Carlo E Villa

    Full Text Available The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  17. Laser speckle velocimetry applied to Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Arroyo, M.P.; Yonte, T.; Quintanilla, M.; Saviron, J.M.

    1986-01-01

    An application of speckle velocimetry technique to Rayleigh-Benard convection is presented. A 5-mW He-Ne laser allows precise determination of the two-dimensional velocity flow field, up to several mm/sec. The digital techniques used to analyze automatically the multiexposed photographs and to generate velocity and vorticity fields are described. The obtained results are in good agreement with previously reported data. The ability of the technique to cover other experimental conditions is discussed. 14 references

  18. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  19. Subsonic Wake Characterization of the Orion Capsule Using PIV in the Ames UPWT 11-foot Wind Tunnel (Invited)

    Science.gov (United States)

    Heineck, James T.; Ross, James C.; Yamauchi, Gloria K.

    2015-01-01

    The subsonic regime of Crew Capsule reentry has a very turbulent waker through which the Drogue Chutes must deploy. This presentation describes the particle image velocimetry measurement campaign used to help retire the risk.

  20. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    Science.gov (United States)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  1. PIV/HPIV Film Analysis Software Package

    Science.gov (United States)

    Blackshire, James L.

    1997-01-01

    A PIV/HPIV film analysis software system was developed that calculates the 2-dimensional spatial autocorrelations of subregions of Particle Image Velocimetry (PIV) or Holographic Particle Image Velocimetry (HPIV) film recordings. The software controls three hardware subsystems including (1) a Kodak Megaplus 1.4 camera and EPIX 4MEG framegrabber subsystem, (2) an IEEE/Unidex 11 precision motion control subsystem, and (3) an Alacron I860 array processor subsystem. The software runs on an IBM PC/AT host computer running either the Microsoft Windows 3.1 or Windows 95 operating system. It is capable of processing five PIV or HPIV displacement vectors per second, and is completely automated with the exception of user input to a configuration file prior to analysis execution for update of various system parameters.

  2. Flow Visualization Studies in the Novacor Left Ventricular Assist System CRADA PC91-002, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borovetz, H.S.; Shaffer, F.; Schaub, R.; Lund, L.; Woodard, J.

    1999-01-01

    This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.

  3. Probabilistic Extraction Of Vectors In PIV

    Science.gov (United States)

    Humphreys, William M., Jr.

    1994-01-01

    Probabilistic technique for extraction of velocity vectors in particle-image velocimetry (PIV) implemented with much less computation. Double-exposure photograph of particles in flow illuminated by sheet of light provides data on velocity field of flow. Photograph converted into video image then digitized and processed by computer into velocity-field data. Velocity vectors in interrogation region chosen from magnitude and angle histograms constructed from centroid map of region.

  4. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  5. Experimental Study of Dispersion and Deposition of Expiratory Aerosols in Aircraft Cabins and Impact on Infectious Disease Transmission

    DEFF Research Database (Denmark)

    To, G.N.S.; Wan, M.P.; Chao, C.Y.H.

    2009-01-01

    The dispersion and deposition characteristics of polydispersed expiratory aerosols were investigated in an aircraft cabin mockup to study the transmission of infectious diseases. The airflow was characterized by particle image velocimetry (PIV) measurements. Aerosol dispersionwas measured...

  6. In Situ Imaging of Particle Formation and Dynamics in Reactive Material Deflagrations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-12

    Reactive composites utilizing nanoparticles have been the topic of extensive research in the past two decades. The driver for this is that, as the particle size is decreased, the mixing scale between constituents is greatly reduced, which has long thought to increase the rate of chemical reaction. While a general trend of increased reactivity has been seen for metal / metal oxide, or thermite, reactive materials, some results have demonstrated diminishing returns as the particle size is further decreased. Recent results have shown that nanoparticles, which are typically aggregates of several primary particles, can undergo very rapid coalescence to form micron particles once a critical temperature is reached. Experiments on this topic to date have been performed on very small sample masses, and sometimes under vacuum; conditions which are not representative of the environment during a deflagration. In this feasibility study, a custom burn tube was used to ignite and react 100 mg powdered thermite samples in long acrylic tubes. X-ray imaging at APS Sector 32 was performed to image the particle field as a function of distance and time as the rarefied particle cloud expanded and flowed down the tube. Five different thermite formulations were investigated, Al / CuO, Al / Fe2O3, Al / SnO2, Al / WO3, and Al / Fe2O3, along with Al / CuO formulations with different sizes of Al particles ranging from 80 nm to approximate 10 μm. The results clearly show that the sample powder reacts and unloads into a distribution of larger micron-scale particles (~5-500 μm), which continue to react and propagate as the particle-laden stream flows down the tube. This was the first direct imaging of the particle field during a thermite deflagration, and gives significant insight into the evolution of reactants to products. Analysis of phase is currently being pursued to determine whether this method can be used to extract

