WorldWideScience

Sample records for particle dynamics simulations

  1. Computational plasticity algorithm for particle dynamics simulations

    Science.gov (United States)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  2. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  3. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  4. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    International Nuclear Information System (INIS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-01-01

    Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  5. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  6. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2004-01-01

    Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and

  7. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  8. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  9. Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction

    International Nuclear Information System (INIS)

    Liu Moubin; Meakin, Paul; Huang Hai

    2007-01-01

    Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method to simulate fluid motion in unsaturated fractures is described. Unlike the conventional DPD method that employs a purely repulsive conservative (non-dissipative) particle-particle interaction to simulate the behavior of gases, we used conservative particle-particle interactions that combine short-range repulsive and long-range attractive interactions. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids and solids to be simulated. Our simulation results demonstrate that, for a fracture with flat parallel walls, the DPD method with the new interaction potential function is able to reproduce the hydrodynamic behavior of fully saturated flow, and various unsaturated flow modes including thin film flow, wetting and non-wetting flow. During simulations of flow through a fracture junction, the fracture junction can be fully or partially saturated depending on the wetting property of the fluid, the injection rate and the geometry of the fracture junction. Flow mode switching from a fully saturated flow to a thin film flow can also be observed in the fracture junction

  10. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    Science.gov (United States)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately

  11. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    Science.gov (United States)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-08-01

    Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  12. GPU accelerated Discrete Element Method (DEM) molecular dynamics for conservative, faceted particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spellings, Matthew [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Marson, Ryan L. [Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Anderson, Joshua A. [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States)

    2017-04-01

    Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.

  13. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  14. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  15. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  16. Micellar polymerization: Computer simulations by dissipative particle dynamics.

    Science.gov (United States)

    Shupanov, Ruslan; Chertovich, Alexander; Kos, Pavel

    2018-07-15

    Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. Simulations of ferrofluid dynamics: Rigid dipoles model versus particles with internal degrees of freedom

    International Nuclear Information System (INIS)

    Berkov, D.V.; Gorn, N.L.; Stock, D.

    2007-01-01

    For numerical studies of a ferrofluid dynamics we have developed a model which includes internal magnetic degrees of freedom of ferrofluid particles. Contrary to standard models, we take into account that the magnetocrystalline anisotropy of a ferrofluid particle material is finite, so that the particle moment is allowed to rotate with respect to the particle itself. Simulating magnetization relaxation of a ferrofluid after switching off the external field and comparing results with those obtained for rigid dipoles model, we demonstrate that for anisotropy typical for commonly used ferrofluid materials inclusion of 'magnetic' degrees of freedom is essential for a correct description of ferrofluid dynamics

  18. A multilevel particle method for gas dynamics: application to multi-fluids simulation

    International Nuclear Information System (INIS)

    Weynans, Lisl

    2006-12-01

    In inertial confinement fusion, laser implosions require to know hydrodynamic flow in presence of shocks. This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gas dynamics, especially multi-fluids. First, we develop a particle method, associated with a conservative re-meshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite difference schemes. We introduce a new scheme for the advection of particles. Then we implement a multilevel technique, inspired from AMR, which allows us to increase locally the accuracy of the computations. Finally we develop a level set-like technique, discretized on the particles, to simulate the interface between compressible flows. We use the multilevel technique to improve the interface resolution and the conservation of partial masses. (author)

  19. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  20. The programme library for numerical simulation of charged particle dynamics in transportation lines

    International Nuclear Information System (INIS)

    Aleksandrov, V.S.; Shevtsov, V.F.; Shirkov, G.D.; Batygin, Yu.K.

    1998-01-01

    The description of a PC codes library to simulate the beam transportation of charged particles is presented. The codes are realized on IBM PC in Visual Basic common interface. It is destined for the simulation and optimization of beam dynamics and based on the successive and consistent use of two methods: the momentum method of distribution functions (RMS technique) and the particle-particle method (PP-Method). The library allows to calculate the RMS parameters of electron and ion beams, passing through a set of quadrupoles, solenoids, bends, accelerating sections. The RMS code is a fast code very suitable for the first test, design and optimization of the beam line parameters. The PP code requires more time for execution but provides a high accuracy of simulation taking into account the space charge effects, aberrations and beam losses. One of the main advantages of PP code presented here is an ability to simulate a real multicomponent beam of different masses and charged states of ions from ion sources

  1. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    Science.gov (United States)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  2. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    Science.gov (United States)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  3. A particle based simulation model for glacier dynamics

    Directory of Open Access Journals (Sweden)

    J. A. Åström

    2013-10-01

    Full Text Available A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1 calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2 fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.

  4. Jdpd: an open java simulation kernel for molecular fragment dissipative particle dynamics.

    Science.gov (United States)

    van den Broek, Karina; Kuhn, Hubert; Zielesny, Achim

    2018-05-21

    Jdpd is an open Java simulation kernel for Molecular Fragment Dissipative Particle Dynamics with parallelizable force calculation, efficient caching options and fast property calculations. It is characterized by an interface and factory-pattern driven design for simple code changes and may help to avoid problems of polyglot programming. Detailed input/output communication, parallelization and process control as well as internal logging capabilities for debugging purposes are supported. The new kernel may be utilized in different simulation environments ranging from flexible scripting solutions up to fully integrated "all-in-one" simulation systems.

  5. Friction between Two Brownian Particles in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Song Hi

    2010-01-01

    We presented a molecular dynamics (MD) simulation study of friction behavior between two very massive Brownian particles (BPs) oriented along the z axis with BP centers at -R 12 /2 and R 12 /2 in a Lennard-Jones solvent as a function of the inter-particle separation, R 12 . In order to fix the BPs in space an MD simulation method with the mass of the BP as 10 90 g/mol was employed in which the total momentum of the system was conserved. The cross friction coefficients of x- and y-components are nearly insensitive to R 12 but that of z-component varies with R 12 in good accord with the simple hydrodynamic approximation. On the other hand, the self-friction coefficients are estimated as a very small difference from the single particle friction coefficients, ξ 0 , at all inter-particle separations which agrees with the simple hydrodynamic approximation. Consequently ξ (-) xx is nearly independent of R 12 and equal to its asymptotic value of twice the single particle friction coefficient, and the other relative friction, ξ (-) zz , is in good agreement with the simple hydrodynamic approximation. Molecular theory of Brownian motion of a single heavy particle in a fluid had received a considerable attention in earlier years. After molecular dynamics (MD) simulation technique was utilized, this subject has been widely studied by a variety of MD simulation methods. The common issues here were about the long time behavior of the force and velocity autocorrelation functions, the system size dependent friction coefficient of a massive Brownian particle, and test of the Stokes-Einstein law

  6. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....

  7. Modification of the RTMTRACE program for numerical simulation of particle dynamics at racetrack microtrons with account of space charge forces

    International Nuclear Information System (INIS)

    Surma, I.V.; Shvedunov, V.I.

    1993-01-01

    The paper presents modification results of the program for simulation of particle dynamics in cyclic accelerators with RTMTRACE linear gap. The program was modified with regard for the effect of space charge effect on particle dynamics. Calculation results of particle dynamics in 1 MeV energy continuous-duty accelerator with 10 kw beam were used to develop continuous powerful commercial accelerator. 3 refs., 2 figs

  8. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vijaykumar, Adithya, E-mail: vijaykumar@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Bolhuis, Peter G. [van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Rein ten Wolde, Pieter, E-mail: p.t.wolde@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2015-12-07

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.

  9. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    International Nuclear Information System (INIS)

    Vijaykumar, Adithya; Bolhuis, Peter G.; Rein ten Wolde, Pieter

    2015-01-01

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level

  10. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  11. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  12. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  13. Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.

    Science.gov (United States)

    Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M

    2016-07-01

    In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Numerical simulation on void bubble dynamics using moving particle semi-implicit method

    International Nuclear Information System (INIS)

    Tian Wenxi; Ishiwatari, Yuki; Ikejiri, Satoshi; Yamakawa, Masanori; Oka, Yoshiaki

    2009-01-01

    In present study, the collapse of void bubble in liquid has been simulated using moving particle semi-implicit (MPS) code. The liquid is described using moving particles and the bubble-liquid interface was set to be vacuum pressure boundary without interfacial heat mass transfer. The topological shape of bubble can be traced according to the motion and location of interfacial particles. The time dependent bubble diameter, interfacial velocity and bubble collapse time were obtained under wide parametric range. The comparison with Rayleigh and Zababakhin's prediction showed a good agreement which validates the applicability and accuracy on MPS method in solving present momentum problems. The potential void induced water hammer pressure pulse was also evaluated which is instructive for further material erosion study. The bubble collapse with non-condensable gas has been further simulated and the rebound phenomenon was successfully captured which is similar with vapor-filled cavitation phenomenon. The present study exhibits some fundamental characteristics of void bubble hydrodynamics and it is also expected to be instructive for further applications of MPS method to complicated bubble dynamics problems.

  15. Nonlinear dynamics aspects of particle accelerators

    International Nuclear Information System (INIS)

    Jowett, J.M.; Turner, S.; Month, M.

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)

  16. Molecular dynamics simulations of laser disintegration of amorphous aerosol particles with spatially nonuniform absorption

    International Nuclear Information System (INIS)

    Schoolcraft, Tracy A.; Constable, Gregory S.; Jackson, Bryan; Zhigilei, Leonid V.; Garrison, Barbara J.

    2001-01-01

    A series of molecular dynamics (MD) simulations are performed in order to provide qualitative information on the mechanisms of disintegration of aerosol particles as used in aerosol mass spectrometry. Three generic types of aerosol particles are considered: strongly absorbing particles with homogeneous composition, transparent particles with absorbing inclusion, and absorbing particles with transparent inclusion. To study the effect of the mechanical properties of the aerosol material on the disintegration process, the results for crystalline (brittle) and amorphous (ductile) particles are compared. For large laser fluences, nearly complete dissociation of the absorbing material is observed, whereas the nonabsorbing portions remain fairly intact. Because large fluences can cause photofragmentation of constituent molecules, multiple pulses at low laser fluence and/or lasers with different wavelengths are recommended for the best representative sampling of multicomponent aerosol particles in laser desorption/ionization (LDI) mass spectrometry

  17. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  18. Radiation in Particle Simulations

    International Nuclear Information System (INIS)

    More, R.; Graziani, F.; Glosli, J.; Surh, M.

    2010-01-01

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of

  19. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  20. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Science.gov (United States)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  1. Nonlinear dynamics aspects of particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jowett, J M; Turner, S; Month, M

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).

  2. Particle-based solid for nonsmooth multidomain dynamics

    Science.gov (United States)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  3. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.

    2003-01-01

    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as

  4. Granular dynamics, contact mechanics and particle system simulations a DEM study

    CERN Document Server

    Thornton, Colin

    2015-01-01

    This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...

  5. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    Science.gov (United States)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  6. Understanding bulk behavior of particulate materials from particle scale simulations

    Science.gov (United States)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not

  7. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  8. A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics

    Science.gov (United States)

    Ghorbani, Najmeh; Pishevar, Ahmadreza

    2018-01-01

    A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid-liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie's law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.

  9. Comparison of GPU-Based Numerous Particles Simulation and Experiment

    International Nuclear Information System (INIS)

    Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook

    2014-01-01

    The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment

  10. Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators

    International Nuclear Information System (INIS)

    Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.

    1999-01-01

    In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design

  11. Gyrokinetic particle simulation of neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-01-01

    A time varying weighting (δf ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. copyright 1995 American Institute of Physics

  12. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    Science.gov (United States)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  13. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    International Nuclear Information System (INIS)

    Kamberaj, Hiqmet

    2015-01-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias

  14. Dynamics of neutral and charged aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Leppae, J.

    2012-07-01

    Atmospheric aerosol particles have various climate effects and adverse health effects, which both depend on the size and number concentration of the particles. Freshly-formed particles are not large enough to impact neither health nor climate and they are most susceptible to removal by collisions with larger pre-existing particles. Consequently, the knowledge of both the formation and the growth rate of particles are crucially important when assessing the health and climate effects of atmospheric new particle formation. The purpose of this thesis is to increase our knowledge of the dynamics of neutral and charged aerosol particles with a specific interest towards the particle growth rate and processes affecting the aerosol charging state. A new model, Ion-UHMA, which simulates the dynamics of neutral and charged particles, was developed for this purpose. Simple analytical formulae that can be used to estimate the growth rate due to various processes were derived and used to study the effects of charged particles on the growth rate. It was found that the growth rate of a freshly-formed particle population due to condensation and coagulation could be significantly increased when a considerable fraction of the particles are charged. Finally, recent data-analysis methods that have been applied to the aerosol charging states obtained from the measurements were modified for a charge asymmetric framework. The methods were then tested on data obtained from aerosol dynamics simulations. The methods were found to be able to provide reasonable estimates on the growth rate and proportion of particles formed via ion-induced nucleation, provided that the growth rate is high enough and that the charged particles do not grow much more rapidly than the neutral ones. A simple procedure for estimating whether the methods are suitable for analysing data obtained in specific conditions was provided. In this thesis, the dynamics of neutral and charged aerosol particles were studied in

  15. Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions.

    Science.gov (United States)

    Cuetos, Alejandro; Patti, Alessandro

    2015-08-01

    We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.

  16. Towards better integrators for dissipative particle dynamics simulations

    DEFF Research Database (Denmark)

    Besold, Gerhard; Vattulainen, Ilpo Tapio; Karttunen, Mikko

    2000-01-01

    Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the com...

  17. Numerical modelling of adsorption of metallic particles on graphite substrate via molecular dynamics simulation

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    1998-01-01

    A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation related to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specially formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. (author)

  18. Structures and dynamics in a two-dimensional dipolar dust particle system

    Science.gov (United States)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  19. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  20. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens

    2011-01-01

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  1. Simulation of quantum dynamics with integrated photonics

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  2. Full particle simulations of quasi-perpendicular shocks

    Science.gov (United States)

    Lembège, B.

