WorldWideScience

Sample records for particle imaging properties

  1. An Analytical Approach for Fast Recovery of the LSI Properties in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Hamed Jabbari Asl

    2016-01-01

    Full Text Available Linearity and shift invariance (LSI characteristics of magnetic particle imaging (MPI are important properties for quantitative medical diagnosis applications. The MPI image equations have been theoretically shown to exhibit LSI; however, in practice, the necessary filtering action removes the first harmonic information, which destroys the LSI characteristics. This lost information can be constant in the x-space reconstruction method. Available recovery algorithms, which are based on signal matching of multiple partial field of views (pFOVs, require much processing time and a priori information at the start of imaging. In this paper, a fast analytical recovery algorithm is proposed to restore the LSI properties of the x-space MPI images, representable as an image of discrete concentrations of magnetic material. The method utilizes the one-dimensional (1D x-space imaging kernel and properties of the image and lost image equations. The approach does not require overlapping of pFOVs, and its complexity depends only on a small-sized system of linear equations; therefore, it can reduce the processing time. Moreover, the algorithm only needs a priori information which can be obtained at one imaging process. Considering different particle distributions, several simulations are conducted, and results of 1D and 2D imaging demonstrate the effectiveness of the proposed approach.

  2. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  3. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2011-10-01

    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  4. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  5. Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements

    Science.gov (United States)

    Gong, Jie; Wu, Dongliang

    2017-01-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166GHz channels. It is the first study on global frozen particle microphysical properties that uses the dual-frequency microwave polarimetric signals. From the ice cloud scenes identified by the 183.3 3GHz channel brightness temperature (TB), we find that the scatterings of frozen particles are highly polarized with V-H polarimetric differences (PD) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166GHz TBs, as well as the PD at 640GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow region (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would result in as large as 30 error in ice water path retrievals. There is a universal bell-curve in the PD TB relationship, where the PD amplitude peaks at 10K for all three channels in the tropics and increases slightly with latitude. Moreover, the 166GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89GHz PD is less sensitive than 166GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors. Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, changes in the ice microphysical habitats or orientation due to turbulence mixing can also lead to a reduced PD in the deep

  6. Particle Image Velocimetry

    DEFF Research Database (Denmark)

    Zhang, Chen; Vasilevskis, Sandijs; Kozlowski, Bartosz

    Particle image velocimetry (PIV) is a non-intrusive, whole filed optical method providing instantaneous velocity information in fluids. The flow is seeded with tracer particles. The particles are illuminated in the target area with a light sheet at least twice within a short time interval....... The camera images the target area and captures each light pulse in separate image frames. The displacement of the particle between the light pulses can be used to determine the velocity vectors. This guideline introduces the principle of the PIV system and the system configuration. The measurement procedure...

  7. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  8. Properties of submicron particles in Atmospheric Brown Clouds

    Science.gov (United States)

    Adushkin, V. V.; Chen, B. B.; Dubovskoi, A. N.; Friedrich, F.; Pernik, L. M.; Popel, S. I.; Weidler, P. G.

    2010-05-01

    The Atmospheric Brown Clouds (ABC) is an important problem of this century. Investigations of last years and satellite data show that the ABC (or brown gas, smog, fog) cover extensive territories including the whole continents and oceans. The brown gas consists of a mixture of particles of anthropogenic sulfates, nitrates, organic origin, black carbon, dust, ashes, and also natural aerosols such as sea salt and mineral dust. The brown color is a result of absorption and scattering of solar radiation by the anthropogenic black carbon, ashes, the particles of salt dust, and nitrogen dioxide. The investigation of the ABC is a fundamental problem for prevention of degradation of the environment. At present in the CIS in-situ investigations of the ABC are carried out on Lidar Station Teplokluchenka (Kyrgyz Republic). Here, we present the results of experimental investigation of submicron (nanoscale) particles originating from the ABC and the properties of the particles. Samples of dust precipitating from the ABC were obtained at the area of Lidar Station Teplokluchenka as well as scientific station of the Russian Academy of Sciences near Bishkek. The data for determination of the grain composition were obtained with the aid of the scanning electron microscopes JEOL 6460 LV and Philips XL 30 FEG. Analysis of the properties of the particles was performed by means of the X-ray diffraction using diffractometer Siemens D5000. The images of the grains were mapped. The investigation allows us to get (after the image processing) the grain composition within the dust particle size range of 60 nm to 700 μm. Distributions of nano- and microscale particles in sizes were constructed using Rozin-Rammler coordinates. Analysis of the distributions shows that the ABC contain submicron (nanoscale) particles; 2) at higher altitudes the concentration of the submicron (nanoscale) particles in the ABC is higher than at lower altitudes. The chemical compositions of the particles are shown to

  9. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  10. Review of particle properties. Particle Data Group

    International Nuclear Information System (INIS)

    1978-04-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available

  11. Review of particle properties

    Energy Technology Data Exchange (ETDEWEB)

    Yost, G P; Barnett, R M; Hinchliffe, I; Lynch, G R; Rittenberg, A; Ross, R R; Suzuki, M; Trippe, T G; Wohl, C G; Armstrong, B

    1988-04-14

    This review of the properties of gauge bosons, leptons, mesons, and baryons is an updating of the Review of Particle Properties, Particle Data Group (Phys. Lett. 170B (1986)). Data are evaluated, listed, averaged, and summarized in tables. We continue the more orderly set of particle names implemented in the 1986 edition. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.

  12. Tracking and imaging elementary particles

    International Nuclear Information System (INIS)

    Breuker, H.; Drevermann, H.; Grab, C.; Rademakers, A.A.; Stone, H.

    1991-01-01

    The Large Electron-Positron (LEP) Collider is one of the most powerful particle accelerators ever built. It smashes electrons into their antimatter counterparts, positrons, releasing as much as 100 billion electron volts of energy within each of four enormous detectors. Each burst of energy generates a spray of hundreds of elementary particles that are monitored by hundreds of thousands of sensors. In less than a second, an electronic system must sort through the data from some 50,000 electron-positron encounters, searching for just one or two head-on collisions that might lead to discoveries about the fundamental forces and the elementary particles of nature. When the electronic systems identify such a promising event, a picture of the data must be transmitted to the most ingenious image processor ever created. The device is the human brain. Computers cannot match the brain's capacity to recognize complicated patterns in the data collected by the LEP detectors. The work of understanding subnuclear events begins therefore through the visualization of objects that are trillions of times smaller than the eye can see and that move millions of times faster than the eye can follow. During the past decade, the authors and their colleagues at the European laboratory for particle physics (CERN) have attempted to design the perfect interface between the minds of physicists and the barrage of electronic signals from the LEP detectors. Using sophisticated computers, they translate raw data - 500,000 numbers from each event - into clear, meaningful images. With shapes, curves and colors, they represent the trajectories of particles, their type, their energy and many other properties

  13. Review of particle properties

    International Nuclear Information System (INIS)

    Trippe, T.G.; Barbaro-Galtieri, A.; Kelly, R.L.; Rittenberg, A.; Rosenfeld, A.H.; Yost, G.P.; Barash-Schmidt, N.; Bricman, C.; Hemingway, R.J.; Losty, M.J.; Roos, M.; Chaloupka, V.; Armstrong, B.

    1976-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Phys. Letters 50B, No.1 (1974), and Supplement, Rev. Mod. Phys. 47 (1975) 535]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available

  14. Review of particle properties

    International Nuclear Information System (INIS)

    Bricman, C.; Dionisi, C.; Hemingway, R.J.; Mazzucato, M.; Montanet, L.; Barash-Schmidt, N.; Crawford, R.C.; Roos, M.; Barbaro-Galtieri, A.; Horne, C.P.; Kelly, R.L.; Losty, M.J.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Armstrong, B.

    1978-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available. (Auth.)

  15. Aerodynamic properties of six organo-mineral fertiliser particles

    Directory of Open Access Journals (Sweden)

    Marcello Biocca

    2013-09-01

    Full Text Available Agricultural fertilisers are generally applied by means of centrifugal disk spreaders. The machinery, the working conditions and the physical characteristics of fertilizers (including the aerodynamic characteristics of particles may affect the behaviour of particles after the discarding from the spreader. We investigated the aerodynamic properties of organo-mineral fertilisers (a class of slow release fertilisers that are less investigated since they are relatively new in the market using a vertical wind tunnel similar to an elutriator. In the same time, the morphological characteristics of individual fertilizer particles were measured by means of an image analysis procedure. In the study we compare six different fertilisers and we discuss the suitability of the employed methods. The results provide the terminal velocity – Vt – (the velocity value that overcome the gravity force of the particles of the particles, ranging from 8.60 to 9.55 m s-1, and the relationships between Vt and some physical properties (mass, shape, dimensions of the fertilizers. Moreover, the results of field distribution trials show the behaviour of the tested fertilizers during practical use. Such data can contribute to enhance the quality of application of these products in field.

  16. Review of particle properties

    International Nuclear Information System (INIS)

    Hikasa, K.; Hagiwara, K.; Kawabata, S.; Barnett, R.M.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Yost, G.P.; Armstrong, B. Technical Associate; Wagman, G.S. Technical Associate; Stone, J.; Porter, F.C.; Morrison, R.J.; Cutkosky, R.E.; Montanet, L.; Gieselmann, K. Technical Associate; Aguilar-Benitez, M.; Caso, C.; Crawford, R.L.; Roos, M.; Toernqvist, N.A.; Hayes, K.G.; Hoehler, G.; Manley, D.M.

    1992-01-01

    In this Review, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, the top quark, heavy neutrinos, monopoles, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some other sections of this full Review

  17. Review of particle properties

    International Nuclear Information System (INIS)

    Montanet, L.; Gieselmann, K. Technical Associate; Barnett, R.M.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Armstrong, B. Technical Associate; Wagman, G.S. Technical Associate; Murayama, H.; Stone, J.; Hernandez, J.J.; Porter, F.C.; Morrison, R.J.; Manohar, A.; Aguilar-Benitez, M.; Caso, C.; Lantero, P. Technical Associate; Crawford, R.L.; Roos, M.; Toernqvist, N.A.; Hayes, K.G.; Hoehler, G.

    1994-01-01

    This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 2300 new measurements from 700 papers, we list evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, monopoles, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review

  18. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  19. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    Science.gov (United States)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  20. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sandip, E-mail: sandip.d.kulkarni@gmail.com [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Nacev, Alek [Weinberg Medical Physics, LLC (United States); Depireux, Didier [The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shimoji, Mika [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States)

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  1. Rainbow Particle Imaging Velocimetry

    KAUST Repository

    Xiong, Jinhui

    2017-04-27

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. This work tackles this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. With this setup, a single color camera is sufficient to track 3D trajectories of particles by combining 2D spatial and 1D color information. For reconstruction, this thesis derives an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. The proposed method is evaluated by both simulations and an experimental prototype setup.

  2. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    Science.gov (United States)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was

  3. New Developments In Particle Image Velocimetry (PIV) For The Study Of Complex Plasmas

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Fisher, Ross; Shaw, Joseph; Jefferson, Robert; Cianciosa, Mark; Williams, Jeremiah

    2011-01-01

    Particle Image Velocimetry (PIV) is a fluid measurement technique in which the average displacement of small groups of particles is made by comparing a pair of images that are separated in time by an interval Δt. For over a decade, a several variations of the PIV technique, e.g., two-dimensional, stereoscopic, and tomographic PIV, have been used to characterize particle transport, instabilities, and the thermal properties of complex plasmas. This paper describes the basic principles involved in the PIV analysis technique and discusses potential future applications of PIV to the study of complex plasmas.

  4. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  5. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    Science.gov (United States)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  6. Analysis of particle kinematics in spheronization via particle image velocimetry.

    Science.gov (United States)

    Koester, Martin; Thommes, Markus

    2013-02-01

    Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  8. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    Science.gov (United States)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  9. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Structure and properties of carbon black particles

    Science.gov (United States)

    Xu, Wei

    Structure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.

  11. Review of Particle Properties, 1982-1983

    CERN Document Server

    Particle Data Group. Berkeley; Porter, F C; Aguilar-Benítez, M; Montanet, Lucien; Walck, C; Crawford, R L; Kelly, Robert L; Rittenberg, Alan; Trippe, Thomas G; Wohl, Charles G; Yost, George P; Shimada, T; Losty, Michael J; Gopal, Gian P; Hendrick, R E; Shrock, R E; Frosch, R; Roper, L D; Armstrong, Betty

    1982-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 52 (1980) No. 2, Part II]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.

  12. A database of microwave and sub-millimetre ice particle single scattering properties

    Science.gov (United States)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  13. Automated image analysis of atomic force microscopy images of rotavirus particles

    International Nuclear Information System (INIS)

    Venkataraman, S.; Allison, D.P.; Qi, H.; Morrell-Falvey, J.L.; Kallewaard, N.L.; Crowe, J.E.; Doktycz, M.J.

    2006-01-01

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM

  14. Automated image analysis of atomic force microscopy images of rotavirus particles

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Allison, D.P. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996 (United States); Molecular Imaging Inc. Tempe, AZ, 85282 (United States); Qi, H. [Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Morrell-Falvey, J.L. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kallewaard, N.L. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Crowe, J.E. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Doktycz, M.J. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)]. E-mail: doktyczmj@ornl.gov

    2006-06-15

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM.

  15. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  16. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    Science.gov (United States)

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  18. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  19. Digital Particle Image Velocimetry: Partial Image Error (PIE)

    International Nuclear Information System (INIS)

    Anandarajah, K; Hargrave, G K; Halliwell, N A

    2006-01-01

    This paper quantifies the errors due to partial imaging of seeding particles which occur at the edges of interrogation regions in Digital Particle Image Velocimetry (DPIV). Hitherto, in the scientific literature the effect of these partial images has been assumed to be negligible. The results show that the error is significant even at a commonly used interrogation region size of 32 x 32 pixels. If correlation of interrogation region sizes of 16 x 16 pixels and smaller is attempted, the error which occurs can preclude meaningful results being obtained. In order to reduce the error normalisation of the correlation peak values is necessary. The paper introduces Normalisation by Signal Strength (NSS) as the preferred means of normalisation for optimum accuracy. In addition, it is shown that NSS increases the dynamic range of DPIV

  20. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  1. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    Science.gov (United States)

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  2. Particles in water properties and processes

    CERN Document Server

    Gregory, John

    2005-01-01

    INTRODUCTION Particles in the Aquatic Environment Colloidal Aspects PARTICLE SIZE AND RELATED PROPERTIES Particle Size and Shape Particle Size Distributions Particle Transport Light Scattering and Turbidity Measurement of Particle Size SURFACE CHARGE Origin of Surface Charge The Electrical Double Layer Electrokinetic Phenomena COLLOID INTERACTIONS AND COLLOID STABILITY Colloid Interactions - General Concepts van der Waals Interaction Electrical Double Layer Interaction Combined Interaction - DLVO Theory Non-DLVO Interactions AGGREGATION KINETICS Collision Frequency - Smoluchow

  3. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  4. The single scattering properties of the aerosol particles as aggregated spheres

    International Nuclear Information System (INIS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-01-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  5. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  6. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  7. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI

    Directory of Open Access Journals (Sweden)

    Philip W. T. Pong

    2013-09-01

    Full Text Available Magnetic particle imaging (MPI is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles without interference from the anatomical background of the imaging objects (either phantoms or lab animals. Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

  8. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  9. Peak-locking reduction for particle image velocimetry

    International Nuclear Information System (INIS)

    Michaelis, Dirk; Wieneke, Bernhard; Neal, Douglas R

    2016-01-01

    A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to  ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f -number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes. (paper)

  10. Visualizing Ebolavirus Particles Using Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS).

    Science.gov (United States)

    Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H

    2017-01-01

    This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.

  11. Particle image velocimetry - Principles and first results

    International Nuclear Information System (INIS)

    Laporta, A.; Marechal, J.P.

    1997-01-01

    Particle Image Velocimetry (PIV) is a measurement technique elaborated towards the end of the 1970's, but which has developed considerably in recent years. The general principle of PIV is very simple and enables access to instantaneous velocity fields. It consists in recording images of tracer-particles injected into the flow and determining the distance covered by these particles. Since we know the time lapse between successive images of the same particle, we can derive the local fluid velocity. Among the many existing image acquisition and processing methods, the image inter-correlation analysis techniques, used with a pulsed laser source, is the most effective. Since we know the influence of different parameters (number of particles, beam power, time lapse between two successive images, size of query zones, etc.) on the quality of the final result, we can optimize practical adjustment of the PIV measurement scheme. The PIV was tested on the LAVITA hydraulic mockup (simulating the operation of a tangential fan). First results are, all in all, highly satisfactory. These have enabled the rapid drafting of instantaneous mean velocity field maps (20 images acquired in less than 90 seconds, with a post-processing time of about 10 minutes). Observation of the instantaneous fields has evidenced the presence of low frequency non-stationary phenomena which are not revealed by Laser Doppler Velocimetry (LDV). Quantitative comparison between LDV and PIV, concerning average fields, showed close results, with, however, local divergences which could be relatively marked. It must nevertheless be noted that the PIV measurements performed on LAVITA have not been optimized with a view to obtaining a consistently good accuracy level. Priority in the present case was given to the scope of the field explored, with a view to observing the large non-stationary structures within a flow. The PIV measurement technique is thus operational for prompt flow characterization. However

  12. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  13. Lens-free imaging of magnetic particles in DNA assays.

    Science.gov (United States)

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  14. Structural and fractal properties of particles emitted from spark ignition engines.

    Science.gov (United States)

    Chakrabarty, Rajan K; Moosmüller, Hans; Arnott, W Patrick; Garro, Mark A; Walker, John

    2006-11-01

    Size, morphology, and microstructure of particles emitted from one light-duty passenger vehicle (Buick Century; model year 1990; PM (particulate matter) mass emission rate 3.1 mg/km) and two light-duty trucks (Chevrolet C2; model year 1973; PM mass emission rate 282 mg/km, and Chevrolet El Camino; model year 1976; PM mass emission rate 31 mg/km), running California's unified driving cycles (UDC) on a chassis dynamometer, were studied using scanning electron microscopy (SEM). SEM images yielded particle properties including three-dimensional density fractal dimensions, monomer and agglomerate number size distributions, and three different shape descriptors, namely aspect ratio, root form factor, and roundness. The density fractal dimension of the particles was between 1.7 and 1.78, while the number size distribution of the particles placed the majority of the particles in the accumulation mode (0.1-0.3 microm). The shape descriptors were found to decrease with increasing particle size. Partial melting of particles, a rare and previously unreported phenomenon, was observed upon exposure of particles emitted during phase 2 of the UDC to the low accelerating voltage electron beam of the SEM. The rate of melting was quantified for individual particles, establishing a near linear relationship between the melting rate and the organic carbon 1 to elemental carbon ratio.

  15. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  16. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  17. Magnetic particle imaging an introduction to imaging principles and scanner instrumentation

    CERN Document Server

    Knopp, Tobias

    2012-01-01

    This is an overview of recent progress in magnetic particle imaging, which uses various static and oscillating magnetic fields and tracer materials made from iron oxide nanoparticles to perform background-free measurements of the particles' local concentration.

  18. Magnetic particle imaging of blood coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kenya, E-mail: murase@sahs.med.osaka-u.ac.jp; Song, Ruixiao; Hiratsuka, Samu [Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka 565-0871 (Japan)

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  19. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  20. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  1. Review of particle properties. 25th anniversary edition

    International Nuclear Information System (INIS)

    1982-04-01

    This review is a reprint of Physics Letters, Vol. IIIB, April 22, 1982, and is an updating through December 1981 of our previous review of particle properties [Particle Data Group (1980)]. As in previous editions we have attempted to make the text as complete and self-contained as possible. The results of our compilation are presented in two sections, the Tables of Particle Properties and the Data Card Listings. The Tables summarize the properties of only those particles whose existence is in our judgment experimentally well founded and which have a high probability of standing the test of time. The Data Card Listings give up-to-date information, with references, on all reported particles, whether considered well established or not. The Listings also contain mini-reviews on questions of interest. As in previous editions, we include a section of miscellaneous tables, figures, and formulae. These are aimed at the practicing high energy physics experimentalist

  2. New developments in image-based characterization of coated particle nuclear fuel

    Science.gov (United States)

    Price, Jeffery R.; Aykac, Deniz; Hunn, John D.; Kercher, Andrew K.; Morris, Robert N.

    2006-02-01

    We describe in this paper new developments in the characterization of coated particle nuclear fuel using optical microscopy and digital imaging. As in our previous work, we acquire optical imagery of the fuel pellets in two distinct manners that we refer to as shadow imaging and cross-sectional imaging. In shadow imaging, particles are collected in a single layer on an optically transparent dish and imaged using collimated back-lighting to measure outer surface characteristics only. In cross-sectional imaging, particles are mounted in acrylic epoxy and polished to near-center to reveal the inner coating layers for measurement. For shadow imaging, we describe a curvaturebased metric that is computed from the particle boundary points in the FFT domain using a low-frequency parametric representation. We also describe how missing boundary points are approximated using band-limited interpolation so that the FFT can be applied. For cross-section imaging, we describe a new Bayesian-motivated segmentation scheme as well as a new technique to correct layer measurements for the fact that we cannot observe the true mid-plane of the approximately spherical particles.

  3. Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

    International Nuclear Information System (INIS)

    Busch, Wibke; Bastian, Susanne; Trahorsch, Ulrike; Iwe, Maria; Kühnel, Dana; Meißner, Tobias; Springer, Armin; Gelinsky, Michael; Richter, Volkmar; Ikonomidou, Chrysanthy; Potthoff, Annegret; Lehmann, Irina; Schirmer, Kristin

    2011-01-01

    Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.

  4. A review of the associated particle imaging technique

    International Nuclear Information System (INIS)

    Hurley, J.P.; Beyerle, A.; Durkee, R.; Headley, G.; Tunnell, L.

    1992-01-01

    Associated particle imaging (API) is a fast-neutron reaction imaging system. An object is illuminated with 14-MeV neutrons and these neutron interaction sites are imaged. The T(d,n) 4 He reaction is used to produce a neutron and an alpha particle which move apart in opposite directions. By detecting the alpha particle, the direction of travel of the neutron is known. When the neutron strikes any material (except hydrogen and helium) it causes the material to emit gamma radiation. If one of the gamma-rays is detected it is then known that a reaction has taken place. By measuring the time between alpha detection and gammadetection, it is known how long the neutron traveled before reacting. By constructing a tally (or histogram) of these reaction sites an image is constructed. By examining the gamma-ray spectra corresponding to each region of space, elemental analysis of that region can be performed. This technique and it's applications are discussed in this paper

  5. The IBAS image analyser and its use in particle size measurement

    International Nuclear Information System (INIS)

    Snelling, K.W.

    1984-10-01

    The Kontron image analyser (IBAS) is used at Winfrith primarily for size analysis of aerosol particles. The system incorporates two computers, IBAS 1 for system communication and control, and IBAS 2 containing the main image memories. The first is accessed via a keyboard or digitiser tablet, and output can be displayed on a monitor or in printed form. The contents of the image memories are displayed on a colour monitor. Automatic image analysis is described, with typical applications, including the measurement of monodisperse particles, sodium fire aerosols, reactor crud particles and cadmium-silver aerosol particles. (U.K.)

  6. Effect of two-step aging on spatial distribution of γ-phase particles and mechanical properties of Ni-14at.% Al single crystals

    International Nuclear Information System (INIS)

    Tyapkin, Yu.D.; Travina, N.T.; Ugarova, E.V.

    1977-01-01

    Electron microscope images were processed by statistical methods to investigate the space distribution of particles of the γ'-phase (formation of ''quasiperiodic micro-lattices'') after various conditions of single- and double-stage aging of the Ni-14 at.% Al alloy. Mechanical properties in uniaxial tension of single crystals were studied. Parameters of the space distribution of particles have been correlated with the mechanical properties

  7. The Review-of-Particle-Properties system

    International Nuclear Information System (INIS)

    Trippe, T.G.

    1984-01-01

    The Berkeley Particle Data Group is engaged in a major modernization of its primary project, the Review of Particle Properties, a compilation of experimental data on elementary particles. The goal of this modernization is to develop an integrated system for data storage, manipulation, interactive access and publication using modern technqiues for database management, text processing and phototypesetting. The existing system and the plans for modernization are described. The group's other projects and the computer systems used are also discussed. (orig.)

  8. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging

    KAUST Repository

    Xiong, Jinhui

    2017-04-11

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. For reconstruction, we derive an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. We evaluate our method with both simulations and an experimental prototype setup.

  9. Second International Workshop on Magnetic Particle Imaging

    CERN Document Server

    Borgert, Jörn; Magnetic Particle Imaging : A Novel SPIO Nanoparticle Imaging Technique

    2012-01-01

    Magnetic Particle Imaging (MPI) is a novel imaging modality. In MPI superparamagnetic iron oxide nanoparticles are used as tracer materials. The volume is the proceeding of the 2nd international workshop on magnetic particle imaging (IWMPI). The workshop aims at covering the status and recent developments of both, the instrumentation and the tracer material, as each of them is equally important in designing a well performing MPI. For instance, the current state of the art in magnetic coil design for MPI is discussed. With a new symmetrical arrangement of coils, a field-free line (FFL) can be produced that promises a significantly higher sensitivity compared with the standard arrangement for a FFP. Furthermore, the workshop aims at presenting results from phantom and pre-clinical studies.

  10. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  11. Probing the micro-rheological properties of aerosol particles using optical tweezers

    International Nuclear Information System (INIS)

    Power, Rory M; Reid, Jonathan P

    2014-01-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10 12

  12. Probing the micro-rheological properties of aerosol particles using optical tweezers

    Science.gov (United States)

    Power, Rory M.; Reid, Jonathan P.

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >1012 Pa s, whilst

  13. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  14. Four-dimensional image display for associated particle imaging

    International Nuclear Information System (INIS)

    Headley, G.; Beyerle, A.; Durkee, R.; Hurley, P.; Tunnell, L.