  7. Trapping of embolic particles in a vessel phantom by cavitation-enhanced acoustic streaming

    International Nuclear Information System (INIS)

    Maxwell, Adam D; Park, Simone; Cain, Charles A; Grotberg, James B; Xu, Zhen; Vaughan, Benjamin L

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, u f , was as high as 120 cm/s, while mean crossflow velocities, u c , were imposed up to 14 cm/s. When a solid particle 3–4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing u f promoted particle trapping while increasing u c promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Re c , was approximately linear with focal streaming number, Re f , i.e. Re c = 0.25Re f + 67.44 (R 2 = 0.76) corresponding to dimensional velocities u c = 0.084u f + 3.122 for 20 < u f  < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. (paper)

  8. Particle tracking from image sequences of complex plasma crystals

    International Nuclear Information System (INIS)

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-01-01

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data

  9. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    Science.gov (United States)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  10. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  11. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    Science.gov (United States)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was

  12. Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2017-11-01

    We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.

  13. Broadband phase difference method for ultrasonic velocimetry in molten glass

    International Nuclear Information System (INIS)

    Kikura, Hiroshige; Ihara, Tomonori

    2016-01-01

    This study aims to develop ultrasonic Doppler velocimetry in molten glass. Realization of such a technique has two difficulties: ultrasonic transmission into molten salt and Doppler signal processing. Buffer rod technique was developed in our research to transmit ultrasound into high temperature molten glass. This article discusses newly developed signal processing technique named broadband phase difference method. (J.P.N.)

  14. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Marston, Jeremy O.; Radu, Andrea I.; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2015-01-01

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water

  15. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.; Mannaa, O.; Chung, Suk-Ho

    2015-01-01

    and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff

  16. An optical flow algorithm based on gradient constancy assumption for PIV image processing

    International Nuclear Information System (INIS)

    Zhong, Qianglong; Yang, Hua; Yin, Zhouping

    2017-01-01

    Particle image velocimetry (PIV) has matured as a flow measurement technique. It enables the description of the instantaneous velocity field of the flow by analyzing the particle motion obtained from digitally recorded images. Correlation based PIV evaluation technique is widely used because of its good accuracy and robustness. Although very successful, correlation PIV technique has some weakness which can be avoided by optical flow based PIV algorithms. At present, most of the optical flow methods applied to PIV are based on brightness constancy assumption. However, some factors of flow imaging technology and the nature property of the fluids make the brightness constancy assumption less appropriate in real PIV cases. In this paper, an implementation of a 2D optical flow algorithm (GCOF) based on gradient constancy assumption is introduced. The proposed GCOF assumes the edges of the illuminated PIV particles are constant during motion. It comprises two terms: a combined local-global gradient data term and a first-order divergence and vorticity smooth term. The approach can provide accurate dense motion fields. The approach are tested on synthetic images and on two experimental flows. The comparison of GCOF with other optical flow algorithms indicates the proposed method is more accurate especially in conditions of illumination variation. The comparison of GCOF with correlation PIV technique shows that the proposed GCOF has advantages on preserving small divergence and vorticity structures of the motion field and getting less outliers. As a consequence, the GCOF acquire a more accurate and better topological description of the turbulent flow. (paper)

  17. Image processing applications: From particle physics to society

    International Nuclear Information System (INIS)

    Sotiropoulou, C.-L.; Citraro, S.; Dell'Orso, M.; Luciano, P.; Gkaitatzis, S.; Giannetti, P.

    2017-01-01

    We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.

  18. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  19. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  20. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    Science.gov (United States)

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  1. Enhancing the dynamic range of Ultrasound Imaging Velocimetry using interleaved imaging

    NARCIS (Netherlands)

    Poelma, C.; Fraser, K.H.

    2013-01-01

    In recent years, non-invasive velocity field measurement based on correlation of ultrasound images has been introduced as a promising technique for fundamental research into disease processes, as well as a diagnostic tool. A major drawback of the method is the relatively limited dynamic range when

  2. Experimental and numerical study of cap-like lean limit flames in H 2 -CH 4 -air mixtures

    KAUST Repository

    Zhou, Zhen; Shoshin, Yuriy; Hernandez Perez, Francisco; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    of the studied flames is recorded and the velocity field of the lean limit flames is measured using Particle Image Velocimetry (PIV). The flame temperature field is measured utilizing the Rayleigh scattering method. Numerical prediction with a mixture

  3. cisTEM, user-friendly software for single-particle image processing

    Science.gov (United States)

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  4. cisTEM, user-friendly software for single-particle image processing.