    This tutorial-style review is dedicated to the different strategies and constraints used for analysing the dynamics of a collisionless shocks with full particle simulations. Main results obtained with such simulations can be found in published materials (recent references are provided in this text); these will be only quoted herein in order to illustrate a few aspects of these simulations. Thanks to the large improvement of super computers, full particle simulations reveal to be quite helpful for analyzing in details the dynamics of collisionless shocks. The main characteristics of such codes can be shortly reminded as follows: one resolves the full set of Poisson and Maxwell's equations without any approximation. Two approaches are commonly used for resolving this equation's set, more precisely the space derivatives: (i) the finite difference approach and (ii) the use of FFT's (Fast Fourier Transform). Two advantages of approach (ii) are that FFT's are highly optimized in supercomputers libraries, and these allow to separate all fields components into two groups: the longitudinal electrostatic component El (solution of Poisson equation) and the transverse electromagnetic components Et and Bt solutions of the Maxwell's equations (so called "fields pusher"). Such a separation is quite helpful in the post processing stage necessary for the data analysis, as will be explained in the presentation. both ions and electrons populations are treated as individual finite-size particles and suffer the effects of all fields via the Lorentz force, so called "particle pusher", which is applied to each particle. Because of the large number of particles commonly used, the particle pusher represents the most expensive part of the calculations on which most efforts of optimisation needs to be performed (in terms of "vectorisation" or of "parallelism"). Relativistic effects may be included in this force via the use of particle momemtum. Each particle has three velocity components (vx

  3. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.

    Directory of Open Access Journals (Sweden)

    Johannes Schöneberg

    Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

  4. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  5. Thermal Fluctuations in Smooth Dissipative Particle Dynamics simulation of mesoscopic thermal systems

    Science.gov (United States)

    Gatsonis, Nikolaos; Yang, Jun

    2013-11-01

    The SDPD-DV is implemented in our work for arbitrary 3D wall bounded geometries. The particle position and momentum equations are integrated with a velocity-Verlet algorithm and the entropy equation is integrated with a Runge-Kutta algorithm. Simulations of nitrogen gas are performed to evaluate the effects of timestep and particle scale on temperature, self-diffusion coefficient and shear viscosity. The hydrodynamic fluctuations in temperature, density, pressure and velocity from the SDPD-DV simulations are evaluated and compared with theoretical predictions. Steady planar thermal Couette flows are simulated and compared with analytical solutions. Simulations cover the hydrodynamic and mesocopic regime and show thermal fluctuations and their dependence on particle size.

  6. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  7. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    Science.gov (United States)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  8. Liquid-vapor coexistence by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Baranyai, Andras; Cummings, Peter T.

    2000-01-01

    We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics

  9. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  10. Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study

    International Nuclear Information System (INIS)

    Li, Xuejin; Karniadakis, George Em; Popel, Aleksander S

    2012-01-01

    The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a validated low-dimensional RBC model based on dissipative particle dynamics. Specifically, the RBC is represented as a closed torus-like ring of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation over a wide range of hematocrits. Adaptive no-slip wall boundary conditions were implemented to model hydrodynamic flow within a specific wall structure of diverging three-dimensional microfluidic channels, paying attention to controlling density fluctuations. Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic channel have been investigated in our simulations for healthy and diseased blood, including the size of a cell-free layer on the daughter branches. The feed hematocrit level in the parent channel has considerable influence on blood–plasma separation. Compared to the blood–plasma separation efficiencies of healthy RBCs, malaria-infected stiff RBCs (iRBCs) have a tendency to travel into the low flow-rate daughter branch because of their different initial distribution in the parent channel. Our simulation results are consistent with previously published experimental results and theoretical predictions. (paper)

  11. Universal shape characteristics for the mesoscopic star-shaped polymer via dissipative particle dynamics simulations

    Science.gov (United States)

    Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.

    2018-05-01

    In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.

  12. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    Science.gov (United States)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  13. Dynamic simulation of an electrorheological fluid

    International Nuclear Information System (INIS)

    Bonnecaze, R.T.; Brady, J.F.

    1992-01-01

    A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure

  14. Dynamics and statistics of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.

    2006-01-01

    We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical

  15. CECAM Workshop: Dissipative Particle Dynamics: Addressing Deficiencies and Establishing NewFrontiers

    Czech Academy of Sciences Publication Activity Database

    Brennan, J.K.; Lísal, Martin

    2009-01-01

    Roč. 35, č. 9 (2009), s. 766-769 ISSN 0892-7022. [CECAM Worskhop on the Dissipative Particle Dynamic Method (DPD). Lausanne, 16.07.2008-18.07.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : mesoscale * simulation * dissipative particle dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.028, year: 2009

  16. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  17. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  18. Substorm effects in MHD and test particle simulations of magnetotail dynamics

    International Nuclear Information System (INIS)

    Birn, J.; Hesse, M.

    1998-01-01

    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures

  19. IFR code for secondary particle dynamics

    International Nuclear Information System (INIS)

    Teague, M.R.; Yu, S.S.

    1985-01-01

    A numerical simulation has been constructed to obtain a detailed, quantitative estimate of the electromagnetic fields and currents existing in the Advanced Test Accelerator under conditions of laser guiding. The code treats the secondary electrons by particle simulation and the beam dynamics by a time-dependent envelope model. The simulation gives a fully relativistic description of secondary electrons moving in self-consistent electromagnetic fields. The calculations are made using coordinates t, x, y, z for the electrons and t, ct-z, r for the axisymmetric electromagnetic fields and currents. Code results, showing in particular current enhancement effects, will be given

  20. Single-particle and collective dynamics of methanol confined in carbon nanotubes: a computer simulation study

    International Nuclear Information System (INIS)

    Garberoglio, Giovanni

    2010-01-01

    We present the results of computer simulations of methanol confined in carbon nanotubes. Different levels of confinement were identified as a function of the nanotube radius and characterized using a pair-distribution function adapted to the cylindrical geometry of these systems. Dynamical properties of methanol were also analysed as a function of the nanotube size, both at the level of single-particle and collective properties. We found that confinement in narrow carbon nanotubes strongly affects the dynamical properties of methanol with respect to the bulk phase, due to the strong interaction with the carbon nanotube. In the other cases, confined methanol shows properties quite similar to those of the bulk phase. These phenomena are related to the peculiar hydrogen bonded network of methanol and are compared to the behaviour of water confined in similar conditions. The effect of nanotube flexibility on the dynamical properties of confined methanol is also discussed.

  1. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    Science.gov (United States)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  2. Topological defect and quasi-particle dynamics in charge density waves

    International Nuclear Information System (INIS)

    Hayashi, Masahiko; Ebisawa, Hiromichi

    2010-01-01

    The dynamics of topological defects (dislocations) in charge density waves (CDW's) is largely affected by the quasi-particle dynamics in the cores of the dislocations. The dislocations mediate the conversion of the electron number between condensate and quasi-particle sub-systems. This is especially important in the sliding conduction of CDW. In this work we propose a simple model, which is obtained by extending the Ginzburg-Landau theory partially taking into account the quasi-particle dynamics in the sense of two-fluid model. We perform the numerical simulation of sliding conduction of CDW based on our model. Using this model we may clarify the detailed process of dislocation nucleation and annihilation near the contacts.

  3. Simulations of Operation Dynamics of Different Type GaN Particle Sensors

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas; Pavlov, Jevgenij; Vysniauskas, Juozas

    2015-01-01

    The operation dynamics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the software package Synopsys TCAD Sentaurus. The monopolar and bipolar drift regimes have been analyzed by using dynamic models based on the Shockley-Ramo theorem. The carrier multiplication processes determined by impact ionization have been considered in order to compensate carrier lifetime reduction due to introduction of radiation defects into GaN detector material. PMID:25751080

  4. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    Science.gov (United States)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  5. Parallelization of quantum molecular dynamics simulation code

    International Nuclear Information System (INIS)

    Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu

    1998-02-01

    A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)

  6. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Choomphon-anomakhun, Natthaphon [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ebner, Armin D. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Natenapit, Mayuree [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ritter, James A. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2017-04-15

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical

  7. A simple dynamic subgrid-scale model for LES of particle-laden turbulence

    Science.gov (United States)

    Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz

    2017-04-01

    In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.

  8. Dynamic behavior of a solid particle bed in a liquid pool

    International Nuclear Information System (INIS)

    Liu Ping; Yasunaka, Satoshi; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Tobita, Yoshiharu

    2007-01-01

    Dynamic behavior of solid particle beds in a liquid pool against pressure transients was investigated to model the mobility of core materials in a postulated disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different bed heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure sources. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Comparisons between simulated and experimental results show that the physical model for multiphase flows used in the SIMMER-III code can reasonably represent the transient behaviors of pool multiphase flows with rich solid phases, as observed in the current experiments. This demonstrates the basic validity of the SIMMER-III code on simulating the dynamic behaviors induced by pressure transients in a low-energy disrupted core of a liquid metal fast reactor with rich solid phases

  9. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

  10. Development of RFQ particle dynamics simulation tools and validation with beam tests

    Energy Technology Data Exchange (ETDEWEB)

    Maus, Johannes M.

    2010-07-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  11. Development of RFQ particle dynamics simulation tools and validation with beam tests

    International Nuclear Information System (INIS)

    Maus, Johannes M.

    2010-01-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  12. Enhanced stopping of macro-particles in particle-in-cell simulations

    International Nuclear Information System (INIS)

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Ren, C.

    2014-01-01

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q 2 /m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles

  13. Parallel Monte Carlo simulation of aerosol dynamics

    KAUST Repository

    Zhou, K.

    2014-01-01

    A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.

  14. Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence

    Science.gov (United States)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2017-11-01

    In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.

  15. Numerical simulation of particle dynamics in storage rings using BETACOOL program

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pivin, R.V.; Sidorin, A.O.; Smirnov, A.V.; Trubnikov, G.V.

    2006-01-01

    BETACOOL program developed by JINR electron cooling group is a kit of algorithms based on common format of input and output files. The program is oriented to simulation of the ion beam dynamics in a storage ring in the presence of cooling and heating effects. The version presented in this report includes three basic algorithms: simulation of rms parameters of the ion distribution function evolution in time, simulation of the distribution function evolution using Monte-Carlo method and tracking algorithm based on molecular dynamics technique. General processes to be investigated with the program are intrabeam scattering in the ion beam, electron cooling, interaction with residual gas and internal target

  16. Viscosity of dilute suspensions of rodlike particles: A numerical simulation method

    Science.gov (United States)

    Yamamoto, Satoru; Matsuoka, Takaaki

    1994-02-01

    The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.

  17. Role of quantum statistics in multi-particle decay dynamics

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'el

    2015-04-01

    The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.

  18. Role of quantum statistics in multi-particle decay dynamics

    International Nuclear Information System (INIS)

    Marchewka, Avi; Granot, Er’el

    2015-01-01

    The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested

  19. Role of quantum statistics in multi-particle decay dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Marchewka, Avi, E-mail: avi.marchewka@gmail.com [Galei Tchelet St 8 Herzliya (Israel); Granot, Er’el [Department of Electrical and Electronics Engineering, Ariel University, Ariel (Israel)

    2015-04-15

    The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.

  20. Particle-in-cell Simulations with Kinetic Electrons

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    A new scheme, based on an exact separation between adiabatic and nonadiabatic electron responses, for particle-in-cell (PIC) simulations of drift-type modes is presented. The (linear and nonlinear) elliptic equations for the scalar fields are solved using a multi-grid solver. The new scheme yields linear growth rates in excellent agreement with theory and it is shown to conserve energy well into the nonlinear regime. It is also demonstrated that simulations with few electrons are reliable and accurate, suggesting that large-scale, PIC simulations with electron dynamics in toroidal geometry (e.g., tokamaks and stellarators plasmas) are within reach of present-day massively parallel supercomputers

  1. Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension: Monte Carlo and Brownian dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazuya [School of Akita Prefectural University, Yurihonjo (Japan); Satoh, Akira, E-mail: asatoh@akita-pu.ac.jp [Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo (Japan)

    2017-09-01

    Highlights: • Monte Carlo simulations have been employed for the aggregate structures. • Brownian dynamics simulations have been employed for the magneto-rheology. • Even a weak shear flow induces a significant regime change in the aggregates. • A strong external magnetic field drastically changes the aggregates. • The dependence of the viscosity on these factors is governed in a complex manner. - Abstract: In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the

  2. A hybrid parallel architecture for electrostatic interactions in the simulation of dissipative particle dynamics

    Science.gov (United States)

    Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping

    2017-11-01

    In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program Files doi:http://dx.doi.org/10.17632/zncf24fhpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA GPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space

  3. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Science.gov (United States)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  4. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Boytsov A. Yu.

    2018-01-01

    Full Text Available Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  5. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-01

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  6. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-06

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  7. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics...... within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles...

  8. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    Science.gov (United States)

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  9. Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data

    International Nuclear Information System (INIS)

    Ferreira, C J Simao; Bijl, H; Bussel, G van; Kuik, G van

    2007-01-01

    The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: .comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-ε) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) .verifying the sensitivity of the model to its grid refinement (space and time), .evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simao Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement

  10. Dynamic simulations of many-body electrostatic self-assembly

    Science.gov (United States)

    Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.

    2018-03-01

    Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.

  11. Cloud-particle galactic gas dynamics and star formation

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)

  12. Probing Cellular Dynamics with Mesoscopic Simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...

  13. Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Blazniak Andreasen, Marcin; Andresen, Henrik Assenholm

    2010-01-01

    The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode...

  14. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    This paper focuses on shear deformation of particle gels. Two different methods of shear deformation are discussed, namely affine and non-affine deformation, the second being novel in simulation studies of gels. Non-affine deformation resulted in a slower increase of the stress at small deformation.

  15. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  16. Stable schemes for dissipative particle dynamics with conserved energy

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr

    2017-07-01

    This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.

  17. An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Donev, A; Garcia, A L; Alder, B J

    2007-07-30

    A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.

  18. Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing

    Science.gov (United States)

    Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.

    2010-12-01

    The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.

  19. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    International Nuclear Information System (INIS)

    QIANG, J.; RYNE, R.; HABIB, S.

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators

  20. Simulations of the structure and dynamics of nanoparticle-based ionic liquids

    KAUST Repository

    Hong, Bingbing; Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2012-01-01

    We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear

  1. Parallel beam dynamics simulation of linear accelerators

    International Nuclear Information System (INIS)

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies

  2. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Directory of Open Access Journals (Sweden)

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  3. Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2011-01-01

    The Moving Particle Semi-implicit (MPS) method is one of the particle methods in which continuum mechanics is analyzed using the concept of particles. Since meshes are not used, large deformation of free surfaces and material interfaces can be simulated without the problems of mesh distortion. Thus, the MPS method has been applied to multiphase flow analysis in nuclear engineering. The advantages of the particle methods are also useful for applications in other engineering fields: ship engineering, civil engineering, microflow, biomechanics, visualization, etc. In this review, calculation examples are described and classified. Commercial codes have been released and applied in industries. The particle methods are also used in TV programs, movies, and computer games. Combinations of numerical techniques for multiphysics problems, fast calculations, and high-quality visualizations are expected to lead to real-time particle simulations for various new applications in the near future. (author)

  4. Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats

    Science.gov (United States)

    Stalter, S.; Yelash, L.; Emamy, N.; Statt, A.; Hanke, M.; Lukáčová-Medvid'ová, M.; Virnau, P.