    1994-01-01

    Associated particle imaging (API) is a three-dimensional neutron gamma imaging technique which provides both spatial and spectral information about an unknown. A local area network consisting of a UNIX fileserver and multiple DOS workstations has been chosen to perform the data acquisition and display functions. The data are acquired with a CAMAC system, stored in list mode, and sorted on the fileserver for display on the DOS workstations. Three of the display PCs, interacting with the fileserver, provide coordinated views as the operator ''slices'' the image. The operator has a choice of: a one-dimensional shadowgram from any side, two-dimensional shadowgrams from any side; a three-dimensional view (either perspective projection or stereoscopic). A common color scheme is used to carry energy information into the spatial images. ((orig.))

  15. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  16. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  17. Particle agglomeration and properties of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yijun; Oztekin, Alparslan, E-mail: alo2@lehigh.edu; Neti, Sudhakar [Lehigh University, Department of Mechanical Engineering and Mechanics (United States); Mohapatra, Satish [Dynalene Inc. (United States)

    2012-05-15

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  18. Particle agglomeration and properties of nanofluids

    International Nuclear Information System (INIS)

    Yang Yijun; Oztekin, Alparslan; Neti, Sudhakar; Mohapatra, Satish

    2012-01-01

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  19. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  20. First multimodal embolization particles visible on x-ray/computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha

    2011-03-01

    Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a

  1. Handbook of particle detection and imaging

    CERN Document Server

    Buvat, Irène

    2012-01-01

    The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.

  2. Handbook of particle detection and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus [Siegen Univ. (Germany). Fachbereich 7 - Physik; Buvat, Irene (eds.) [Paris 7 et 11 Univ., Orsay (France). IMNC-UMR 8165 CNRS

    2012-07-01

    The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given. Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science. (orig.)

  3. Development of flow velocity measurement techniques in visible images. Improvement of particle image velocimetry techniques on image process

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki; Hishida, Koichi

    1999-10-01

    Noise reduction system was developed to improve applicability of Particle Image Velocimetry (PIV) to complicated configure bounded flows. For fast reactor safety and thermal hydraulic studies, experiments are performed in scale models which usually have rather complicated geometry and structures such as fuel subassemblies, heat exchangers, etc. The structures and stuck dusts on the view window of the models obscure the particle image. Thus the image except the moving particles can be regarded as a noise. In the present study, two noise reduction techniques are proposed. The one is the Time-averaged Light Intensity Subtraction method (TIS) which subtracts the time-averaged light intensity of each pixel in the sequential images from the each corresponding pixel. The other one is the Minimum Light Intensity Subtraction method (MIS) which subtracts the minimum light intensity of each pixel in the sequential images from the each corresponding pixel. Both methods are examined on their capabilities of noise reduction. As for the original 'bench mark' image, the image made from Large Eddy Simulation was used. To the bench mark image, noises are added which are referred as sample images. Both methods reduce the rate of vector with the error of more than one pixel from 90% to less than 5%. Also, more than 50% of the vectors have the error of less than 0.2 pixel. The analysis of uncertainty shows that these methods enhances the accuracy of vector measurement 3 ∼ 12 times if the image with noise were processed, and the MIS method has 1.1 ∼ 2.1 times accuracy compared to the TIS. Thus the present noise reduction methods are quite efficient to enhance the accuracy of flow velocity fields measured with particle images including structures and deposits on the view window. (author)

  4. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.

    Science.gov (United States)

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C

    2016-08-03

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  5. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  6. Absorption and scattering properties of arbitrarily shaped particles in the Rayleigh domain

    International Nuclear Information System (INIS)

    Min, M.; Hovenier, J.W.; Dominik, C.; Koter, A. de; Yurkin, M.A.

    2006-01-01

    We provide a theoretical foundation for the statistical approach for computing the absorption properties of particles in the Rayleigh domain. We present a general method based on the discrete dipole approximation to compute the absorption and scattering properties of particles in the Rayleigh domain. The method allows to separate the geometrical aspects of a particle from its material properties. Doing the computation of the optical properties of a particle once, provides them for any set of refractive indices, wavelengths and orientations. This allows for fast computations of e.g. absorption spectra of arbitrarily shaped particles. Other practical applications of the method are in the interpretation of atmospheric and radar measurements as well as computations of the scattering matrix of small particles as a function of the scattering angle. In the statistical approach, the optical properties of irregularly shaped particles are represented by the average properties of an ensemble of particles with simple shapes. We show that the absorption cross section of an ensemble of arbitrarily shaped particles with arbitrary orientations can always be uniquely represented by the average absorption cross section of an ensemble of spheroidal particles with the same composition and fixed orientation. This proves for the first time that the statistical approach is generally viable in the Rayleigh domain

  7. Evaluation of Microflow Digital Imaging Particle Analysis for Sub-Visible Particles Formulated with an Opaque Vaccine Adjuvant.

    Directory of Open Access Journals (Sweden)

    Grant E Frahm

    Full Text Available Microflow digital imaging (MDI has become a widely accepted method for assessing sub-visible particles in pharmaceutical formulations however, to date; no data have been presented on the utility of this methodology when formulations include opaque vaccine adjuvants. This study evaluates the ability of MDI to assess sub-visible particles under these conditions. A Fluid Imaging Technologies Inc. FlowCAM® instrument was used to assess a number of sub-visible particle types in solution with increasing concentrations of AddaVax™, a nanoscale squalene-based adjuvant. With the objective (10X used and the limitations of the sensor resolution, the instrument was incapable of distinguishing between sub-visible particles and AddaVax™ droplets at particle sizes less than 5 μm. The instrument was capable of imaging all particle types assessed (polystyrene beads, borosilicate glass, cellulose, polyethylene protein aggregate mimics, and lysozyme protein aggregates at sizes greater than 5 μm in concentrations of AddaVax™ up to 50% (vol:vol. Reduced edge gradients and a decrease in measured particle sizes were noted as adjuvant concentrations increased. No significant changes in particle counts were observed for polystyrene particle standards and lysozyme protein aggregates, however significant reductions in particle counts were observed for borosilicate (80% of original and cellulose (92% of original particles. This reduction in particle counts may be due to the opaque adjuvant masking translucent particles present in borosilicate and cellulose samples. Although the results suggest that the utility of MDI for assessing sub-visible particles in high concentrations of adjuvant may be highly dependent on particle morphology, we believe that further investigation of this methodology to assess sub-visible particles in challenging formulations is warranted.

  8. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  9. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. High-speed particle tracking in microscopy using SPAD image sensors

    Science.gov (United States)

    Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.

    2018-02-01

    Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.

  11. Correlation of Optical Properties with Atmospheric Solid Organic Particles (ASOPs) in the Southern Great Plains

    Science.gov (United States)

    Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2017-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.

  12. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  13. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  14. Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase

    International Nuclear Information System (INIS)

    Deng Fei; Van Vliet, Krystyn J

    2011-01-01

    Particle-polymer nanocomposites often exhibit mechanical properties described poorly by micromechanical models that include only the particle and matrix phases. Existence of an interfacial region between the particle and matrix, or interphase, has been posited and indirectly demonstrated to account for this effect. Here, we present a straightforward analytical approach to estimate effective elastic properties of composites comprising particles encapsulated by an interphase of finite thickness and distinct elastic properties. This explicit solution can treat nanocomposites that comprise either physically isolated nanoparticles or agglomerates of such nanoparticles; the same framework can also treat physically isolated nanoparticle aggregates or agglomerates of such aggregates. We find that the predicted elastic moduli agree with experiments for three types of particle-polymer nanocomposites, and that the predicted interphase thickness and stiffness of carbon black-rubber nanocomposites are consistent with measured values. Finally, we discuss the relative influence of the particle-polymer interphase thickness and stiffness to identify maximum possible changes in the macroscale elastic properties of such materials.

  15. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  16. Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging

    Science.gov (United States)

    Erb, W.; Weinmann, A.; Ahlborg, M.; Brandt, C.; Bringout, G.; Buzug, T. M.; Frikel, J.; Kaethner, C.; Knopp, T.; März, T.; Möddel, M.; Storath, M.; Weber, A.

    2018-05-01

    Magnetic particle imaging (MPI) is a promising new in vivo medical imaging modality in which distributions of super-paramagnetic nanoparticles are tracked based on their response in an applied magnetic field. In this paper we provide a mathematical analysis of the modeled MPI operator in the univariate situation. We provide a Hilbert space setup, in which the MPI operator is decomposed into simple building blocks and in which these building blocks are analyzed with respect to their mathematical properties. In turn, we obtain an analysis of the MPI forward operator and, in particular, of its ill-posedness properties. We further get that the singular values of the MPI core operator decrease exponentially. We complement our analytic results by some numerical studies which, in particular, suggest a rapid decay of the singular values of the MPI operator.

  17. Assembling and properties of the polymer-particle nanostructured materials

    Science.gov (United States)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  18. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging

    KAUST Repository

    Xiong, Jinhui

    2017-07-21

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a

  19. Deblurring of class-averaged images in single-particle electron microscopy

    International Nuclear Information System (INIS)

    Park, Wooram; Chirikjian, Gregory S; Madden, Dean R; Rockmore, Daniel N

    2010-01-01

    This paper proposes a method for the deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid-body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre–Fourier expansions, and Hermite expansion and Laguerre–Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method

  20. Local System Matrix Compression for Efficient Reconstruction in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    T. Knopp

    2015-01-01

    Full Text Available Magnetic particle imaging (MPI is a quantitative method for determining the spatial distribution of magnetic nanoparticles, which can be used as tracers for cardiovascular imaging. For reconstructing a spatial map of the particle distribution, the system matrix describing the magnetic particle imaging equation has to be known. Due to the complex dynamic behavior of the magnetic particles, the system matrix is commonly measured in a calibration procedure. In order to speed up the reconstruction process, recently, a matrix compression technique has been proposed that makes use of a basis transformation in order to compress the MPI system matrix. By thresholding the resulting matrix and storing the remaining entries in compressed row storage format, only a fraction of the data has to be processed when reconstructing the particle distribution. In the present work, it is shown that the image quality of the algorithm can be considerably improved by using a local threshold for each matrix row instead of a global threshold for the entire system matrix.

  1. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  2. Demonstration of Clean Particle Seeding for Particle Image Velocimetry in a Closed Circuit Supersonic Wind Tunnel

    National Research Council Canada - National Science Library

    McNiel, Charles M

    2007-01-01

    The purpose of this research was to determine whether solid carbon dioxide (CO2) particles might provide a satisfactory, and cleaner, alternative to traditional seed material for Particle Image Velocimetry (PIV...

  3. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  4. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  5. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

    Science.gov (United States)

    Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert

    2016-01-01

    In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

  6. Image-preprocessing method for near-wall particle image velocimetry (PIV) image interrogation with very large in-plane displacement

    International Nuclear Information System (INIS)

    Zhu, Yiding; Yuan, Huijing; Zhang, Chuanhong; Lee, Cunbiao

    2013-01-01

    Accurate particle image velocimetry (PIV) measurements very near the wall are still a great challenge. The problem is compounded by the very large in-plane displacement on PIV images commonly encountered in measurements in hypersonic boundary layers. An improved image-preprocessing method is presented in this paper which expands the traditional window deformation iterative multigrid scheme to PIV images with very large displacement. Before the interrogation, stationary artificial particles of uniform size are added homogeneously in the wall region. The mean squares of the intensities of signals in the flow and in the wall region are postulated to be equal when half the initial interrogation window overlaps the wall region. The initial estimation near the wall is then smoothed by data from both sides of the shear layer to reduce the large random uncertainties. Interrogations in the following iterative steps then converge to the correct results to provide accurate predictions for particle tracking velocimetries. Significant improvement is seen in Monte Carlo simulations and experimental tests. The algorithm successfully extracted the small flow structures of the second-mode wave in the hypersonic boundary layer from PIV images with low signal-noise-ratios when the traditional method was not successful. (paper)

  7. Associated particle imaging (API)

    International Nuclear Information System (INIS)

    1998-05-01

    Associated Particle Imaging (API) is an active neutron probe technique that provides a 3-D image with elemental composition of the material under interrogation, and so occupies a unique niche in the interrogation of unknown objects. The highly penetrating nature of neutrons enables API to provide detailed information about targets of interest that are hidden from view. Due to the isotropic nature of the induced reactions, radiation detectors can be set on the same side of the object as the neutron source, so that the object can be interrogated from a single side. At the heat of the system is a small generator that produces a continuous, monoenergetic flux of neutrons. By measuring the trajectory of coincident alpha particles that are produced as part of the process, the trajectory of the neutron can be inferred. Interactions between a neutron and the material in its path often produce a gamma ray whose energy is characteristic of that material. When the gamma ray is detected, its energy is measured and combined with the trajectory information to produce a 3-D image of the composition of the object being interrogated. During the course of API development, a number of improvements have been made. A new, more rugged sealed Tube Neutron Generator (STNG) has been designed and fabricated that is less susceptible to radiation damage and better able to withstand the rigors of fielding than earlier designs. A specialized high-voltage power supply for the STNG has also been designed and built. A complete package of software has been written for the tasks of system calibration, diagnostics and data acquisition and analysis. A portable system has been built and field tested, proving that API can be taken out of the lab and into real-world situations, and that its performance in the field is equal to that in the lab

  8. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    Science.gov (United States)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  9. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    Science.gov (United States)

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  10. A review on noise suppression and aberration compensation in holographic particle image velocimetry

    Directory of Open Access Journals (Sweden)

    K.F. Tamrin

    2016-12-01

    Full Text Available Understanding three-dimensional (3D fluid flow behaviour is undeniably crucial in improving performance and efficiency in a wide range of applications in engineering and medical fields. Holographic particle image velocimetry (HPIV is a potential tool to probe and characterize complex flow dynamics since it is a truly three-dimensional three-component measurement technique. The technique relies on the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow for subsequent reconstruction of the same the event afterward. However, extraction of useful 3D displacement data from these particle images is usually aggravated by noise and aberration which are inherent within the optical system. Noise and aberration have been considered as major hurdles in HPIV in obtaining accurate particle image identification and its corresponding 3D position. Major contributions to noise include zero-order diffraction, out-of-focus particles, virtual image and emulsion grain scattering. Noise suppression is crucial to ensure that particle image can be distinctly differentiated from background noise while aberration compensation forms particle image with high integrity. This paper reviews a number of HPIV configurations that have been proposed to address these issues, summarizes the key findings and outlines a basis for follow-on research.

  11. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  12. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Science.gov (United States)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  13. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  14. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  15. A low-cost, high-magnification imaging system for particle sizing applications

    International Nuclear Information System (INIS)

    Tipnis, Tanmay J; Lawson, Nicholas J; Tatam, Ralph P

    2014-01-01

    A low-cost imaging system for high magnification and high resolution was developed as an alternative to long-working-distance microscope-based systems, primarily for particle sizing applications. The imaging optics, comprising an inverted fixed focus lens coupled to a microscope objective, were able to provide a working distance of approximately 50 mm. The system magnification could be changed by using an appropriate microscope objective. Particle sizing was achieved using shadow-based techniques with the backlight illumination provided by a pulsed light-emitting diode light source. The images were analysed using commercial sizing software which gave the particle sizes and their distribution. A range of particles, from 6 to 8 µm to over 100 µm, was successfully measured with a minimum spatial resolution of approximately 2.5 µm. This system allowed measurement of a wide range of particles at a lower cost and improved operator safety without disturbing the flow. (technical design note)

  16. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  17. Variable property, steady, axi-symmetric, laminar, continuum plasma flow over spheroidal particles

    International Nuclear Information System (INIS)

    Wen Yuemin; Jog, Milind A.

    2005-01-01

    Steady, continuum, laminar plasma flow over spheroidal particles has been numerically investigated in this paper using a finite volume method. To body-fit the non-spherical particle surface, an adaptive orthogonal grid is generated. The flow field and the temperature distribution are calculated for oblate and prolate particle shapes. A number of particle surface temperatures and far field temperatures are considered and thermo-physical property variation is fully accounted for in our model. The particle shapes are represented in terms of axis ratio which is defined as the ratio of axis perpendicular to the flow direction to the axis along the flow direction. For oblate shape, axis ratios from 1.6 (disk-like) to 1 (sphere) are used whereas for prolate shape, axis ratios of 1(sphere) to 0.4 (cylinder-like) are used. Effects of flow Reynolds number, particle shape, surface and far field temperatures, and variable properties, on the flow field, temperature variations, drag coefficient, and Nusselt number are outlined. Results show that particle shape has significant effect on flow and heat transfer to particle surface. Compared to a constant property flow, accounting for thermo-physical property variation leads to prediction of higher temperature and velocity gradients in the vicinity of the particle surface. Based on the numerical results, a correlation for the Nusslet number is proposed that accounts for the effect of particle shape in continuum flow with large thermo-physical property variation

  18. Real-time particle image velocimetry based on FPGA technology

    International Nuclear Information System (INIS)

    Iriarte Munoz, Jose Miguel

    2008-01-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach. [es

  19. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NARCIS (Netherlands)

    van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2017-01-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences

  20. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  1. Optical Properties of Airborne Soil Organic Particles

    Energy Technology Data Exchange (ETDEWEB)

    Veghte, Daniel P. [William; China, Swarup [William; Weis, Johannes [Chemical; Department; Kovarik, Libor [William; Gilles, Mary K. [Chemical; Laskin, Alexander [Department

    2017-09-27

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. The particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.

  2. The anomalous physical and chemical properties of gold nano-particles

    International Nuclear Information System (INIS)

    Cortie, M.B.

    2003-01-01

    Full text: Although gold is the most inert of all metallic elements, it has been discovered during the last two decades that it has interesting properties as a nano-particle. Some of the properties of interest include its activity as a heterogeneous catalyst, particularly at low temperatures, its optical properties, and the tendency of its nano-particles to adopt non-crystallographic structures. There are a number of curious aspects to catalysis by gold that are attracting academic and industrial investigation and much is still not understood about the mechanism by which they work. For example, apparently similar preparation techniques result in activities of hugely varying magnitude. In the present talk I assess the what is known about gold nano-particles, with particular reference to their physical, electronic, crystallographic and catalytic properties. It is shown that there is much evidence in favour of the belief that it is the unique electronic structure of these particles that imbues them with catalytic activity. If this is true then tighter control of the electronic structure would allow for the design of more specific and more active catalysts

  3. Optical properties, morphology and elemental composition of atmospheric particles at T1 supersite on MILAGRO campaign

    Science.gov (United States)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2012-03-01

    Atmospheric particles were sampled at T1 supersite during MILAGRO campaign, in March 2006. T1 was located at the north of Mexico City (MC). Aerosol sampling was done by placing copper grids for Transmission Electron Microscope (TEM) on the last five of an 8-stage MOUDI cascade impactor. Samples were obtained at different periods to observe possible variations on morphology. Absorption and scattering coefficients, as well as particle concentrations (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PSAP absorption photometer, a portable integrating nephelometer, and a CPC particle counter. Particle images were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system, and then calculated the border-based fractal dimension. Also, Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the elemental composition of particles. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension to relate it to the other particle properties, because T1-generated particles have optical, morphological and chemical properties different from those transported by the MC plume. Particles sampled under MC pollution influence showed not much variability, suggesting that more spherical particles (border-based fractal dimension close to 1.0) are more common in larger sizes (d50 = 1.8 μm), which may be attributed to aerosol aging and secondary aerosol formation. Between 06:00 and 09:00 a.m., smaller particles (d50 = 0.18 μm) had more irregular shapes resulting in higher border-based fractal dimensions (1.2-1.3) for samples with more local influence. EDS analysis in d50 = 0.18 μm particles showed high contents of carbonaceous material, Si, Fe, K, and Co. Perhaps, this indicates an impact from industrial and vehicle emissions on atmospheric particles at T1.

  4. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  5. The fundamentals of imaging from particles to galaxies

    CERN Document Server

    Woolfson, Michael M

    2012-01-01

    It is through images that we understand the form and function of material objects, from the fundamental particles that are the constituents of matter to galaxies that are the constituents of the Universe. Imaging must be thought of in a flexible way as varying from just the detection of objects — a blip on a screen representing an aircraft or a vapour trail representing the passage of an exotic particle — to displaying the fine detail in the eye of an insect or the arrangement of atoms within or on the surface of a solid. The range of imaging tools, both in the type of wave phenomena used and in the devices that utilize them, is vast. This book will illustrate this range, with wave phenomena covering the entire electromagnetic spectrum and ultrasound, and devices that vary from those that just detect the presence of objects to those that image objects in exquisite detail. The word ‘fundamentals’ in the title has meaning for this book. There will be no attempt to delve into the fine technical details ...

  6. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  7. QUANTITATIVE FLOW-ANALYSIS AROUND AQUATIC ANIMALS USING LASER SHEET PARTICLE IMAGE VELOCIMETRY

    NARCIS (Netherlands)

    STAMHUIS, EJ; VIDELER, JJ

    Two alternative particle image velocimetry (PIV) methods have been developed, applying laser light sheet illumination of particle-seeded flows around marine organisms, Successive video images, recorded perpendicular to a light sheet parallel to the main stream, were digitized and processed to map

  8. Imaging properties of scintillators for heavy-ion-beams and related model calculations

    International Nuclear Information System (INIS)

    Guetlich, Eiko

    2011-08-01

    This thesis is treating the imaging properties of scintillating screens for high-current ion beams as delivered by the UNILAC at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt, Germany. Scintillating screens are mainly used to measure and rate the tansversal beam parameters in nearly every particle accelerator. During daily operation, scintillating screens can be used to determine and optimize the position of the beam inside the beam-pipe as well as the transversal intensity distribution. Although scintillating screens are widely used in many measurement systems, their imaging properties are not well characterized. Within the framework of this thesis, accelerator based experiments were planed and carried out which allowed to compare the results of beam profile measurements of the different materials with reference methods. Parameters such as the screen temperature and particle energies have been varied. Additionaly, possible image distortions within the optical system have been investigated. To determine the influence of the emission spectra of the screens onto the profile measurement a novel experimental setup for the spectroscopic investigations has been established. The setup allows to investigate the emission spectrum along one spatial axes on the beamspot. The investigations focus on ceramic materials such as zirconium oxide doped e.g. with Mg (ZrO 2 :Mg) or aluminium oxide (Al 2 O 3 ). The materials have been irradiated with different ion species (e.g. Calcium and Uranium) with kinetic energies of 4.8 MeV/u (10% c) and 11.4 MeV (15% c). The results for different parameters are discussed and interpreted. The measured beam profiles show dependences of four parameters: - The material itself. - The screen temperature. - The accumulated fluence [ (Ions)/(cm 2 )]. - The excitation density [(Electron-Hole-Pairs)/(cm 3 )], which is proportional to the dose rate [(J)/(kg . s)] within the volume element. Among the above, the last one depends on the

  9. Projection x-space magnetic particle imaging.

    Science.gov (United States)

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  10. Killer smog of London, 50 years on: particle properties and oxidative capacity.

    Science.gov (United States)

    Whittaker, Andy; BéruBé, Kelly; Jones, Tim; Maynard, Robert; Richards, Roy

    2004-12-01

    Total suspended particulate (TSP) samples collected on glass fibre filters in London before (1955) and after (1958-1974) the Clean Air Act was examined for physicochemical characteristics and oxidative capacity. High-resolution microscopy identified most of the material as soot with smelter spheres, fly ash (FA), sodium chloride and calcium sulphate particles. Image analysis (IA) was used to show that most of the soot aggregates were less than 1 microm in size and contained chains of individual particles of 10-50 nm. Speed mapping of large agglomerates of the historic particles confirmed that the samples were enriched with soot probably derived from a sulphur-rich coal called nutty slack which was used extensively at this time. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to examine elemental composition. Meaningful quantitation of certain elements (Mg, Al and Zn) proved impossible because they were in high quantities in the glass fibre filters. However, high quantities of Fe>Pb>Cu>Mn>V>As were detected which may explain in part the bioreactivity of the samples. Using a simple in vitro test of oxidative capacity (plasmid assay), one historic particulate sample (1958) showed three times the activity of a modern-day diesel exhaust particle (DEP) sample but ten times less activity than a modern-day urban ambient particle collection. Such studies are continuing to link particle physicochemical properties and bioreactivity with a wider range of the samples collected between 1955 and 74 and how such historic samples compare with present-day London ambient particles.

  11. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Michael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weber, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.

  12. Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Li, Xiaoyan; Lam, Kitming; Wang, Dongsheng

    2012-01-01

    The hydrodynamic behavior of diatom aggregates has a significant influence on the interactions and flocculation kinetics of algae. However, characterization of the hydrodynamics of diatoms and diatom aggregates in water is rather difficult. In this laboratory study, an advanced visualization technique in particle image velocimetry (PIV) was employed to investigate the hydrodynamic properties of settling diatom aggregates. The experiments were conducted in a settling column filled with a suspension of fluorescent polymeric beads as seed tracers. A laser light sheet was generated by the PIV setup to illuminate a thin vertical planar region in the settling column, while the motions of particles were recorded by a high speed charge-coupled device (CCD) camera. This technique was able to capture the trajectories of the tracers when a diatom aggregate settled through the tracer suspension. The PIV results indicated directly the curvilinear feature of the streamlines around diatom aggregates. The rectilinear collision model largely overestimated the collision areas of the settling particles. Algae aggregates appeared to be highly porous and fractal, which allowed streamlines to penetrate into the aggregate interior. The diatom aggregates have a fluid collection efficiency of 10%-40%. The permeable feature of aggregates can significantly enhance the collisions and flocculation between the aggregates and other small particles including algal cells in water.

  13. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    International Nuclear Information System (INIS)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G.; Heinen, U.; Reitmeier, A.