    Science.gov (United States)

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  5. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  6. Preparation and evaluation of (131I)AgI particles: potential lungs perfusion imaging agent

    International Nuclear Information System (INIS)

    Chattopadhyay, Sankha; Das, Sujata Saha; Sinha, Samarendu; Sarkar, Bharat Ranjan; Ganguly, Shantanu; Chandra, Susmita; De, Kakali; Mishra, Mridula

    2010-01-01

    Since the discovery of iodine-131 (t 1/2 : 8 d) by Livingood and Seaborg (1938), this, and other radioisotopes of iodine, have found widespread use in nuclear medicine. The purpose of the present work was to formulate Ag 131 I particles and bio-evaluate the same. The Ag 131 I particles were prepared in acidic condition having 100% R.C. Purity. The biological evaluation of Ag 131 1 particles was made by injecting about 111-185 MBq of Ag 131 I particles preparations in female albino rabbits (2-2.5 kg weight) intravenously by femoral vein under urethane anesthesia. Imaging studies were performed under Gamma Camera. The entire amount of the Ag 131 I particles were found to deposit in the lungs and remained there almost unchanged for a certain period of time after the intervenous administration. The images showed excellent, uniform lung uptake with no interference from liver and spleen to the lower regions of right and left lobes. It showed a high accumulation in the rabbits lungs (>99%) and remained constant for at least for 20 min. It is also worthy to study with 123 I/ 124 I labelled AgI for lung imaging study. In conclusion, the synthetic radiopharmaceutical ( 131 I)-Silver iodide colloid can be prepared with a large particle size, in a simple and practical manner, and it has good potential for use as a perfusion imaging agent in lung scans

  7. First multimodal embolization particles visible on x-ray/computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha

    2011-03-01

    Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a

  8. Force Measurements on Plasma Actuators Using Phase-locked Particle Image Velocimetry

    Science.gov (United States)

    2015-05-01

    structured as follows. In Section 2, the details of the experimental apparatus and procedures, including the plasma actuator, the electronics used for...was placed ing the plasm wire gauge ( tage probe. l, which wa a ratio of 2 on signal wa he excitation ft) and the di DRDC-RDD on the force a...a Trek Mod t 2.5 kHz an e plasma cope (right). 1 a t el d DRDC F Durin using metho magn plasm -RDDC-2015 igure 4: Sche Figu g each exper the

  9. Report of fourth workshop on particle image velocimetry, Yayoi Research Group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This issue is the collection of the paper presented at the title meeting. Separate abstract was presented for 1 of the paper in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  10. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  11. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  12. Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina)

    DEFF Research Database (Denmark)

    Wieskotten, S.; Mauck, B.; Miersch, L.

    2011-01-01

    Harbour seals can use their mystacial vibrissae to detect and track hydrodynamic wakes. We investigated the ability of a harbour seal to discriminate objects of different size or shape by their hydrodynamic signature and used particle image velocimetry to identify the hydrodynamic parameters...... that a seal may be using to do so. Hydrodynamic trails were generated by different sized or shaped paddles that were moved in the calm water of an experimental box to produce a characteristic signal. In a two-alternative forced-choice procedure the blindfolded subject was able to discriminate size differences...... of down to 3.6. cm (Weber fraction 0.6) when paddles were moved at the same speed. Furthermore the subject distinguished hydrodynamic signals generated by flat, cylindrical, triangular or undulated paddles of the same width. Particle image velocimetry measurements demonstrated that the seal could have...

  13. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    International Nuclear Information System (INIS)

    Mizeraczyk, J; Berendt, A; Podlinski, J

    2016-01-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al . Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of

  14. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  15. Imaging of particles with 3D full parallax mode with two-color digital off-axis holography

    Science.gov (United States)

    Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal

    2018-05-01

    This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.

  16. Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer

    Science.gov (United States)

    Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.

    2016-05-01

    The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.

  17. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  18. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    International Nuclear Information System (INIS)

    Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.

    2016-01-01

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  19. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)

    2016-06-15

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  20. Particle detection and classification using commercial off the shelf CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Martín [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Lipovetzky, Jose, E-mail: lipo@cab.cnea.gov.ar [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Sofo Haro, Miguel; Sidelnik, Iván; Blostein, Juan Jerónimo; Alcalde Bessia, Fabricio; Berisso, Mariano Gómez [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2016-08-11

    In this paper we analyse the response of two different Commercial Off The shelf CMOS image sensors as particle detectors. Sensors were irradiated using X-ray photons, gamma photons, beta particles and alpha particles from diverse sources. The amount of charge produced by different particles, and the size of the spot registered on the sensor are compared, and analysed by an algorithm to classify them. For a known incident energy spectrum, the employed sensors provide a dose resolution lower than microGray, showing their potentials in radioprotection, area monitoring, or medical applications.

  1. Pollutant dispersion in boundary layers exposed to rural-to-urban transitions : Varying the spanwise length scale of the roughness

    NARCIS (Netherlands)

    Tomas, J.M.; Eisma, H.E.; Pourquie, M.J.B.M.; Elsinga, G.E.; Jonker, H.J.J.; Westerweel, J.