    2018-03-01

    Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.

  5. Hydrodynamic relaxations in dissipative particle dynamics

    Science.gov (United States)

    Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.

    2018-01-01

    This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

  6. Huge-scale molecular dynamics simulation of multibubble nuclei

    KAUST Repository

    Watanabe, Hiroshi

    2013-12-01

    We have developed molecular dynamics codes for a short-range interaction potential that adopt both the flat-MPI and MPI/OpenMP hybrid parallelizations on the basis of a full domain decomposition strategy. Benchmark simulations involving up to 38.4 billion Lennard-Jones particles were performed on Fujitsu PRIMEHPC FX10, consisting of 4800 SPARC64 IXfx 1.848 GHz processors, at the Information Technology Center of the University of Tokyo, and a performance of 193 teraflops was achieved, which corresponds to a 17.0% execution efficiency. Cavitation processes were also simulated on PRIMEHPC FX10 and SGI Altix ICE 8400EX at the Institute of Solid State Physics of the University of Tokyo, which involved 1.45 billion and 22.9 million particles, respectively. Ostwald-like ripening was observed after the multibubble nuclei. Our results demonstrate that direct simulations of multiscale phenomena involving phase transitions from the atomic scale are possible and that the molecular dynamics method is a promising method that can be applied to petascale computers. © 2013 Elsevier B.V. All rights reserved.

  7. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  8. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  9. Simulation of particle suspensions at the Institute for Computational Physics

    NARCIS (Netherlands)

    Harting, J.D.R.; Hecht, M.; Herrmann, H.J.; Nagel, W.E.; Jäger, W.; Resch, M.M.

    2006-01-01

    In this report we describe some of our projects related to the simulation of particle-laden flows. We give a short introduction to the topic and the methods used, namely the Stochastic Rotation Dynamics and the lattice Boltzmann method. Then, we show results from our work related to the behaviour of

  10. Lattice-Boltzmann Method with Dynamic Grid Refinement for Simulating Particle Deposition on a Single Fibre

    Directory of Open Access Journals (Sweden)

    Helmut Schomburg

    2013-03-01

    Full Text Available In this work a numerical approach to predict the deposition behaviour of nano-scale particles on the surface of a single fibre by resolving the resulting dendrite-like particle structures in detail is presented. The gas flow simulation is carried out by a two-dimensional Lattice-Boltzmann method, which is coupled with a Lagrangian approach for the particle motion. To decrease calculation time and system requirements the Lattice-Boltzmann model is extended to allow for local grid refinement. Because of the a priori unknown location of deposition, the simulation procedure starts on a coarse mesh which is then locally refined in a fully adaptive way in regions of accumulated particles. After each deposition the fluid flow is recalculated in order to resolve the coupling of the flow with the growing particle structures correctly. For the purpose of avoiding unphysical blocking of flow by growing particle dendrites the Lattice-Boltzmann method is extended to permeable cells in these regions using the Brinkmann equation. This extended deposition model is compared to simpler approaches, where the deposit has no retroaction on the flow or is treated as a solid structure. It is clear that the permeable model is most realistic and allows considering the particle deposition on a fibre as two-dimensional problem. Comprehensive simulations were conducted for analysing the importance of different parameters, i.e. free-stream velocity and particle diameter on the deposit structure. The results of this sensitivity analysis agree qualitatively well with former published numerical and experimental results. Finally the structure of the particle deposit was quantitatively characterised by using a modified fractal dimension.

  11. Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations

    International Nuclear Information System (INIS)

    Yegin, G.

    2008-01-01

    In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems

  12. Explicit simulation of ice particle habits in a Numerical Weather Prediction Model

    Science.gov (United States)

    Hashino, Tempei

    2007-05-01

    This study developed a scheme for explicit simulation of ice particle habits in Numerical Weather Prediction (NWP) Models. The scheme is called Spectral Ice Habit Prediction System (SHIPS), and the goal is to retain growth history of ice particles in the Eulerian dynamics framework. It diagnoses characteristics of ice particles based on a series of particle property variables (PPVs) that reflect history of microphysieal processes and the transport between mass bins and air parcels in space. Therefore, categorization of ice particles typically used in bulk microphysical parameterization and traditional bin models is not necessary, so that errors that stem from the categorization can be avoided. SHIPS predicts polycrystals as well as hexagonal monocrystals based on empirically derived habit frequency and growth rate, and simulates the habit-dependent aggregation and riming processes by use of the stochastic collection equation with predicted PPVs. Idealized two dimensional simulations were performed with SHIPS in a NWP model. The predicted spatial distribution of ice particle habits and types, and evolution of particle size distributions showed good quantitative agreement with observation This comprehensive model of ice particle properties, distributions, and evolution in clouds can be used to better understand problems facing wide range of research disciplines, including microphysics processes, radiative transfer in a cloudy atmosphere, data assimilation, and weather modification.

  13. Simulations of the structure and dynamics of nanoparticle-based ionic liquids

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear or three-arm counterions, which also act as the solvent. A comparable uncharged model of nanoparticles with tethered chains is also studied. The pair correlation functions display a rich structure resulting from the packing of cores and chains, as well as electrostatic effects. Even though electrostatic interactions between oppositely charged ions at contact are much greater than the thermal energy, we find that chain dynamics at intermediate time scales are dominated by chain hopping between core particles. The uncharged core particles with tethered chains diffuse faster than the ionic core particles. © 2012 The Royal Society of Chemistry.

  14. Static and dynamic properties of smoothed dissipative particle dynamics

    Science.gov (United States)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  15. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  16. Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Ido, Y; Inagaki, T; Yamaguchi, T

    2010-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in magnetorheological (MR) fluids is investigated using the particle method simulation based on simplified Stokesian dynamics. Spherical nonmagnetic particles are rearranged in the field direction due to the formation of magnetic particles in chain-like clusters. Cluster formation of spherocylindrical magnetic particles forces spherical nonmagnetic particles to arrange in the direction of the field. In contrast, the spherocylindrical nonmagnetic particles, with an aspect ratio of two or three, are not sufficiently rearranged in the field direction by cluster formation of spherical magnetic particles. Even after cluster formation in the presence of a magnetic field, the uniformity of distribution of particles on the plane perpendicular to the field direction shows very little change. However, the deviation of uniformity in particle distribution is reduced when the volume fraction of magnetic particles is the same as that of nonmagnetic particles.

  17. From molecular dynamics and particle simulations towards constitutive relations for continuum theory

    NARCIS (Netherlands)

    Luding, Stefan; Koren, B.; Vuik, K.

    2009-01-01

    A challenge of today‖s research is the realistic simulation of disordered atomistic systems or particulate and granular materials like sand, powders, ceramics or composites, which consist of many millions of atoms/particles. The inhomogeneous fine-structure of such materials makes it very difficult

  18. Simulating the Langevin force by simple noise in nuclear one-body dynamics

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Colonna, M.; Burgio, G.F.; Toro, M. Di; Randrup, J.

    1992-01-01

    For the purpose of addressing catastrophic phenomena in nuclear dynamics, the possibility of simulating the stochastic part of the collision integral is explored in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in the ordinary BUU treatment. Considering idealized two-dimensional matter, for which it is practical to simulate the Boltzmann-Langevin equation directly, it is demonstrated that the number of test-particles per nucleon can be adjusted so that the corresponding BUU calculation yields a good reproduction of the spontaneous clusterization occurring inside the spinodal region. This approximate method may therefore provide a relatively easy way to introduce meaningful fluctuations in simulations of unstable nuclear dynamics. (author) 18 refs.; 3 figs

  19. Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Rikio; Takagi, Kenta; Ozaki, Kimihiro, E-mail: r-soda@aist.go.jp

    2015-12-15

    In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model.

  20. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  1. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    Energy Technology Data Exchange (ETDEWEB)

    Azhar, Mueed; Greiner, Andreas [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Department of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Kauzlarić, David, E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg (Germany)

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  2. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  3. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  4. Steady-state and dynamic models for particle engulfment during solidification

    Science.gov (United States)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  5. Single-asperity contributions to multi-asperity wear simulated with molecular dynamics

    International Nuclear Information System (INIS)

    Eder, S J; Cihak-Bayr, U; Bianchi, D

    2016-01-01

    We use a molecular dynamics approach to simulate the wear of a rough ferrite surface due to multiple hard, abrasive particles under variation of normal pressure, grinding direction, and particle geometry. By employing a clustering algorithm that incorporates some knowledge about the grinding process such as the main grinding direction, we can break down the total wear volume into contributions from the individual abrasive particles in a time-resolved fashion. The resulting analysis of the simulated grinding process allows statements on wear particle generation, distribution, and stability depending on the initial topography, the grinding angle, the normal pressure, as well as the abrasive shape and orientation with respect to the surface. (paper)

  6. Visual interrogation of gyrokinetic particle simulations

    International Nuclear Information System (INIS)

    Jones, Chad; Ma, K-L; Sanderson, Allen; Myers, Lee Roy Jr

    2007-01-01

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data

  7. Data parallel sorting for particle simulation

    Science.gov (United States)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  8. Development of 2D particle-in-cell code to simulate high current, low ...

    Indian Academy of Sciences (India)

    Abstract. A code for 2D space-charge dominated beam dynamics study in beam trans- port lines is developed. The code is used for particle-in-cell (PIC) simulation of z-uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam.

  9. Particle beam dynamics in a magnetically insulated coaxial diode

    International Nuclear Information System (INIS)

    Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.

    2015-01-01

    The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.

  10. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code

  11. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, Robert

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code. (author)

  12. Shear test on viscoelastic granular material using Contact Dynamics simulations

    Science.gov (United States)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  13. A regularized vortex-particle mesh method for large eddy simulation

    Science.gov (United States)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  14. A Modified SPH Method for Dynamic Failure Simulation of Heterogeneous Material

    Directory of Open Access Journals (Sweden)

    G. W. Ma

    2014-01-01

    Full Text Available A modified smoothed particle hydrodynamics (SPH method is applied to simulate the failure process of heterogeneous materials. An elastoplastic damage model based on an extension form of the unified twin shear strength (UTSS criterion is adopted. Polycrystalline modeling is introduced to generate the artificial microstructure of specimen for the dynamic simulation of Brazilian splitting test and uniaxial compression test. The strain rate effect on the predicted dynamic tensile and compressive strength is discussed. The final failure patterns and the dynamic strength increments demonstrate good agreements with experimental results. It is illustrated that the polycrystalline modeling approach combined with the SPH method is promising to simulate more complex failure process of heterogeneous materials.

  15. Dynamically redundant particle components in mixtures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-10-01

    Examples are shown for cases in which the number of different kinds of particles in a system is not necessarily equal to the number of particle degrees of freedom in thermodynamical sense, and at the same time, the observed dynamics of the evolution of the system does not indicate a definite number of degrees of freedeom. The possibility for introducing dynamically redundant particles is discussed. (author)

  16. A particle-based method for granular flow simulation

    KAUST Repository

    Chang, Yuanzhang; Bao, Kai; Zhu, Jian; Wu, Enhua

    2012-01-01

    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke's law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  17. A particle-based method for granular flow simulation

    KAUST Repository

    Chang, Yuanzhang

    2012-03-16

    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  18. Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations and random uncorrelated motion

    International Nuclear Information System (INIS)

    Gustavsson, K; Mehlig, B; Meneguz, E; Reeks, M

    2012-01-01

    We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion. (paper)

  19. Molecular dynamics simulations

    International Nuclear Information System (INIS)

    Alder, B.J.

    1985-07-01

    The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs

  20. Discrete particle noise in particle-in-cell simulations of plasma microturbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Hammett, G.W.; Dimits, A.M.; Dorland, W.; Shumaker, D.E.

    2005-01-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with the global particle-in-cell (PIC) code GTC [Z. Lin et al., Proceedings of the 20th Fusion Energy Conference, Vilamoura, Portugal, 2004 (IAEA, Vienna, 2005)] yielded different results from earlier flux-tube continuum code simulations [F. Jenko and W. Dorland, Phys. Rev. Lett. 89, 225001 (2002)] despite similar plasma parameters. Differences between the simulation results were attributed to insufficient phase-space resolution and novel physics associated with global simulation models. The results of the global PIC code are reproduced here using the flux-tube PIC code PG3EQ [A. M. Dimits et al., Phys. Rev. Lett. 77, 71 (1996)], thereby eliminating global effects as the cause of the discrepancy. The late-time decay of the ETG turbulence and the steady-state heat transport observed in these PIC simulations are shown to result from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and, by inference, the GTC simulations that they reproduced have little to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work several diagnostics are developed to retrospectively test whether a particular PIC simulation is dominated by discrete particle noise

  1. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  2. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  3. Coalescence of silver unidimensional structures by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.

    2007-01-01

    The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)

  4. CFD simulation of gas-liquid floating particles mixing in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Li Liangchao

    2017-01-01

    Full Text Available Gas dispersion and floating particles suspension in an agitated vessel were studied numerically by using computational fluid dynamics (CFD. The Eulerian multi-fluid model along with standard k-ε turbulence model was used in the simulation. A multiple reference frame (MRF approach was used to solve the impeller rotation. The velocity field, gas and floating particles holdup distributions in the vessel were first obtained, and then, the effects of operating conditions on gas dispersion and solid suspension were investigated. The simulation results show that velocity field of solid phase and gas phase are quite different in the agitated vessel. Floating particles are easy to accumulate in the center of the surface region and the increasing of superficial gas velocity is in favor of floating particles off-surface suspension. With increasing solids loading, the gas dispersion becomes worse, while relative solid holdup distribution changes little. The limitations of the present modeling are discussed and further research in the future is proposed.

  5. Electromagnetic ''particle-in-cell'' plasma simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1985-01-01

    ''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs

  6. Indeterminism in Classical Dynamics of Particle Motion

    Science.gov (United States)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex

    2013-03-01

    We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion

  7. The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Matthew K., E-mail: matthew.borg@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Lockerby, Duncan A., E-mail: duncan.lockerby@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Reese, Jason M., E-mail: jason.reese@ed.ac.uk [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-02-21

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually “fades-in” (inserts) or “fades-out” (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C{sub 60} Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors.