    2015-01-01

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  14. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Weber, O. [Philips Medical Systems DMC GmbH, Hamburg (Germany); Heinen, U. [Bruker BioSpin MRI GmbH, Ettlingen (Germany); Reitmeier, A. [Medical Center Hamburg-Eppendorf, Hamburg (Germany). Animal Facility; Knopp, T. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Hamburg University of Technology, Hamburg (Germany)

    2015-05-15

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  15. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  16. Imaging of the strain field around precipitate particles using transmission ion channeling

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Meekeson, D; Smulders, PJM; Wilshaw, PR; Grime, GW

    1996-01-01

    This paper shows ion channeling images of the strain field produced by precipitate particles in a crystal matrix. Images have been produced by mapping the energy of 3 MeV protons transmitted through a thinned silicon crystal containing colonies of copper silicide particles, with the incident beam at

  17. Review of particle properties 1975: Supplement to 1974 edition

    CERN Document Server

    Particle Data Group. Berkeley; Bricman, Claude; Barbaro-Galtieri, Angela; Chew, Denyse M; Kelly, Robert L; Lasinski, Thomas A; Rittenberg, Alan; Rosenfeld, Arthur Hinton; Trippe, Thomas G; Uchiyama, Fumiyo; Yost, George P; Barash-Schmidt, Naomi; Roos, Matts

    1975-01-01

    This supplement to the 1974 edition of "Review of Particle Properties," Particle Data Group Phys. Lett. 50B, (1974), contains an announcement concerning the postponement of the usual Review, a list of Errata, and a tabulation of the experimental results on the newly discovered mesons.

  18. Laboratory and Cloud Chamber Studies of Formation Processes and Properties of Atmospheric Ice Particles

    Science.gov (United States)

    Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2009-04-01

    spectroscopy. In conjunction with ex situ single particle imaging and light scattering measurements the relation between the overall extinction and depolarization properties of the ice clouds and the morphological details of the constituent ice crystals are investigated. In our contribution we will concentrate on the parameterization of homogeneous and heterogeneous ice formation processes under various atmospheric conditions and on the optical properties of the ice crystals produced under these conditions. First attempts to parameterize the observations will be presented.

  19. MIDAS - an atomic force microscope for in-situ imaging of cometary dust particles

    International Nuclear Information System (INIS)

    Fehringer, H.M.; Ruedenauer, F.G.; Steiger, W.

    1997-02-01

    Comets are interesting bodies, since they are considered to consist of matter remaining in essentially unchanged chemistry from the presolar nebula. Investigation of cometary matter therefore permits to draw conclusion s with respect to the composition of presolar matter. The atomic force microscope MIDAS will be the first instrument to analyze, within ESA's ROSETTA-mission priestine cometary matter in the form of dust particles emitted by comet WIRTANEN during its perihelion in 2013. Within this project, a dust model has been developed, permitting estimation of dust collection times required for statistically significant imaging of cometary particles. The dynamics of dust collection has been developed and experimental dust collection surfaces have been produced making use of modem nanostructuring techniques. Mechanical properties of 3-dimensional piezo-control elements, which are an essential part of the MIDAS microscope, have been determined. (author)

  20. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.; Sakakibara, J.; Thoroddsen, Sigurdur T

    2013-01-01

    planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise

  1. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  2. Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion.

    Science.gov (United States)

    Xi, Yongkang; Luo, Zhigang; Lu, Xuanxuan; Peng, Xichun

    2018-01-10

    Cyclodextrins have been proven to form complexes with linear oil molecules and stabilize emulsions. Amphiphilic properties of cyclodextrin particles were modulated through esterification reaction between β-cyclodextrin (β-CD) and octadecenyl succinic anhydride (ODSA) under alkaline conditions. ODS-β-CD particles with degree of substitution (DS) of 0.003, 0.011, and 0.019 were obtained. The introduced hydrophobic long chain that was linked within β-CD cavity led to the change of ODS-β-CD in terms of morphological structure, surface charge density, size, and contact angle, upon which the properties and stability of the emulsions stabilized by ODS-β-CD were highly dependent. The average diameter of ODS-β-CD particles ranged from 449 to 1484 nm. With the DS increased from 0.003 to 0.019, the contact angle and absolute zeta potential value of these ODS-β-CD particles improved from 25.7° to 47.3° and 48.1 to 62.8 mV, respectively. The cage structure of β-CD crystals was transformed to channel structure, then further to amorphous structure after introduction of the octadecenyl succinylation chain. ODS-β-CD particles exhibited higher emulsifying ability compared to β-CD. The resulting Pickering emulsions formed by ODS-β-CD particles were more stable during storage. This study investigates the ability of these ODS-β-CD particles to stabilize oil-in-water emulsions with respect to their amphiphilic character and structural properties.

  3. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    Full Text Available Nikolaos Panagiotopoulos,1 Robert L Duschka,1 Mandy Ahlborg,2 Gael Bringout,2 Christina Debbeler,2 Matthias Graeser,2 Christian Kaethner,2 Kerstin Lüdtke-Buzug,2 Hanne Medimagh,2 Jan Stelzner,2 Thorsten M Buzug,2 Jörg Barkhausen,1 Florian M Vogt,1 Julian Haegele1 1Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, 2Institute of Medical Engineering, University of Lübeck, Lübeck, Germany Abstract: Magnetic particle imaging (MPI is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs. The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number

  4. Image segmentation and particles classification using texture analysis method

    Directory of Open Access Journals (Sweden)

    Mayar Aly Atteya

    Full Text Available Introduction: Ingredients of oily fish include a large amount of polyunsaturated fatty acids, which are important elements in various metabolic processes of humans, and have also been used to prevent diseases. However, in an attempt to reduce cost, recent developments are starting a replace the ingredients of fish oil with products of microalgae, that also produce polyunsaturated fatty acids. To do so, it is important to closely monitor morphological changes in algae cells and monitor their age in order to achieve the best results. This paper aims to describe an advanced vision-based system to automatically detect, classify, and track the organic cells using a recently developed SOPAT-System (Smart On-line Particle Analysis Technology, a photo-optical image acquisition device combined with innovative image analysis software. Methods The proposed method includes image de-noising, binarization and Enhancement, as well as object recognition, localization and classification based on the analysis of particles’ size and texture. Results The methods allowed for correctly computing cell’s size for each particle separately. By computing an area histogram for the input images (1h, 18h, and 42h, the variation could be observed showing a clear increase in cell. Conclusion The proposed method allows for algae particles to be correctly identified with accuracies up to 99% and classified correctly with accuracies up to 100%.

  5. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  6. Separation method of heavy-ion particle image from gamma-ray mixed images using an imaging plate

    CERN Document Server

    Yamadera, A; Ohuchi, H; Nakamura, T; Fukumura, A

    1999-01-01

    We have developed a separation method of alpha-ray and gamma-ray images using the imaging plate (IP). The IP from which the first image was read out by an image reader was annealed at 50 deg. C for 2 h in a drying oven and the second image was read out by the image reader. It was found out that an annealing ratio, k, which is defined as a ratio of the photo-stimulated luminescence (PSL) density at the first measurement to that at the second measurement, was different for alpha rays and gamma rays. By subtracting the second image multiplied by a factor of k from the first image, the alpha-ray image was separated from the alpha and gamma-ray mixed images. This method was applied to identify the images of helium, carbon and neon particles of high energies using the heavy-ion medical accelerator, HIMAC. (author)

  7. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  8. r-particle irreducible kernels, asymptotic completeness and analyticity properties of several particle collision amplitudes

    International Nuclear Information System (INIS)

    Bros, J.

    1984-01-01

    An account is given of the present status of many-particle structure analysis in the general framework of massive quantum field theory. Two main questions are discussed, namely: i) the equivalence between the asymptotic completeness of a field and the r-particle irreducibility of associated Bether-Salpeter type kernels; ii) the derivation of extended analyticity properties of the Green functions and multiparticle collision amplitudes around the corresponding physical regions. Substantial results concerning the 3→3 particle processes are described. An analogous multiparticle version of these results yields a partial understanding of the general case

  9. Correlation between morphology and magnetic properties of electrochemically produced cobalt powder particles

    Directory of Open Access Journals (Sweden)

    Maksimović Vesna M.

    2015-01-01

    Full Text Available Cobalt 3D powder particles were successfully prepared by the galvanostatic electrodeposition. Electrodeposited cobalt powder were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive Spectroscopy (EDS analysis and SQUID magnetometry. It has been shown that morphology, structure and magnetic properties of cobalt particles are closely associated and can be easily controlled by adjusting process parameters of electrodeposition. Morphology of cobalt powder particles is strongly affected by hydrogen evolution reaction as a parallel reaction to cobalt electrodeposition. Depending on the applied current density, the two types of powder particles were formed: dendrites at lower and spongy-like particles at higher current densities. Morphologies and structures of powder particles are correlated with their magnetic properties, and compared with those of the bulk cobalt. In comparison with the properties of bulk cobalt, the obtained 3D structures exhibited a decreased saturation magnetization (MS, but an enhanced coercivity (HC which is explained by their peculiar morphology. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  10. Data simulation for the Associated Particle Imaging system

    International Nuclear Information System (INIS)

    Tunnell, L.N.

    1994-01-01

    A data simulation procedure for the Associated Particle Imaging (API) system has been developed by postprocessing output from the Monte Carlo Neutron Photon (MCNP) code. This paper compares the simulated results to our experimental data

  11. Microstructures for high-energy x-ray and particle-imaging applications

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Stone, G.F.; Hawryluk, A.M.

    1981-05-01

    Coded imaging techniques using thick, micro-Fresnel zone plates as coded apertures have been used to image x-ray emissions (2-20 keV) and 3.5 MeV Alpha particle emissions from laser driven micro-implosions. Image resolution in these experiments was 3-8 μm. Extension of this coded imaging capability to higher energy x-rays (approx. 100 keV) and more penetrating charged particles (e.g. approx. 15 MeV protons) requires the fabrication of very thick (50-200 μm), high aspect ratio (10:1), gold Fresnel zone plates with narrow linewidths (5-25 μm) for use as coded aperatures. A reactive ion etch technique in oxygen has been used to produce thick zone plate patterns in polymer films. The polymer patterns serve as electroplating molds for the subsequent fabrication of the free-standing gold zone plate structures

  12. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  13. A two-wavelength imaging pyrometer for measuring particle temperature, velocity and size in thermal spray processes

    International Nuclear Information System (INIS)

    Craig, J.E.; Parker, R.A.; Lee, D.Y.; Biancaniello, F.; Ridder, S.

    1999-01-01

    An imaging pyrometer has been developed to measure the surface temperature of hot metal objects and to measure particle temperature, velocity and size in thermal spray, spray-fonning and atomization processes. The two-wavelength surface imaging pyrometer provides true temperature measurement with high resolution, even when the surface has emissivity variation caused by roughness or oxidation. The surface imaging pyrometer has been calibrated for use in a material processing lab calibration over the range of 1000 to 3000 deg K, and these results are described. The particle imaging pyrometer has a field of view that spans the entire particle stream in typical thermal spray devices, and provides continuous measurement of the entire particle stream. Particle temperature and velocity are critical parameters for producing high quality spray coatings efficiently and reliably. The software locates the particle streaks in the image, and determines the intensity ratio for each particle streak pair to obtain the temperature. The dimensions of the particle streak image are measured to determine the velocity and size. Because the vision-based sensor samples the entire particle stream in every video frame, the particle temperature, velocity and size data are updated at 30 Hz at all points in the particle stream. Particle measurements in a plasma spray at NIST are described. In this paper, we will describe our experiments with ceramic powders, in which measurements have been made at several positions along the particle stream. The particle data are represented as profiles across the particle stream, histograms of the full particle stream or time histories of the full-stream average. The results are compared and calibrated with other temperature and diagnostic measurement systems. (author)

  14. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  15. Symmetries of the 2D magnetic particle imaging system matrix

    International Nuclear Information System (INIS)

    Weber, A; Knopp, T

    2015-01-01

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. (paper)

  16. Holographic Particle Image Velocimetry and its Application in Engine Development

    International Nuclear Information System (INIS)

    Coupland, J M; Garner, C P; Alcock, R D; Halliwell, N A

    2006-01-01

    This paper reviews Holographic Particle Image Velocimetry (HPIV) as a means to make three-component velocity measurements throughout a three-dimensional flow-field of interest. A simplified treatment of three-dimensional scalar wave propagation is outlined and subsequently used to illustrate the principles of complex correlation analysis. It is shown that this type of analysis provides the three-dimensional correlation of the propagating, monochromatic fields recorded by the hologram. A similar approach is used to analyse the Object Conjugate Reconstruction (OCR) technique to resolve directional ambiguity by introducing an artificial image shift to the reconstructed particle images. An example of how these methods are used together to measure the instantaneous flow fields within a motored Diesel engine is then described

  17. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  18. Evaluation of iron oxide nanoparticle micelles for Magnetic Particle Imaging (MPI) of thrombosis

    NARCIS (Netherlands)

    Starmans, L.W.E.; Moonen, R.P.M.; Aussems-Custers, E.; Daemen, M.J.A.P.; Strijkers, G. J.; Nicolay, K.; Grüll, H.

    2015-01-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the

  19. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    International Nuclear Information System (INIS)

    Zhang Deyuan; Zhang Wenqiang; Cai Jun

    2011-01-01

    Hexagonal ferrite BaZn 1.1 Co 0.9 Fe 16 O 27 coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: → We synthesize the flake ferrite particles using diatomite as a template. → Flake ferrite particles' coating layers are constituted by BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. → Flake ferrite particles have good static magnetic properties.→ Flake ferrites are a kind lightweight broad band microwave absorber.

  20. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Zhang Wenqiang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Cai Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2011-09-15

    Hexagonal ferrite BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: > We synthesize the flake ferrite particles using diatomite as a template. > Flake ferrite particles' coating layers are constituted by BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} nanoparticles. > Flake ferrite particles have good static magnetic properties. > Flake ferrites are a kind lightweight broad band microwave absorber.

  1. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    G. Helas; M. O. Andreae

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  2. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  3. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  4. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    Science.gov (United States)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  5. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  6. The effect of calcium on the composition and physical properties of whey protein particles prepared using emulsification.

    Science.gov (United States)

    Westerik, Nieke; Scholten, Elke; Corredig, Milena

    2015-06-15

    Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.

  7. Influence of the precursors on the properties of alumina supported rhodium particles

    International Nuclear Information System (INIS)

    Coq, B.; Figueras, F.; Tazi, T.

    1989-01-01

    The effect of chlorine on the properties of Rh particles supported on alumina was studied using the hydroconversion of alkanes as a molecular probe. Chloride ions on the alumina have little influence on the Rh particles. Chlorine adsorbed on the Rh particles decreases the chemisorption capacity and increases the metal-support interaction, which results in modifications of their catalytic properties. Depending on the alkane processed, specific activity can be depressed up to four orders of magnitude. (orig.)

  8. Diffusion properties of active particles with directional reversal

    International Nuclear Information System (INIS)

    Großmann, R; Bär, M; Peruani, F

    2016-01-01

    The diffusion properties of self-propelled particles which move at constant speed and, in addition, reverse their direction of motion repeatedly are investigated. The internal dynamics of particles triggering these reversal processes is modeled by a stochastic clock. The velocity correlation function as well as the mean squared displacement is investigated and, furthermore, a general expression for the diffusion coefficient for self-propelled particles with directional reversal is derived. Our analysis reveals the existence of an optimal, finite rotational noise amplitude which maximizes the diffusion coefficient. We comment on the relevance of these results with regard to biological systems and suggest further experiments in this context. (paper)

  9. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  10. Effect of suspension characteristics on in-flight particle properties and coating microstructures achieved by suspension plasma spray

    Science.gov (United States)

    Aubignat, E.; Planche, M. P.; Allimant, A.; Billières, D.; Girardot, L.; Bailly, Y.; Montavon, G.

    2014-11-01

    This paper focuses on the influence of suspension properties on the manufacturing of coatings by suspension plasma spraying (SPS). For this purpose, alumina suspensions were formulated with two different liquid phases: water and ethanol. Suspensions were atomized with a twin-fluid nozzle and injected in an atmospheric plasma jet. Suspension injection was optimized thanks to shadowgraphy observations and drop size distribution measurements performed by laser diffraction. In-flight particle velocities were evaluated by particle image velocimetry. In addition, splats were collected on glass substrates, with the same conditions as the ones used during the spray process. Scanning electron microscopy (SEM) and profilometry analyses were then performed to observe the splat morphology and thus to get information on plasma / suspension interactions, such as particle agglomeration. Finally, coatings were manufactured, characterized by SEM and compared to each other.

  11. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  12. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    Science.gov (United States)

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  13. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  14. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  15. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    Science.gov (United States)

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  16. Fluvial particle characterization using artificial neural network and spectral image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  17. SEPARATION OF THE INTER- AND INTRA-PARTICLE POROSITY IN IMAGES OF POWDER COMPACTS

    Directory of Open Access Journals (Sweden)

    Jacques Lacaze

    2011-05-01

    Full Text Available Powder metallurgy is a highly developed and cheap method of manufacturing reliable materials, either metallic, ceramic or composite. This process was used to make green compacts of iron powders with a high porosity level. This study is part of a project aimed at describing the relationships between mechanical properties and morphological features of such compacts, with particular attention paid to the shape of the grains and the compaction pressure. In this report, a method is proposed to separate the intra grain porosity from the cavities located between particles. The approach is based on the covariogram of images obtained from the surface of the compacts by means of a laser roughometer. To achieve this separation, a model of the structure is proposed which assumes that the distributions of the grains and of the intra-particle cavities are random and independent. Each distribution is characterized by two parameters. A satisfactory agreement is obtained between experimental and calculated covariograms after identification of these parameters.

  18. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    Science.gov (United States)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  19. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    International Nuclear Information System (INIS)

    Bogan, Michael J; Starodub, Dmitri; Hampton, Christina Y; Sierra, Raymond G

    2010-01-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 10 12 photons per pulse, 20 μm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  20. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  1. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manghisoni, M.; Re, V.; Traversi, G.

    2011-01-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12μm to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6μm) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  2. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Universita di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Universita di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-10-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12{mu}m to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6{mu}m) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  3. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  4. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  5. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Science.gov (United States)

    Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-08-17

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  6. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Directory of Open Access Journals (Sweden)

    Carlo E Villa

    Full Text Available The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  7. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  8. Mechanical properties and the evolution of matrix molecules in PTFE upon irradiation with MeV alpha particles

    International Nuclear Information System (INIS)

    Fisher, Gregory L.; Lakis, Rollin E.; Davis, Charles C.; Szakal, Christopher; Swadener, John G.; Wetteland, Christopher J.; Winograd, Nicholas

    2006-01-01

    The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4 He 2+ ions from a tandem accelerator to doses between 1 x 10 6 and 5 x 10 10 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C 60 + source, was employed to probe chemical changes as a function of α dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of α particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing α particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of α dose. The data show that PTFE nominally retains its innate chemical structure and morphology at α doses 9 Rad. At α doses ≥10 9 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At α doses >10 10 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of α particle irradiation and show morphological roughening of the sample with increased α dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of α particles. RGA confirms the supposition that

  9. Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly.

    Science.gov (United States)

    Varanakkottu, Subramanyan Namboodiri; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien

    2016-01-13

    Controlled particle deposition on surfaces is crucial for both exploiting collective properties of particles and their integration into devices. Most available methods depend on intrinsic properties of either the substrate or the particles to be deposited making them difficult to apply to complex, naturally occurring or industrial formulations. Here we describe a new strategy to pattern particles from an evaporating drop, regardless of inherent particle characteristics and suspension composition. We use light to generate Marangoni surface stresses resulting in flow patterns that accumulate particles at predefined positions. Using projected images, we generate a broad variety of complex patterns, including multiple spots, lines and letters. Strikingly, this method, which we call evaporative optical Marangoni assembly (eOMA), allows us to pattern particles regardless of their size or surface properties, in model suspensions as well as in complex, real-world formulations such as commercial coffee.

  10. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  11. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  12. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping

    2017-01-01

    To derive the bulk radiative properties of ice clouds, aircraft contrails and snow grains, which are fundamental to atmospheric radiative transfer calculations in downstream applications, it is necessary to accurately simulate the scattering of light by individual ice particles. An ice particle optical property database reported in 2013 (hereafter, TAMUice2013) is updated (hereafter, TAMUice2016) to incorporate recent advances in computation of the optical properties of nonspherical particles. Specifically, we employ the invariant imbedding T-matrix (II-TM) method to compute the optical properties of particles with small to moderate size parameters. Both versions use the Improved Geometric Optics Method (IGOM) to compute the optical properties of large ice crystals, but TAMUice2016 improves the treatment of inhomogeneous waves inside the scattering particles in the case where ice is absorptive such as at infrared wavelengths. To bridge the gap between the extinction efficiencies computed from the II-TM and the IGOM, TAMUice2016 includes spectrally dependent higher order terms of the edge effect in addition to the first order counterpart considered in TAMUice2013. Furthermore, the differences between TAMUice2013 and TAMUice2016 are quantified with respect to the computation of the bulk optical properties of ice clouds. - Highlights: • A previous database of the single-scattering properties of ice crystals is improved. • A combination of the invariant imbedding T-matrix and improved geometric optics methods is used. • The treatment of inhomogeneous waves in an absorptive ice crystal is improved. • Higher order terms of the edge effect are considered in the updated database.

  13. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Zhong LL

    2015-08-01

    Full Text Available Linlin Zhong, Kyusik Yun Department of Bionanotechnology, Gachon University, Gyeonggi-do, Republic of Korea Abstract: Nanosized ZnO particles with diameters of 15 nm were prepared with a solution precipitation method at low cost and high yield. The synthesis of the particles was functionalized by the organic solvent dimethylformamide, and the particles were covalently bonded to the surface of graphene oxide. The morphology of the graphene oxide sheets and ZnO particles was confirmed with field emission scanning electron microscopy and biological atomic force microscopy. Fourier transform infrared spectroscopy and X-ray diffraction were used to analyze the physical and chemical properties of the ZnO/graphene oxide composites that differed from those of the individual components. Enhanced electrochemical properties were detected with cyclic voltammetry, with a redox peak of the composites at 0.025 mV. Excellent antibacterial activity of ZnO/graphene oxide composites was observed with a microdilution method in which minimum inhibitory concentrations of 6.25 µg/mL for Escherichia coli and Salmonella typhimurium, 12.5 µg/mL for Bacillus subtilis, and 25 µg/mL for Enterococcus faecalis. After further study of the antibacterial mechanism, we concluded that a vast number of reactive oxygen species formed on the surface of composites, improving antibacterial properties. Keywords: graphene oxide, ZnO, characterization, antibacterial property

  14. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

    Science.gov (United States)

    Lee, Yong; Yang, Hua; Yin, Zhouping

    2017-12-01

    Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

  15. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Science.gov (United States)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  16. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  17. In Situ Imaging of Particle Formation and Dynamics in Reactive Material Deflagrations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-12

    Reactive composites utilizing nanoparticles have been the topic of extensive research in the past two decades. The driver for this is that, as the particle size is decreased, the mixing scale between constituents is greatly reduced, which has long thought to increase the rate of chemical reaction. While a general trend of increased reactivity has been seen for metal / metal oxide, or thermite, reactive materials, some results have demonstrated diminishing returns as the particle size is further decreased. Recent results have shown that nanoparticles, which are typically aggregates of several primary particles, can undergo very rapid coalescence to form micron particles once a critical temperature is reached. Experiments on this topic to date have been performed on very small sample masses, and sometimes under vacuum; conditions which are not representative of the environment during a deflagration. In this feasibility study, a custom burn tube was used to ignite and react 100 mg powdered thermite samples in long acrylic tubes. X-ray imaging at APS Sector 32 was performed to image the particle field as a function of distance and time as the rarefied particle cloud expanded and flowed down the tube. Five different thermite formulations were investigated, Al / CuO, Al / Fe2O3, Al / SnO2, Al / WO3, and Al / Fe2O3, along with Al / CuO formulations with different sizes of Al particles ranging from 80 nm to approximate 10 μm. The results clearly show that the sample powder reacts and unloads into a distribution of larger micron-scale particles (~5-500 μm), which continue to react and propagate as the particle-laden stream flows down the tube. This was the first direct imaging of the particle field during a thermite deflagration, and gives significant insight into the evolution of reactants to products. Analysis of phase is currently being pursued to determine whether this method can be used to extract

  18. Particle tracking from image sequences of complex plasma crystals

    International Nuclear Information System (INIS)

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-01-01

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data

  19. Effectiveness of amorphous silica encapsulation technology on welding fume particles and its impact on mechanical properties of welds

    International Nuclear Information System (INIS)

    Wang, Jun; Wu, Chang-Yu; Franke, Gene

    2014-01-01

    Highlights: • A novel welding shielding gas containing a silica precursor. • Up to 76% of the welding fume particles encapsulated in an amorphous silica layer. • No statistical difference between different types of welds in mechanical tests. • Can potentially reduce the toxicity of welding fume particles. - Abstract: Stainless steel welding generates nano-sized fume particles containing toxic metals which may cause serious health effects upon inhalation. The objective of this study was to investigate the effectiveness of an amorphous silica encapsulation (ASE) technology by evaluating its silica coating efficiency (SCE), particle morphology, and its impact on the weld’s mechanical properties. Tetramethylsilane (TMS) added to the welding shielding gas decomposed at the high-temperature arc zone to enable the silica coating. Collected welding fume particles were digested by two acid mixtures with different degrees of silica solubility, and the measured mass differences in the digests were used to determine the SCE. The SCEs were around 48–64% at the low and medium primary shielding gas flow rates. The highest SCE of 76% occurred at the high shielding gas flow rate (30 Lpm) with a TMS carrier gas flow of 0.64 Lpm. Transmission electron microscopy (TEM) images confirmed the amorphous silica layer on the welding fume particles at most gas flow rates, as well as abundant stand-alone silica particles formed at the high gas flow rate. Metallography showed that welds from the baseline and from the ASE technology were similar except for a tiny crack found in one particular weld made with the ASE technology. Tensile tests showed no statistical difference between the baseline and the ASE welds. All the above test results confirm that welding equipment retrofitted with the ASE technology has the potential to effectively address the toxicity problem of welding fume particles without affecting the mechanical properties of the welds

  20. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  1. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing paracetamol ...

  2. The Effects of Fe-Particles on the Tensile Properties of Al-Si-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Anton Bjurenstedt

    2016-12-01

    Full Text Available The effect of Fe-rich particles has been a topic for discussion in the aluminum casting industry because of the negative impact they exert on the mechanical properties. However, there are still contradictions on the effects of various morphologies of Fe-particles. In this study, microstructural characterization of tensile tested samples has been performed to reveal how unmodified and modified Fe-rich particles impact on the tensile behavior. Analysis of additions of Fe modifiers such as Mn and Cr, showed higher amounts of primary Fe-rich particles (sludge with increased porosity and, as result, degraded tensile properties. From the fracture analysis of tensile tested hot isostatic pressed (HIPed samples it could be concluded that the mechanical properties were mainly governed by the Fe-rich particles, which were fracturing through cleavage, not by the porosity.