    2017-01-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban

  2. Influence of Iliac Stenotic Lesions on Blood Flow Patterns Near a Covered Endovascular Reconstruction of the Aortic Bifurcation (CERAB) Stent Configuration

    NARCIS (Netherlands)

    Jebbink, Erik Groot; Engelhard, Stefan; Lajoinie, Guillaume; de Vries, Jean-Paul P.M.; Versluis, Michel; Reijnen, Michel M.P.J.

    2017-01-01

    Purpose: To investigate the effect of distal stenotic lesions on flow patterns near a covered endovascular reconstruction of the aortic bifurcation (CERAB) configuration used in the treatment of aortoiliac occlusive disease. Method: Laser particle image velocimetry measurements were performed using

  3. A posteriori uncertainty quantification of PIV-based pressure data

    NARCIS (Netherlands)

    Azijli, I.; Sciacchitano, A.; Ragni, D.; Palha Da Silva Clérigo, A.; Dwight, R.P.

    2016-01-01

    A methodology for a posteriori uncertainty quantification of pressure data retrieved from particle image velocimetry (PIV) is proposed. It relies upon the Bayesian framework, where the posterior distribution (probability distribution of the true velocity, given the PIV measurements) is obtained from

  4. Instantaneous planar pressure determination from PIV in turbulent flow

    NARCIS (Netherlands)

    De Kat, R.; Van Oudheusden, B.W.

    2011-01-01

    This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical

  5. Abnormal Doppler flow velocimetry in the growth restricted foetus as a predictor for necrotising enterocolitis.

    Directory of Open Access Journals (Sweden)

    Bhatt A

    2002-07-01

    Full Text Available BACKGROUND: Obstetric decision- making for the growth restricted foetus has to take into consideration the benefits and risks of waiting for pulmonary maturity and continued exposure to hostile intra-uterine environment. Necrotising Enterocolitis (NEC results from continued exposure to hostile environment and is an important cause of poor neonatal outcome. AIMS: To evaluate the predictive value of abnormal Doppler flow velocimetry of the foetal umbilical artery for NEC and neonatal mortality. SETTINGS AND DESIGN: A retrospective study carried out at a tertiary care centre for obstetric and neonatal care. MATERIALS AND METHOD: Seventy-seven neonates with birth weight less than 2000 gm, born over a period of 18 months were studied. These pregnancies were identified as having growth abnormalities of the foetus. Besides other tests of foetal well-being, they were also subjected to Doppler flow velocimetry of the foeto-placental vasculature. Obstetric outcome was evaluated with reference to period of gestation and route of delivery. The neonatal outcome was reviewed with reference to birth weight, Apgar scores and evidence of NEC. STATISTICAL ANALYSIS USED: Chi square test. RESULTS: In the group of patients with Absent or Reverse End Diastolic Frequencies (A/R EDF in the umbilical arteries, positive predictive value for NEC was 52.6%, (RR 30.2; OR 264. The mortality from NEC was 50%. When umbilical artery velocimetry did not show A/REDF, there were no cases of NEC or mortality. Abnormal umbilical or uterine artery flow increased the rate of caesarean section to 62.5% as compared to 17.6% in cases where umbilical artery flow was normal. CONCLUSION: In antenatally identified pregnancies at risk for foetal growth restriction, abnormal Doppler velocimetry in the form of A/REDF in the umbilical arteries is a useful guide to predict NEC and mortality in the early neonatal period.

  6. Experimental measurement of unsteady drag on shock accelerated micro-particles

    Science.gov (United States)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  7. Transformation of colour space dedicated to an experimental analysis fulfilling the applicability criteria

    International Nuclear Information System (INIS)

    Ziemba, A; Fornalik-Wajs, E

    2014-01-01

    The choice of colour space is very important in the digital image analysis by reason of accuracy and computational time. Particle Image Velocimetry and Particle Image Thermometry are the optical methods commonly applied in the fluid dynamics and heat transfer. Especially in PIT method, the analysis of colour images is significant. In this paper, transformation of RGB to HSI colour space dedicated to PIT will be presented. Derivation of formulas together with its graphical representation will be discussed. Fulfilment of applicability criteria will be shown. This theoretical approach to digital image processing supplements the knowledge about the optical experimental methods.

  8. Application of PIV to the Measurement of High Speed Jet Flows

    Science.gov (United States)

    Lourenco, L.

    1999-01-01

    The Particle Image Velocimetry, PIV, has been implemented for the investigation of high-speed jet flows at the NASA Langley Research Center. In this approach the velocity (displacement) is found as the location of a peak in the correlation map of particle images acquired in quick succession. In the study, the technique for the correct seeding of the flow field were developed and implemented and the operational parameters influencing the accuracy of the measurement have been optimized.