  8. The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Borg, Matthew K.; Lockerby, Duncan A.; Reese, Jason M.

    2014-01-01

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually “fades-in” (inserts) or “fades-out” (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C 60 Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors

  9. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    Science.gov (United States)

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  10. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  11. A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics

    Directory of Open Access Journals (Sweden)

    Joaquín Míguez

    2004-11-01

    Full Text Available In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous positioning of a vehicle in a 2-dimensional space.

  12. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  13. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  14. A multilevel-skin neighbor list algorithm for molecular dynamics simulation

    Science.gov (United States)

    Zhang, Chenglong; Zhao, Mingcan; Hou, Chaofeng; Ge, Wei

    2018-01-01

    Searching of the interaction pairs and organization of the interaction processes are important steps in molecular dynamics (MD) algorithms and are critical to the overall efficiency of the simulation. Neighbor lists are widely used for these steps, where thicker skin can reduce the frequency of list updating but is discounted by more computation in distance check for the particle pairs. In this paper, we propose a new neighbor-list-based algorithm with a precisely designed multilevel skin which can reduce unnecessary computation on inter-particle distances. The performance advantages over traditional methods are then analyzed against the main simulation parameters on Intel CPUs and MICs (many integrated cores), and are clearly demonstrated. The algorithm can be generalized for various discrete simulations using neighbor lists.

  15. Computer simulations of liquid crystals: Defects, deformations and dynamics

    Science.gov (United States)

    Billeter, Jeffrey Lee

    1999-11-01

    Computer simulations play an increasingly important role in investigating fundamental issues in the physics of liquid crystals. Presented here are the results of three projects which utilize the unique power of simulations to probe questions which neither theory nor experiment can adequately answer. Throughout, we use the (generalized) Gay-Berne model, a widely-used phenomenological potential which captures the essential features of the anisotropic mesogen shapes and interactions. First, we used a Molecular Dynamics simulation with 65536 Gay-Berne particles to study the behaviors of topological defects in a quench from the isotropic to the nematic phase. Twist disclination loops were the dominant defects, and we saw evidence for dynamical scaling. We observed the loops separating, combining and collapsing, and we also observed numerous non-singular type-1 lines which appeared to be intimately involved with many of the loop processes. Second, we used a Molecular Dynamics simulation of a sphere embedded in a system of 2048 Gay-Berne particles to study the effects of radial anchoring of the molecules at the sphere's surface. A saturn ring defect configuration was observed, and the ring caused a driven sphere (modelling the falling ball experiment) to experience an increased resistance as it moved through the nematic. Deviations from a linear relationship between the driving force and the terminal speed are attributed to distortions of the saturn ring which we observed. The existence of the saturn ring confirms theoretical predictions for small spheres. Finally, we constructed a model for wedge-shaped molecules and used a linear response approach in a Monte Carlo simulation to investigate the flexoelectric behavior of a system of 256 such wedges. Novel potential models as well as novel analytical and visualization techniques were developed for these projects. Once again, the emphasis throughout was to investigate questions which simulations alone can adequately answer.

  16. Fully kinetic particle simulations of high pressure streamer propagation

    Science.gov (United States)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  17. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    International Nuclear Information System (INIS)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-01-01

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated

  18. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong; Lim, Chwee Teck [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore)

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  19. Improvements on nonlinear gyrokinetic particle simulations based on δf-discretization scheme

    International Nuclear Information System (INIS)

    Zorat, R.; Tessarotto, M.

    1998-01-01

    In this work various issues regarding the definition of improved theoretical models appropriate to describe the dynamics of confined magnetoplasmas by particle simulation methods are proposed. These concern in particular an improved non linear δf discretization scheme and the treatment of binary, i.e. Coulomb, and collective interactions. (orig.)

  20. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  1. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  2. A dissipative particle dynamics method for arbitrarily complex geometries

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its

  3. Comparing semi-analytic particle tagging and hydrodynamical simulations of the Milky Way's stellar halo

    Science.gov (United States)

    Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew

    2017-08-01

    Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.

  4. Influence of Dissipative Particle Dynamics parameters and wall models on planar micro-channel flows

    Science.gov (United States)

    Wang, Yuyi; She, Jiangwei; Zhou, Zhe-Wei; microflow Group Team

    2017-11-01

    Dissipative Particle Dynamics (DPD) is a very effective approach in simulating mesoscale hydrodynamics. The influence of solid boundaries and DPD parameters are typically very strong in DPD simulations. The present work studies a micro-channel Poisseuille flow. Taking the neutron scattering experiment and molecular dynamics simulation result as bench mark, the DPD results of density distribution and velocity profile are systematically studied. The influence of different levels of coarse-graining, the number densities of wall and fluid, conservative force coefficients, random and dissipative force coefficients, different wall model and reflective boundary conditions are discussed. Some mechanisms behind such influences are discussed and the artifacts in the simulation are identified with the bench mark. Chinese natural science foundation (A020405).

  5. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  6. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.

    2010-02-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  7. Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations.

    Science.gov (United States)

    Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang

    2018-01-01

    For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.

  8. Dynamical simulation of a linear sigma model near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Hees, Hendrik van [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt (Germany)

    2014-07-01

    The intention of this study is the search for signatures of the chiral phase transition. To investigate the impact of fluctuations, e.g. of the baryon number, on the transition or a critical point, the linear sigma model is treated in a dynamical 3+1D numerical simulation. Chiral fields are approximated as classical fields, quarks are described by quasi particles in a Vlasov equation. Additional dynamic is implemented by quark-quark and quark-sigma-field interaction. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  9. Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST

    Science.gov (United States)

    Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2018-04-01

    We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.

  10. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints

    Science.gov (United States)

    Fiore, Andrew M.; Swan, James W.

    2018-01-01

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle

  11. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-01-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles

  12. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat; Ruebel, O.; Weber, G.; Hamann, B.

    2010-01-01

    scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis

  13. Simulating Marine New Particle Formation and Growth Using the M7 Modal Aerosol Dynamics Modal

    Directory of Open Access Journals (Sweden)

    Ciaran Monahan

    2010-01-01

    Full Text Available A modal atmospheric aerosol model (M7 is evaluated in terms of predicting marine new particle formation and growth. Simulations were carried out for three different nucleation schemes involving (1 kinetic self-nucleation of OIO (2 nucleation via OIO activation by H2SO4 and (3 nucleation via OIO activation by H2SO4 plus condensation of a low-volatility organic vapour. Peak OIO and H2SO4 vapour concentrations were both limited to 6×106 molecules cm-3 at noontime while the peak organic vapour concentration was limited to 12×106 molecules cm-3. All simulations produced significant concentrations of new particles in the Aitken mode. From a base case particle concentration of 222 cm-3 at radii >15 nm, increases in concentrations to 366 cm-3 were predicted from the OIO-OIO case, 722 cm-3 for the OIO-H2SO4 case, and 1584 cm-3 for the OIO-H2SO4 case with additional condensing organic vapours. The results indicate that open ocean new particle production is feasible for clean conditions; however, new particle production becomes most significant when an additional condensable organic vapour is available to grow the newly formed particles to larger sizes. Comparison to sectional model for a typical case study demonstrated good agreement and the validity of using the modal model.

  14. Structure and Interface Properties of Nanophase Ceramics: Multimillion Particle Molecular-Dynamics Simulations on Parallel Computer

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1997-01-01

    Large-scale molecular-dynamics (MD) simulations were performed to investigate: (1) sintering process, structural correlations, and mechanical behavior including dynamic fracture in microporous and nanophase Si3N4...

  15. Modeling the dynamics of a storm-time acceleration event: combining MHD effects with wave-particle interactions

    Science.gov (United States)

    Elkington, S. R.; Alam, S. S.; Chan, A. A.; Albert, J.; Jaynes, A. N.; Baker, D. N.; Wiltberger, M. J.

    2017-12-01

    Global simulations of radiation belt dynamics are often undertaken using either a transport formalism (e.g. Fokker-Plank), or via test particle simulations in model electric and magnetic fields. While transport formalisms offer computational efficiency and the ability to deal with a wide range of wave-particle interactions, they typically rely on simplified background fields, and often are limited to empirically-specified stochastic (diffusive) wave-particle interactions. On the other hand, test particle simulations may be carried out in global MHD simulations that include realistic physical effects such as magnetopause shadowing, convection, and substorm injections, but lack the ability to handle physics outside the MHD approximation in the realm of higher frequency (kHz) wave populations.In this work we introduce a comprehensive simulation framework combining global MHD/test particle techniques to provide realistic background fields and radial transport processes, with a Stochastic Differential Equation (SDE) method for addressing high frequency wave-particle interactions. We examine the March 17, 2013 storm-time acceleration period, an NSF-GEM focus challenge event, and use the framework to examine the relative importance of physical effects such as magnetopause shadowing, diffusive and advective transport processes, and wave-particle interactions through the various phases of the storm.

  16. Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids

    NARCIS (Netherlands)

    Ahuja, Vishal Raju

    2018-01-01

    This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion

  17. Explicit K-symplectic algorithms for charged particle dynamics

    International Nuclear Information System (INIS)

    He, Yang; Zhou, Zhaoqi; Sun, Yajuan; Liu, Jian; Qin, Hong

    2017-01-01

    We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.

  18. Explicit K-symplectic algorithms for charged particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhaoqi [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Sun, Yajuan, E-mail: sunyj@lsec.cc.ac.cn [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jian [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2017-02-12

    We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.

  19. Efficiency of rejection-free methods for dynamic Monte Carlo studies of off-lattice interacting particles

    KAUST Repository

    Guerra, Marta L.; Novotny, M. A.; Watanabe, Hiroshi; Ito, Nobuyasu

    2009-01-01

    We calculate the efficiency of a rejection-free dynamic Monte Carlo method for d -dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential r-p. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to ρ (p+2) /2 T-d/2 with the particle density ρ and the temperature T. Dynamic Monte Carlo simulations are performed in one-, two-, and three-dimensional systems with different powers p, and the results agree with the theoretical predictions. © 2009 The American Physical Society.

  20. Efficiency of rejection-free methods for dynamic Monte Carlo studies of off-lattice interacting particles

    KAUST Repository

    Guerra, Marta L.

    2009-02-23

    We calculate the efficiency of a rejection-free dynamic Monte Carlo method for d -dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential r-p. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to ρ (p+2) /2 T-d/2 with the particle density ρ and the temperature T. Dynamic Monte Carlo simulations are performed in one-, two-, and three-dimensional systems with different powers p, and the results agree with the theoretical predictions. © 2009 The American Physical Society.

  1. A parallel 3D particle-in-cell code with dynamic load balancing

    International Nuclear Information System (INIS)

    Wolfheimer, Felix; Gjonaj, Erion; Weiland, Thomas

    2006-01-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated

  2. A parallel 3D particle-in-cell code with dynamic load balancing

    Energy Technology Data Exchange (ETDEWEB)

    Wolfheimer, Felix [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)]. E-mail: wolfheimer@temf.de; Gjonaj, Erion [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany); Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)

    2006-03-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated.

  3. Molecular dynamics beyonds the limits: Massive scaling on 72 racks of a BlueGene/P and supercooled glass dynamics of a 1 billion particles system

    KAUST Repository

    Allsopp, Nicholas

    2012-04-01

    We report scaling results on the world\\'s largest supercomputer of our recently developed Billions-Body Molecular Dynamics (BBMD) package, which was especially designed for massively parallel simulations of the short-range atomic dynamics in structural glasses and amorphous materials. The code was able to scale up to 72 racks of an IBM BlueGene/P, with a measured 89% efficiency for a system with 100 billion particles. The code speed, with 0.13. s per iteration in the case of 1 billion particles, paves the way to the study of billion-body structural glasses with a resolution increase of two orders of magnitude with respect to the largest simulation ever reported. We demonstrate the effectiveness of our code by studying the liquid-glass transition of an exceptionally large system made by a binary mixture of 1 billion particles. © 2012.

  4. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    Science.gov (United States)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  5. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions

    International Nuclear Information System (INIS)

    Kamerlin, Natasha; Elvingson, Christer

    2016-01-01

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution. (paper)

  6. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  7. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure

    Science.gov (United States)

    Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2013-10-01

    In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

  8. PENTACLE: Parallelized particle-particle particle-tree code for planet formation

    Science.gov (United States)

    Iwasawa, Masaki; Oshino, Shoichi; Fujii, Michiko S.; Hori, Yasunori

    2017-10-01

    We have newly developed a parallelized particle-particle particle-tree code for planet formation, PENTACLE, which is a parallelized hybrid N-body integrator executed on a CPU-based (super)computer. PENTACLE uses a fourth-order Hermite algorithm to calculate gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It also implements an open-source library designed for full automatic parallelization of particle simulations, FDPS (Framework for Developing Particle Simulator), to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. These allow us to handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc. In this paper, we show the performance and the accuracy of PENTACLE in terms of \\tilde{R}_cut and a time-step Δt. It turns out that the accuracy of a hybrid N-body simulation is controlled through Δ t / \\tilde{R}_cut and Δ t / \\tilde{R}_cut ˜ 0.1 is necessary to simulate accurately the accretion process of a planet for ≥106 yr. For all those interested in large-scale particle simulations, PENTACLE, customized for planet formation, will be freely available from https://github.com/PENTACLE-Team/PENTACLE under the MIT licence.

  9. Simulations of a single vortex ring using an unbounded, regularized particle-mesh based vortex method

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore

    2014-01-01

    , unbounded particle-mesh based vortex method is used to simulate the instability, transition to turbulence and eventual destruction of a single vortex ring. From the simulation data a novel method on analyzing the dynamics of the enstrophy is presented based on the alignment of the vorticity vector...... with the principal axis of the strain rate tensor. We find that the dynamics of the enstrophy density is dominated by the local flow deformation and axis of rotation, which is used to infer some concrete tendencies related to the topology of the vorticity field....

  10. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  11. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans

    2000-01-01

    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  12. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  13. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  14. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    Science.gov (United States)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  15. COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics

    Science.gov (United States)

    Barletta, Paolo

    2012-02-01

    Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability

  16. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    Science.gov (United States)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  17. Selection of stationary phase particle geometry using X-ray computed tomography and computational fluid dynamics simulations.