  3. Spheronization process particle kinematics determined by discrete element simulations and particle image velocimentry measurements.

    Science.gov (United States)

    Koester, Martin; García, R Edwin; Thommes, Markus

    2014-12-30

    Spheronization is an important pharmaceutical manufacturing technique to produce spherical agglomerates of 0.5-2mm diameter. These pellets have a narrow size distribution and a spherical shape. During the spheronization process, the extruded cylindrical strands break in short cylinders and evolve from a cylindrical to a spherical state by deformation and attrition/agglomeration mechanisms. Using the discrete element method, an integrated modeling-experimental framework is presented, that captures the particle motion during the spheronization process. Simulations were directly compared and validated against particle image velocimetry (PIV) experiments with monodisperse spherical and dry γ-Al2O3 particles. demonstrate a characteristic torus like flow pattern, with particle velocities about three times slower than the rotation speed of the friction plate. Five characteristic zones controlling the spheronization process are identified: Zone I, where particles undergo shear forces that favors attrition and contributes material to the agglomeration process; Zone II, where the static wall contributes to the mass exchange between particles; Zone III, where gravitational forces combined with particle motion induce particles to collide with the moving plate and re-enter Zone I; Zone IV, where a subpopulation of particles are ejected into the air when in contact with the friction plate structure; and Zone V where the low poloidal velocity favors a stagnant particle population and is entirely controlled by the batch size. These new insights in to the particle motion are leading to deeper process understanding, e.g., the effect of load and rotation speed to the pellet formation kinetics. This could be beneficial for the optimization of a manufacturing process as well as for the development of new formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  5. Image processing applications: From particle physics to society

    International Nuclear Information System (INIS)

    Sotiropoulou, C.-L.; Citraro, S.; Dell'Orso, M.; Luciano, P.; Gkaitatzis, S.; Giannetti, P.

    2017-01-01

    We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.

  6. Particle image velocimetry a practical guide

    CERN Document Server

    Raffel, Marcus; Wereley, Steve T; Kompenhans, Jürgen

    2007-01-01

    The development of Particle Image Velocimetry (PIV), a measurement technique, which allows for capturing velocity information of whole ?ow ?elds in fractions of a second, has begun in the eighties of the last century. In 1998, when this book has been published ?rstly, the PIV technique emerged from laboratories to applications in fundamental and industrial research, in par- lel to the transition from photo-graphicalto video recording techniques. Thus this book, whose objective was and is to serve as a practical guide to the PIV technique, found strong interest within the increasing group of us

  7. Vertical Profiles and Chemical Properties of Aerosol Particles upon Ny-Ålesund (Svalbard Islands

    Directory of Open Access Journals (Sweden)

    B. Moroni

    2015-01-01

    Full Text Available Size-segregated particle samples were collected in the Arctic (Ny-Ålesund, Svalbard in April 2011 both at ground level and in the free atmosphere exploiting a tethered balloon equipped also with an optical particle counter (OPC and meteorological sensors. Individual particle properties were investigated by scanning electron microscopy coupled with energy dispersive microanalysis (SEM-EDS. Results of the SEM-EDS were integrated with particle size and optical measurements of the aerosols properties at ground level and along the vertical profiles. Detailed analysis of two case studies reveals significant differences in composition despite the similar structure (layering and the comparable texture (grain size distribution of particles in the air column. Differences in the mineral chemistry of samples point at both local (plutonic/metamorphic complexes in Svalbard and remote (basic/ultrabasic magmatic complexes in Greenland and/or Iceland geological source regions for dust. Differences in the particle size and shape are put into relationship with the mechanism of particle formation, that is, primary (well sorted, small or secondary (idiomorphic, fine to coarse grained origin for chloride and sulfate crystals and transport/settling for soil (silicate, carbonate and metal oxide particles. The influence of size, shape, and mixing state of particles on ice nucleation and radiative properties is also discussed.

  8. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  9. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  10. Nanodiamond particles/PVDF nanocomposite flexible films: thermal, mechanical and physical properties

    Science.gov (United States)

    Jaleh, Babak; Sodagar, Shima; Momeni, Amir; Jabbari, Ameneh

    2016-08-01

    Recently, polymer nanocomposites reinforced with nanoparticles have attracted a lot of attention due to their unique physical and mechanical properties. In this work, poly (vinylidene fluoride)/nanodiamond particles nanocomposite films were prepared by solution casting method with various nanodiamond particles contents. The samples were investigated by Fourier transform infrared spectroscopy and x-ray diffraction technique. The results revealed an obvious α to β-phase transformation compared to pure PVDF. The most (or the maximum) phase transformation from α to β-phase (>90%) was found for nanocomposite film with 8% wt nanodiamond particles. Scanning electron micrographs showed considerable decrease in the size of spherulitic crystal structure of PVDF with adding nanoparticles. The photoluminescence property of nanocomposite films was investigated by photoluminescence spectroscopy and the optical band gap value was calculated from the UV-visible absorption spectra. The results showed that after the incorporation of nanoparticles into PVDF, the value of optical band gap decreased. Thermal stability of samples was studied by thermogravimetric analysis. Due to an increase in the electroactive phase (β) percentage by adding nanoparticles, the resistance of samples to thermal degradation improved. The mechanical properties of samples were investigated by tensile test and hardness measurements. The elastic modulus and hardness of samples were enhanced by adding nanodiamond particles and elongation to fracture decreased.

  11. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    Science.gov (United States)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  12. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    scope that views the trapped particle walking through the ringdown beam step by step. (b) An image that shows the traces of the particle (MWCNT... walking through the RD beam . 5 a b c Fig.3 The OT-CRDS single particle scope views oscillations of a trapped particle. (a) Image of a trapped...and walking single carbon- nanotube particles of ?50 µm in size and viewing those properties via changes of ringdown time. This single- aerosol

  13. Application of particle imaging velocimetry in windtunnels

    International Nuclear Information System (INIS)

    Kompenhans, J.; Reichmuth, J.

    1987-01-01

    Recently the instantaneous and nonintrusive measurement of the flow velocity in a large area of the flow field (two-dimensional plane) became possible by means of particle imaging velocimetry (PIV). Up to now PIV has mainly been used for model experiments at low flow velocities in order to test and to improve the measuring technique. The present aim is the application of PIV in large wind tunnels at high flow velocities. 7 references

  14. cisTEM, user-friendly software for single-particle image processing

    Science.gov (United States)

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  15. cisTEM, user-friendly software for single-particle image processing.

    Science.gov (United States)

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  16. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    Science.gov (United States)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  17. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  18. Preparation and evaluation of (131I)AgI particles: potential lungs perfusion imaging agent

    International Nuclear Information System (INIS)

    Chattopadhyay, Sankha; Das, Sujata Saha; Sinha, Samarendu; Sarkar, Bharat Ranjan; Ganguly, Shantanu; Chandra, Susmita; De, Kakali; Mishra, Mridula

    2010-01-01

    Since the discovery of iodine-131 (t 1/2 : 8 d) by Livingood and Seaborg (1938), this, and other radioisotopes of iodine, have found widespread use in nuclear medicine. The purpose of the present work was to formulate Ag 131 I particles and bio-evaluate the same. The Ag 131 I particles were prepared in acidic condition having 100% R.C. Purity. The biological evaluation of Ag 131 1 particles was made by injecting about 111-185 MBq of Ag 131 I particles preparations in female albino rabbits (2-2.5 kg weight) intravenously by femoral vein under urethane anesthesia. Imaging studies were performed under Gamma Camera. The entire amount of the Ag 131 I particles were found to deposit in the lungs and remained there almost unchanged for a certain period of time after the intervenous administration. The images showed excellent, uniform lung uptake with no interference from liver and spleen to the lower regions of right and left lobes. It showed a high accumulation in the rabbits lungs (>99%) and remained constant for at least for 20 min. It is also worthy to study with 123 I/ 124 I labelled AgI for lung imaging study. In conclusion, the synthetic radiopharmaceutical ( 131 I)-Silver iodide colloid can be prepared with a large particle size, in a simple and practical manner, and it has good potential for use as a perfusion imaging agent in lung scans

  19. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    Science.gov (United States)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  20. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  1. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  2. qF-SSOP: real-time optical property corrected fluorescence imaging

    Science.gov (United States)

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  3. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  4. Imaging of particles with 3D full parallax mode with two-color digital off-axis holography

    Science.gov (United States)

    Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal

    2018-05-01

    This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.

  5. Mechanical properties of epoxy/coconut shell filler particle composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Harimi, M.; Maleque, M.A.

    2003-01-01

    This paper presents the tensile and flexural properties of composites made from coconut shell filler particles and epoxy resin. The tensile and flexural tests of composites based on coconut shell filler particles at three different filler contents viz., 5%, 0% and 15%were carried out using universal tensile testing machine according to ASTM D 3039/D M-95a and ASTM D790-90 tensile respectively and their results were presented. Experimental results showed that tensile and flexural properties of the composites increased with the increase of the filler particle content. The composite materials demonstrate somewhat linear behavior and sharp structure for tensile and slight nonlinear behavior and sharp fracture of flexural testing. The relation between stress and percentage of filler for tensile and flexural tests were found to b linear with correlation factors of 0.9929 and 0.9973 respectively. Concerning the relation between the modulus and percentage of filler for tensile and flexural tests, it was found to be a quadratic relation with the same correlation factor approximated to 1. The same behavior was observed for the strain versus percentage of filler tensile and flexural tests, with the same correlation factor. (author)

  6. Random ray-tracing and graphic analysing of charged particle trajectories

    International Nuclear Information System (INIS)

    Lin Xiaomei; Mao Naifeng; Chen Jingxian

    1990-01-01

    In order to describe the optical properties of a charged particle beam realistically, the random sampling of initial conditions of particles in ray-tracing is discussed. The emission surface of particles may be a plane, a cylindrical surface or a spherical surface. The distribution functions may be expressed analytically or numerically. In order to analyse the properties of the charged particle beam systematically by use of the results from ray-tracing efficiently, the graphic processing and analysing of particle trajectories are also discussed, including the spline function fitting of trajectories, the graphic drafting of trajectories and beam envelopes, the determining of image dimensions and the correspinding positions, and also the graphic drafting of particle distributions on arbitrary cross sections

  7. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  8. Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites

    Science.gov (United States)

    Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo

    2018-01-01

    The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.

  9. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    International Nuclear Information System (INIS)

    Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.

    2016-01-01

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  10. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)

    2016-06-15

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  11. Particle detection and classification using commercial off the shelf CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Martín [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Lipovetzky, Jose, E-mail: lipo@cab.cnea.gov.ar [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Sofo Haro, Miguel; Sidelnik, Iván; Blostein, Juan Jerónimo; Alcalde Bessia, Fabricio; Berisso, Mariano Gómez [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2016-08-11

    In this paper we analyse the response of two different Commercial Off The shelf CMOS image sensors as particle detectors. Sensors were irradiated using X-ray photons, gamma photons, beta particles and alpha particles from diverse sources. The amount of charge produced by different particles, and the size of the spot registered on the sensor are compared, and analysed by an algorithm to classify them. For a known incident energy spectrum, the employed sensors provide a dose resolution lower than microGray, showing their potentials in radioprotection, area monitoring, or medical applications.

  12. Effect of the primary particle morphology on the micromechanical properties of nanostructured alumina agglomerates

    International Nuclear Information System (INIS)

    Schilde, Carsten; Westphal, Bastian; Kwade, Arno

    2012-01-01

    Depending on the application of nanoparticles, certain characteristics of the product quality such as size, morphology, abrasion resistance, specific surface, dispersibility and tendency to agglomeration are important. These characteristics are a function of the physicochemical properties, i.e. the micromechanical properties of the nanostructured material. The micromechanical properties of these nanostructured agglomerates such as the maximum indentation force, the plastic and elastic deformation energy and the strength give information on the product properties, e.g. the efficiency of a dispersion process of the agglomerates, and can be measured by nanoindentation. In this study a Berkovich indenter tip was used for the characterisation of model aggregates out of sol–gel produced silica and precipitated alumina agglomerates with different primary particle morphologies (dimension of 15–40 nm). In general, the effect of the primary particle morphology and the presence or absence of solid bonds can be characterised by the measurement of the micromechanical properties via nanoindentation. The micromechanical behaviour of aggregates containing solid bonds is strongly affected by the elastic–plastic deformation behaviour of the solid bonds and the breakage of solid bonds. Moreover, varying the primary particle morphology for similar particle material and approximately isotropic agglomerate behaviour the particle–particle interactions within the agglomerates can be described by the elementar breaking stress according to the formula of Rumpf.

  13. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    Science.gov (United States)

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  14. Research for correction pre-operative MRI images of brain during operation using particle method simulation

    International Nuclear Information System (INIS)

    Shino, Ryosaku; Koshizuka, Seiichi; Sakai, Mikio; Ito, Hirotaka; Iseki, Hiroshi; Muragaki, Yoshihiro

    2010-01-01

    In the neurosurgical procedures, surgeon formulates a surgery plan based on pre-operative images such as MRI. However, the brain is transformed by removal of the affected area. In this paper, we propose a method for reconstructing pre-operative images involving the deformation with physical simulation. First, the domain of brain is identified in pre-operative images. Second, we create particles for physical simulation. Then, we carry out the linear elastic simulation taking into account the gravity. Finally, we reconstruct pre-operative images with deformation according to movement of the particles. We show the effectiveness of this method by reconstructing the pre-operative image actually taken before surgery. (author)

  15. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  16. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  17. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  18. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; Ryan, Joseph V.; Yuan, Wei; Wang, Tieshan; Zhu, Zihua

    2017-08-01

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.

  19. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  20. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  1. Particle and speckle imaging velocimetry applied to a monostatic LIDAR

    Science.gov (United States)

    Halldorsson, Thorsteinn; Langmeier, Andreas; Prücklmeier, Andreas; Banakh, Viktor; Falits, Andrey

    2006-11-01

    A novel backscatter-lidar imaging method of visualization of air movement in the atmosphere is discussed in the paper. The method is based on the particle image velocimetry (PIV) principle, namely: pairs of image of laser illuminated thin atmospheric layers are recorded by CCD camera and then are cross correlated to obtain velocity information from these records. Both the way of computer simulation of atmospheric version of PIV technique and the first concept proof experiments are described in the paper. It is proposed that the method can find an application for visualization of wake vortices arising behind large aircrafts.

  2. Electromagnetic properties of off-shell particles and gauge invariance

    NARCIS (Netherlands)

    Nagorny, S. I.; Dieperink, A. E. L.

    1998-01-01

    Abstract: Electromagnetic properties of off-shell particles are discussed on the basis of a purely electromagnetic reaction: virtual Compton scattering off a proton. It is shown that the definition of off-shell electromagnetic form factors is not gauge invariant and that these cannot be investigated

  3. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam

    Science.gov (United States)

    Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie

    2018-03-01

    Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.

  4. Magnetic particle imaging: from proof of principle to preclinical applications

    Science.gov (United States)

    Knopp, T.; Gdaniec, N.; Möddel, M.

    2017-07-01

    Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.

  5. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.

    Science.gov (United States)

    Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.

  6. Waste Slurry Particle Properties for Use in Slurry Flow Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J. R.; Conrads, T. J.; Julyk, L. J.; Reynolds, D. A.; Jensen, L.; Kirch, N. W.; Estey, S. D.; Bechtold, D. B.; Callaway III, W. S.; Cooke, G. A.; Herting, D. L.; Person, J. C.; Duncan, J. B.; Onishi, Y.; Tingey, J. M.

    2003-02-26

    Hanford's tank farm piping system must be substantially modified to deliver high-level wastes from the underground storage tanks to the Waste Treatment Plant now under construction. Improved knowledge of the physical properties of the solids was required to support the design of the modified system. To provide this additional knowledge, particle size distributions for composite samples from seven high-level waste feed tanks were measured using two different laser lightscattering particle size analyzers. These measurements were made under a variety of instrumental conditions, including various flow rates through the sample loop, various stirring rates in the sample reservoir, and before and after subjecting the particles to ultrasonic energy. A mean value over all the tanks of 4.2 {micro}m was obtained for the volume-based median particle size. Additional particle size information was obtained from sieving tests, settling tests and microscopic observations.

  7. Stereo-particle image velocimetry uncertainty quantification

    International Nuclear Information System (INIS)

    Bhattacharya, Sayantan; Vlachos, Pavlos P; Charonko, John J

    2017-01-01

    Particle image velocimetry (PIV) measurements are subject to multiple elemental error sources and thus estimating overall measurement uncertainty is challenging. Recent advances have led to a posteriori uncertainty estimation methods for planar two-component PIV. However, no complete methodology exists for uncertainty quantification in stereo PIV. In the current work, a comprehensive framework is presented to quantify the uncertainty stemming from stereo registration error and combine it with the underlying planar velocity uncertainties. The disparity in particle locations of the dewarped images is used to estimate the positional uncertainty of the world coordinate system, which is then propagated to the uncertainty in the calibration mapping function coefficients. Next, the calibration uncertainty is combined with the planar uncertainty fields of the individual cameras through an uncertainty propagation equation and uncertainty estimates are obtained for all three velocity components. The methodology was tested with synthetic stereo PIV data for different light sheet thicknesses, with and without registration error, and also validated with an experimental vortex ring case from 2014 PIV challenge. Thorough sensitivity analysis was performed to assess the relative impact of the various parameters to the overall uncertainty. The results suggest that in absence of any disparity, the stereo PIV uncertainty prediction method is more sensitive to the planar uncertainty estimates than to the angle uncertainty, although the latter is not negligible for non-zero disparity. Overall the presented uncertainty quantification framework showed excellent agreement between the error and uncertainty RMS values for both the synthetic and the experimental data and demonstrated reliable uncertainty prediction coverage. This stereo PIV uncertainty quantification framework provides the first comprehensive treatment on the subject and potentially lays foundations applicable to volumetric

  8. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  9. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    Science.gov (United States)

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  10. Measurement of the particle production properties in ATLAS

    CERN Document Server

    Bruni, Alessia; The ATLAS collaboration

    2017-01-01

    Measurements of the particle production properties with the ATLAS detector A correct modelling of the underlying event in proton-proton collisions is important for the proper simulation of kinematic distributions of high-energy collisions. The ATLAS collaboration extended previous studies at 7 TeV with a leading track or jet or Z boson by a new study at 13 TeV, measuring the number and transverse-momentum sum of charged particles as a function of pseudorapidity and azimuthal angle in dependence of the reconstructed leading track. These measurements are sensitive to the underlying-event as well as the onset of hard emissions. The results are compared to predictions of several MC generators. A similar comparison between measurements and MC generator predictions will be shown for the strange meson content in topquark pair events. Studies of particle correlations in high-energy collisions can provide valuable insights into the detailed understanding of the space-time geometry of the hadronization region. The ATLA...

  11. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  12. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  13. Improvement in mechanical properties of high concentration particle doped thermoset composites

    International Nuclear Information System (INIS)

    Ahmed, N.

    2009-01-01

    The paper relates to high concentration particle doped composites based on thermosetting polymer systems in which the sequential addition of particles of certain size distribution is followed by curing and casting of the slurry to form a thermoset composite. Conventionally, at a threshold of beyond 90% of particles by weight of the polymer using triglyceride, the mechanical properties of the composite exhibit a sharp decline. The present research mitigates this behavior by incorporating a unique combination of cross-linking agents in the base polymer to impart exceptional mechanical properties to the composite. More specifically, the base polymer consists of butadiene, with triglyceride as cross-linking agent together with hydroxy-alkane as the chain extension precursors, when tune to the appropriate level of hard segment ratio in the polymer. An added advantage according to the present work resides in the analytical nature of butadiene pre-polymer as opposed to natural product; traditional composites based on natural sources are hampered by their inconsistent chemical composition and poor shelf life in the fabricated composite. The thermoset composite according the present research exhibits superior tensile strength (200-300 psi) properties using particle loading as high as 92% by weight of the fabricated composite as measured on a Tinius Olsen machine. Dynamic Mechanical Testing reveals interesting combination of storage and loss moduli in the fabricated specimens as a function of optimizing the thermal response of the viscoelastic composite to imposed vibration loading. (author)

  14. Analysis of two dimensional charged particle scintillation using video image processing techniques

    International Nuclear Information System (INIS)

    Sinha, A.; Bhave, B.D.; Singh, B.; Panchal, C.G.; Joshi, V.M.; Shyam, A.; Srinivasan, M.

    1993-01-01

    A novel method for video recording of individual charged particle scintillation images and their offline analysis using digital image processing techniques for obtaining position, time and energy information is presented . Results of an exploratory experiment conducted using 241 Am and 239 Pu alpha sources are presented. (author). 3 figs., 4 tabs

  15. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  16. The effect of particles in different sizes on the mechanical properties of spray formed steel composites

    DEFF Research Database (Denmark)

    Petersen, Kenneth; Pedersen, A. S.; Pryds, N.

    2000-01-01

    particle size of 46 and 134 μm were carried out with respect to their mechanical properties e.g. wear resistance and tensile strength. It was found that the addition of Al2O3 particles to the steel improves its wear properties and reduces the elongation and tensile strength of the material......The main objective of the work was to investigate the effect of addition of ceramic particles with different size distributions on the mechanical properties, e.g. wear resistance and tensile strength, of spray formed materials. The experiments were carried out in a spray-forming unit at Risø...... National Laboratory, Denmark, where composites with a low alloyed boron steel (0.2 wt.% carbon) matrix containing alumina particles were produced. A comparison between cast hot-rolled material without particles, spray formed material without particles and the spray formed composites with an average ceramic...

  17. Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part II

    Directory of Open Access Journals (Sweden)

    Gerstenhaber JA

    2017-11-01

    Full Text Available Jonathan A Gerstenhaber,1,* Frank C Barone,2,* Cezary Marcinkiewicz,1,3 Jie Li,2 Aaron O Shiloh,4 Mark Sternberg,3 Peter I Lelkes,1,* Giora Feuerstein1,3,* 1Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, 2Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, 3Debina Diagnostic Inc., Newtown Square, 4Diagnostic Imaging, Inc., Philadelphia, PA, USA *These authors contributed equally to this work Abstract: The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP covalently conjugated with bitistatin (F-NDP-Bit to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV and N-V-N color centers and sizes (100–10,000 nm. Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS] in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm. In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg via the external carotid artery or femoral vein (N=3, presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding

  18. Assembly and luminescence properties of lanthanide-polyoxometalates/polyethyleneimine/SiO{sub 2} particles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@yahoo.com.cn; Fan, Shaohua; Zhao, Weiqian; Zhang, Hongyan

    2013-01-01

    In this paper, two lanthanide-polyoxometalate (LnW{sub 10}) complexes were bonded on the surface of the polyethyleneimine (PEI)-modified silica nanoparticles with different sizes, resulting in the formation of LnW{sub 10}/PEI/SiO{sub 2} particles. The hybrid core–shell particles were characterized by infrared, luminescent spectra, scanning electronic microscope, and transmission electronic microscope. The particles obtained exhibit the fine spherical core–shell structure and the excellent luminescence properties. The luminescence spectra studies revealed that the formation of LnW{sub 10}/PEI/SiO{sub 2} particles and the size of particle have an influence on the luminescence properties of lanthanide ions. - Highlights: ► SiO{sub 2}/polyethyleneimine (PEI) shows the chemisorption for Ln-polyoxometalates (LnW{sub 10}). ► The core-shell LnW{sub 10}/PEI/SiO{sub 2} nanoparticles with different sizes were fabricated. ► The hybrid particles exhibit the excellent luminescence properties. ► The sizes of particles affect the luminescence properties of lanthanide ions.

  19. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  20. An Image Enhancement Method Using the Quantum-Behaved Particle Swarm Optimization with an Adaptive Strategy

    Directory of Open Access Journals (Sweden)

    Xiaoping Su

    2013-01-01

    Full Text Available Image enhancement techniques are very important to image processing, which are used to improve image quality or extract the fine details in degraded images. In this paper, two novel objective functions based on the normalized incomplete Beta transform function are proposed to evaluate the effectiveness of grayscale image enhancement and color image enhancement, respectively. Using these objective functions, the parameters of transform functions are estimated by the quantum-behaved particle swarm optimization (QPSO. We also propose an improved QPSO with an adaptive parameter control strategy. The QPSO and the AQPSO algorithms, along with genetic algorithm (GA and particle swarm optimization (PSO, are tested on several benchmark grayscale and color images. The results show that the QPSO and AQPSO perform better than GA and PSO for the enhancement of these images, and the AQPSO has some advantages over QPSO due to its adaptive parameter control strategy.

  1. Analysis of propeller-induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV).

  2. Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells.

    Science.gov (United States)

    Jaramillo, Isabel C; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J; Deering-Rice, Cassandra E; Lighty, JoAnn S; Paine, Robert; Reilly, Christopher; Kelly, Kerry E

    2018-03-21

    The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/biofuel-blended diesel (BD), and butanol and dodecane/alcohol-blended diesel (AD)) and compared to a widely studied reference diesel (RD) particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material, and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions

  3. Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes

    Directory of Open Access Journals (Sweden)

    Veronika Chaloupková

    2018-02-01

    Full Text Available Via image-based macroscopic, analysis of a briquettes’ surface structure, particle size, and distribution was determined to better understand the behavioural pattern of input material during agglomeration in the pressing chamber of a briquetting machine. The briquettes, made of miscanthus, industrial hemp and pine sawdust were produced by a hydraulic piston press. Their structure was visualized by a stereomicroscope equipped with a digital camera and software for image analysis and data measurements. In total, 90 images of surface structure were obtained and quantitatively analysed. Using Nikon Instruments Software (NIS-Elements software, the length and area of 900 particles were measured and statistically tested to compare the size of the particles at different surface locations. Results showed statistically significant differences in particles’ size distribution: larger particles were generally on the front side of briquettes and vice versa, smaller particles were on the rear side. As well, larger particles were centred in the middle of cross sections and the smaller particles were centred on the bottom of the briquette.