  9. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    Science.gov (United States)

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  10. Research for correction pre-operative MRI images of brain during operation using particle method simulation

    International Nuclear Information System (INIS)

    Shino, Ryosaku; Koshizuka, Seiichi; Sakai, Mikio; Ito, Hirotaka; Iseki, Hiroshi; Muragaki, Yoshihiro

    2010-01-01

    In the neurosurgical procedures, surgeon formulates a surgery plan based on pre-operative images such as MRI. However, the brain is transformed by removal of the affected area. In this paper, we propose a method for reconstructing pre-operative images involving the deformation with physical simulation. First, the domain of brain is identified in pre-operative images. Second, we create particles for physical simulation. Then, we carry out the linear elastic simulation taking into account the gravity. Finally, we reconstruct pre-operative images with deformation according to movement of the particles. We show the effectiveness of this method by reconstructing the pre-operative image actually taken before surgery. (author)

  11. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; Ryan, Joseph V.; Yuan, Wei; Wang, Tieshan; Zhu, Zihua

    2017-08-01

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.

  12. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Science.gov (United States)

    Jedelský, Jan; Lízal, František; Jícha, Miroslav

    2012-04-01

    Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA) for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS) particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal) breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 - 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  13. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 – 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  14. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    Science.gov (United States)

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  15. Magnetic particle imaging: from proof of principle to preclinical applications

    Science.gov (United States)

    Knopp, T.; Gdaniec, N.; Möddel, M.

    2017-07-01

    Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.

  16. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.

    Science.gov (United States)

    Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.

  17. Planar measurements of velocity and concentration of turbulent mixing in a T-junction

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.

    Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...

  18. PIV study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines

    DEFF Research Database (Denmark)

    Haider, Sajjad; Schnipper, Teis; Obeidat, Anas

    2013-01-01

    A simplified model of a low speed large twostroke marine diesel engine cylinder is developed. The effect of piston position on the in-cylinder swirling flow during the scavenging process is studied using the stereoscopic particle image velocimetry technique. The measurements are conducted...

  19. Visualization of the structure of vortex breakdown in free swirling jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are

  20. Determination of the angle of attack on the mexico rotor using experimental data

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    characteristics from experimental data on the MEXICO (Model Experiments in controlled Conditions) rotor. Detailed surface pressure and Particle Image Velocimetry (PIV) flow field at different rotor azimuth positions were examined for determining the sectional airfoil data. It is worthwhile noting that the present...

  1. SPIV investigations of correlation between streamwise vorticity and velocity in the wake of a vortex generator in a boundary layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2013-01-01

    The current work describes the experimental parametric study of streamwise vortices generated in a boundary layer by a rectangular vane (commonly named vortex generator) mounted perpendicularly to the wall and at an angle to the oncoming flow. Stereoscopic Particle Image Velocimetry measurements ...

  2. Extension of PIV for measuring granular temperature field in dense fluidized beds.

    NARCIS (Netherlands)

    Dijkhuizen, W.; Bokkers, G.A.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this work a particle image velocimetry (PIV) technique has been extended to enable the simultaneous measurement of the instantaneous velocity and granular temperature fields. The PIV algorithm has been specifically optimized for dense granular systems and has been thoroughly tested with

  3. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI

    Directory of Open Access Journals (Sweden)

    Philip W. T. Pong

    2013-09-01

    Full Text Available Magnetic particle imaging (MPI is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles without interference from the anatomical background of the imaging objects (either phantoms or lab animals. Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

  4. Spatial filtering velocimetry revisited: exact short-time detecting schemes from arbitrarily small-size reticles

    International Nuclear Information System (INIS)

    Ando, S; Nara, T; Kurihara, T

    2014-01-01

    Spatial filtering velocimetry was proposed in 1963 by Ator as a velocity-sensing technique for aerial camera-control systems. The total intensity of a moving surface is observed through a set of parallel-slit reticles, resulting in a narrow-band temporal signal whose frequency is directly proportional to the image velocity. However, even despite its historical importance and inherent technical advantages, the mathematical formulation of this technique is only valid when infinite-length observation in both space and time is possible, which causes significant errors in most applications where a small receptive window and high resolution in both axes are desired. In this study, we apply a novel mathematical technique, the weighted integral method, to solve this problem, and obtain exact sensing schemes and algorithms for finite (arbitrarily small but non-zero) size reticles and short-time estimation. Practical considerations for utilizing these schemes are also explored both theoretically and experimentally. (paper)

  5. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  6. Fluid dynamics, cavitation, and tip-to-tissue interaction of longitudinal and torsional ultrasound modes during phacoemulsification.