    Science.gov (United States)

    Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang

    2012-02-17

    The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Single asperity nanocontacts: Comparison between molecular dynamics simulations and continuum mechanics models

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    Abstract Using classical molecular dynamics, atomic scale simulations of normal contact between a nominally flat substrate and different atomistic and non-atomistic spherical particles were performed to investigate the applicability of classical contact theories at the nanoscale, and further

  19. Visualization of particle in cell simulation

    International Nuclear Information System (INIS)

    Chen Ming; Cheng Yinhui

    2003-01-01

    This paper is trying to provide a new technique of the visualization for the Particle In Cell simulation, which takes effect by using the MATLAB external interface, so the real-time obsevation of particles came easier and more efficient. With this method, state of the particles, considered as 'particle cloud' can be found in the image produced automatically and their movement can be predicted. (authors)

  20. Semiclassical transport of particles with dynamical spectral functions

    International Nuclear Information System (INIS)

    Cassing, W.; Juchem, S.

    2000-01-01

    The conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a spectral function A(X,P,M 2 ) for a particle moving in an area of complex self-energy Σ ret X =Re Σ ret X -iΓ X /2. Starting from the Kadanoff--Baym equations we derive in first-order gradient expansion equations of motion for testparticles with respect to their time evolution in X,P and M 2 . The off-shell propagation is demonstrated for a couple of model cases that simulate hadron-nucleus collisions. In case of nucleus-nucleus collisions the imaginary part of the hadron self-energy Γ X is determined by the local space-time dependent collision rate dynamically. A first application is presented for A+A reactions up to 95 A MeV, where the effects from the off-shell propagation of nucleons are discussed with respect to high energy proton spectra, high energy photon production as well as kaon yields in comparison to the available data from GANIL

  1. Dynamics of the Wigner crystal of composite particles

    Science.gov (United States)

    Shi, Junren; Ji, Wencheng

    2018-03-01

    Conventional wisdom has long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave function. It indicates that the composite particles are subjected to a Berry curvature in the momentum space as well as an emergent dissipationless viscosity. While the dissipationless viscosity is the Chern-Simons field counterpart for the Wigner crystal, the Berry curvature is a feature not presented in the conventional composite fermion theory. Hence, contrary to general belief, composite particles follow the more general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry curvature is an inevitable feature for a dynamics conforming to the dipole picture of composite particles and Kohn's theorem. Based on the dynamics, we determine the dispersions of magnetophonon excitations numerically. We find an emergent magnetoroton mode which signifies the composite-particle nature of the Wigner crystal. It occurs at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the long-wavelength limit.

  2. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  3. Investigation on the cohesive silt/clay-particle sediment via the coupled CFD-DEM simulations

    Science.gov (United States)

    Xu, S.; Sun, H.; Sun, R.

    2017-12-01

    Sedimentation of silt/clay particles happens ubiquitously in nature and engineering field. There have been abundant studies focusing on the settling velocity of the cohesive particles, while studies on the sediment deposited from silt/clay irregular particles, including the vertical concentration profile of sediment and the various forces among the deposited particles are still lacking. This paper aims to investigate the above topics by employing the CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) simulations. In this work, we simulate the settling of the mono- and poly- dispersed silt/clay particles and mainly study the characteristics of the deposited cohesive sediment. We use the bonded particles to simulate the irregular silt/clay aggregates at the initial state and utilize the van der Waals force for all micro-particles to consider the cohesive force among silt/clay particles. The interparticle collision force and the fluid-particle interaction forces are also considered in our numerical model. The value of the mean structural density of cohesive sediment obtained from simulations is in good agreement with the previous research, and it is obviously smaller than no-cohesive sediment because of the existence of the silt/clay flocs. Moreover, the solid concentration of sediment increases with the growth of the depth. It is because the silt/clay flocs are more easily to break up due to the gradually increased submerged gravity of the deposited particles along the depth. We also obtain the noncontacted cohesive force and contact force profiles during the sedimentation and the self-weight consolidation process. The study of the concentration profile and the forces among silt/clay sediment will help to give an accurate initial condition for calculating the speed of the reconsolidation process by employing the artificial loads, which is necessary for practical designs of the land reclamation projects.

  4. Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2002-01-01

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0

  5. High-order dynamic lattice method for seismic simulation in anisotropic media

    Science.gov (United States)

    Hu, Xiaolin; Jia, Xiaofeng

    2018-03-01

    The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.

  6. Advances in computational dynamics of particles, materials and structures a unified approach

    CERN Document Server

    Har, Jason

    2012-01-01

    Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Ad

  7. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    Science.gov (United States)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  8. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    Science.gov (United States)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  9. Optimization of Particle Search Algorithm for CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    G. Baryshev

    2013-09-01

    Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.

  10. Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sarim Ahmed

    2018-06-01

    Full Text Available A venturi scrubber is an important element of Filtered Containment Venting System (FCVS for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide (TiO2 particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB model has been used to predict deformation of water droplets, whereas the Eulerian–Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity. Keywords: Computational Fluid Dynamics, Dust Particles, Filtered Containment Venting System, Self-priming Venturi Scrubber, Venturi Scrubber

  11. Computer simulation of structures and distributions of particles in MAGIC fluid

    International Nuclear Information System (INIS)

    Zhu Yongsheng; Umehara, Noritsugu; Ido, Yasushi; Sato, Atsushi

    2006-01-01

    MAGIC (MAG-netic Intelligent Compound) is a solidified magnetic ferrofluid (MF) containing both magnetic particles (MPs) and abrasive particles (APs, nonmagnetic) of micron size. The distribution of APs in MAGIC can be controlled by applying a magnetic field during cooling process of MAGIC fluid. In this paper, the influences of magnetic field, size and concentration of particles on the final structures of MPs and the distributions of APs in MAGIC fluid are preliminarily investigated using Stokesian dynamic (SD) simulation method. Simulation results show that MPs prefer to form strip-like structures in MAGIC fluid, the reason for this phenomenon is mainly attributed to the strong dipolar interactions between them. It is also found that MPs prefer to form big agglomerations in weak magnetic field while chains and strip-like structures in strong magnetic field; no long chains or strip-like structures of MPs are observed in low-concentration MAGIC fluid; and for big-size MPs, pure wall-like structures are formed. Evaluation on the distribution of APs with uniformity coefficient shows that strong magnetic field, high concentration and small-size particles can induce more uniform distribution of APs in MAGIC fluid, the uniformity of APs in MAGIC is about 10% higher than that in normal grinding tools

  12. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    Science.gov (United States)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  13. Single particle dynamics in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  14. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  15. DEM simulation of particle mixing for optimizing the overcoating drum in HTR fuel fabrication

    Science.gov (United States)

    Liu, Malin; Lu, Zhengming; Liu, Bing; Shao, Youlin

    2013-06-01

    The rotating drum was used for overcoating coated fuel particles in HTR fuel fabrication process. All the coated particles should be adhered to equal amount of graphite powder, which means that the particle should be mixed quickly in both radial and axial directions. This paper investigated the particle flow dynamics and mixing behavior in different regimes using the discrete element method (DEM). By varying the rotation speed, different flow regimes such as slumping, rolling, cascading, cataracting, centrifuging were produced. The mixing entropy based on radial and axial grid was introduced to describe the radial and axial mixing behaviors. From simulation results, it was found that the radial mixing can be achieved in the cascading regime more quickly than the slumping, rolling and centrifuging regimes, but the traditional rotating drum without internal components can not achieve the requirements of axial mixing and should be improved. Three different structures of internal components are proposed and simulated. The new V-shaped deflectors were found to achieve a quick axial mixing behavior and uniform axial distribution in the rotating drum based on simulation results. At last, the superiority was validated by experimental results, and the new V-shaped deflectors were used in the industrial production of the overcoating coated fuel particles in HTR fuel fabrication process.

  16. Dynamics of fibres in a turbulent flow field - A particle-level simulation technique

    International Nuclear Information System (INIS)

    Sasic, Srdjan; Almstedt, Alf-Erik

    2010-01-01

    A particle-level simulation technique has been developed for modelling the flow of fibres in a turbulent flow field. A single fibre is conceived here as a chain of segments, thus enabling the model fibre to have all the degrees of freedom (translation, rotation, bending and twisting) needed to realistically reproduce the dynamics of real fibres. Equations of motion are solved for each segment, accounting for the interaction forces with the fluid, the contact forces with other fibres and the forces that maintain integrity of the fibre. The motion of the fluid is resolved as a combination of 3D mean flow velocities obtained from a CFD code and fluctuating turbulent velocities derived from the Langevin equation. A case of homogeneous turbulence is treated in this paper. The results obtained show that fibre flocs in air-fibre flows can be created even when attractive forces are not present. In such a case, contacts between fibres, properties of an individual fibre (such as flexibility and equilibrium shapes) and properties of the flow of the carrying fluid are shown to govern the physics behind formation and breaking up of fibre flocs. Highly irregular fibre shapes and stiff fibres lead to strong flocculation. The modelling framework applied in this work aims at making possible a numerical model applicable for designing processes involving transport of fibres by air at industrial scale.

  17. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

    Science.gov (United States)

    Toghraie, Davood; Mokhtari, Majid; Afrand, Masoud

    2016-10-01

    In this paper, simulation of Poiseuille flow within nanochannel containing Copper and Platinum particles has been performed using molecular dynamic (MD). In this simulation LAMMPS code is used to simulate three-dimensional Poiseuille flow. The atomic interaction is governed by the modified Lennard-Jones potential. To study the wall effects on the surface tension and density profile, we placed two solid walls, one at the bottom boundary and the other at the top boundary. For solid-liquid interactions, the modified Lennard-Jones potential function was used. Velocity profiles and distribution of temperature and density have been obtained, and agglutination of nanoparticles has been discussed. It has also shown that with more particles, less time is required for the particles to fuse or agglutinate. Also, we can conclude that the agglutination time in nanochannel with Copper particles is faster that in Platinum nanoparticles. Finally, it is demonstrated that using nanoparticles raises thermal conduction in the channel.

  18. Viscosity calculations at molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kirova, E M; Norman, G E

    2015-01-01

    Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)

  19. Computer simulation of dynamic processes on accelerators

    International Nuclear Information System (INIS)

    Kol'ga, V.V.

    1979-01-01

    The problems of computer numerical investigation of motion of accelerated particles in accelerators and storages, an effect of different accelerator systems on the motion, determination of optimal characteristics of accelerated charged particle beams are considered. Various simulation representations are discussed which describe the accelerated particle dynamics, such as the enlarged particle method, the representation where a great number of discrete particle is substituted for a field of continuously distributed space charge, the method based on determination of averaged beam characteristics. The procedure is described of numerical studies involving the basic problems, viz. calculation of closed orbits, establishment of stability regions, investigation of resonance propagation determination of the phase stability region, evaluation of the space charge effect the problem of beam extraction. It is shown that most of such problems are reduced to solution of the Cauchy problem using a computer. The ballistic method which is applied to solution of the boundary value problem of beam extraction is considered. It is shown that introduction into the equation under study of additional members with the small positive regularization parameter is a general idea of the methods for regularization of noncorrect problems [ru

  20. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.

    Science.gov (United States)

    Patti, Alessandro; Cuetos, Alejandro

    2012-07-01

    We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.

  1. Molecular dynamics simulation for PBR pebble tracking simulation via a random walk approach using Monte Carlo simulation.

    Science.gov (United States)

    Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P

    2012-05-01

    Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Report of the working group on single-particle nonlinear dynamics

    International Nuclear Information System (INIS)

    Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.

    1999-01-01

    The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of accelerators. (AIP) copyright 1999 American Institute of Physics

  4. Brownian dynamics with hydrodynamic interactions

    International Nuclear Information System (INIS)

    Ermak, D.L.; McCammon, J.A.

    1978-01-01

    A method for simulating the Brownian dynamics of N particles with the inclusion of hydrodynamic interactions is described. The particles may also be subject to the usual interparticle or external forces (e.g., electrostatic) which have been included in previous methods for simulating Brownian dynamics of particles in the absence of hydrodynamic interactions. The present method is derived from the Langevin equations for the N particle assembly, and the results are shown to be consistent with the corresponding Fokker--Planck results. Sample calculations on small systems illustrate the importance of including hydrodynamic interactions in Brownian dynamics simulations. The method should be useful for simulation studies of diffusion limited reactions, polymer dynamics, protein folding, particle coagulation, and other phenomena in solution

  5. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    Science.gov (United States)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  6. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  7. Autonomous Agent-Based Systems and Their Applications in Fluid Dynamics, Particle Separation, and Co-evolving Networks

    Science.gov (United States)

    Graeser, Oliver

    This thesis comprises three parts, reporting research results in Fluid Dynamics (Part I), Particle Separation (Part II) and Co-evolving Networks (Part III). Part I deals with the simulation of fluid dynamics using the lattice-Boltzmann method. Microfluidic devices often feature two-dimensional, repetitive arrays. Flows through such devices are pressure-driven and confined by solid walls. We have defined new adaptive generalised periodic boundary conditions to represent the effects of outer solid walls, and are thus able to exploit the periodicity of the array by simulating the flow through one unit cell in lieu of the entire device. The so-calculated fully developed flow describes the flow through the entire array accurately, but with computational requirements that are reduced according to the dimensions of the array. Part II discusses the problem of separating macromolecules like proteins or DNA coils. The reliable separation of such molecules is a crucial task in molecular biology. The use of Brownian ratchets as mechanisms for the separation of such particles has been proposed and discussed during the last decade. Pressure-driven flows have so far been dismissed as possible driving forces for Brownian ratchets, as they do not generate ratchet asymmetry. We propose a microfluidic design that uses pressure-driven flows to create asymmetry and hence allows particle separation. The dependence of the asymmetry on various factors of the microfluidic geometry is discussed. We further exemplify the feasibility of our approach using Brownian dynamics simulations of particles of different sizes in such a device. The results show that ratchet-based particle separation using flows as the driving force is possible. Simulation results and ratchet theory predictions are in excellent agreement. Part III deals with the co-evolution of networks and dynamic models. A group of agents occupies the nodes of a network, which defines the relationship between these agents. The

  8. Numerical simulation of particle settling and cohesion in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)

    2009-02-01

    In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.

  9. Supercomputing for molecular dynamics simulations handling multi-trillion particles in nanofluidics

    CERN Document Server

    Heinecke, Alexander; Horsch, Martin; Bungartz, Hans-Joachim

    2015-01-01

    This work presents modern implementations of relevant molecular dynamics algorithms using ls1 mardyn, a simulation program for engineering applications. The text focuses strictly on HPC-related aspects, covering implementation on HPC architectures, taking Intel Xeon and Intel Xeon Phi clusters as representatives of current platforms. The work describes distributed and shared-memory parallelization on these platforms, including load balancing, with a particular focus on the efficient implementation of the compute kernels. The text also discusses the software-architecture of the resulting code.

  10. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    Science.gov (United States)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  11. Multi-Algorithm Particle Simulations with Spatiocyte.