  4. Performing particle image velocimetry using artificial neural networks: a proof-of-concept

    Science.gov (United States)

    Rabault, Jean; Kolaas, Jostein; Jensen, Atle

    2017-12-01

    Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.

  5. Alignment of cryo-EM movies of individual particles by optimization of image translations.

    Science.gov (United States)

    Rubinstein, John L; Brubaker, Marcus A

    2015-11-01

    Direct detector device (DDD) cameras have revolutionized single particle electron cryomicroscopy (cryo-EM). In addition to an improved camera detective quantum efficiency, acquisition of DDD movies allows for correction of movement of the specimen, due to both instabilities in the microscope specimen stage and electron beam-induced movement. Unlike specimen stage drift, beam-induced movement is not always homogeneous within an image. Local correlation in the trajectories of nearby particles suggests that beam-induced motion is due to deformation of the ice layer. Algorithms have already been described that can correct movement for large regions of frames and for >1 MDa protein particles. Another algorithm allows individual images to be aligned without frame averaging or linear trajectories. The algorithm maximizes the overall correlation of the shifted frames with the sum of the shifted frames. The optimum in this single objective function is found efficiently by making use of analytically calculated derivatives of the function. To smooth estimates of particle trajectories, rapid changes in particle positions between frames are penalized in the objective function and weighted averaging of nearby trajectories ensures local correlation in trajectories. This individual particle motion correction, in combination with weighting of Fourier components to account for increasing radiation damage in later frames, can be used to improve 3-D maps from single particle cryo-EM. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    Science.gov (United States)

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  7. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  8. Waste Tire Particles and Gamma Radiation as Modifiers of the Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Eduardo Sadot Herrera-Sosa

    2014-01-01

    Full Text Available In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16% are compensated with the use of high concentration of waste tire particles (30%, which ensures that the concrete will not significantly increase the cost.

  9. Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates

    Science.gov (United States)

    Vaughan, Alicia F.; Johnson, Jeffrey R.; Herkenhoff, Kenneth E.; Sullivan, Robert; Landis, Geoffrey A.; Goetz, Walter; Madsen, Morten B.

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger.

  10. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    Science.gov (United States)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  11. Advances in imaging and electron physics optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and presents current and future research trends * Invaluable reference and guide for physicists, engineers and mathematicians.

  12. Advances in imaging and electron physics optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Invaluable reference and guide for physicists, engineers and mathematicians.

  13. Using digital images to measure and discriminate small particles in cotton

    Science.gov (United States)

    Taylor, Robert A.; Godbey, Luther C.

    1991-02-01

    Inages from conventional video systems are being digitized in coraputers for the analysis of small trash particles in cotton. The method has been developed to automate particle counting and area measurements for bales of cotton prepared for market. Because the video output is linearly proportional to the amount of light reflected the best spectral band for optimum particle discrimination should be centered at the wavelength of maximum difference between particles and their surroundings. However due to the spectral distribution of the illumination energy and the detector sensitivity peak image performance bands were altered. Reflectance from seven mechanically cleaned cotton lint samples and trash removed were examined for spectral contrast in the wavelength range of camera sensitivity. Pixel intensity histograms from the video systent are reported for simulated trashmeter area reference samples (painted dots on panels) and for cotton containing trash to demonstrate the particle discrimination mechanism. 2.

  14. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  15. Calculation of the weighting function and determination of the depth of correlation in micro-PIV from experimental particle images

    International Nuclear Information System (INIS)

    Hein, M; Seemann, R; Wieneke, B

    2014-01-01

    Micro-particle image velocimetry (µPIV) uses volume-illumination and imaging of particles through a single microscope objective. Displacement fields are obtained by image correlation and depend on all imaged particles, including defocused particles. The measured in-plane displacement is a weighted spatial average of the true displacement, with a weighting function W(z) that depends on the optical system and flow-gradients. The characteristic width of the weighting function W(z) is also referred to as depth of correlation (DOC) and is a measure up to which distance from the focal plane particles influence the measurement, which is crucial for the interpretation of measured flow fields. We present procedures to determine the W(z) from which the DOC can be derived and to directly determine the DOC from PIV double images, generated from experimentally recorded particle images. Both procedures provide comparable DOC results. Our approach allows determination of the DOC and W(z)as a function of out of plane gradients, optical setup parameters and PIV-analysis parameters. Experimental results for different objectives and particle sizes are discussed, revealing substantial deviations from theoretical predictions for high NA air-objectives. Moreover, using the determined weighting function W(z), the correction of measured flow profiles for errors introduced by the spatial averaging is demonstrated. (paper)

  16. Design and development of the associated-particle three-dimensional imaging technique

    International Nuclear Information System (INIS)

    Ussery, L.E.; Hollas, C.L.

    1994-10-01

    The authors describe the development of the ''associated-particle'' imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n) 4 He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed

  17. New adaptive sampling method in particle image velocimetry

    International Nuclear Information System (INIS)

    Yu, Kaikai; Xu, Jinglei; Tang, Lan; Mo, Jianwei

    2015-01-01

    This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)

  18. Study of the hadronic production and properties of new particles with a lifetime 10$^{-13}$ s < $\\tau$ < 10$^{-10}$ s using LEBC-EHS

    CERN Multimedia

    2002-01-01

    The 1-litre high resolution hydrogen bubble chamber LEBC is combined with a downstream analysis system provided by the European Hybrid Spectrometer in an experiment designed to study the hadronic production and properties of charmed and other short-lived particles. In a previous test experiment (NA13) the bubble chamber has operated with resolved bubble images in the range 35-50 $\\mu$m diameter and bubble densities $\\sim$ 100/cm. Candidates for charm pair production have been observed. \\\\ \\\\ The experiment should yield 20-30 events per microbarn in each of two exposures, to 370 GeV $\\pi^{-}$ and to 400 GeV protons. The high resolution chamber serves to identify events containing short-lived particles and to associate the final state charged particles correctly with their vertices of origin. Momentum analysis will be to $\\simeq \\pm$ 1% for x > 0 charged particles and 2-3% on forward $\\pi^{0}$s using the intermediate and forward gamma detectors. Some charged particle identification is provided by the test modu...

  19. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles

    International Nuclear Information System (INIS)

    Derradji, Mehdi; Ramdani, Noureddine; Zhang, Tong; Wang, Jun; Feng, Tian-tian; Wang, Hui; Liu, Wen-bin

    2015-01-01

    Highlights: • SiC microparticles improve the mechanical properties of phthalonitrile resin. • Excellent thermal stability achieved by adding SiC particles in phthalonitrile resin. • Adding 20 wt.% of SiC microparticles increases the T g by 38 °C. • Silane coupling agent can enhance the adhesion and dispersion of particles/matrix. - Abstract: A new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared. For various weight ratios ranging between 0% and 20%, the effect of the micro-SiC particles on the mechanical and thermal properties has been studied. Results from thermal analysis revealed that the starting decomposition temperature and the residual weight were significantly improved upon adding the reinforcing phase. At the maximum micro-SiC loading, dynamic mechanical analysis (DMA) showed an important enhancement in both the storage modulus and glass transition temperature (T g ), reaching 3.1 GPa and 338 °C, respectively. The flexural strength and modulus as well as the microhardness were significantly enhanced by adding the microfillers. Tensile test revealed enhancements in the composites toughness upon adding the microparticles. Polarization optical microscope (POM) and scanning electron microscope (SEM) analysis confirmed that mechanical and thermal properties improvements are essentially attributed to the good dispersion and adhesion between the particles and the resin

  20. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  1. Enhancement of Compatibility between Ultrahigh-Molecular-Weight Polyethylene Particles and Butadiene.Nitrile Rubber Matrix with Nanoscale Ceramic Particles and Characterization of Evolving Layer

    International Nuclear Information System (INIS)

    Shadrinov, Nikolay V.; Sokolova, Marina D.; Cho, Jinho; Okhlopkova, A. A.; Lee, Jungkeun; Jeong, Daeyong

    2013-01-01

    This article examines the modification of surface properties of ultrahigh-molecular-weight polyethylene (UHMWPE) with nanoscale ceramic particles to fabricate an improved composite with butadiene.nitrile rubber (BNR). Adhesion force data showed that ceramic zeolite particles on the surface of UHMWPE modulated the surface state of the polymer and increased its compatibility with BNR. Atomic force microscopy phase images showed that UHMWPE made up the microphase around the zeolite particles and formed the evolving layer with a complex interface. The complex interface resulted in improvements in the mechanical properties of the composite, especially its low-temperature resistance coefficients, thereby improving its performance in low-temperature applications

  2. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  3. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  4. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  5. Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.

  6. Concept and design of charged particle optics using energy Fourier plane collimation

    Science.gov (United States)

    Yang, Guojun; Wei, Tao; Zhang, Zhuo; He, Xiaozhong; Zhang, Xiaoding; Li, Yiding; Shi, Jinshui

    2014-09-01

    Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  7. Concept and design of charged particle optics using energy Fourier plane collimation

    Directory of Open Access Journals (Sweden)

    Guojun Yang

    2014-09-01

    Full Text Available Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  8. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity

    NARCIS (Netherlands)

    Ten Cate, A.; Nieuwstad, C.H.; Derksen, J.J.; Van den Akker, H.E.A.

    2002-01-01

    A comparison is made between experiments and simulations on a single sphere settling in silicon oil in a box. Cross-correlation particle imaging velocimetry measurements were carried out at particle Reynolds numbers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and at

  9. Multiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Aviña-Cervantes, J. G.; López-Hernández, J. M.; González-Reyna, S. E.

    2013-01-01

    This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO). The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented. Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model in terms of segmentation accuracy and stability. PMID:23762177

  10. Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix

    Directory of Open Access Journals (Sweden)

    G. David

    2013-07-01

    Full Text Available During transport by advection, atmospheric nonspherical particles, such as volcanic ash, desert dust or sea-salt particles experience several chemical and physical processes, leading to a complex vertical atmospheric layering at remote sites where intrusion episodes occur. In this paper, a new methodology is proposed to analyse this complex vertical layering in the case of a two/three-component particle external mixtures. This methodology relies on an analysis of the spectral and polarization properties of the light backscattered by atmospheric particles. It is based on combining a sensitive and accurate UV-VIS polarization lidar experiment with T-matrix numerical simulations and air mass back trajectories. The Lyon UV-VIS polarization lidar is used to efficiently partition the particle mixture into its nonspherical components, while the T-matrix method is used for simulating the backscattering and depolarization properties of nonspherical volcanic ash, desert dust and sea-salt particles. It is shown that the particle mixtures' depolarization ratio δ p differs from the nonspherical particles' depolarization ratio δns due to the presence of spherical particles in the mixture. Hence, after identifying a tracer for nonspherical particles, particle backscattering coefficients specific to each nonspherical component can be retrieved in a two-component external mixture. For three-component mixtures, the spectral properties of light must in addition be exploited by using a dual-wavelength polarization lidar. Hence, for the first time, in a three-component external mixture, the nonsphericity of each particle is taken into account in a so-called 2β + 2δ formalism. Applications of this new methodology are then demonstrated in two case studies carried out in Lyon, France, related to the mixing of Eyjafjallajökull volcanic ash with sulfate particles (case of a two-component mixture and to the mixing of dust with sea-salt and water-soluble particles

  11. A simple algorithm for measuring particle size distributions on an uneven background from TEM images

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Ozkaya, Dogan; Dunin-Borkowski, Rafal E.

    2011-01-01

    Nanoparticles have a wide range of applications in science and technology. Their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we describe a simple computer algorithm for measuring particle size distributions from TEM images in the presence of a...... application to images of heterogeneous catalysts is presented.......Nanoparticles have a wide range of applications in science and technology. Their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we describe a simple computer algorithm for measuring particle size distributions from TEM images in the presence...

  12. Inherent optical properties of pollen particles: a case study for the morning glory pollen.

    Science.gov (United States)

    Liu, Chao; Yin, Yan

    2016-01-25

    Biological aerosols, such as bacteria, fungal spores, and pollens, play an important role on various atmospheric processes, whereas their inherent optical property is one of the most uncertainties that limit our ability to assess their effects on weather and climate. A numerical model with core-shell structure, hexagonal grids and barbs is developed to represent one kind of realistic pollen particles, and their inherent optical properties are simulated using a pseudo-spectral time domain method. Both the hexagonal grids and barbs substantially affect the modeled pollen optical properties. Results based on the realistic particle model are compared with two equivalent spherical approximations, and the significant differences indicate the importance of considering pollen geometries for their optical properties.

  13. Extraction of density distributions and particle locations from hologram images

    International Nuclear Information System (INIS)

    Ikeda, Koh; Okamoto, Koji; Kato, Fumitake; Shimizu, Isao.

    1996-01-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. In the hologram, the interferogram between reference beam and particle scattering were recorded. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the plane wave was reconstructed with the low-pass filter, resulting in the information of the density distributions to be obtained. With the high-pass filter, the particle three-dimensional positions was determined, i.e., the same procedure with the original HPIV technique. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  14. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.

    1988-01-01

    -ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig......Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x....... 1). It has been shown that the fraction of boron in the alloys (10–35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties . Journal of Applied Physics is copyrighted...

  15. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system

    Directory of Open Access Journals (Sweden)

    Volz Lennart

    2017-09-01

    Full Text Available A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically – particle computed tomography (pCT – or by combining prior knowledge from particle radiography (pRad and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution. Compared to protons, heavier particles scatter less due to their lower charge/mass ratio. A theoretical framework to predict the most likely trajectory of particles in matter was developed for light ions up to carbon and was found to be the most accurate for helium comparing for fixed initial velocity. To further investigate the potential of helium in particle imaging, helium computed tomography (HeCT and radiography (HeRad were studied at the Heidel-berg Ion-Beam Therapy Centre (HIT using a prototype pCT detector system registering individual particles, originally developed by the U.S. pCT collaboration. Several phantoms were investigated: modules of the Catphan QA phantom for analysis of spatial resolution and achievable stopping power accuracy, a paediatric head phantom (CIRS and a custom-made phantom comprised of animal meat enclosed in a 2 % agarose mixture representing human tissue. The pCT images were reconstructed applying the CARP iterative reconstruction algorithm. The MTF10% was investigated using a sharp edge gradient technique. HeRad provides a spatial resolution above that of protons (MTF1010%=6.07 lp/cm for HeRad versus MTF10%=3.35 lp/cm for proton radiography. For HeCT, the spatial resolution was limited by the number of projections acquired (90 projections for a full scan. The RSP accuracy for all inserts of the Catphan CTP404 module was found to be 2.5% or better and is subject to further optimisation. In conclusion, helium imaging appears to offer higher spatial resolution compared to proton imaging. In future studies, the advantage of helium imaging compared to other

  16. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Fraeyman, S; Verbeeck, R M H

    2014-09-01

    Glass ionomer cements (GIC) are clinically accepted dental restorative materials mainly due to their direct chemical adhesion to both enamel and dentin and their ability to release fluoride. However, their mechanical properties are inferior compared to those of amalgam and composite. The aim of this study is to investigate if combinations of nano- and macrogranular glass with different compositions in a glass ionomer cement can improve the mechanical and physical properties. Glasses with the composition 4.5 SiO2-3 Al2O3-1.5 P2O5-(5-x) CaO-x CaF2 (x=0 and x=2) were prepared. Of each type of glass, particles with a median size of about 0.73 μm and 6.02 μm were made. The results show that the setting time of GIC decreases when macrogranular glass particles are replaced by nanogranular glass particles, whereas the compressive strength and Young's modulus, measured after 24 h setting, increase. The effects are more pronounced when the nanogranular glass particles contain fluoride. After thermocycling, compressive strength decreases for nearly all formulations, the effect being most pronounced for cements containing nanogranular glass particles. Hence, the strength of the GIC seems mainly determined by the macrogranular glass particles. Cumulative F--release decreases when the macrogranular glass particles with fluoride are replaced by nanogranular glass particles with(out) fluoride. The present study thus shows that replacing macro- by nanogranular glass particles with different compositions can lead to cements with approximately the same physical properties (e.g. setting time, consistency), but with different physicochemical (e.g. F--release, water-uptake) and initial mechanical properties. On the long term, the mechanical properties are mainly determined by the macrogranular glass particles. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Quantitative comparison of two particle tracking methods in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2013-09-01

    Full Text Available that cannot be analysed efficiently by means of manual analysis. In this study we compare the performance of two computer-based tracking methods for tracking of bright particles in fluorescence microscopy image sequences. The methods under comparison are...

  18. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    International Nuclear Information System (INIS)

    Wang Hua; Zhu Meifang; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO 2 were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N 2 adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  19. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    J. Rissler

    2006-01-01

    Full Text Available Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia. The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate, and cover the later part of the dry season (with heavy biomass burning, a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850nm and an APS (Aerodynamic Particle Sizer, extending the distributions up to 3.3 µm in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer measured the hygroscopic diameter growth factors (Gf at 90% relative humidity (RH, for particles with dry diameters (dp between 20-440 nm, and at several occasions RH scans (30-90% RH were performed for 165nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD of ~12 nm, an Aitken mode (GMD=61-92 nm and an accumulation mode (GMD=128-190 nm. The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf~1.09 for 100 nm particles and moderately hygroscopic (Gf~1.26. While the hygroscopic growth factors were surprisingly similar over the

  20. Thermodynamic properties of particles with intermediate statistics

    International Nuclear Information System (INIS)

    Joyce, G.S.; Sarkar, S.; Spal/ek, J.; Byczuk, K.

    1996-01-01

    Analytic expressions for the distribution function of an ideal gas of particles (exclusons) which have statistics intermediate between Fermi-Dirac and Bose-Einstein are obtained for all values of the Haldane statistics parameter α element-of[0,1]. The analytic structure of the distribution function is investigated and found to have no singularities in the physical region when the parameter α lies in the range 0 V of the D-dimensional excluson gas. The low-temperature series for the thermodynamic properties illustrate the pseudofermion nature of exclusons. copyright 1996 The American Physical Society

  1. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)

    2015-06-15

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.

  2. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    International Nuclear Information System (INIS)

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-01-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized

  3. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  4. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    Directory of Open Access Journals (Sweden)

    M. Väkevä

    2002-01-01

    Full Text Available An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in western Ireland. The data can be classified in four hygroscopic growth classes: hydrofobic, less-hygroscopic, more-hygroscopic and sea-salt. Similar classification has been earlier presented for Aitken and accumulation mode particles. In urban air, the summertime 10 nm particles showed varying less-hygroscopic growth behaviour, while winter time 10 nm and 20 nm particles were externally mixed with two different hygroscopic growth modes. The forest measurements revealed diurnal behaviour of hygroscopic growth, with high growth factors at day time and lower during night. The urban background particles had growth behaviour similar to the urban and forest measurement sites depending on the origin of the observed particles. The coastal measurements were strongly affected by air mass history. Both 10 nm and 20 nm particles were hygroscopic in marine background air. The 10 nm particles produced during clean nucleation burst periods were hydrofobic. Diurnal variation and higher growth factors of 10 nm particles were observed in air affected by other source regions. External mixing was occasionally observed at all the sites, but incidents with more than two growth modes were extremely rare.

  5. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  6. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2015-01-01

    Full Text Available Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  7. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenqiang, E-mail: zwqcau@gmail.com [College of Engineering, China Agricultural University, Beijing 100083 (China); Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Zhang, Deyuan; Xu, Yonggang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); McNaughton, Ryan [Department of Biomedical Engineering, Boston University, Boston 02215 (United States)

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately −5.1 dB at 14.4 GHz. - Highlights: • Light weight absorbing composites were fabricated with bio-flaky particles added. • SEM results show bio-flaky particles could help the arrangement of FCIPs. • Composites' RL could be improved with bio-flaky particles added. • The RL peak move to lower frequency with bio-flaky particles added.

  8. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Zhang, Deyuan; Xu, Yonggang; McNaughton, Ryan

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately −5.1 dB at 14.4 GHz. - Highlights: • Light weight absorbing composites were fabricated with bio-flaky particles added. • SEM results show bio-flaky particles could help the arrangement of FCIPs. • Composites' RL could be improved with bio-flaky particles added. • The RL peak move to lower frequency with bio-flaky particles added.

  9. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  10. Adaptive striping watershed segmentation method for processing microscopic images of overlapping irregular-shaped and multicentre particles.

    Science.gov (United States)

    Xiao, X; Bai, B; Xu, N; Wu, K

    2015-04-01

    Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    Science.gov (United States)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s-1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  12. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    Science.gov (United States)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2-15 wt% (0.27-2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  13. Imaging flow cytometry assays for quantifying pigment grade titanium dioxide particle internalization and interactions with immune cells in whole blood.

    Science.gov (United States)

    Hewitt, Rachel E; Vis, Bradley; Pele, Laetitia C; Faria, Nuno; Powell, Jonathan J

    2017-10-01

    Pigment grade titanium dioxide is composed of sub-micron sized particles, including a nanofraction, and is widely utilized in food, cosmetic, pharmaceutical, and biomedical industries. Oral exposure to pigment grade titanium dioxide results in at least some material entering the circulation in humans, although subsequent interactions with blood immune cells are unknown. Pigment grade titanium dioxide is employed for its strong light scattering properties, and this work exploited that attribute to determine whether single cell-particle associations could be determined in immune cells of human whole blood at "real life" concentrations. In vitro assays, initially using isolated peripheral blood mononuclear cells, identified titanium dioxide associated with the surface of, and within, immune cells by darkfield reflectance in imaging flow cytometry. This was confirmed at the population level by side scatter measurements using conventional flow cytometry. Next, it was demonstrated that imaging flow cytometry could quantify titanium dioxide particle-bearing cells, within the immune cell populations of fresh whole blood, down to titanium dioxide levels of 10 parts per billion, which is in the range anticipated for human blood following titanium dioxide ingestion. Moreover, surface association and internal localization of titanium dioxide particles could be discriminated in the assays. Overall, results showed that in addition to the anticipated activity of blood monocytes internalizing titanium dioxide particles, neutrophil internalization and cell membrane adhesion also occurred, the latter for both phagocytic and nonphagocytic cell types. What happens in vivo and whether this contributes to activation of one or more of these different cells types in blood merits further attention. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.

    Science.gov (United States)

    Siddabattuni, Sasidhar; Schuman, Thomas P; Dogan, Fatih

    2013-03-01

    The interface between the polymer and the particle has a critical role in altering the properties of a composite dielectric. Polymer-ceramic nanocomposites are promising dielectric materials for many electronic and power devices, combining the high dielectric constant of ceramic particles with the high dielectric breakdown strength of a polymer. Self-assembled monolayers of electron rich or electron poor organophosphate coupling groups were applied to affect the filler-polymer interface and investigate the role of this interface on composite behavior. The interface has potential to influence dielectric properties, in particular the leakage and breakdown resistance. The composite films synthesized from the modified filler particles dispersed into an epoxy polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, and leakage current measurements. The data indicate that significant reduction in leakage currents and dielectric losses and improvement in dielectric breakdown strengths resulted when electropositive phenyl, electron-withdrawing functional groups were located at the polymer-particle interface. At a 30 vol % particle concentration, dielectric composite films yielded a maximum energy density of ~8 J·cm(-3) for TiO2-epoxy nanocomposites and ~9.5 J·cm(-3) for BaTiO3-epoxy nanocomposites.

  15. Extraction of density distributions and particle locations from hologram images

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji; Ikeda, Koh; Madarame, Haruki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the two information could be separated using low-pass and high-pass filter. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  16. On The Importance of Connecting Laboratory Measurements of Ice Crystal Growth with Model Parameterizations: Predicting Ice Particle Properties

    Science.gov (United States)

    Harrington, J. Y.

    2017-12-01

    Parameterizing the growth of ice particles in numerical models is at an interesting cross-roads. Most parameterizations developed in the past, including some that I have developed, parse model ice into numerous categories based primarily on the growth mode of the particle. Models routinely possess smaller ice, snow crystals, aggregates, graupel, and hail. The snow and ice categories in some models are further split into subcategories to account for the various shapes of ice. There has been a relatively recent shift towards a new class of microphysical models that predict the properties of ice particles instead of using multiple categories and subcategories. Particle property models predict the physical characteristics of ice, such as aspect ratio, maximum dimension, effective density, rime density, effective area, and so forth. These models are attractive in the sense that particle characteristics evolve naturally in time and space without the need for numerous (and somewhat artificial) transitions among pre-defined classes. However, particle property models often require fundamental parameters that are typically derived from laboratory measurements. For instance, the evolution of particle shape during vapor depositional growth requires knowledge of the growth efficiencies for the various axis of the crystals, which in turn depends on surface parameters that can only be determined in the laboratory. The evolution of particle shapes and density during riming, aggregation, and melting require data on the redistribution of mass across a crystals axis as that crystal collects water drops, ice crystals, or melts. Predicting the evolution of particle properties based on laboratory-determined parameters has a substantial influence on the evolution of some cloud systems. Radiatively-driven cirrus clouds show a broader range of competition between heterogeneous nucleation and homogeneous freezing when ice crystal properties are predicted. Even strongly convective squall

  17. Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-05-09

    In recent years, coherent diffractive imaging has been considered as a promising alternative for information retrieval instead of conventional interference methods. Coherent diffractive imaging using the X-ray light source has opened up a new research perspective for the measurement of non-crystalline and biological specimens, and can achieve unprecedentedly high resolutions. In this paper, we show how a three-dimensional (3D) particle-like distribution and coherent diffractive imaging can be applied for a study of optical cryptography. An optical multiple-random-phase-mask encoding approach is used, and the plaintext is considered as a series of particles distributed in a 3D space. A topology concept is also introduced into the proposed optical cryptosystem. During image decryption, a retrieval algorithm is developed to extract the plaintext from the ciphertexts. In addition, security and advantages of the proposed optical cryptography topology are also analyzed. © 2011 Optical Society of America

  18. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    International Nuclear Information System (INIS)

    Goodwill, Patrick; Konkle, Justin; Lu, Kuan; Zheng, Bo; Conolly, Steven

    2014-01-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  19. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodwill, Patrick [University of California, Dept. of Bioengineering, Berkeley, CA (United States); Konkle, Justin; Lu, Kuan; Zheng, Bo [UC Berkeley (UCSF), Joint Graduate Group in Bioengineering, CA (United States); Conolly, Steven [University of California, Berkeley Bioengineering, Electrical Engineering, and Computer Science, CA (United States)

    2014-07-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  20. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

    Science.gov (United States)

    Patalano, Antoine; García, Carlos Marcelo; Rodríguez, Andrés

    2017-12-01

    LSPIV (Large Scale Particle Image Velocimetry) and LSPTV (Large Scale Particle Tracking Velocimetry) are used as relatively low-cost and non-intrusive techniques for water-surface velocity analysis and flow discharge measurements in rivers or large-scale hydraulic models. This paper describes a methodology based on state-of-the-art tools (for example, that apply classical PIV/PTV analysis) resulting in large-scale surface-flow characterization according to the first operational version of the RIVeR (Rectification of Image Velocity Results). RIVeR is developed in Matlab and is designed to be user-friendly. RIVeR processes large-scale water-surface characterization such as velocity fields or individual trajectories of floating tracers. This work describes the wide range of application of the techniques for comparing measured surface flows in hydraulic physical models to flow discharge estimates for a wide range of flow events in rivers (for example, low and high flows).