    Science.gov (United States)

    Zacharias, Jaime; Ohl, Claus-Dieter

    2013-04-01

    To describe the fluidic events that occur in a test chamber during phacoemulsification with longitudinal and torsional ultrasound (US) modalities. Pasteur Ophthalmic Clinic Phacodynamics Laboratory, Santiago, Chile, and Nanyang Technological University, Singapore. Experimental study. Ultra-high-speed videos of a phacoemulsifying tip were recorded while the tip operated in longitudinal and torsional US modalities using variable US power. Two high-speed video cameras were used to record videos up to 625,000 frames per second. A high-intensity spotlight source was used for illumination to engage shadowgraphy techniques. Particle image velocimetry was used to evaluate fluidic patterns while a hyperbaric environmental system allowed the evaluation of cavitation effects. Tip-to-tissue interaction at high speed was evaluated using human cataract fragments. Particle imaging velocimetry showed the following flow patterns for longitudinal and torsional modes at high US powers: forward-directed streaming with longitudinal mode and backward-directed streaming with torsional mode. The ultrasound power threshold for the appearance of cavitation was 60% for longitudinal mode and 80% for torsional mode. Cavitation was suppressed with pressure of 1.0 bar for longitudinal mode and 0.3 bar for torsional mode. Generation of previously unseen stable gaseous microbubbles was noted. Tip-to-tissue interaction analysis showed the presence of cavitation bubbles close to the site of fragmentation with no apparent effect on cutting. High-speed imaging and particle image velocimetry yielded a better understanding and differentiated the fluidic pattern behavior between longitudinal and torsional US during phacoemulsification. These recordings also showed more detailed aspects of cavitation that clarified its role in lens material cutting for both modalities. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Experimental and numerical investigation of coolant mixing in a model of reactor pressure vessel down-comer and in cold leg inlets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2017-01-01

    Full Text Available Thermal fatigue and pressurized thermal shock phenomena are the main problems for the reactor pressure vessel and the T-junctions both of them depend on the mixing of the coolant. The mixing process, flow and temperature distribution has been investigated experimentally using particle image velocimetry, laser induced fluorescence, and simulated by CFD tools. The obtained results showed that the ratio of flow rate between the main pipe and the branch pipe has a big influence on the mixing process. The particle image velocimetry/planar laser-induced fluorescence measurements technologies proved to be suitable for the investigation of turbulent mixing in the complicated flow system: both velocity and temperature distribution are important parameters in the determination of thermal fatigue and pressurized thermal shock. Results of the applied these techniques showed that both of them can be used as a good provider for data base and to validate CFD results.

  8. Investigation of LPP combustors under elevated pressure conditions; Untersuchungen zu LPP-Flugtriebwerksbrennkammern unter erhoehtem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.

    2001-05-01

    The development of new combustor concepts for aero engines to meet future emissions regulations in based on a detailed knowledge of the combustion process and the velocity field. In the presented thesis, non intrusive measurements were performed in a model combustion chamber under almost realistic pressure and temperature conditions. The species OH, NO, unburned hydrocarbons and fuel droplets were detected in 2 dimensions with the Laser Induced Fluorescence (LIF). The velocity field was measured with the Particle Image Velocimetry technique (PIV). [German] Die Weiterentwicklung neuer Brennkammerkonzepte zur Erfuellung zukuenftiger Schadstoffemissionsrichtlinien erfordert genaue Kenntnisse der ablaufenden Verbrennungs- und Stroemungsvorgaenge in der Brennkammer. Bei den in der Arbeit vorgestellten Untersuchungen wurden in einer LPP-Modellbrennkammer unter annaehernd realistischen Eintrittsbedingungen die Spezies OH, NO, unverbrannte Kohlenwasserstoffe sowie noch fluessiger Brennstoff zweidimensional anhand der Laserinduzierten Fluoreszenz (LIF) nachgewiesen. Das Stroemungsfeld wurde mit Hilfe der Particle Image Velocimetry (PIV) gemessen.

  9. Analysis of two dimensional charged particle scintillation using video image processing techniques

    International Nuclear Information System (INIS)

    Sinha, A.; Bhave, B.D.; Singh, B.; Panchal, C.G.; Joshi, V.M.; Shyam, A.; Srinivasan, M.

    1993-01-01

    A novel method for video recording of individual charged particle scintillation images and their offline analysis using digital image processing techniques for obtaining position, time and energy information is presented . Results of an exploratory experiment conducted using 241 Am and 239 Pu alpha sources are presented. (author). 3 figs., 4 tabs

  10. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    Science.gov (United States)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  11. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    Science.gov (United States)

    Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-06-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  12. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    International Nuclear Information System (INIS)

    Oldenbuerger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-01-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  13. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  14. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  15. Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis.