    Science.gov (United States)

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  12. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  13. Large scale Brownian dynamics of confined suspensions of rigid particles

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  14. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.

    Science.gov (United States)

    Mehta, Neil A; Levin, Deborah A

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  15. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    International Nuclear Information System (INIS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Diffusion-limited aggregation is analyzed using molecular dynamic simulations. • The aggregation processand aggregate structure vary with particle size. • Particle-particle interaction and surface diffusion result in direct bonding. • Water-mediated interaction is responsible for the separation betweennanoparticles. - Abstract: Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle–particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle–particle interaction and high surface diffusion result in the formation of particle–particle bonds of 2 nm TiO 2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO 2 nanoparticles.

  16. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  17. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.

    Science.gov (United States)

    Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th

    2010-07-01

    We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

  18. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  19. A molecular dynamics simulation code ISIS

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-06-01

    Computer simulation based on the molecular dynamics (MD) method has become an important tool complementary to experiments and theoretical calculations in a wide range of scientific fields such as physics, chemistry, biology, and so on. In the MD method, the Newtonian equations-of-motion of classical particles are integrated numerically to reproduce a phase-space trajectory of the system. In the 1980's, several new techniques have been developed for simulation at constant-temperature and/or constant-pressure in convenient to compare result of computer simulation with experimental results. We first summarize the MD method for both microcanonical and canonical simulations. Then, we present and overview of a newly developed ISIS (Isokinetic Simulation of Soft-spheres) code and its performance on various computers including vector processors. The ISIS code has a capability to make a MD simulation under constant-temperature condition by using the isokinetic constraint method. The equations-of-motion is integrated by a very accurate fifth-order finite differential algorithm. The bookkeeping method is also utilized to reduce the computational time. Furthermore, the ISIS code is well adopted for vector processing: Speedup ratio ranged from 16 to 24 times is obtained on a VP2600/10 vector processor. (author)

  20. A Generalized Weight-Based Particle-In-Cell Simulation Scheme

    International Nuclear Information System (INIS)

    Lee, W.W.; Jenkins, T.G.; Ethier, S.

    2010-01-01

    A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution ((delta)f) and the full distribution (full-F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using (delta)f in the linear stage stage of the simulation, while retaining the flexibility of a full-F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise.

  1. Partially linearized algorithms in gyrokinetic particle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas.

  2. Partially linearized algorithms in gyrokinetic particle simulation

    International Nuclear Information System (INIS)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas

  3. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates

    International Nuclear Information System (INIS)

    Van Liedekerke, P; Tijskens, E; Smeedts, B; Ramon, H; Ghysels, P; Samaey, G; Roose, D

    2010-01-01

    This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell–cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs–10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure

  4. Study on the dynamics of charged particles in a rarefied gas of thermonuclear reactor injector

    International Nuclear Information System (INIS)

    Afanas'ev, P.N.; Svistunov, Yu.A.; Sidorov, V.P.; Udovichenko, S.Yu.

    1987-01-01

    The motion of an ion beam directly beyond the source is considered in the assumption of homogeneous density of rarefied gas along the injector. Using numerical simulation the dynamics of fast particles in plasma electric field, created by the beam as a result of gas neutral atom ionization, is investigated. It is shown that stationary ambipolar electric field of ''plasma lens'' can affect considerably the beam transverse dynamics

  5. Simulation of concentration distribution of urban particles under wind

    Science.gov (United States)

    Chen, Yanghou; Yang, Hangsheng

    2018-02-01

    The concentration of particulate matter in the air is too high, which seriously affects people’s health. The concentration of particles in densely populated towns is also high. Understanding the distribution of particles in the air helps to remove them passively. The concentration distribution of particles in urban streets is simulated by using the FLUENT software. The simulation analysis based on Discrete Phase Modelling (DPM) of FLUENT. Simulation results show that the distribution of the particles is caused by different layout of buildings. And it is pointed out that in the windward area of the building and the leeward sides of the high-rise building are the areas with high concentration of particles. Understanding the concentration of particles in different areas is also helpful for people to avoid and reduce the concentration of particles in high concentration areas.

  6. Macroscale particle simulation of externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya.

    1991-09-01

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  7. Real-time visualization of dynamic particle contact failures

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben; Guo, Zherui; Sun, Tao; Fezzaa, Kamel; Chen, Weinong W.

    2017-01-01

    Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glass and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.

  8. Three dimensional particle simulation of drift wave fluctuations in a sheared magnetic field

    International Nuclear Information System (INIS)

    Sydora, R.D.; Leboeuf, J.N.; Thayer, D.R.; Diamond, P.H.; Tajima, T.

    1985-08-01

    Three dimensional particle simulations of collisionless drift waves in sheared magnetic fields were performed in order to determine the nonlinear behavior of inverse electron resonance dynamics in the presence of thermal fluctuations. It is found that stochastic electron diffusion in the electron resonance overlap region can destabilize the drift wave eigenmodes. Numerical evaluations based on a nonlinear electron resonance broadening theory give predictions in accord with the frequency and growth rates found in the simulation of short wavelength modes (k/sub y/rho/sub s/ greater than or equal to1)

  9. A Coulomb collision algorithm for weighted particle simulations

    Science.gov (United States)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  10. Track-structure simulations for charged particles.

    Science.gov (United States)

    Dingfelder, Michael

    2012-11-01

    Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.

  11. Design of Experiment Using Simulation of a Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Mašek Jan

    2016-12-01

    Full Text Available The topic of the presented paper is a promising approach to achieve optimal Design of Experiment (DoE, i.e. spreading of points within a design domain, using a simulation of a discrete dynamical system of interacting particles within an n-dimensional design space. The system of mutually repelling particles represents a physical analogy of the Audze-Eglājs (AE optimization criterion and its periodical modification (PAE, respectively. The paper compares the performance of two approaches to implementation: a single-thread process using the JAVA language environment and a massively parallel solution employing the nVidia CUDA platform.

  12. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    Science.gov (United States)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  13. Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

    Science.gov (United States)

    Murase, Kenya; Konishi, Takashi; Takeuchi, Yuki; Takata, Hiroshige; Saito, Shigeyoshi

    2013-07-01

    Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.

  14. Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM

    OpenAIRE

    Zhao, Jinggen; He, Chengjian

    2017-01-01

    This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...

  15. Computational fluid dynamics and particle image velocimetry assisted design tools for a new generation of trochoidal gear pumps

    Directory of Open Access Journals (Sweden)

    M Garcia-Vilchez

    2015-06-01

    Full Text Available Trochoidal gear pumps produce significant flow pulsations that result in pressure pulsations, which interact with the system where they are connected, shortening the life of both the pump and circuit components. The complicated aspects of the operation of a gerotor pump make computational fluid dynamics the proper tool for modelling and simulating its flow characteristics. A three-dimensional model with deforming mesh computational fluid dynamics is presented, including the effects of the manufacturing tolerance and the leakage inside the pump. A new boundary condition is created for the simulation of the solid contact in the interteeth radial clearance. The experimental study of the pump is carried out by means of time-resolved particle image velocimetry, and results are qualitatively evaluated, thanks to the numerical simulation results. Time-resolved particle image velocimetry is developed in order to adapt it to the gerotor pump, and it is proved to be a feasible alternative to obtain the instantaneous flow of the pump in a direct mode, which would allow the determination of geometries that minimize the non-desired flow pulsations. Thus, a new methodology involving computational fluid dynamics and time-resolved particle image velocimetry is presented, which allows the obtaining of the instantaneous flow of the pump in a direct mode without altering its behaviour significantly.

  16. Simulation of the Dynamic Inefficiency of the CMS Pixel Detector

    CERN Document Server

    INSPIRE-00380273

    2015-05-07

    The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to prevail in the harshest environment in terms of particle fluence and radiation. There are several mechanisms that may decrease the efficiency of the detector. These are mainly caused by data acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of instantaneous luminosity the inefficiency reached 2\\% (in the region closest to the interaction point) which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-driven method has been developed to simulate dynamic inefficiency, which has been shown to successfully simulate the effects.

  17. Stochastic plasma heating by electrostatic waves: a comparison between a particle-in-cell simulation and a laboratory experiment

    International Nuclear Information System (INIS)

    Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.

    1993-08-01

    Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs

  18. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests

    Science.gov (United States)

    Richardson, Derek C.; Walsh, Kevin J.; Murdoch, Naomi; Michel, Patrick

    2011-03-01

    We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.

  19. The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes

    Science.gov (United States)

    Huang, Y. C.; Wang, P. K.

    2017-12-01

    The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes Yi-Chih Huang and Pao K. Wang Ice particles contribute to the microphysics and dynamics of severe storms in various regions of the world to a degree that is not commonly recognized. This study is motivated by the need to understand the role of ice particles plays in the development of severe storms so that their impact on various aspects of the storm behavior can be properly assessed. In this study, we perform numerical simulations of thunderstorms using a cloud resolving model WISCDYMM that includes parameterized microphysical processes to understand the role played by ice processes. We simulate thunderstorms occurred over various regions of the world including tropics, substropics and midlatitudes. We then perform statistical analysis of the simulated results to show the formation of various categories of hydrometeors to reveal the importance of ice processes. We will show that ice hydrometeors (cloud ice, snow, graupel/hail) account for 80% of the total hydrometeor mass for the High Plains storms but 50% for the subtropical storms. In addition, the melting of large ice particles (graupel and hail) is the major production process of rain in tropical storms although the ratio of ice-phase mass is responsible for only 40% of the total hydrometeor mass. Furthermore, hydrometeors have their own special microphysical processes in development and depletion over various latitudes. Microphysical structures depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  20. Investigation of effective impact parameters in electron-ion temperature relaxation via Particle-Particle Coulombic molecular dynamics

    Science.gov (United States)

    Zhao, Yinjian

    2017-09-01

    Aiming at a high simulation accuracy, a Particle-Particle (PP) Coulombic molecular dynamics model is implemented to study the electron-ion temperature relaxation. In this model, the Coulomb's law is directly applied in a bounded system with two cutoffs at both short and long length scales. By increasing the range between the two cutoffs, it is found that the relaxation rate deviates from the BPS theory and approaches the LS theory and the GMS theory. Also, the effective minimum and maximum impact parameters (bmin* and bmax*) are obtained. For the simulated plasma condition, bmin* is about 6.352 times smaller than the Landau length (bC), and bmax* is about 2 times larger than the Debye length (λD), where bC and λD are used in the LS theory. Surprisingly, the effective relaxation time obtained from the PP model is very close to the LS theory and the GMS theory, even though the effective Coulomb logarithm is two times greater than the one used in the LS theory. Besides, this work shows that the PP model (commonly known as computationally expensive) is becoming practicable via GPU parallel computing techniques.

  1. Lattice Boltzmann method used to simulate particle motion in a conduit

    Directory of Open Access Journals (Sweden)

    Dolanský Jindřich

    2017-06-01

    Full Text Available A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.

  2. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  3. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  4. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  5. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  6. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    Science.gov (United States)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  7. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  8. Interactive methods for exploring particle simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  9. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  10. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    Science.gov (United States)

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  11. Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses.

    Science.gov (United States)

    Huber, Roland G; Marzinek, Jan K; Holdbrook, Daniel A; Bond, Peter J

    2017-09-01

    Viral pathogens are a significant source of human morbidity and mortality, and have a major impact on societies and economies around the world. One of the challenges inherent in targeting these pathogens with drugs is the tight integration of the viral life cycle with the host's cellular machinery. However, the reliance of the virus on the host cell replication machinery is also an opportunity for therapeutic targeting, as successful entry- and exit-inhibitors have demonstrated. An understanding of the extracellular and intracellular structure and dynamics of the virion - as well as of the entry and exit pathways in host and vector cells - is therefore crucial to the advancement of novel antivirals. In recent years, advances in computing architecture and algorithms have begun to allow us to use simulations to study the structure and dynamics of viral ultrastructures at various stages of their life cycle in atomistic or near-atomistic detail. In this review, we outline specific challenges and solutions that have emerged to allow for structurally detailed modelling of viruses in silico. We focus on the history and state of the art of atomistic and coarse-grained approaches to simulate the dynamics of the large, macromolecular structures associated with viral infection, and on their usefulness in explaining and expanding upon experimental data. We discuss the types of interactions that need to be modeled to describe major components of the virus particle and advances in modelling techniques that allow for the treatment of these systems, highlighting recent key simulation studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigations of Solar Prominence Dynamics Using Laboratory Simulations

    International Nuclear Information System (INIS)

    Bellan, Paul M.

    2008-01-01

    Laboratory experiments simulating many of the dynamical features of solar coronal loops have been carried out. These experiments manifest collimation, kinking, jet flows, and S-shapes. Diagnostics include high-speed photography and x-ray detectors. Two loops having opposite or the same magnetic helicity polarities have been merged and it is found that counter-helicity merging provides much greater x-ray emission. A non-MHD particle orbit instability has been discovered whereby ions going in the opposite direction of the current flow direction can be ejected from a magnetic flux tube.

  13. Macroscale implicit electromagnetic particle simulation of magnetized plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1988-01-01

    An electromagnetic and multi-dimensional macroscale particle simulation code (MACROS) is presented which enables us to make a large time and spatial scale kinetic simulation of magnetized plasmas. Particle ions, finite mass electrons with the guiding-center approximation and a complete set of Maxwell equations are employed. Implicit field-particle coupled equations are derived in which a time-decentered (slightly backward) finite differential scheme is used to achieve stability for large time and spatial scales. It is shown analytically that the present simulation scheme suppresses high frequency electromagnetic waves and that it accurately reproduces low frequency waves in the plasma. These properties are verified by numerical examination of eigenmodes in a 2-D thermal equilibrium plasma and by that of the kinetic Alfven wave. (author)

  14. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth

    DEFF Research Database (Denmark)

    Brault, P.; Coutanceau, C.; C. Jennings, Paul

    2016-01-01

    Molecular dynamics simulation of PEMFC cathodes based on ternary Pt70Pd15Au15 and Pt50Pd25Au25 nanocatalysts dispersed on carbon indicate systematic Au segregation from the particle bulk to the surface, leading to an Au layer coating the cluster surface and to the spontaneous formation of a Pt...

  15. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  16. BEAMPATH: a program library for beam dynamics simulation in linear accelerators

    International Nuclear Information System (INIS)

    Batygin, Y.K.