  1. Sensitometric properties and image quality of radiographic film and paper

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1985-09-01

    When using X-ray film or radiographic paper for industrial applications one is interested in knowing not only their sensitometric properties (such as speed and contrast) but also the image quality obtainable with a particular brand of film or paper. Although standard methods for testing both properties separately are available it is desirable that the method permits the assessment of all the relevant properties together. The sensitometric properties are usually determined at constant kilovoltage and filtration at the X-ray tube, whereas radiographic image thicknesses. The use of the constant exposure technique could be used to compare both the sensitometric properties as well as the image quality for different radiographic materials. It consist of exposing different film or paper brands at a chosen, constant mAmin exposure when testing radiographic image quality for different thicknesses of a given material. From the results obtained with the constant exposure technique conclusions are drawn about its applicability as a standard method for assessing radiographic film and paper. (author)

  2. Quantum Radiation Properties of Dirac Particles in General Nonstationary Black Holes

    Directory of Open Access Journals (Sweden)

    Jia-Chen Hua

    2014-01-01

    Full Text Available Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case are investigated by both using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first-order and second-order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and nonthermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in nonthermal radiation for general nonstationary black holes.

  3. Sensitometric properties and image quality of radiographic film and paper

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1985-01-01

    When using X-ray film or radiographic paper for industrial applications one is interested in knowing not only their sensitometric properties (such as speed and contrast) but also the image quality obtainable with a particular brand of film or paper. Although standard methods for testing sensitometric properties and image quality separately are available, it is desirable to find a method by the use of which all the relevant properties could be tested together. The sensitometric properties are usually determined at constant kilovoltage and filtration at the X-ray tube, whereas the radiographic image quality is tested at different kilovoltages and for different material thicknesses

  4. Image analysis of food particles can discriminate deficient mastication of mixed foodstuffs simulating daily meal.

    Science.gov (United States)

    Sugimoto, K; Hashimoto, Y; Fukuike, C; Kodama, N; Minagi, S

    2014-03-01

    Because food texture is regarded as an important factor for smooth deglutition, identification of objective parameters that could provide a basis for food texture selection for elderly or dysphagic patients is of great importance. We aimed to develop an objective evaluation method of mastication using a mixed test food comprising foodstuffs, simulating daily dietary life. The particle size distribution (>2 mm in diameter) in a bolus was analysed using a digital image under dark-field illumination. Ten female participants (mean age ± s.d., 27·6 ± 2·6 years) masticated a mixed test food comprising prescribed amounts of rice, sausage, hard omelette, raw cabbage and raw cucumber with 100%, 75%, 50% and 25% of the number of their masticatory strokes. A single set of coefficient thresholds of 0·10 for the homogeneity index and 1·62 for the particle size index showed excellent discrimination of deficient masticatory conditions with high sensitivity (0·90) and specificity (0·77). Based on the results of this study, normal mastication was discriminated from deficient masticatory conditions using a large particle analysis of mixed foodstuffs, thus showing the possibility of future application of this method for objective decision-making regarding the properties of meals served to dysphagic patients. © 2014 John Wiley & Sons Ltd.

  5. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  6. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  7. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    Science.gov (United States)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  8. Hygroscopic Properties and Chemical Composition of Aerosol Particles at the High Alpine Site Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Weingarter, E.; Gysel, M.; Sjoegren, S.; Baltesperger, U.; Alfarra, R.; Bower, K.; Coe, H.

    2004-03-01

    The hygroscopic properties of aerosols play a significant role in atmospheric phenomena such as acid deposition, visibility degradation and climate change. Due to the hygroscopic growth of the particles, water is often the dominant component of the ambient aerosol at high relative humidity (RH) conditions. The ability to absorb water depends on the particle chemical composition, dry size, and shape. The aim of this study is to link the chemical composition of the atmospheric aerosol to its hygroscopic properties. (author)

  9. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    Science.gov (United States)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  10. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua; Zhu Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li Yaogang [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Zhang Qinghong, E-mail: zhangqh@dhu.edu.cn [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Wang Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China)

    2011-04-08

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO{sub 2} were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N{sub 2} adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  12. Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles

    International Nuclear Information System (INIS)

    Wen, Shulai; Liu, Ying; Zhao, Xiuchen; Cheng, Jingwei; Li, Hong

    2014-01-01

    Hcp-cobalt particles were successfully prepared by a liquid phase reduction method, and the microstructure, static magnetic properties, electromagnetic and microwave absorption properties of the cobalt particles with irregular shape were investigated in detail. The measured results indicate that the saturation magnetization was less than that of hcp-Co single crystals, and the coercivity was larger than that of bulk cobalt crystal. The permittivity presents multi-nonlinear dielectric resonance, which may result from the irregular shape containing parts of cutting angle of dodecahedron of cobalt particles. The real part of permeability decreases with the frequency, and the imaginary part has a wide resonant peak. The paraffin-based composite containing 70 wt% cobalt particles possessed strong absorption characteristics with a minimum RL of −38.97 dB at 10.81 GHz and an absorption band with RL under −10 dB from 8.72 to 13.26 GHz when the thickness is 1.8 mm, which exhibits excellent microwave absorption in middle and high frequency. The architectural design of material morphologies is important for improving microwave absorption properties toward future application. - Highlights: • Hcp-cobalt particles were prepared by a liquid phase reduction method. • The saturation magnetization was less than that of hcp-Co single crystals. • The permittivity presents multi-nonlinear dielectric resonance. • The real part of permeability decreases with frequency, and the imaginary part presents a wide resonant peak. • The paraffin-based composite possessed a minimum RL of −38.97 dB at 10.81 GHz

  13. Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry

    Science.gov (United States)

    Wernet, Mark P.

    2000-01-01

    A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.

  14. Low drive field amplitude for improved image resolution in magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Konkle, Justin J; Arami, Hamed; Price, Daniel A; Li, Ada X; Saritas, Emine U; Conolly, Steven M

    2016-01-01

    Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with

  15. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    Science.gov (United States)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  16. Automatic determination of the size of elliptical nanoparticles from AFM images

    International Nuclear Information System (INIS)

    Sedlář, Jiří; Zitová, Barbara; Kopeček, Jaromír; Flusser, Jan; Todorciuc, Tatiana; Kratochvílová, Irena

    2013-01-01

    The objective of this work was to develop an accurate method for automatic determination of the size of elliptical nanoparticles from atomic force microscopy (AFM) images that would yield results consistent with results of manual measurements by experts. The proposed method was applied on phenylpyridyldiketopyrrolopyrrole (PPDP), a granular organic material with a wide scale of application and highly sensitive particle-size properties. A PPDP layer consists of similarly sized elliptical particles (c. 100 nm × 50 nm) and its properties can be estimated from the average length and width of the particles. The developed method is based on segmentation of salient particles by the watershed transform and approximation of their shapes by ellipses computed by image moments; it estimates the lengths and widths of the particles by the major and minor axes, respectively, of the corresponding ellipses. Its results proved to be consistent with results of manual measurements by a trained expert. The comparison showed that the developed method could be used in practice for precise automatic measurement of PPDP particles in AFM images

  17. The application of particle image velocimetry for the analysis of high-speed craft hydrodynamics

    NARCIS (Netherlands)

    Jacobi, G.; Thill, C.H.; Huijsmans, R.H.M.; Huijsmans, R.H.M.

    2016-01-01

    The particle image velocimetry (PIV) technique has become a reliable method for capturing the velocity field and its derivatives, even in complex flows and is now also widely used for validation of numerical codes. As the imaging system is sensitive to vibrations, the application in environments

  18. Development of a Dual-Particle Imaging System for Nonproliferation Applications

    Science.gov (United States)

    Poitrasson-Riviere, Alexis Pierre Valere

    A rising concern in our society is preventing the proliferation of nuclear weapons and fissionable material. This prevention can be incorporated at multiple levels, from the use of nuclear safeguards in nuclear facilities to the detection of threat objects in the field. At any level, systems used for such tasks need to be specially designed for use with Special Nuclear Material (SNM) which is defined by the NRC as plutonium and uranium enriched in U-233 or U-235 isotopes. These radioactive materials have the particularity of emitting both fast neutrons and gamma rays; thus, systems able to detect both particles simultaneously are particularly desirable. In the field of nuclear nonproliferation and safeguards, detection systems capable of accurately imaging various sources of radiation can greatly simplify any monitoring or detection task. The localization of the radiation sources can allow users of the system to focus their efforts on the areas of interest, whether it be for radiation detection or radiation characterization. This thesis describes the development of a dual-particle imaging system at the University of Michigan to address these technical challenges. The imaging system relies on the use of organic liquid scintillators that can detect both fast neutrons and gamma rays, and inorganic NaI(Tl) scintillators that are not very sensitive to neutrons yet yield photoelectric absorptions from gamma rays. A prototype of the imaging system has been constructed and operated. The system will aid the remote monitoring of nuclear materials within facilities, and it has the scalability for standoff detection in the field. A software suite has been developed to analyze measured data in real time, in an effort to obtain a system as close to field-ready as possible. The system's performance has been tested with various materials of interest, such as MOX and plutonium metal, measured at the PERLA facility of the Joint Research Center in Ispra, Italy. The robust and

  19. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  20. Effects of Eutectic Si Particles on Mechanical Properties and Fracture Toughness of Cast A356 Aluminum Alloys

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Lee, Sung Hak; Kwon, Yong Nam

    2007-01-01

    The present study aims at investigating the effects of eutectic Si particles on mechanical properties and fracture toughness of three A356 aluminum alloys. These A356 alloys were fabricated by casting processes such as rheo-casting, squeeze-casting, and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanism study. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by squeeze-casting and casting-forging processes. Microfracture observation results showed that eutectic Si particles segregated along cells were cracked first, but that aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the squeeze cast and cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy. In particular, the cast-forged alloy had excellent hardness, strength, ductility, and fracture toughness because of the matrix strengthening and homogeneous distribution of eutectic Si particles due to forging process

  1. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    R. A. Kirian

    2015-07-01

    Full Text Available A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.

  2. Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of cellulosic materials as reinforcement in composites can greatly enhance their properties. The thrust of this study was to investigate the effect of date palm seed particle on the properties of reinforced polyester. Unsaturated polyester resin was reinforced with date palm seed particles of 0.5, 2.0 and 2.8mm particle sizes using variable particle loadings of 5, 10, 15, 20 and 25wt%. The composites obtained were subjected to various types of mechanical and physical tests in order to assess their performance. The optimum tensile strength of 16.7619N/mm2 and elastic modulus of 343.8N/mm2 were attained at 15wt% and 10wt% loading (using 0.5mm particles respectively and percent water absorption was found to be least for 0.5mm particle size. The hardness was enhanced to the maximum of 74 HRF (Rockwell Hardness Factor by 2mm particle size at 25wt% loading. Pure unsaturated polyester resin recorded tensile strength of 17.5959N/mm2, elastic modulus of 316.7N/mm2 and hardness of 33.5 HRF. The results indicated that the use of date palm seed particles as reinforcement can enhance the properties of polyester composites.

  3. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    Science.gov (United States)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  4. Quantum algebras in phenomenological description of particle properties

    International Nuclear Information System (INIS)

    Gavrilik, A.M.

    2001-01-01

    Quantum and q-deformed algebras find their application not only in mathematical physics and field theoretical context, but also in phenomenology of particle properties. We describe (i) the use of quantum algebras U q (su n ) corresponding to Lie algebras of the groups SU n , taken for flavor symmetries of hadrons, in deriving new high-accuracy hadron mass sum rules, and (ii) the use of (multimode) q-oscillator algebras along with q-Bose gas picture in modelling the properties of the intercept λ of two-pion (two-kaon) correlations in heavy-ion collisions, as λ shows sizable observed deviation from the expected Bose-Einstein type behavior. The deformation parameter q is in case (i) argued and in case (ii) conjectured to be connected with the Cabibbo angle θ c

  5. Oriented particleboard made from tali bamboo (Gigantochloa Apus): effect of particle length on physical and mechanical properties

    Science.gov (United States)

    Iswanto, A. H.

    2018-02-01

    Strength properties are one of the problems of particleboard. The objective of this research was to analyze the effect of particle length on physical and mechanical properties oriented particleboard (OPB). The variation particle length size in this experiment namely 3, 5, and 7 cm. The width and thickness size of all bamboo particles were 1 and 0.1 cm respectively. 12% mixed resin of UF and MDI (70/30 %w/w) used for binding. Board size fabricated in 25 by 25 cm2 with thickness and density target of 1 cm and 0.75 gcm-3. The OPB layers for face and back layers aligned perpendicular to the core layer. The weight ratio of the face-to-core-to-back layers were set at 1:2:1. Mat was pressed at 160 °C under 30 kgcm-2 as the pressure for 10 minutes. The results showed that 7 cm length particle produced of the best strength and dimensional stability. The increase of particle length resulted in increasing of strength properties. Over all the parameters of physical and mechanical properties fulfill requirements of JIS A 5908 (2003) excepted of thickness swelling and modulus of elasticity.

  6. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility

    DEFF Research Database (Denmark)

    Lund, F. W.; Wustner, D.

    2013-01-01

    Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used for measu......Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used...... for measurement of intracellular vesicle transport. Here, we present an extensive comparison of SPT and TICS. First we examine the effect of photobleaching, shading and noise on SPT and TICS analysis using simulated image sequences. To this end, we developed a simple photophysical model, which relates spatially...... varying illumination intensity to the bleaching propensity and fluorescence intensity of the moving particles. We found that neither SPT nor TICS are affected by photobleaching per se, but the transport parameters obtained by both methods are sensitive to the signal-to-noise ratio. In addition, the number...

  7. Imaging properties of scintillators for heavy-ion-beams and related model calculations; Abbildungseigenschaften von Szintillatoren fuer Schwerionenstrahlen und diesbezuegliche Modellrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Guetlich, Eiko

    2011-08-15

    This thesis is treating the imaging properties of scintillating screens for high-current ion beams as delivered by the UNILAC at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt, Germany. Scintillating screens are mainly used to measure and rate the tansversal beam parameters in nearly every particle accelerator. During daily operation, scintillating screens can be used to determine and optimize the position of the beam inside the beam-pipe as well as the transversal intensity distribution. Although scintillating screens are widely used in many measurement systems, their imaging properties are not well characterized. Within the framework of this thesis, accelerator based experiments were planed and carried out which allowed to compare the results of beam profile measurements of the different materials with reference methods. Parameters such as the screen temperature and particle energies have been varied. Additionaly, possible image distortions within the optical system have been investigated. To determine the influence of the emission spectra of the screens onto the profile measurement a novel experimental setup for the spectroscopic investigations has been established. The setup allows to investigate the emission spectrum along one spatial axes on the beamspot. The investigations focus on ceramic materials such as zirconium oxide doped e.g. with Mg (ZrO{sub 2}:Mg) or aluminium oxide (Al{sub 2}O{sub 3}). The materials have been irradiated with different ion species (e.g. Calcium and Uranium) with kinetic energies of 4.8 MeV/u (10% c) and 11.4 MeV (15% c). The results for different parameters are discussed and interpreted. The measured beam profiles show dependences of four parameters: - The material itself. - The screen temperature. - The accumulated fluence [ (Ions)/(cm{sup 2})]. - The excitation density [(Electron-Hole-Pairs)/(cm{sup 3})], which is proportional to the dose rate [(J)/(kg . s)] within the volume element. Among the above, the last

  8. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    Science.gov (United States)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  9. Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis

    Science.gov (United States)

    Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.

    A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.

  10. Probing Single Nanometer-scale Particles with Scanning Tunneling Microscopy and Spectroscopies

    International Nuclear Information System (INIS)

    McCarty, G.S.; Love, J.C.; Kushmerick, J.G.; Charles, L.F.; Keating, C.D.; Toleno, B.J.; Lyn, M.E.; Castleman, A.W.; Natan, M.J.; Weiss, P.S.

    1999-01-01

    Scanning tunneling microscopy can be used to isolate single particles on surfaces for further study. Local optical and electronic properties coupled with topographic information collected by the scanning tunneling microscope (STM) give insight into the intrinsic properties of the species under study. Since each spectroscopic measurement is done on a single particle, each sample is 'monodisperse', regardless of the degree of heterogeneity of the original preparation. We illustrate this with three example systems - a metal cluster of known atomic structure, metal nanoparticles dispersed from colloid suspensions, and metallocarbohedrenes (Met-Cars) deposited with other reaction products. Au and Ag nanoparticles were imaged using a photon emission STM. The threshold voltage, the lowest bias voltage at which photons are produced, was determined for Au nanoparticles. Electronic spectra of small clusters of Ni atoms on MoS 2 were recorded. Preliminary images of Zr-based Met-Car-containing soot were obtained on Au and MoS 2 substrates and partial electronic spectra were recorded of these possible Met-Car particles

  11. Supralinearity and particle discrimination in nuclear emulsion

    International Nuclear Information System (INIS)

    Katz, R.; Larsson, L.; Pinkerton, F.E.; Benton, E.V.

    1977-01-01

    Nuclear emulsions may be desensitized in manufacture and/or may be so processed as to discriminate against small latent image sites; to yield supralinear sensitometric response after x-irradiation; and to discriminate against lightly ionizing radiations in favor of heavily ionizing particles. In a circumstance where one electron passing through an emulsion grain is unlikely to generate a latent image sufficiently large to yield a visible grain after development, some larger number of electrons is required, resulting in 'many-hit' statistics, supralinearity, and particle discrimination: for lightly ionizing particles are not likely to generate more than one delta-ray (secondary electron) in their passage through or near a grain. Since these properties are analogous to the response of many biological cells to ionizing radiations, such emulsion-developer combinations have the potential to mimic the response of biological systems to particulate radiations of different charge and speed. (author)

  12. Dependence of the microstructural properties of ZnO particles on their synthesis

    International Nuclear Information System (INIS)

    Music, Svetozar; Saric, Ankica; Popovic, Stanko

    2008-01-01

    The influence of experimental conditions on the precipitation of ZnO particles and their microstructural properties has been investigated using X-ray powder diffraction, Fourier transform infrared spectroscopy and thermal field emission scanning electron microscopy. Mixing of ZnCl 2 or Zn(ac) 2 solution with Na 2 CO 3 solution of proper concentrations yielded aggregates of fine Zn 5 (CO 3 ) 2 (OH) 6 particles, which were converted to nanosize ZnO particles at 300 deg. C. The size of these ZnO particles increased to around 100 nm upon heating at 600 deg. C, whereas a small fraction of them turned out in the form of aggregates. The obtained ZnO particles assumed a pseudospherical shape; however, their basic structure was based on the hexagonal space group. Precipitation of Zn 2+ ions in decomposing HMTA at 90 deg. C yielded ZnO particles around micron range. Crystalline Zn(OH) 2 was not detected in the precipitates. ZnO particles obtained by this method were strongly elongated in the direction of the crystallographic c-axis

  13. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  14. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  15. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Azuma Takahashi

    Full Text Available The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D distribution of strain using tomographic particle image velocimetry (Tomo-PIV and compares the measurement accuracy with the gauge strain in tensile tests.The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen.We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy.

  16. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    Science.gov (United States)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  17. Particle image velocimetry investigation of a finite amplitude pressure wave

    Science.gov (United States)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  18. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    Science.gov (United States)

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  19. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dianliang, E-mail: 272895980@qq.com [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Liu, Ting; Zhou, Li [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Yonggang [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China)

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<−5 dB) could be widened to 8.96–18 GHz at 0.6 mm and 5.92–18 GHz at 0.8 mm, and RL less than −8 dB began to exist in 8.96–14.72 GHz at 0.8 mm. - Graphical abstract: The property of absorber using corrosion process could be enhanced. - Highlights: • The chemical corrosion process was done to optimize the particle shape. • The permittivity and permeability of corroded milling CIPs increased. • The aspect ratio of flaky CIPs increased in the corrosion process. • The corroded milling CIPs composite had the better absorbing property.

  20. Particle Image Velocimetry (PIV) Measurements of Suspension-Feeding Velocities

    Science.gov (United States)

    Du Clos, K.; Jones, I. T.; Carrier, T. J.; Jumars, P. A.

    2016-02-01

    Active suspension feeders, such as bivalves and tunicates, connect benthic and pelagic ecosystems by packaging suspended matter into larger fecal and pseudofecal particles, greatly enhancing the flux of carbon and nutrients from the water column to the benthos. The volume of water processed by a population of suspension feeders is commonly estimated by scaling up results from experiments that measure the clearance rate (the volume of water cleared of particles per time) of one or a few individual suspension feeders. Clearance rates vary, however, between species, within a species, and over time for a single individual; and the velocity fields produced by suspension feeders are likely to interact in complex ways. We measured the water velocity fields produced by two species of bivalve, Mya arenaria and Mercenaria mercenaria, and the tunicate Ciona intestinalis, using particle image velocimetry (PIV). We used these measurements to calculate flow rates and Reynolds numbers of inhalant and exhalant siphons. We also observed strong entrainment of water by M. arenaria's exhalant siphon jet that may help to explain how the clam avoids depleting the water around it of particles and oxygen as it feeds. We are using these measurements to inform computational fluid mechanics (CFD) models of suspension feeding, allowing us to examine the interactions of flow fields produced by multiple suspension feeders and other effects not quantified by clearance-rate measurements.

  1. Analysis of bubbly flow using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A. [Texas A and M University, Nuclear Engineering Dept., College Stagion, TX (United States); Sanchez-Silva, F. [ESIME, INP (Mexico)

    2001-07-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  2. Analysis of bubbly flow using particle image velocimetry

    International Nuclear Information System (INIS)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.

    2001-01-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  3. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  4. The single- and double-particle properties and the current reversal of coupled Brownian motors

    International Nuclear Information System (INIS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang; Fan, Hong; Shen, Wen-Mei

    2017-01-01

    In this paper, we investigate the directed transport of coupled Brownian motors composed of two identical particles which is individually subject to a time-symmetric rocking force in spatially-symmetric periodic potentials. We find that both the coupling free length and the coupling strength can induce the reversed motion of the coupled Brownian motors, the essence of which is the coupled Brownian motors can exhibit completely different single- or double-particle properties under certain conditions. Namely, the current reversal is the result of the mutual conversion between the single- and double-particle properties of the coupled Brownian motors. Moreover, the directed current of coupled Brownian motors can be optimized and manipulated by adjusting the strength, the period, the phase difference of the rocking forces, and the noise intensity. (paper)

  5. On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Discetti, Stefano; Ianiro, Andrea; Astarita, Tommaso; Cardone, Gennaro

    2013-01-01

    This work deals with the critical aspects related to cost reduction of a Tomo PIV setup and to the bias errors introduced in the velocity measurements by the coherent motion of the ghost particles. The proposed solution consists of using two independent imaging systems composed of three (or more) low speed single frame cameras, which can be up to ten times cheaper than double shutter cameras with the same image quality. Each imaging system is used to reconstruct a particle distribution in the same measurement region, relative to the first and the second exposure, respectively. The reconstructed volumes are then interrogated by cross-correlation in order to obtain the measured velocity field, as in the standard tomographic PIV implementation. Moreover, differently from tomographic PIV, the ghost particle distributions of the two exposures are uncorrelated, since their spatial distribution is camera orientation dependent. For this reason, the proposed solution promises more accurate results, without the bias effect of the coherent ghost particles motion. Guidelines for the implementation and the application of the present method are proposed. The performances are assessed with a parametric study on synthetic experiments. The proposed low cost system produces a much lower modulation with respect to an equivalent three-camera system. Furthermore, the potential accuracy improvement using the Motion Tracking Enhanced MART (Novara et al 2010 Meas. Sci. Technol. 21 035401) is much higher than in the case of the standard implementation of tomographic PIV. (paper)

  6. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    Science.gov (United States)

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  7. Evaluation of the effect of the incorporation of rubber tire waste particles on the properties of PP, HIPS and PP/HIPS matrices

    Directory of Open Access Journals (Sweden)

    Larissa Stieven Montagna

    2013-01-01

    Full Text Available In recent years, the consumption of plastics has been increasing and as consequence, the waste generated has also increased. Rubber tire (RT waste is another residue which causes significant problems to society. In view of the considerable amounts of RT waste generated, this study aimed to evaluate the influence of the incorporation of RT particles into post-consumer thermoplastic matrices such as polypropylene (PP, high impact polystyrene (HIPS and PP/HIPS blends and the modification of the physical, morphological, rheological and mechanical properties. The particle sizes of the RT used were <500 and 500-1000 μm. The RT content was 10% w/w and the weight ratio for the PP/HIPS blend was 4/1, with processing by injection molding. The results showed that the smaller (500 μm particle size led to a decrease in the melt flow rate (MFR of the PP/RT composites (increased viscosity and an increase for the HIPS/RT composites. On the other hand, the larger particles (1000 μm led to a decrease in the mechanical performance of the PP/RT and HIPS/RT blends when compared with the neat polymers (PP and HIPS post-consumer. The observed decrease in the mechanical properties of these composites was due to weak filler/matrix interactions, which can be visualized in images by scanning electron microscopy (SEM of the fracture surface after tensile testing.