    Science.gov (United States)

    Thokchom, Ashish Kumar; Swaminathan, Rajaram; Singh, Anugrah

    2014-10-21

    Evaporation-induced particle deposition patterns like coffee rings provide easy visual identification that is beneficial for developing inexpensive and simple diagnostic devices for detecting pathogens. In this study, the effect of chemotaxis on such pattern formation has been realized experimentally in drying droplets of bacterial suspensions. We have investigated the velocity field, concentration profile, and deposition pattern in the evaporating droplet of Escherichia coli suspension in the presence and absence of nutrients. Flow visualization experiments using particle image velocimetry (PIV) were carried out with E. coli bacteria as biological tracer particles. Experiments were conducted for suspensions of motile (live) as well as nonmotile (dead) bacteria. In the absence of any nutrient gradient like sugar on the substrate, both types of bacterial suspension showed two symmetric convection cells and a ring like deposition of particles after complete evaporation. Interestingly, the droplet containing live bacterial suspension showed a different velocity field when the sugar was placed at the base of the droplet. This can be attributed to the chemoattractant nature of the sugar, which induced chemotaxis among live bacteria targeted toward the nutrient site. Deposition of the suspended bacteria was also displaced toward the nutrient site as the evaporation proceeded. Our experiments demonstrate that both velocity fields and concentration patterns can be altered by chemotaxis to modify the pattern formation in evaporating droplet containing live bacteria. These results highlight the role of bacterial chemotaxis in modifying coffee ring patterns.

  16. An Image Enhancement Method Using the Quantum-Behaved Particle Swarm Optimization with an Adaptive Strategy

    Directory of Open Access Journals (Sweden)

    Xiaoping Su

    2013-01-01

    Full Text Available Image enhancement techniques are very important to image processing, which are used to improve image quality or extract the fine details in degraded images. In this paper, two novel objective functions based on the normalized incomplete Beta transform function are proposed to evaluate the effectiveness of grayscale image enhancement and color image enhancement, respectively. Using these objective functions, the parameters of transform functions are estimated by the quantum-behaved particle swarm optimization (QPSO. We also propose an improved QPSO with an adaptive parameter control strategy. The QPSO and the AQPSO algorithms, along with genetic algorithm (GA and particle swarm optimization (PSO, are tested on several benchmark grayscale and color images. The results show that the QPSO and AQPSO perform better than GA and PSO for the enhancement of these images, and the AQPSO has some advantages over QPSO due to its adaptive parameter control strategy.

  17. Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes

    Directory of Open Access Journals (Sweden)

    Veronika Chaloupková

    2018-02-01

    Full Text Available Via image-based macroscopic, analysis of a briquettes’ surface structure, particle size, and distribution was determined to better understand the behavioural pattern of input material during agglomeration in the pressing chamber of a briquetting machine. The briquettes, made of miscanthus, industrial hemp and pine sawdust were produced by a hydraulic piston press. Their structure was visualized by a stereomicroscope equipped with a digital camera and software for image analysis and data measurements. In total, 90 images of surface structure were obtained and quantitatively analysed. Using Nikon Instruments Software (NIS-Elements software, the length and area of 900 particles were measured and statistically tested to compare the size of the particles at different surface locations. Results showed statistically significant differences in particles’ size distribution: larger particles were generally on the front side of briquettes and vice versa, smaller particles were on the rear side. As well, larger particles were centred in the middle of cross sections and the smaller particles were centred on the bottom of the briquette.

  18. Alignment of cryo-EM movies of individual particles by optimization of image translations.

    Science.gov (United States)

    Rubinstein, John L; Brubaker, Marcus A

    2015-11-01

    Direct detector device (DDD) cameras have revolutionized single particle electron cryomicroscopy (cryo-EM). In addition to an improved camera detective quantum efficiency, acquisition of DDD movies allows for correction of movement of the specimen, due to both instabilities in the microscope specimen stage and electron beam-induced movement. Unlike specimen stage drift, beam-induced movement is not always homogeneous within an image. Local correlation in the trajectories of nearby particles suggests that beam-induced motion is due to deformation of the ice layer. Algorithms have already been described that can correct movement for large regions of frames and for >1 MDa protein particles. Another algorithm allows individual images to be aligned without frame averaging or linear trajectories. The algorithm maximizes the overall correlation of the shifted frames with the sum of the shifted frames. The optimum in this single objective function is found efficiently by making use of analytically calculated derivatives of the function. To smooth estimates of particle trajectories, rapid changes in particle positions between frames are penalized in the objective function and weighted averaging of nearby trajectories ensures local correlation in trajectories. This individual particle motion correction, in combination with weighting of Fourier components to account for increasing radiation damage in later frames, can be used to improve 3-D maps from single particle cryo-EM. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Multi-frame pyramid correlation for time-resolved PIV

    NARCIS (Netherlands)

    Sciacchitano, A.; Scarano, F.; Wieneke, B.

    2012-01-01

    A novel technique is introduced to increase the precision and robustness of time-resolved particle image velocimetry (TR-PIV) measurements. The innovative element of the technique is the linear combination of the correlation signal computed at different separation time intervals. The domain of the

  20. Bridging PIV spatial and temporal resolution using governing equations and development of the coaxial volumetric velocimeter

    NARCIS (Netherlands)

    Schneiders, J.F.G.