    1992-01-01

    A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs

  17. Kinetic-Monte-Carlo-Based Parallel Evolution Simulation Algorithm of Dust Particles

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2014-01-01

    Full Text Available The evolution simulation of dust particles provides an important way to analyze the impact of dust on the environment. KMC-based parallel algorithm is proposed to simulate the evolution of dust particles. In the parallel evolution simulation algorithm of dust particles, data distribution way and communication optimizing strategy are raised to balance the load of every process and reduce the communication expense among processes. The experimental results show that the simulation of diffusion, sediment, and resuspension of dust particles in virtual campus is realized and the simulation time is shortened by parallel algorithm, which makes up for the shortage of serial computing and makes the simulation of large-scale virtual environment possible.

  18. Low-noise Collision Operators for Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2005-01-01

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers

  19. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  20. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  1. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  2. Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo; Zhang, Lian Dong; Yu, Jingjing [Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei (China)

    2016-11-15

    A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed.

  3. Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator

    International Nuclear Information System (INIS)

    Hu, Bo; Zhang, Lian Dong; Yu, Jingjing

    2016-01-01

    A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed

  4. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  5. Particle Number Dependence of the N-body Simulations of Moon Formation

    Science.gov (United States)

    Sasaki, Takanori; Hosono, Natsuki

    2018-04-01

    The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.

  6. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

    Directory of Open Access Journals (Sweden)

    Erkai Watson

    2017-04-01

    Full Text Available In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI phenomena which is based on the Discrete Element Method (DEM. Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms-1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  7. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  8. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  9. Studying protein assembly with reversible Brownian dynamics of patchy particles

    International Nuclear Information System (INIS)

    Klein, Heinrich C. R.; Schwarz, Ulrich S.

    2014-01-01

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly

  10. Studying protein assembly with reversible Brownian dynamics of patchy particles

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Heinrich C. R. [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Schwarz, Ulrich S., E-mail: ulrich.schwarz@bioquant.uni-heidelberg.de [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); BioQuant, Heidelberg University, 69120 Heidelberg (Germany)

    2014-05-14

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  11. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  12. Molecular Dynamic Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2010-11-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.

  13. Power functional theory for the dynamic test particle limit

    International Nuclear Information System (INIS)

    Brader, Joseph M; Schmidt, Matthias

    2015-01-01

    For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)

  14. Poisson solvers for self-consistent multi-particle simulations

    International Nuclear Information System (INIS)

    Qiang, J; Paret, S

    2014-01-01

    Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation

  15. Classical dynamics of particles and systems

    CERN Document Server

    Marion, Jerry B

    1965-01-01

    Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handl

  16. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  17. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    International Nuclear Information System (INIS)

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  18. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  19. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    International Nuclear Information System (INIS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.

    2015-01-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF 6 ]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO 3 ] − and [PF 6 ] − anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca 2+ cations. No qualitative

  20. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    Science.gov (United States)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  1. Development of the Object-Oriented Dynamic Simulation Models Using Visual C++ Freeware

    Directory of Open Access Journals (Sweden)

    Alexander I. Kozynchenko

    2016-01-01

    Full Text Available The paper mostly focuses on the methodological and programming aspects of developing a versatile desktop framework to provide the available basis for the high-performance simulation of dynamical models of different kinds and for diverse applications. So the paper gives some basic structure for creating a dynamical simulation model in C++ which is built on the Win32 platform with an interactive multiwindow interface and uses the lightweight Visual C++ Express as a free integrated development environment. The resultant simulation framework could be a more acceptable alternative to other solutions developed on the basis of commercial tools like Borland C++ or Visual C++ Professional, not to mention the domain specific languages and more specialized ready-made software such as Matlab, Simulink, and Modelica. This approach seems to be justified in the case of complex research object-oriented dynamical models having nonstandard structure, relationships, algorithms, and solvers, as it allows developing solutions of high flexibility. The essence of the model framework is shown using a case study of simulation of moving charged particles in the electrostatic field. The simulation model possesses the necessary visualization and control features such as an interactive input, real time graphical and text output, start, stop, and rate control.

  2. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

    KAUST Repository

    Neumann, Philipp

    2012-04-27

    In this contribution, we present our new adaptive Lattice Boltzmann implementation within the Peano framework, with special focus on nanoscale particle transport problems. With the continuum hypothesis not holding anymore on these small scales, new physical effects - such as Brownian fluctuations - need to be incorporated. We explain the overall layout of the application, including memory layout and access, and shortly review the adaptive algorithm. The scheme is validated by different benchmark computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic adaptivity and adaptive fluctuating hydrodynamics are validated separately in simulations of particle transport problems. The application of this scheme to an oscillating particle in a nanopore illustrates the importance of Brownian fluctuations in such setups. © 2012 Springer-Verlag.

  3. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  4. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  5. Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation

    Directory of Open Access Journals (Sweden)

    Ni Ketut Caturwati

    2017-01-01

    Full Text Available Cyclone separator is an equipment that separates particles contained in the fluid without using filters. The dust particles in the flue gases can be separated by utilizing centrifugal forces and different densities of particles, so that the exhaust gases to be cleaner before discharged into the environment. In this paper carried out a simulation by Computational of Fluids Dynamics to determine the number of particles that can be separated in several cyclone separator which has a ratio body diameter against vortex finder high varied as : 1:0.5 ; 1:0.75 ; 1:1 ; 1:1.25 and 1:1.5. Fluid inlet are air with antrachite impurity particles that are commonly found in the exhaust gases from tire manufacturers with inlet velocities varied as: 15 m/s and 30 m/s. The results of simulation show the fluids with 15 m/s of inlet velocity is generate particle separation value is higher than the fluids with 30 m/s inlet velocity for ratio of body diameter and height vortex finder a: 1:0.5 and 1:1.5. For both of inlet velocities the best ratio of body diameter and height vortex finder is 1:1.25, where it has the highest values of percentage trapped particles about 86% for 30 m/s input velocity and also for 15 m/s input velocity.

  6. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  7. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.

  8. Nonlinear dynamics of charged particles in the magnetotail

    Science.gov (United States)

    Chen, James

    1992-01-01

    An important region of the earth's magnetosphere is the nightside magnetotail, which is believed to play a significant role in energy storage and release associated with substorms. The magnetotail contains a current sheet which separates regions of oppositely directed magnetic field. Particle motion in the collisionless magnetotail has been a long-standing problem. Recent research from the dynamical point of view has yielded considerable new insights into the fundamental properties of orbits and of particle distribution functions. A new framework of understanding magnetospheric plasma properties is emerging. Some novel predictions based directly on nonlinear dynamics have proved to be robust and in apparent good agreement with observation. The earth's magnetotail may serve as a paradigm, one accessible by in situ observation, of a broad class of boundary regions with embedded current sheets. This article reviews the nonlinear dynamics of charged particles in the magnetotail configuration. The emphasis is on the relationships between the dynamics and physical observables. At the end of the introduction, sections containing basic material are indicated.

  9. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  10. Simulation of plume dynamics by the Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  11. Importance of Physical and Physiological Parameters in Simulated Particle Transport in the Alveolar Zone of the Human Lung

    Directory of Open Access Journals (Sweden)

    Dogan Ciloglu

    2017-01-01

    Full Text Available The trajectory and deposition efficiency of micron-sized (1–5 µm particles, inhaled into the pulmonary system, are accurately determined with the aid of a newly developed model and modified simulation techniques. This alveolar model, which has a simple but physiologically appropriate geometry, and the utilized fluid structure interaction (FSI methods permit the precise simulation of tissue wall deformation and particle fluid interactions. The relation between tissue movement and airflow in the alveolated duct is solved by a two-way fluid structure interaction simulation technique, using ANSYS Workbench (Release 16.0, ANSYS INC., Pittsburgh, PA, USA, 2015. The dynamic transport of particles and their deposition are investigated as a function of aerodynamic particle size, tissue visco-elasticity, tidal breathing period, gravity orientation and particle–fluid interactions. It is found that the fluid flows and streamlines differ between the present flexible model and rigid models, and the two-way coupling particle trajectories vary relative to one-way particle coupling. In addition, the results indicate that modelling the two-way coupling particle system is important because the two-way discrete phase method (DPM approach despite its complexity provides more extensive particle interactions and is more reliable than transport results from the one-way DPM approach. The substantial difference between the results of the two approaches is likely due to particle–fluid interactions, which re-suspend the sediment particles in the airway stream and hence pass from the current generation.

  12. Acoustofluidic particle dynamics: Beyond the Rayleigh limit.

    Science.gov (United States)

    Baasch, Thierry; Dual, Jürg

    2018-01-01

    In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.

  13. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    International Nuclear Information System (INIS)

    Fogarty, Aoife C.; Potestio, Raffaello; Kremer, Kurt

    2015-01-01

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations

  14. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fogarty, Aoife C., E-mail: fogarty@mpip-mainz.mpg.de; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de; Kremer, Kurt, E-mail: kremer@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2015-05-21

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

  15. Simulation of high-energy particle production through sausage and kink instabilities in pinched plasma discharges

    International Nuclear Information System (INIS)

    Haruki, Takayuki; Yousefi, Hamid Reza; Masugata, Katsumi; Sakai, Jun-Ichi; Mizuguchi, Yusuke; Makino, Nao; Ito, Hiroaki

    2006-01-01

    In an experimental plasma, high-energy particles were observed by using a plasma focus device, to obtain energies of a few hundred keV for electrons, up to MeV for ions. In order to study the mechanism of high-energy particle production in pinched plasma discharges, a numerical simulation was introduced. By use of a three-dimensional relativistic and fully electromagnetic particle-in-cell code, the dynamics of a Z-pinch plasma, thought to be unstable against sausage and kink instabilities, are investigated. In this work, the development of sausage and kink instabilities and subsequent high-energy particle production are shown. In the model used here, cylindrically distributed electrons and ions are driven by an external electric field. The driven particles spontaneously produce a current, which begins to pinch by the Lorentz force. Initially the pinched current is unstable against a sausage instability, and then becomes unstable against a kink instability. As a result high-energy particles are observed

  16. Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ning; Meng, Da; Lu, Shuai

    2013-11-11

    In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF’s performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.

  17. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    Science.gov (United States)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  18. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  19. Traffic flow dynamics. Data, models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)

    2013-07-01

    First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

  20. Fluctuations of the single-particle density in nuclear dynamics

    International Nuclear Information System (INIS)

    Burgio, G.F.; Chomaz, P.; Randrup, J.

    1991-01-01

    In recent years semiclassical methods have been developed to study heavy-ion collisions in the framework of the Boltzmann-Uehling-Uhlenbeck theory, in which the collisionless mean field evolution has been augmented by a Pauli-blocked Nordheim collision term. Since these models describe the average dynamic trajectory, they cannot be applied to describe fluctuations of one-body observables, correlations in the emission of light particles and catastrophic processes like multifragmentation. The authors have developed a new method in order to include the stochastic part of the collision integral into BUU-type simulations of the nuclear dynamics. They apply this method to a two-dimensional gas of fermions on a torus, for which the time evolution of the mean trajectory and the associated correlation function are calculated; the variance of the phase-space occupancy follows closely the predictions of the corresponding Fokker-Planck equation and relaxes towards the appropriate quantum-statistical limit. The breaking of the translational and spherical symmetry in the model permits the study of unstable situations in phase-space. The introduction of the nonlinear one-body field allows them to explore dynamical instabilities and bifurcations. Therefore the model can be appropriate for studying nuclear multifragmentation

  1. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tooprakai, P. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Seripienlert, A.; Ruffolo, D.; Chuychai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Matthaeus, W. H., E-mail: david.ruf@mahidol.ac.th [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-11-10

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  2. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    International Nuclear Information System (INIS)

    Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W. H.

    2016-01-01

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  3. Theory and simulation of epitaxial rotation. Light particles adsorbed on graphite

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise to frustra...... found a modulated 4 x 4 structure. Energy, structure-factor intensities, peak positions, and epitaxial rotation angles as a function of temperature and coverage have been determined from the simulations. Good agreement with theory and experimental data is found.......We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise...... between the commensurate and incommensurate phase for the adsorbed systems. From our simulations and our theory, we are, able to understand the gamma phase of D2 as an ordered phase stabilized by disorder. It can be described as a 2q-modulated structure. In agreement with the experiments, we have also...

  4. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  5. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  6. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.; Ferreira, J. A.; Tabares, F. L.; Castejon, F.; Guasp, J.

    2007-01-01

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs

  7. Open boundaries for particle beams within fit-simulations

    International Nuclear Information System (INIS)

    Balk, M.C.; Schuhmann, R.; Weiland, T.

    2006-01-01

    A method is proposed to simulate open boundary conditions for charged particle beams with v< c in time domain or frequency domain within the Finite Integration Technique (FIT). Inside the calculation domain the moving charged particles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations

  8. Cultural-based particle swarm for dynamic optimisation problems

    Science.gov (United States)

    Daneshyari, Moayed; Yen, Gary G.

    2012-07-01

    Many practical optimisation problems are with the existence of uncertainties, among which a significant number belong to the dynamic optimisation problem (DOP) category in which the fitness function changes through time. In this study, we propose the cultural-based particle swarm optimisation (PSO) to solve DOP problems. A cultural framework is adopted incorporating the required information from the PSO into five sections of the belief space, namely situational, temporal, domain, normative and spatial knowledge. The stored information will be adopted to detect the changes in the environment and assists response to the change through a diversity-based repulsion among particles and migration among swarms in the population space, and also helps in selecting the leading particles in three different levels, personal, swarm and global levels. Comparison of the proposed heuristics over several difficult dynamic benchmark problems demonstrates the better or equal performance with respect to most of other selected state-of-the-art dynamic PSO heuristics.

  9. Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow

    Science.gov (United States)

    Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John

    2017-11-01

    In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.

  10. Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber

    CERN Document Server

    Voigtländer, J; Rondo, L; Kürten, A; Stratmann, F

    2012-01-01

    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of fe...

  11. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    Science.gov (United States)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  12. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Guevara Vasquez, F. [Department of Mathematics, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependent on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.