  8. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  9. Magnetic particles in medical research - a review

    International Nuclear Information System (INIS)

    Sajid, K.M.

    2001-01-01

    Magnetic (or magnetizable) particles have assumed increasing importance in medical and biological research since 1966 when the effect of a magnetic field on the movement of suspended particles was initially studied. In fields like haematology, cell biology, microbiology, biochemistry and immunoassays, they currently provide the basis for separation techniques, which previously relied on gravitational forces. The body cells (e.g., blood cells) can be made magnetic by incubating them in a medium containing several Fe/sub 3/O/sub 4/ particles, which are adsorbed to the membrane surfaces. Some bacteria (also called magnetostatic bacteria) respond to externally applied magnetic lines of force due to their intracellular magnetic particles. These properties are useful in the isolation of these cells/bacteria. In biochemistry magnetic particles are used to immobilize enzymes without any loss of enzyme activity. The immobilized enzymes can facilitate the separation of end products without extensive instrumentation. In immunoassays the antibodies are covalently linked to polymer coated iron oxide particles. An electromagnet is used to sediment these particles after reaction. This excludes the use of centrifuge to separate antigen-antibody complexes. In pharmacy and pharmacology the magnetic particles are important in drug transport. In techniques like ferrography, nuclear magnetic resonance imaging (NMRI), spectroscopic studies and magnetic resonance imaging (MRI) the magnetic particles serve as contrast agents and give clinically important spatial resolution. Magnetic particles also find extensive applications in cancer therapy, genetic engineering, pneumology, nuclear medicine, radiology and many other fields. This article reviews these applications. (author)

  10. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  11. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  12. Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance.

    Science.gov (United States)

    Gritti, Fabrice; Leonardis, Irene; Abia, Jude; Guiochon, Georges

    2010-06-11

    The recent development of new brands of packing materials made of fine porous-shell particles, e.g., Halo and Kinetex, has brought great improvements in potential column efficiency, demanding considerable progress in the design of chromatographic instruments. Columns packed with Halo and Kinetex particles provide minimum values of their reduced plate heights of nearly 1.5 and 1.2, respectively. These packing materials have physical properties that set them apart from conventional porous particles. The kinetic performance of 4.6mm I.D. columns packed with these two new materials is analyzed based on the results of a series of nine independent and complementary experiments: low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), inverse size-exclusion chromatography (ISEC), Coulter counter particle size distributions, pycnometry, height equivalent to a theoretical plate (HETP), peak parking method (PP), total pore blocking method (TPB), and local electrochemical detection across the column exit section (LED). The results of this work establish links between the physical properties of these superficially porous particles and the excellent kinetic performance of columns packed with them. It clarifies the fundamental origin of the difference in the chromatographic performances of the Halo and the Kinetex columns. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Towards single particle imaging of human chromosomes at SACLA

    International Nuclear Information System (INIS)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-01-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images. (paper)

  14. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    Science.gov (United States)

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. From Particle Physics to Medical Applications

    Science.gov (United States)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  16. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  17. Single-particle properties of the Hubbard model in a novel three-pole approximation

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.

  18. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  19. Parking simulation of three-dimensional multi-sized star-shaped particles

    International Nuclear Information System (INIS)

    Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin

    2014-01-01

    The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape. (paper)

  20. From particle physics to medical applications

    CERN Document Server

    Dosanjh, Manjit

    2017-01-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen...

  1. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Science.gov (United States)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  2. Effect of feed processing on size of (washed) faeces particles from pigs measured by image analysis

    DEFF Research Database (Denmark)

    Nørgaard, Peder; Kornfelt, Louise Foged; Hansen, Christian Fink

    2005-01-01

    of particles from the sieving fractions were scanned and the length and width of individual particles were identified using image analysis software. The overall mean, mode and median were estimated from a composite function. The dietary physical characteristics significantly affected the proportion of faecal...

  3. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M-O.; Van Beuzekom, Martin; Bien, A.; Bifani, S.; Bird, T.D.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; CruzTorres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; da-Silva, W.S.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; ElRifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, Mark; Fontanelli, F.; Forty, R.; De Aguiar Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Carvalho-Gaspar, M.; Gauld, Rhorry; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, H.M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D. E.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.M.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli-Boneschi, F.; Santos, D. Martinez; Martinez-Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B. T.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, Karl; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M.; dos Reis, A. C.; Ricciardi, S.; Richards, Jennifer S; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, van Hapere; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Todd, Jim; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb(-1) of proton-proton collisions collected at √s = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from

  4. Advances in the simulation and automated measurement of well-sorted granular material: 2. Direct measures of particle properties

    Science.gov (United States)

    Buscombe, D.; Rubin, D. M.

    2012-06-01

    In this, the second of a pair of papers on the structure of well-sorted natural granular material (sediment), new methods are described for automated measurements from images of sediment, of: 1) particle-size standard deviation (arithmetic sorting) with and without apparent void fraction; and 2) mean particle size in material with void fraction. A variety of simulations of granular material are used for testing purposes, in addition to images of natural sediment. Simulations are also used to establish that the effects on automated particle sizing of grains visible through the interstices of the grains at the very surface of a granular material continue to a depth of approximately 4 grain diameters and that this is independent of mean particle size. Ensemble root-mean squared error between observed and estimated arithmetic sorting coefficients for 262 images of natural silts, sands and gravels (drawn from 8 populations) is 31%, which reduces to 27% if adjusted for bias (slope correction between observed and estimated values). These methods allow non-intrusive and fully automated measurements of surfaces of unconsolidated granular material. With no tunable parameters or empirically derived coefficients, they should be broadly universal in appropriate applications. However, empirical corrections may need to be applied for the most accurate results. Finally, analytical formulas are derived for the one-step pore-particle transition probability matrix, estimated from the image's autocorrelogram, from which void fraction of a section of granular material can be estimated directly. This model gives excellent predictions of bulk void fraction yet imperfect predictions of pore-particle transitions.

  5. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1999-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  6. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1998-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  7. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  8. Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Blazniak Andreasen, Marcin; Andresen, Henrik Assenholm

    2010-01-01

    The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode...

  9. Design considerations for large field particle image velocimetery (LF-PIV)

    International Nuclear Information System (INIS)

    Pol, S U; Balakumar, B J

    2013-01-01

    We discuss the challenges and limitations associated with the development of a large field of view particle image velocimetry (LF-PIV) diagnostic, capable of resolving large-scale motions (>1 m per camera) in gas phase laboratory and field experiments. While this diagnostic is developed for the measurement of wakes and local inflow conditions around research wind turbines, the design considerations provided here are also relevant for the application of LF-PIV to atmospheric boundary layer, rotorcraft dynamics and large-scale wind tunnel flows. Measurements over an area of 0.75 m × 1.0 m on a confined vortex were obtained using a standard 2MP camera, with the potential for increasing this area significantly using 11MP cameras. The cameras in this case were oriented orthogonal to the measurement plane receiving only the side-scattered component of light from the particles. Scaling laws associated with LF-PIV systems are also presented along with the performance analysis of low-density, large diameter Expancel particles, that appear to be promising candidates for LF-PIV seeding. (paper)

  10. The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets

    International Nuclear Information System (INIS)

    Deng, Y.; Jiang, X.Q.; Zhang, Y.H.; Chen, H.; Tu, M.J.; Deng, L.; Zou, J.P.

    2016-01-01

    Ti(C,N) based cermets are composite materials composed of a hard phase and a binder phase structure. Cubic-structured Co particles are the best choice for the binder phase of Ti(C,N) based cermets due to their excellent toughness performance. However, the application of β-Co particles in cermets has not been reported in the literature so far. In this pioneer study, ultrafine Ti(C,N) based cermet samples were prepared by separately using Co particles of different structures as the binder phase, and the effect of the Co particle structures on the mechanical properties and microstructure of the cermets were studied: First, the Empirical Electron Theory was used to calculate the difference in the interface density (∆ρ) for different crystals, and the interface combined strength between the hard phase of different structures containing Co particles were evaluated. Second, we systematically investigated the evolution of the microstructures of the two cermets during the sintering process, and evaluated the characteristics of the microstructure (which determines the properties of the cermets). Finally, the mechanical properties of the samples were tested, and the performances of the Co structures were evaluated. The results show that β-Co particles can optimize the cermet microstructure, which leads to excellent mechanical performance.

  11. The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y. [Chongqing University of Arts and Science, Chongqing 402160 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Jiang, X.Q. [Southwest University, Chongqing Academy Science and Technology, Chongqing 4100715 (China); Zhang, Y.H.; Chen, H.; Tu, M.J. [Chongqing University of Arts and Science, Chongqing 402160 (China); Deng, L., E-mail: dengying.163@163.com [Chengdu Chengliang Tool Group Co., Ltd., Chengdu 610056 (China); Zou, J.P., E-mail: 1042551842@qq.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-10-15

    Ti(C,N) based cermets are composite materials composed of a hard phase and a binder phase structure. Cubic-structured Co particles are the best choice for the binder phase of Ti(C,N) based cermets due to their excellent toughness performance. However, the application of β-Co particles in cermets has not been reported in the literature so far. In this pioneer study, ultrafine Ti(C,N) based cermet samples were prepared by separately using Co particles of different structures as the binder phase, and the effect of the Co particle structures on the mechanical properties and microstructure of the cermets were studied: First, the Empirical Electron Theory was used to calculate the difference in the interface density (∆ρ) for different crystals, and the interface combined strength between the hard phase of different structures containing Co particles were evaluated. Second, we systematically investigated the evolution of the microstructures of the two cermets during the sintering process, and evaluated the characteristics of the microstructure (which determines the properties of the cermets). Finally, the mechanical properties of the samples were tested, and the performances of the Co structures were evaluated. The results show that β-Co particles can optimize the cermet microstructure, which leads to excellent mechanical performance.

  12. Aerosol Particle Interfacial Thermodynamics and Phase Partitioning Measurements Using Biphasic Microfluidics

    Science.gov (United States)

    Dutcher, Cari; Metcalf, Andrew

    2015-03-01

    Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.

  13. Plastic tube hadron calorimeter: study of operation properties and particle separation

    International Nuclear Information System (INIS)

    Akopdzhanov, G.A.; Belousov, V.I.; Blik, A.M.; Romanovski, V.I.

    1988-01-01

    The DELPHI hadron calorimeter prototype plastic tubes were tested to show a long-term stability of the prototype operating with the gas mixture carbon dioxide isobutane. The operating properties of the prototype are investigated and presented as well as the results on particles separation. 5 refs.; 11 figs.; 9 tabs

  14. Dragonfly : an implementation of the expand–maximize–compress algorithm for single-particle imaging

    OpenAIRE

    Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N. Duane

    2016-01-01

    Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map...

  15. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.

    2017-06-12

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  16. Medical applications of diamond particles & surfaces

    OpenAIRE

    Roger J Narayan; Ryan D. Boehm; Anirudha V. Sumant

    2011-01-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and...

  17. Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-03-01

    The implementation of multimodal imaging in medicine is highly beneficial as different physical properties may provide complementary information, augmented detection ability, and diagnosis verification. Nanoparticles have been recently used as contrast agents for various imaging modalities. Their significant advantage over conventional large-scale contrast agents is the ability of detection at early stages of the disease, being less prone to obstacles on their path to the target region, and possible conjunction to therapeutics. Copper ions play essential role in human health. They are used as a cofactor for multiple key enzymes involved in various fundamental biochemistry processes. Extremely small size copper oxide nanoparticles (CuO-NPs) are readily soluble in water with high colloidal stability yielding high bioavailability. The goal of this study was to examine the magnetic and acoustic characteristics of CuO-NPs in order to evaluate their potential to serve as contrast imaging agent for both MRI and ultrasound. CuO-NPs 7nm in diameter were synthesized by hot solution method. The particles were scanned using a 9.4T MRI and demonstrated a concentration dependent T1 relaxation time shortening phenomenon. In addition, it was revealed that CuO-NPs can be detected using the ultrasonic B-scan imaging. Finally, speed of sound based ultrasonic computed tomography was applied and showed that CuO-NPs can be clearly imaged. In conclusion, the preliminary results obtained, positively indicate that CuO-NPs may be imaged by both MRI and ultrasound. The results motivate additional in-vivo studies, in which the clinical utility of fused images derived from both modalities for diagnosis improvement will be studied.

  18. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    Science.gov (United States)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  19. Magnetic particle imaging for in vivo blood flow velocity measurements in mice

    Science.gov (United States)

    Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline

    2018-03-01

    Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s‑1 and those measured by MPI of 4.8  ±  1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.

  20. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    Science.gov (United States)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  1. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    International Nuclear Information System (INIS)

    Guo Bao-Feng; Wang Jun-Ling; Gao Mei-Guo

    2015-01-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. (paper)

  2. Properties of Brownian Image Models in Scale-Space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup

    2003-01-01

    Brownian images) will be discussed in relation to linear scale-space theory, and it will be shown empirically that the second order statistics of natural images mapped into jet space may, within some scale interval, be modeled by the Brownian image model. This is consistent with the 1/f 2 power spectrum...... law that apparently governs natural images. Furthermore, the distribution of Brownian images mapped into jet space is Gaussian and an analytical expression can be derived for the covariance matrix of Brownian images in jet space. This matrix is also a good approximation of the covariance matrix......In this paper it is argued that the Brownian image model is the least committed, scale invariant, statistical image model which describes the second order statistics of natural images. Various properties of three different types of Gaussian image models (white noise, Brownian and fractional...

  3. Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Theppradit, Thawinan [Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2014-12-15

    The efficiency of modified silica (SiO{sub 2}) particles in the reinforcement of natural rubber (NR) vulcanizates was evaluated. The SiO{sub 2} particles were synthesized via a sol–gel reaction using tetraethyl orthosilicate as the precursor, and then the formed SiO{sub 2} particles were modified with methyl, vinyl or aminopropyl groups using methyltriethoxysilane, vinyltriethoxysilane or aminopropyltrimethoxysilane, respectively. Fourier transform infrared spectroscopy and elemental analysis confirmed the successful modification of the surface of the silica particles. The water contact angle measurement revealed the greater hydrophobicity of the three modified silica preparations compared to the unmodified SiO{sub 2}. NR vulcanizates filled with modified SiO{sub 2} particles were prepared and the mechanical, thermal and dynamic mechanical properties of composites were investigated. The morphology of composite materials was also investigated by scanning electron microscopy. The modified SiO{sub 2} particles were well dispersed in the NR matrix leading to the good compatibility between the rubber and filler, and so an improved cure, mechanical, thermal and dynamic mechanical properties of the composite vulcanizate materials. - Highlights: • Modification of SiO{sub 2} particles by MTES, VTES and APTES. • Improvement of hydrophobicity of SiO{sub 2} particle and compatibility between SiO{sub 2} and rubbery matrix. • Improvement of cure, mechanical, thermal, dynamic mechanical properties of NR vulcanizates.

  4. Enhanced Methods to Estimate the Efficiency of Magnetic Nanoparticles in Imaging

    Directory of Open Access Journals (Sweden)

    Ann M. Hirt

    2017-12-01

    Full Text Available Magnetic resonance imaging (MRI and magnetic particle imaging (MPI are powerful methods in the early diagnosis of diseases. Both imaging techniques utilize magnetic nanoparticles that have high magnetic susceptibility, strong saturation magnetization, and no coercivity. FeraSpinTM R and its fractionated products have been studied for their imaging performances; however, a detailed magnetic characterization in their immobilized state is still lacking. This is particularly important for applications in MPI that require fixation of magnetic nanoparticles with the target cells or tissues. We examine the magnetic properties of immobilized FeraSpinTM R, its size fractions, and Resovist®, and use the findings to demonstrate which magnetic properties best predict performance. All samples show some degree of oxidation to hematite, and magnetic interaction between the particles, which impact negatively on image performance of the materials. MRI and MPI performance show a linear dependency on the slope of the magnetization curve, i.e., initial susceptibility, and average blocking temperature. The best performance of particles in immobilized state for MPI is found for particle sizes close to the boundary between superparamagnetic (SP and magnetically ordered, in which only Néel relaxation is important. Initial susceptibility and bifurcation temperature are the best indicators to predict MRI and MPI performance.

  5. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  6. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Science.gov (United States)

    Adachi, K.; Buseck, P. R.

    2008-05-01

    Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples) with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC) and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  7. Spectral Properties of Homogeneous and Nonhomogeneous Radar Images

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1987-01-01

    On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown that the sp......On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown...... that the spectrum of the intensityimage is in general related to the radar scene spectrum by a linearintegral equation, a Fredholm's integral equation of the third kind.Under simplifying assumptions, a closed-form equation giving theradar scene spectrum as a function of the SAR image spectrum canbe derived....

  8. Three-dimensional particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-09-01

    Full Text Available The three-dimensional flow field inside a generic can-type, forward flow, experimental combustor was measured. A stereoscopic Particle Image Velocimetry (PIV) system was used to obtain the flow field of the combustor in the non-reacting condition...

  9. Dynamical properties of a particle in a time-dependent double-well potential

    International Nuclear Information System (INIS)

    Leonel, Edson D; McClintock, P V E

    2004-01-01

    Some chaotic properties of a classical particle interacting with a time-dependent double-square-well potential are studied. The dynamics of the system is characterized using a two-dimensional nonlinear area-preserving map. Scaling arguments are used to study the chaotic sea in the low-energy domain. It is shown that the distributions of successive reflections and of corresponding successive reflection times obey power laws with the same exponent. If one or both wells move randomly, the particle experiences the phenomenon of Fermi acceleration in the sense that it has unlimited energy growth

  10. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties

    International Nuclear Information System (INIS)

    Lu, Yaping; Gao, Lingxiang; Wang, Lijuan; Xie, Zunyuan; Gao, Meixiang; Zhang, Weiqiang

    2017-01-01

    Graphical abstract: The spherical BaTiO 3 /Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of the BaTiO 3 particles with grain diameter of ∼500 nm. BaTiO 3 /Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO 3 /Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO 3 /Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO 3 (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  11. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    Science.gov (United States)

    Shah, Saqlain A.; Ferguson, R. M.; Krishnan, K. M.

    2014-10-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  12. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    Science.gov (United States)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  13. Influence of Particle Size on Properties of Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Kurajica, S

    2010-02-01

    Full Text Available Expanded graphite has been applied widely in thermal insulation, adsorption, vibration damping, gasketing, electromagnetic interference shielding etc. It is made by intercalation of natural flake graphite followed by thermal expansion. Intercalation is a process whereby an intercalant material is inserted between the graphene layers of a graphite crystal. Exfoliation, a huge unidirectional expansion of the starting intercalated flakes, occurs when the graphene layers are forced apart by the sudden decomposition and vaporization of the intercalated species by thermal shock. Along with production methodologies, such as the intercalation process and heat treatment, the raw material characteristics, especially particle size, strongly influence the properties of the final product.This report evaluates the influence of the particle size of the raw material on the intercalation and expansion processes and consequently the properties of the exfoliated graphite. Natural crystalline flake graphite with wide particle diameter distribution (between dp = 80 and 425 µm was divided into four size-range portions by sieving. Graphite was intercalated via perchloric acid, glacial acetic acid and potassium dichromate oxidation and intercalation procedure. 5.0 g of graphite, 7.0 g of perchloric acid, 4.0 g of glacial acetic acid and 2.0 g of potassium dichromate were placed in glass reactor. The mixture was stirred with n = 200 min–1 at temperature of 45 °C during 60 min. Then it was filtered and washed with distilled water until pH~6 and dried at 60 °C during 24 h. Expansion was accomplished by thermal shock at 1000 °C for 1 min. The prepared samples were characterized by means of exfoliation volume measurements, simultaneous differential thermal analysis and thermo-gravimetry (DTA/TGA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, BET measurements and scanning electron microscopy (SEM.X-ray diffraction indicated a change of distance

  14. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  15. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    Science.gov (United States)

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  16. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  17. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  18. CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.

    2004-02-01

    The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  19. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  20. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  1. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.

    Science.gov (United States)

    Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying

    2017-12-26

    Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.

  2. Effect of the structure of Pt-Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics

    International Nuclear Information System (INIS)

    Maillard, Frederic; Bonnefont, Antoine; Chatenet, Marian; Guetaz, Laure; Doisneau-Cottignies, Beatrice; Roussel, Herve; Stimming, Ulrich

    2007-01-01

    In this paper, we combined FTIR spectroscopy and CO ad stripping voltammetry to investigate CO ad adsorption and electrooxidation on Pt-Ru/C nanoparticles. The Pt:Ru elemental composition and the metal loading were determined by ICP-AES. The X-ray diffraction patterns of the Pt-Ru/C indicated formation of a Pt-Ru (fcc) alloy. HREM images revealed an increase in the fraction of agglomerated Pt-Ru/C particles with increasing the metal loading and showed that agglomerated Pt-Ru/C nanoparticles present structural defects such as twins or grain boundaries. In addition, isolated Pt-Ru/C nanoparticles have similar mean particle size (ca. 2.5 nm) and particle size distributions whatever the metal loading. Therefore, we could determine precisely the effect of particle agglomeration on the CO ad vibrational properties and electrooxidation kinetics. FTIR measurements revealed a main CO ad stretching band at ca. ν-bar CO L =2030cm -1 , which we ascribed to a-top CO ad on Pt domains electronically modified by the presence of Ru. As the metal loading increased, the position of this band was blue shifted by ca. 5 cm -1 and a shoulder around 2005 cm -1 developed, which was ascribed to a-top CO ad on Ru domains. The reason for this was suggested to be the increasing size of Ru domains on agglomerated Pt-Ru/C particles, which lifts dipole-dipole coupling and allows two vibrational features to be observed (CO ad /Ru, CO ad /Pt). This is evidence that FTIR spectroscopy can be used to probe small chemical fluctuations of the Pt-Ru/C surface. Finally, we comment on the CO ad electrooxidation kinetics. We observed that CO ad was converted more easily into CO 2 as the metal loading, i.e. the fraction of agglomerated Pt-Ru/C nanoparticles, increased

  3. GPU implementation of discrete particle swarm optimization algorithm for endmember extraction from hyperspectral image

    Science.gov (United States)

    Yu, Chaoyin; Yuan, Zhengwu; Wu, Yuanfeng

    2017-10-01

    Hyperspectral image unmixing is an important part of hyperspectral data analysis. The mixed pixel decomposition consists of two steps, endmember (the unique signatures of pure ground components) extraction and abundance (the proportion of each endmember in each pixel) estimation. Recently, a Discrete Particle Swarm Optimization algorithm (DPSO) was proposed for accurately extract endmembers with high optimal performance. However, the DPSO algorithm shows very high computational complexity, which makes the endmember extraction procedure very time consuming for hyperspectral image unmixing. Thus, in this paper, the DPSO endmember extraction algorithm was parallelized, implemented on the CUDA (GPU K20) platform, and evaluated by real hyperspectral remote sensing data. The experimental results show that with increasing the number of particles the parallelized version obtained much higher computing efficiency while maintain the same endmember exaction accuracy.

  4. Comparison of Micro- and Nanoscale Fe+3-Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro

    NARCIS (Netherlands)

    Bhattacharya, K.; Hoffmann, E.; Schins, R.F.P.; Boertz, J.; Prantl, E.M.; Alink, G.M.; Byrne, H.J.; Kuhlbusch, T.A.J.; Rahman, Q.; Wiggers, H.; Schulz, C.; Dopp, E.

    2012-01-01

    The specific properties of nanoscale particles, large surface-to-mass ratios and highly reactive surfaces, have increased their commercial application in many fields. However, the same properties are also important for the interaction and bioaccumulation of the nonbiodegradable nanoscale particles

  5. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles at close to the speed of light, then generate collisions between them at extraordinary energies, giving birth to showers of new particles. What are these particles? In order to find out, physicists transform themselves into detectives with the help of the detectors. Located around the collision area, these exceptional machines are made up of various layers, each of which detects and measures specific properties of the particles that travel through them. Powerful computers then reconstruct their trajectory and record their charge, mass and energy in order to build up a kind of particle ID card. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. A cloud chamber will provide live images of the trac...

  6. A study on coated particle fuel properties and performances and phase-I data base establishment

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Lee, Hyo Cheol; Im, Byeong Ju; Yun, Sang Pil; Son, Seung Beom; Lee, Gyeong Hui; Jang, Jeong Nam

    2006-03-01

    For the successful development of the high temperature gas cooled reactor acquisition and generation of the high temperature properties of reactor materials, especially temperature and burn-up dependent properties of coated particle fuel and fuel element, are crucially essential. Recently national project for HTGR for hydrogen production has been kicked off. However, we have had little experience on this new challenges. Therefore, it became necessary to build up the materials properties and fuel performance data base. In this study, a primitive properties and performance DB for coated particle fuel was developed. This database report consists two sections: materials properties and fuel performance. The materials properties has three parts: kernel materials, carbide coating materials, and fuel elements and graphite matrix. UO 2 and UCO belong to kernel materials while PyC, SiC, and ZrC comprises the coating materials section. Thermal, mechanical and physical properties of these materials were collected, reviewed, and summarized. Additionally, the property change induced by manufacture process and irradiation were collected and summarized. Performance data were also collected, reviewed, and analyzed based on the key phenomena and failure mechanism. All of these data will be accessible in the on-line system. These results will be directly used for HTGR fuel design and fabrication and preliminary fuel performance analysis under irradiation

  7. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  8. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  9. Choice of reconstructed tissue properties affects interpretation of lung EIT images.

    Science.gov (United States)

    Grychtol, Bartłomiej; Adler, Andy

    2014-06-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization.

  10. Choice of reconstructed tissue properties affects interpretation of lung EIT images

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Adler, Andy

    2014-01-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization. (paper)

  11. Constraints on Particles and Fields from Full Stokes Observations of AGN

    Directory of Open Access Journals (Sweden)

    Daniel C. Homan

    2018-01-01

    Full Text Available Combined polarization imaging of radio jets from Active Galactic Nuclei (AGN in circular and linear polarization, also known as full Stokes imaging, has the potential to constrain both the magnetic field structure and particle properties of jets. Although only a small fraction of the emission when detected, typically less than a few tenths of a percent but up to as much as a couple of percent in the strongest resolved sources, circular polarization directly probes the magnetic field and particles within the jet itself and is not expected to be modified by external screens. A key to using full Stokes observations to constrain jet properties is obtaining a better understanding of the emission of circular polarization, including its variability and spectrum. We discuss what we have learned so far from parsec scale monitoring observations in the MOJAVE program and from multi-frequency observations of selected AGN.