    2017-01-01

    A series of techniques is proposed for volumetric air flow measurements that are based upon the principles of particle image velocimetry (PIV). The proposed techniques fall in two categories; part 1 of this dissertation considers measurement data processing using constitutive laws and part 2 focuses

  1. PIV-based load determination in aircraft propellers

    NARCIS (Netherlands)

    Ragni, D.

    2012-01-01

    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by

  2. Burrow ventilation in the tube-dwelling shrimp callianassa subterranea (Decapoda: thalassinidea). II. The flow in the vicinity of the shrimp and the energetic advantages of a laminar non-pulsating ventilation current.

    NARCIS (Netherlands)

    Stamhuis, Eize; Videler, Johannes

    1998-01-01

    The ventilation flow in the vicinity of the pleopod-pumping thalassinid shrimp Callianassa subterranea in an artificial transparent burrow has been mapped using particle image velocimetry. The flow in the tube in front of the shrimp was unidirectional, laminar and steady, with a parabolic

  3. Analysis of the pressure fields in a swirling annular jet flow

    NARCIS (Netherlands)

    Perçin, M.; Vanierschot, M.; van Oudheusden, B.W.

    2017-01-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional

  4. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown

    NARCIS (Netherlands)

    Violato, D.; Scarano, F.

    2013-01-01

    The three-dimensional behavior of jet core breakdown is investigated with experiments conducted on a free water jet at Re = 5000 by time-resolved tomographic particle image velocimetry (TR-TOMO PIV). The investigated domain encompasses the range between 0 and 10 jet diameters. The characteristic

  5. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...

  6. PIV Uncertainty Quantification and Beyond

    NARCIS (Netherlands)

    Wieneke, B.F.A.

    2017-01-01

    The fundamental properties of computed flow fields using particle imaging velocimetry (PIV) have been investigated, viewing PIV processing as a black box without going in detail into algorithmic details. PIV processing can be analyzed using a linear filter model, i.e. assuming that the computed

  7. Influence of light sheet separation on SPIV measurement in a large field spanwise plane

    DEFF Research Database (Denmark)

    Foucaut, J M; Coudert, S.; Braud, C.

    2014-01-01

    Stereoscopic particle image velocimetry (SPIV) is nowadays a well-established measurement technique for turbulent flows. However, the accuracy and the spatial resolution are still highly questionable in the presence of complex flow with both strong gradients and out-of-plane motions. To give guid...

  8. Ensemble correlation PIV applied to bubble plumes rising in a bubble column.

    NARCIS (Netherlands)

    Delnoij, E.; Westerweel, J.; Deen, N.G.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    This paper discusses an ensemble correlation, double-exposure single-frame, particle image velocimetry (PIV) technique that can be applied to study dispersed gas¿liquid two-phase flows. The essentials of this technique will be reviewed and several important issues concerning the implementation of

  9. Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I.; Mikkelsen, Robert Flemming

    2006-01-01

    liquid. For the first time the onset of three-dimensionality and transition are analysed by combining the high spatial resolution of Particle Image Velocimetry (PIV) and the temporal accuracy of Laser Doppler Anemometry (LDA). A detailed mapping of the transition from steady and axisymmetric flow...

  10. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    Science.gov (United States)

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  11. Digital image processing techniques for the analysis of fuel sprays global pattern

    Science.gov (United States)

    Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda

    2017-12-01

    We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.

  12. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  13. Advances in imaging and electron physics optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and presents current and future research trends * Invaluable reference and guide for physicists, engineers and mathematicians.

  14. Advances in imaging and electron physics optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Invaluable reference and guide for physicists, engineers and mathematicians.

  15. Hybrid catadioptric system for advanced optical cavity velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Frayer, Daniel K.

    2018-02-06

    A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.

  16. Using digital images to measure and discriminate small particles in cotton

    Science.gov (United States)

    Taylor, Robert A.; Godbey, Luther C.

    1991-02-01

    Inages from conventional video systems are being digitized in coraputers for the analysis of small trash particles in cotton. The method has been developed to automate particle counting and area measurements for bales of cotton prepared for market. Because the video output is linearly proportional to the amount of light reflected the best spectral band for optimum particle discrimination should be centered at the wavelength of maximum difference between particles and their surroundings. However due to the spectral distribution of the illumination energy and the detector sensitivity peak image performance bands were altered. Reflectance from seven mechanically cleaned cotton lint samples and trash removed were examined for spectral contrast in the wavelength range of camera sensitivity. Pixel intensity histograms from the video systent are reported for simulated trashmeter area reference samples (painted dots on panels) and for cotton containing trash to demonstrate the particle discrimination mechanism. 2.

  17. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  18. Design and development of the associated-particle three-dimensional imaging technique

    International Nuclear Information System (INIS)

    Ussery, L.E.; Hollas, C.L.

    1994-10-01

    The authors describe the development of the ''associated-particle'' imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n) 4 He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed

  19. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  20. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)