  12. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  13. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  14. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Bilsky, A V; Lozhkin, V A; Markovich, D M; Tokarev, M P

    2013-01-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART. (paper)

  15. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Mats [Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linkoeping (Sweden)], E-mail: mats.gustafsson@vti.se; Blomqvist, Goeran [Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linkoeping (Sweden); Gudmundsson, Anders; Dahl, Andreas [Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Swietlicki, Erik [Division of Nuclear Physics, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Bohgard, Mats [Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Lindbom, John; Ljungman, Anders [Faculty of Health Sciences, Department of Molecular and Clinical Medicine, Division of Occupational and Environmental Medicine, SE-581 85 Linkoeping (Sweden)

    2008-04-15

    In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM{sub 10}) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM{sub 10}, respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM{sub 10} emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties.

  16. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material

    International Nuclear Information System (INIS)

    Gustafsson, Mats; Blomqvist, Goeran; Gudmundsson, Anders; Dahl, Andreas; Swietlicki, Erik; Bohgard, Mats; Lindbom, John; Ljungman, Anders

    2008-01-01

    In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM 10 ) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM 10 , respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM 10 emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties

  17. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  18. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  19. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    Science.gov (United States)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  20. Synthesis and characterization of Znq2 and Znq2:CTAB particles for ...

    Indian Academy of Sciences (India)

    2017-09-12

    Sep 12, 2017 ... The optical property of Znq2 and Znq2:CTAB was confirmed by UV–vis–NIR spectral study. The band ... Luminescent organic/organo metallic compounds have been .... Scanning electron microscope image of Znq2 particles is.

  1. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    inertial-range energy dissipation fields of experimental turbulent flows at Re(sub lambda) = 110 and 1100. Based on this agreement, and the expectation that both dissipation and particle concentration are controlled by the same cascade process, we hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of the spatially averaged statistical properties of preferentially concentrated particles in higher Re(sub lambda) turbulent flows.

  2. Estimating perception of scene layout properties from global image features.

    Science.gov (United States)

    Ross, Michael G; Oliva, Aude

    2010-01-08

    The relationship between image features and scene structure is central to the study of human visual perception and computer vision, but many of the specifics of real-world layout perception remain unknown. We do not know which image features are relevant to perceiving layout properties, or whether those features provide the same information for every type of image. Furthermore, we do not know the spatial resolutions required for perceiving different properties. This paper describes an experiment and a computational model that provides new insights on these issues. Humans perceive the global spatial layout properties such as dominant depth, openness, and perspective, from a single image. This work describes an algorithm that reliably predicts human layout judgments. This model's predictions are general, not specific to the observers it trained on. Analysis reveals that the optimal spatial resolutions for determining layout vary with the content of the space and the property being estimated. Openness is best estimated at high resolution, depth is best estimated at medium resolution, and perspective is best estimated at low resolution. Given the reliability and simplicity of estimating the global layout of real-world environments, this model could help resolve perceptual ambiguities encountered by more detailed scene reconstruction schemas.

  3. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  4. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    Science.gov (United States)

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  6. Effects of Music on Image Impression and Relationship between Impression and Physical Properties

    Science.gov (United States)

    Sato, Keiko; Mitsukura, Yasue

    Auditory information plays an integral role in AV media because even identical images are perceived differently when they are matched with different music. However, we now present a few studies in which the changes in subjective perceptions were analyzed on the basis of the physical properties of the perceived items. The purpose of this study is to investigate the effects of music on image impression in terms of the physical properties of images. In this paper, we first elucidate the changes in subjective impressions when the image is presented by itself and when it is presented with music. Secondly, to clarify the relation between the impression of an image or music and physical properties, we compare the different image or music perceptions with each other and also compare their respective physical properties, which include color information, structural information, and frequency characteristics. As a result, the color information of an image containing green or saturation colors and the power of the music were strongly correlated with adjectives expressing activity. Moreover, the entropy of saturation correlated with words expressing spatial extent.

  7. Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

    Science.gov (United States)

    Murase, Kenya; Konishi, Takashi; Takeuchi, Yuki; Takata, Hiroshige; Saito, Shigeyoshi

    2013-07-01

    Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.

  8. Development of a compact x-ray particle image velocimetry for measuring opaque flows.

    Science.gov (United States)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-03-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  9. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    International Nuclear Information System (INIS)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-01-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  10. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread.

    Science.gov (United States)

    Trappey, Emily Frederick; Khouryieh, Hanna; Aramouni, Fadi; Herald, Thomas

    2015-04-01

    White, food-grade sorghum was milled to flour of varying extraction rates (60%, 80%, and 100%) and pin-milled at different speeds (no pin-milling, low-speed, and high-speed) to create flours of both variable composition and particle size. Flours were characterized for flour composition, total starch content, particle size distribution, color, damaged starch, and water absorption. Bread was characterized for specific volume, crumb structure properties, and crumb firmness. Significant differences were found (P Breads produced from 60% extraction flour had significantly higher specific volumes, better crumb properties, and lower crumb firmness when compared with all other extractions and flour types. The specific volume of bread slices ranged from 2.01 mL/g (100% extraction, no pin-milling) to 2.54 mL/g (60% extraction, low-speed pin-milling), whereas the firmness ranged from 553.28 g (60% extraction, high-speed pin-milling) to 1096.26 g (commercial flour, no pin-milling). The bread characteristics were significantly impacted by flour properties, specifically particle size, starch damage, and fiber content (P < 0.05). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Directory of Open Access Journals (Sweden)

    C. Chou

    2013-01-01

    Full Text Available A measurement campaign (IMBALANCE conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi and 92% relative humidity with respect to water (RHw, and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at −35 °C. Wood burning particles also act as ice nuclei (IN at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C whereas no ice nucleation was observed at −30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  13. Optical image encryption based on phase retrieval combined with three-dimensional particle-like distribution

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2012-01-01

    We propose a new phase retrieval algorithm for optical image encryption in three-dimensional (3D) space. The two-dimensional (2D) plaintext is considered as a series of particles distributed in 3D space, and an iterative phase retrieval algorithm is developed to encrypt the series of particles into phase-only masks. The feasibility and effectiveness of the proposed method are demonstrated by a numerical experiment, and the advantages and security of the proposed optical cryptosystems are also analyzed and discussed. (paper)

  14. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arami, Hamed; Krishnan, Kannan M., E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering, University of Washington, P.O. Box 352120, Seattle, Washington 98195-2120 (United States)

    2014-05-07

    Magnetic Particle Imaging (MPI) is a quantitative mass-sensitive, tracer-based imaging technique, with potential applications in various cellular imaging applications. The spatial resolution of MPI, in the first approximation, improves by decreasing the full width at half maximum (FWHM) of the field-derivative of the magnetization, dm/dH of the nanoparticle (NP) tracers. The FWHM of dm/dH depends critically on NPs’ size, size distribution, and their environment. However, there is limited information on the MPI performance of the NPs after their internalization into cells. In this work, 30 to 150 μg of the iron oxide NPs were incubated in a lysosome-like acidic buffer (0.2 ml, 20 mM citric acid, pH 4.7) and investigated by vibrating sample magnetometry, magnetic particle spectroscopy, transmission electron microscopy, and dynamic light scattering (DLS). The FWHM of the dm/dH curves of the NPs increased with incubation time and buffer to NPs ratio, consistent with a decrease in the median core size of the NPs from ∼20.1 ± 0.98 to ∼18.5 ± 3.15 nm. Further, these smaller degraded NPs formed aggregates that responded to the applied field by hysteretic reversal at higher field values and increased the FWHM. The rate of core size decrease and aggregation were inversely proportional to the concentration of the incubated NPs, due to their slower biodegradation kinetics. The results of this model experiment show that the MPI performance of the NPs in the acidic environments of the intracellular organelles (i.e., lysosomes and endosomes) can be highly dependent on their rate of internalization, residence time, and degradation.

  15. A complex network approach for nanoparticle agglomeration analysis in nanoscale images

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Bruno Brandoli, E-mail: bruno.brandoli@ufms.br; Scabini, Leonardo Felipe, E-mail: leo.scabini@ufms.br; Margarido Orue, Jonatan Patrick, E-mail: jonatan.orue@ufms.br; Arruda, Mauro Santos de, E-mail: m.arruda@ufms.br; Goncalves, Diogo Nunes, E-mail: diogo.goncalves@ufms.br; Goncalves, Wesley Nunes, E-mail: wesley.goncalves@ufms.br [Federal University of Mato Grosso do Sul, CS Department (Brazil); Moreira, Raphaell, E-mail: moreira.raphaell@fu-berlin.de [Freie Universitat BerlinTakustr 3 (Germany); Rodrigues-Jr, Jose F, E-mail: junio@usp.br [University of Sao Paulo, CS Department (Brazil)

    2017-02-15

    Complex networks have been widely used in science and technology because of their ability to represent several systems. One of these systems is found in Biochemistry, in which the synthesis of new nanoparticles is a hot topic. However, the interpretation of experimental results in the search of new nanoparticles poses several challenges. This is due to the characteristics of nanoparticle images and due to their multiple intricate properties; one property of recurrent interest is the agglomeration of particles. Addressing this issue, this paper introduces an approach that uses complex networks to detect and describe nanoparticle agglomerates so to foster easier and more insightful analyses. In this approach, each detected particle in an image corresponds to a vertice and the distances between the particles define a criterion for creating edges. Edges are created if the distance is smaller than a radius of interest. Once this network is set, we calculate several discrete measures able to reveal the most outstanding agglomerates in a nanoparticle image. Experimental results using images of scanning tunneling microscopy (STM) of gold nanoparticles demonstrated the effectiveness of the proposed approach over several samples, as reflected by the separability between particles in three usual settings. The results also demonstrated efficacy for both convex and non-convex agglomerates.

  16. Properties of supersymmetric particles and processes

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1986-01-01

    The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs

  17. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    Science.gov (United States)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  18. Cluster-guided imaging-based CFD analysis of airflow and particle deposition in asthmatic human lungs

    Science.gov (United States)

    Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long

    2017-11-01

    The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.

  19. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  20. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  1. Fabrication of BaTiO{sub 3}/Ni composite particles and their electro-magneto responsive properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yaping [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Lingxiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Wang, Lijuan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Xie, Zunyuan, E-mail: zyxie123@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Meixiang [Yulin Vocational and Technical College, Yulin 719000 (China); Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China)

    2017-07-15

    Graphical abstract: The spherical BaTiO{sub 3}/Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of the BaTiO{sub 3} particles with grain diameter of ∼500 nm. BaTiO{sub 3}/Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO{sub 3}/Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO{sub 3}/Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO{sub 3} (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  2. Analysis of Physical and Mechanical Properties of Marble Particles Floor-Tile Composite

    International Nuclear Information System (INIS)

    Parikin; Arslan, A.; Ismoyo, A.H.; Jodi, H.E.; Nurhasanah, S.

    2002-01-01

    Two criteria that very predictable to quality products of marble particles composite floor-tile are physical and mechanical properties. Simple manufacturing was conducted from powdering refuges of marble to molding and drying the specimens at ambient atmosphere. The characterization, to observe; density, crystal structure, microstructure, hardness and compressive/bending strength of the material, was performed in Serpong and IPB-Bogor. The analysis shows that polymeric crystallization was occurred by HEXA and the density and the hardness generally rise up with the improvements in mesh and composition of marble particles. But it is not always followed by the real improvements of compressive and bending strength, which related to the material stiffness. The curves figured that these two strengths give the maximum values at 60% composition of marble particles. It can be concluded that density and hardness are dependent on mesh and composition, whereas the stiffness (modulus) is only correlation with composition of particulate. The theoretical modulus of marble particles composite floor-tile has been evaluated at about 56.19 GPa. (author)

  3. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-12-15

    A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $\\sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, $1.8 < \\eta < 4.9$. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95\\% CL) for masses between 124 and 309 GeV/c$^2$.

  4. Application of Generative Adversarial Networks (GANs) to jet images

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    https://arxiv.org/abs/1701.05927 We provide a bridge between generative modeling in the Machine Learning community and simulated physical processes in High Energy Particle Physics by applying a novel Generative Adversarial Network (GAN) architecture to the production of jet images -- 2D representations of energy depositions from particles interacting with a calorimeter. We propose a simple architecture, the Location-Aware Generative Adversarial Network, that learns to produce realistic radiation patterns from simulated high energy particle collisions. The pixel intensities of GAN-generated images faithfully span over many orders of magnitude and exhibit the desired low-dimensional physical properties (i.e., jet mass, n-subjettiness, etc.). We shed light on limitations, and provide a novel empirical validation of image quality and validity of GAN-produced simulations of the natural world. This work provides a base for further explorations of GANs for use in faster simulation in High Energy Particle Physics.

  5. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Jean A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te-particle

  6. Naima: a Python package for inference of particle distribution properties from nonthermal spectra

    Science.gov (United States)

    Zabalza, V.

    2015-07-01

    The ultimate goal of the observation of nonthermal emission from astrophysical sources is to understand the underlying particle acceleration and evolution processes, and few tools are publicly available to infer the particle distribution properties from the observed photon spectra from X-ray to VHE gamma rays. Here I present naima, an open source Python package that provides models for nonthermal radiative emission from homogeneous distribution of relativistic electrons and protons. Contributions from synchrotron, inverse Compton, nonthermal bremsstrahlung, and neutral-pion decay can be computed for a series of functional shapes of the particle energy distributions, with the possibility of using user-defined particle distribution functions. In addition, naima provides a set of functions that allow to use these models to fit observed nonthermal spectra through an MCMC procedure, obtaining probability distribution functions for the particle distribution parameters. Here I present the models and methods available in naima and an example of their application to the understanding of a galactic nonthermal source. naima's documentation, including how to install the package, is available at http://naima.readthedocs.org.

  7. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.

    2012-01-01

    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and templat...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  8. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy

    Science.gov (United States)

    Bai, Zhangpeng; Ji, Yuan; Pi, Yiqun; Yang, Kaixiang; Wang, Li; Zhang, Yinqi; Zhai, Yadi; Yan, Zhengguang; Han, Xiaodong

    2018-01-01

    Investigating the hygroscopic behavior of haze aerosol particles is essential for understanding their physicochemical properties and their impacts on regional weather and visibility. An environmental scanning electron microscope equipped with a home-made transmission-scattering electron imaging setup and an energy dispersive spectrometer was used for in-situ observations of pure water-soluble (WS) salts and Beijing haze particles. This imaging setup showed obvious advantages for improving the resolution and acquiring internal information of mixed particles in hydrated environments. We measured the deliquescence relative humidity of pure NaCl, NH4NO3, and (NH4)2SO4 by deliquescence-crystallization processes with an accuracy of up to 0.3% RH. The mixed haze particles showed hygroscopic activation like water uptake and morphological changes when they included WS components such as nitrates, sulfates, halides, ammoniums, and alkali metal salts. In addition, the hygroscopic behavior provides complementary information for analyzing possible phases in mixed haze particles.

  9. Theoretical analysis of the particle properties and polarization measurements made in microgravity

    International Nuclear Information System (INIS)

    Penttilae, A.; Lumme, K.; Worms, J.C.; Hadamcik, E.; Renard, J.B.; Levasseur-Regourd, A.C.

    2003-01-01

    We propose a new model to describe the shapes of stochastic polyhedra used in the microgravity experiment PROGRA 2 on board the Airbus A300 aircraft. The polarization measurements of scattering of visible light by boron carbide (B 4 C) particles with sizes between 9 and 88 μm can nicely be explained with the derived shape statistics and the (currently unknown) refractive index obtained. For the latter we derive 2 (-0.15/+0.1)+0.04i(-0.0025/+0.015) at 632.8 nm wavelength. The polarization method is a reliable and sensitive means to estimate various particle properties in various remote sensing applications, including the planetary sciences

  10. Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.

    2016-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the

  11. Automation of aggregate characterization using laser profiling and digital image analysis

    Science.gov (United States)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image

  12. Improvements in mechanical properties in SiC by the addition of TiC particles

    International Nuclear Information System (INIS)

    Wei, G.C.; Becher, P.F.

    1984-01-01

    Silicon carbide ceramics containing up to 24.6 vol% dispersed TiC particles yielded fully dense composites by hot-pressing at 2000 0 C with 1 wt% Al and 1 wt% C added. The microstructure consists of fine TiC particles in a fine-grained SiC matrix. Addition of TiC particles increases the critical fracture toughness of SiC (to approx. =6 MPa /SUP ./ m /SUP 1/2/ at 24.6 vol% TiC) and yields high flexure strength (greater than or equal to 680 MPa), with both properties increasing with increasing volume fraction of TiC. The strengths at high temperatures are also improved by the TiC additions. Observations of the fracture path indicate that the improved toughness and strength are a result of crack deflection by the TiC particles

  13. Dynamical properties for an ensemble of classical particles moving in a driven potential well with different time perturbation

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Caldas, I.L.; Leonel, Edson D.

    2013-01-01

    We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles

  14. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

    Science.gov (United States)

    Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.

    2011-11-01

    We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

  15. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    2001-09-01

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  16. Fluid Flow Characterization of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry

    Science.gov (United States)

    2015-08-01

    completed in order to begin further experimentation. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser ...9 2.3.2 Planar Laser Induced Fluorescence (PLIF...35 Figure 4.4: Solenoid valve (a), proportional control valve (b) and flowmeter (c) ...................................... 36 Figure 4.5

  17. Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles

    International Nuclear Information System (INIS)

    Gonome, Hiroki; Baneshi, Mehdi; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    The objective of this study was to design a pigmented coating with dark appearance that maintains a low temperature while exposed to sunlight. The radiative properties of a black-color coating pigmented with copper oxide (CuO) submicron particles are described. In the present work, the spectral behavior of the CuO-pigmented coating was calculated. The radiative properties of CuO particles were evaluated, and the radiative transfer in the pigmented coating was modeled using the radiation element method by ray emission model (REM 2 ). The coating is made using optimized particles. The reflectivity is measured by spectroscopy and an integrating sphere in the visible (VIS) and near infrared (NIR) regions. By using CuO particles controlled in size, we were able to design a black-color coating with high reflectance in the NIR region. The coating substrate also plays an important role in controlling the reflectance. The NIR reflectance of the coating on a standard white substrate with appropriate coating thickness and volume fraction was much higher than that on a standard black substrate. From the comparison between the experimental and calculated results, we know that more accurate particle size control enables us to achieve better performance. The use of appropriate particles with optimum size, coating thickness and volume fraction on a suitable substrate enables cool and black-color coating against solar irradiation. -- Highlights: • A new approach in designing pigmented coatings was used. • The effects of particles size on both visible and near infrared reflectivities were studied. • The results of numerical calculation were compared with experimental ones for CuO powders

  18. Properties of microcement mortar with nano particles

    Science.gov (United States)

    Alimeneti, Narasimha Reddy

    Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0

  19. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C.

    2014-01-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H 2 SO 4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H 2 SO 4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates

  20. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn; Huang, Z.X.; Luo, J.M.; Zhong, Z.C., E-mail: zzhong.2006@yahoo.com.cn

    2014-04-15

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H{sub 2}SO{sub 4} solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H{sub 2}SO{sub 4} solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates.

  1. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  2. First test model of the optical microscope which images the whole vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The first test model of the optical microscope which produces the in focus image of the whole vertical particle track without depth scanning is described. The in focus image of the object consisting of the linear array of the point-like elements was obtained. A comparison with primary out of focus image of such an object has been made

  3. A study of particle generation during laser ablation with applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  4. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casanova Mohr, R; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schune, M H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    A search is performed for heavy long-lived charged particles using 3.0 [Formula: see text] of proton-proton collisions collected at [Formula: see text][Formula: see text] 7 and 8  TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, [Formula: see text]. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 [Formula: see text].

  5. Ice nucleation properties of atmospheric aerosol particles collected during a field campaign in Cyprus

    Science.gov (United States)

    Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).

  6. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  7. Digital particle image thermometry/velocimetry: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Dana [University of Washington, Department of Aeronautics and Astronautics, Seattle, WA (United States)

    2009-02-15

    Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14-32, 1990; Baughn in Int J Heat Fluid Flow 16:365-375, 1995; Roberts and East in J Spacecr Rockets 33:761-768, 1996; Wozniak et al. in Appl Sci Res 56:145-156, 1996; Behle et al. in Appl Sci Res 56:113-143, 1996; Stasiek in Heat Mass Transf 33:27-39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1-10, 2002; Stasiek et al. in Opt Laser Technol 38:243-256, 2006; Smith et al. in Exp Fluids 30:190-201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487-561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology's most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications. (orig.)

  8. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Directory of Open Access Journals (Sweden)

    Jude Hemanth Duraisamy

    2016-01-01

    Full Text Available Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA and Particle Swarm Optimization (PSO have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT and Finite Ridgelet Transform (FRIT are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  9. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  10. Statistical properties of the normalized ice particle size distribution

    Science.gov (United States)

    Delanoë, Julien; Protat, Alain; Testud, Jacques; Bouniol, Dominique; Heymsfield, A. J.; Bansemer, A.; Brown, P. R. A.; Forbes, R. M.

    2005-05-01

    Testud et al. (2001) have recently developed a formalism, known as the "normalized particle size distribution (PSD)", which consists in scaling the diameter and concentration axes in such a way that the normalized PSDs are independent of water content and mean volume-weighted diameter. In this paper we investigate the statistical properties of the normalized PSD for the particular case of ice clouds, which are known to play a crucial role in the Earth's radiation balance. To do so, an extensive database of airborne in situ microphysical measurements has been constructed. A remarkable stability in shape of the normalized PSD is obtained. The impact of using a single analytical shape to represent all PSDs in the database is estimated through an error analysis on the instrumental (radar reflectivity and attenuation) and cloud (ice water content, effective radius, terminal fall velocity of ice crystals, visible extinction) properties. This resulted in a roughly unbiased estimate of the instrumental and cloud parameters, with small standard deviations ranging from 5 to 12%. This error is found to be roughly independent of the temperature range. This stability in shape and its single analytical approximation implies that two parameters are now sufficient to describe any normalized PSD in ice clouds: the intercept parameter N*0 and the mean volume-weighted diameter Dm. Statistical relationships (parameterizations) between N*0 and Dm have then been evaluated in order to reduce again the number of unknowns. It has been shown that a parameterization of N*0 and Dm by temperature could not be envisaged to retrieve the cloud parameters. Nevertheless, Dm-T and mean maximum dimension diameter -T parameterizations have been derived and compared to the parameterization of Kristjánsson et al. (2000) currently used to characterize particle size in climate models. The new parameterization generally produces larger particle sizes at any temperature than the Kristjánsson et al. (2000

  11. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection

    International Nuclear Information System (INIS)

    Rahmer, J; Gleich, B; Borgert, J; Antonelli, A; Sfara, C; Magnani, M; Tiemann, B; Weizenecker, J

    2013-01-01

    Magnetic particle imaging (MPI) is a new medical imaging approach that is based on the nonlinear magnetization response of super-paramagnetic iron oxide nanoparticles (SPIOs) injected into the blood stream. To date, real-time MPI of the bolus passage of an approved MRI SPIO contrast agent injected into the tail vein of living mice has been demonstrated. However, nanoparticles are rapidly removed from the blood stream by the mononuclear phagocyte system. Therefore, imaging applications for long-term monitoring require the repeated administration of bolus injections, which complicates quantitative comparisons due to the temporal variations in concentration. Encapsulation of SPIOs into red blood cells (RBCs) has been suggested to increase the blood circulation time of nanoparticles. This work presents first evidence that SPIO-loaded RBCs can be imaged in the blood pool of mice several hours after injection using MPI. This finding is supported by magnetic particle spectroscopy performed to quantify the iron concentration in blood samples extracted from the mice 3 and 24 h after injection of SPIO-loaded RBCs. Based on these results, new MPI applications can be envisioned, such as permanent 3D real-time visualization of the vessel tree during interventional procedures, bleeding monitoring after stroke, or long-term monitoring and treatment control of cardiovascular diseases. (paper)

  12. Theoretical analysis of the particle properties and polarization measurements made in microgravity

    CERN Document Server

    Penttilae, A; Worms, J C; Hadamcik, E; Renard, J B; Levasseur-Regourd, A C

    2003-01-01

    We propose a new model to describe the shapes of stochastic polyhedra used in the microgravity experiment PROGRA sup 2 on board the Airbus A300 aircraft. The polarization measurements of scattering of visible light by boron carbide (B sub 4 C) particles with sizes between 9 and 88 mu m can nicely be explained with the derived shape statistics and the (currently unknown) refractive index obtained. For the latter we derive 2 (-0.15/+0.1)+0.04i(-0.0025/+0.015) at 632.8 nm wavelength. The polarization method is a reliable and sensitive means to estimate various particle properties in various remote sensing applications, including the planetary sciences.

  13. Effects of liquid morphology and distribution on the apparent properties of porous media made of stacked particles

    Directory of Open Access Journals (Sweden)

    Mingzhi Yu

    2015-05-01

    Full Text Available To understand the effects of liquid morphology on the apparent transfer properties of porous media formed by stacked particles, the authors investigate the particles’ aggregation state, apparent volume, thermal conductivity, and electrical conductivity of wet stacked glass beads. It shows that the liquid mainly exists as liquid bridges when the liquid content is low and connects each other when high. The transformation of liquid morphology and distribution influences the liquid effects on particles, thus changing the aggregation state of the particles and the apparent properties of the porous media in turn. A model is developed for predicting the critical liquid content at which the liquid morphology shifts from the state of liquid bridges into the state of interconnectedness. The prediction from the model is in good agreement with the experiment.

  14. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  15. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  16. Correcting saturation of detectors for particle/droplet imaging methods

    International Nuclear Information System (INIS)

    Kalt, Peter A M

    2010-01-01

    Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels

  17. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  18. Development and assessment of transparent soil and particle image velocimetry in dynamic soil-structure interaction

    Science.gov (United States)

    2007-02-01

    This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...

  19. Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.

    2016-11-01

    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.

  20. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    Science.gov (United States)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.