  13. Cloud droplet activation mechanisms of amino acid aerosol particles: insight from molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Xin Li

    2013-07-01

    Full Text Available Atmospheric amino acids constitute a large fraction of water-soluble organic nitrogen compounds in aerosol particles, and have been confirmed as effective cloud condensation nuclei (CCN materials in laboratory experiments. We present a molecular dynamics (MD study of six amino acids with different structures and chemical properties that are relevant to the remote marine atmospheric aerosol–cloud system, with the aim of investigating the detailed mechanism of their induced changes in surface activity and surface tension, which are important properties for cloud drop activation. Distributions and orientations of the amino acid molecules are studied; these l-amino acids are serine (SER, glycine (GLY, alanine (ALA, valine (VAL, methionine (MET and phenylalanine (PHE and are categorised as hydrophilic and amphiphilic according to their affinities to water. The results suggest that the presence of surface-concentrated amphiphilic amino acid molecules give rise to enhanced Lennard–Jones repulsion, which in turn results in decreased surface tension of a planar interface and an increased surface tension of the spherical interface of droplets with diameters below 10 nm. The observed surface tension perturbation for the different amino acids under study not only serves as benchmark for future studies of more complex systems, but also shows that amphiphilic amino acids are surface active. The MD simulations used in this study reproduce experimental results of surface tension measurements for planar interfaces and the method is therefore applicable for spherical interfaces of nano-size for which experimental measurements are not possible to conduct.

  14. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    Science.gov (United States)

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  15. Resolved-particle simulation by the Physalis method: Enhancements and new capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Sierakowski, Adam J., E-mail: sierakowski@jhu.edu [Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Prosperetti, Andrea [Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2016-03-15

    We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrative simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.

  16. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  17. Microscopic Simulation of Particle Detectors

    CERN Document Server

    Schindler, Heinrich

    Detailed computer simulations are indispensable tools for the development and optimization of modern particle detectors. The interaction of particles with the sensitive medium, giving rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the resulting photons and charge carriers, which eventually generate the observed signal, is also subject to statistical fluctuations. Together with the readout electronics, these processes - which are ultimately governed by the atomic cross-sections for the respective interactions - pose a fundamental limit to the achievable detector performance. Conventional methods for calculating electron drift lines based on macroscopic transport coefficients used to provide an adequate description for traditional gas-based particle detectors such as wire chambers. However, they are not suitable for small-scale devices such as micropattern gas detectors, which have significantly gained importance in recent years. In this thesis, a novel approach, bas...

  18. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  19. Data simulation for the Associated Particle Imaging system

    International Nuclear Information System (INIS)

    Tunnell, L.N.

    1994-01-01

    A data simulation procedure for the Associated Particle Imaging (API) system has been developed by postprocessing output from the Monte Carlo Neutron Photon (MCNP) code. This paper compares the simulated results to our experimental data

  20. Simulation of solid-liquid flows in a stirred bead mill based on computational fluid dynamics (CFD)

    Science.gov (United States)

    Winardi, S.; Widiyastuti, W.; Septiani, E. L.; Nurtono, T.

    2018-05-01

    The selection of simulation model is an important step in computational fluid dynamics (CFD) to obtain an agreement with experimental work. In addition, computational time and processor speed also influence the performance of the simulation results. Here, we report the simulation of solid-liquid flow in a bead mill using Eulerian model. Multiple Reference Frame (MRF) was also used to model the interaction between moving (shaft and disk) and stationary (chamber exclude shaft and disk) zones. Bead mill dimension was based on the experimental work of Yamada and Sakai (2013). The effect of shaft rotation speed of 1200 and 1800 rpm on the particle distribution and the flow field was discussed. For rotation speed of 1200 rpm, the particles spread evenly throughout the bead mill chamber. On the other hand, for the rotation speed of 1800 rpm, the particles tend to be thrown to the near wall region resulting in the dead zone and found no particle in the center region. The selected model agreed well to the experimental data with average discrepancies less than 10%. Furthermore, the simulation was run without excessive computational cost.

  1. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    Science.gov (United States)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  2. Open boundaries for particle beams within fit-simulations

    Energy Technology Data Exchange (ETDEWEB)

    Balk, M.C. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)]. E-mail: balk@temf.tu-darmstadt.de; Schuhmann, R. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany); Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)

    2006-03-01

    A method is proposed to simulate open boundary conditions for charged particle beams with vparticles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations.

  3. Biosensor based on measurements of the clustering dynamics of magnetic particles

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample.......Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample....

  4. Early-time particle dynamics and non-affine deformations during microstructure selection in solids

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Surajit [Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A and 2B, Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India); Bhattacharya, Jayee [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)

    2011-07-27

    Solid-solid transitions are invariably associated with groups of particles whose deformations cannot be expressed as an affine strain about a reference configuration. The dynamics of these non-affine zones (NAZ) determine the subsequent microstructure, i.e. the mesoscale patterning resulting from the structural transition. Here, we focus on early-time dynamics of individual particles within an NAZ associated with a nucleation event. We show that the early-time behavior of these particles have distinctive characteristics depending on the transition temperature. The dynamics is heterogeneous, consisting of a few active particles exhibiting complex intermittent jamming and flow in response to internal stresses generated during the transformation. At low temperatures, the dynamics of these active particles is ballistic and the structural transformation proceeds via string-like correlated movement of active particles, along ridges in the potential energy topography set up by inactive particles. On increasing temperature, the dynamics of active particles show an abrupt transition from ballistic to diffusive behavior with a diffusion coefficient which appears to be independent of temperature. This dynamical transition in the nature of the trajectories of particles is coincident with a discontinuous transition in the microstructure of the solid. Finally, we characterize this transition in terms of a dynamical order parameter in the space of trajectories and discuss its connection with the glass transition and rheology of soft and granular matter.

  5. Particle Filter Tracking without Dynamics

    Directory of Open Access Journals (Sweden)

    Jaime Ortegon-Aguilar

    2007-01-01

    Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.

  6. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Liborio I., E-mail: liborio78@gmail.com

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  7. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    International Nuclear Information System (INIS)

    Verkhovtsev, A.; Korol, A.V.; Solovyov, A.V.

    2017-01-01

    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C 60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C 60 fragmentation via preferential C 2 emission. Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C 2 emission is estimated as a function of collision energy. The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C 60 -C 60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nano-scale and bio-molecular systems by means of classical molecular dynamics. (authors)

  8. Metrics for comparing dynamic earthquake rupture simulations

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  9. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    International Nuclear Information System (INIS)

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-01-01

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  10. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  11. Constrained dynamics of an inertial particle in a turbulent flow

    International Nuclear Information System (INIS)

    Obligado, M; Baudet, C; Gagne, Y; Bourgoin, M

    2011-01-01

    Most of theoretical and numerical works for free advected particles in a turbulent flow, which only consider the drag force acting on the particles, fails to predict recent experimental results for the transport of finite size particles. These questions have motivated a series of experiments trying to emphasize the actual role of the drag force by imposing this one as an unambiguous leading forcing term acting on a particle in a turbulent background. This is achieved by considering the constrained dynamics of towed particles in a turbulent environment. In the present work, we focus on the influence of particles inertia on its velocity and acceleration Lagrangian statistics and energy spectral density. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via strong contribution of drag.

  12. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    International Nuclear Information System (INIS)

    Bao, Rong; Li, Yongdong; Liu, Chunliang; Wang, Hongguang

    2016-01-01

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.

  13. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  14. Nonlinear dynamics aspects of particle accelerators

    International Nuclear Information System (INIS)

    Araki, H.; Ehlers, J.; Hepp, K.; Kippenhahn, R.; Weidenmuller, A.; Zittartz, J.

    1986-01-01

    This book contains 18 selections. Some of the titles are: Integrable and Nonintegrable Hamiltonian Systems; Nonlinear Dynamics Aspects of Modern Storage Rings; Nonlinear Beam-Beam Resonances; Synchro-Betatron Resonances; Review of Beam-Beam Simulations; and Perturbation Method in Nonlinear Dynamics

  15. Brownian dynamics simulations of an order-disorder transition in sheared sterically stabilized colloidal suspensions

    International Nuclear Information System (INIS)

    Rigos, A.A.; Wilemski, G.

    1992-01-01

    The shear thinning behavior of a sterically stabilized nonaqueous colloidal suspension was investigated using nonequilibrium Brownian dynamics simulations of systems with 108 and 256 particles. At a volume fraction of 0.4, the suspension is thixotropic: it has a reversible shear thinning transition from a disordered state to an ordered, lamellar state with triangularly packed strings of particles. The time scale for the transition is set by the free particle diffusion constant. For the smaller system, the transition occurs gradually with increasing shear rate. For the larger system, the transition is sharp and discontinuous shear thinning is found. 34 refs., 9 figs., 1 tab

  16. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  17. Applications of differential algebra to single-particle dynamics in storage rings

    International Nuclear Information System (INIS)

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps

  18. Further development of the fast beam dynamics simulation tool V-code

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2010-07-01

    The Vlasov equation describes the evolution of a particle density under the effects of electromagnetic fields. It is derived from the fact that the volume occupied by a given number of particles in the six-dimensional phase space remains constant when only long-range interaction as for example Coulomb forces are relevant and other particle collisions can be neglected. Because this is the case for typical charged particle beams in accelerators, the Vlasov equation can be used to describe their evolution within the whole beam line. This equation is a partial differential equation in 6D and thus it is very expensive to solve it via classical numerical methods. A more efficient approach consists in representing the particle distribution function by a discrete set of characteristic moments. For each moment a time evolution equation can be stated. These ordinary differential equations can then be evaluated efficiently by means of time integration methods if all considered forces and a proper initial condition are known. The beam dynamics simulation tool V-Code implemented at TEMF utilizes this approach.

  19. Dynamics of a jumping particle on a staircase profile

    International Nuclear Information System (INIS)

    Campos, J.; Romero-Valles, M.J.; Torres, P.J.; Veerman, J.J.P.

    2007-01-01

    We perform a detailed analysis of the dynamics of the descent of a particle bouncing down a staircase profile under the action of gravity. In order to get interesting dynamics we make a detail analysis of the case which the particle loses momentum in the direction orthogonal to the collision plane but preserves the tangential component of the momentum. We prove that in this case all orbits are bounded and show the existence and stability of periodic solutions. The interplay between loss and gain of energy due to impacts and free falling respectively generates a rich dynamics

  20. Numerical methodologies for investigation of moderate-velocity flow using a hybrid computational fluid dynamics - molecular dynamics simulation approach

    International Nuclear Information System (INIS)

    Ko, Soon Heum; Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel; Jha, Shantenu

    2014-01-01

    Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.

  1. Final Report: Model interacting particle systems for simulation and macroscopic description of particulate suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Mucha

    2007-08-30

    Suspensions of solid particles in liquids appear in numerous applications, from environmental settings like river silt, to industrial systems of solids transport and water treatment, and biological flows such as blood flow. Despite their importance, much remains unexplained about these complicated systems. Mucha's research aims to improve understanding of basic properties of suspensions through a program of simulating model interacting particle systems with critical evaluation of proposed continuum equations, in close collaboration with experimentalists. Natural to this approach, the original proposal centered around collaboration with studies already conducted in various experimental groups. However, as was detailed in the 2004 progress report, following the first year of this award, a number of the questions from the original proposal were necessarily redirected towards other specific goals because of changes in the research programs of the proposed experimental collaborators. Nevertheless, the modified project goals and the results that followed from those goals maintain close alignment with the main themes of the original proposal, improving efficient simulation and macroscopic modeling of sedimenting and colloidal suspensions. In particular, the main investigations covered under this award have included: (1) Sedimentation instabilities, including the sedimentation analogue of the Rayleigh-Taylor instability (for heavy, particle-laden fluid over lighter, clear fluid). (2) Ageing dynamics of colloidal suspensions at concentrations above the glass transition, using simplified interactions. (3) Stochastic reconstruction of velocity-field dependence for particle image velocimetry (PIV). (4) Stochastic modeling of the near-wall bias in 'nano-PIV'. (5) Distributed Lagrange multiplier simulation of the 'internal splash' of a particle falling through a stable stratified interface. (6) Fundamental study of velocity fluctuations in sedimentation

  2. Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2015-01-01

    Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,

  3. Dynamical phases of attractive particles sliding on a structured surface

    International Nuclear Information System (INIS)

    Hasnain, J; Jungblut, S; Dellago, C

    2015-01-01

    Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential. (paper)

  4. The selective interaction between silica nanoparticles and enzymes from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Xiaotian Sun

    Full Text Available Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the interaction mode between the nano-particles and proteins. In this study, we investigate the orientation and adsorption between several enzymes (cytochrome c, RNase A, lysozyme and 4 nm/11 nm silica nanoparticles (SNPs by using molecular dynamics (MD simulation. Our results show that three enzymes are adsorbed onto the surfaces of both 4 nm and 11 nm SNPs during our MD simulations and the small SNPs induce greater structural stabilization. The active site of cytochrome c is far away from the surface of 4 nm SNPs, while it is adsorbed onto the surface of 11 nm SNPs. We also explore the influences of different groups (-OH, -COOH, -NH2 and CH3 coated onto silica nanoparticles, which show significantly different impacts. Our molecular dynamics results indicate the selective interaction between silicon nanoparticles and enzymes, which is consistent with experimental results. Our study provides useful guides for designing/modifying nanomaterials to interact with proteins for their bio-applications.

  5. A dynamic global and local combined particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Chen Qunxian

    2009-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.

  6. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    Science.gov (United States)

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  7. Numerical simulation of collision-free plasma using Vlasov hybrid simulation

    International Nuclear Information System (INIS)

    Nunn, D.

    1990-01-01

    A novel scheme for the numerical simulation of wave particle interactions in space plasmas has been developed. The method, termed VHS or Vlasov Hybrid Simulation, is applicable to hot collision free plasmas in which the unperturbed distribution functions is smooth and free of delta function singularities. The particle population is described as a continuous Vlasov fluid in phase space-granularity and collisional effects being ignored. In traditional PIC/CIC codes the charge/current due to each simulation particle is assigned to a fixed spatial grid. In the VHS method the simulation particles sample the Vlasov fluid and provide information about the value of distribution function (F(r,v) at random points in phase space. Values of F are interpolated from the simulation particles onto a fixed grid in velocity/position or phase space. With distribution function defined on a phase space grid the plasma charge/current field is quickly calculated. The simulation particles serve only to provide information, and thus the particle population may be dynamic. Particles no longer resonant with the wavefield may be discarded from the simulation, and new particles may be inserted into the Vlasov fluid where required

  8. A versatile model for soft patchy particles with various patch arrangements.

    Science.gov (United States)

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-01-21

    We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.

  9. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  10. Noiseless Vlasov–Poisson simulations with linearly transformed particles

    Energy Technology Data Exchange (ETDEWEB)

    Campos Pinto, Martin, E-mail: campos@ann.jussieu.fr [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Sonnendrücker, Eric, E-mail: sonnen@math.unistra.fr [IRMA, UMR 7501, Université de Strasbourg and CNRS, 7 rue René Descartes, F-67084 Strasbourg Cedex (France); Project-team CALVI, INRIA Nancy Grand Est, 7 rue René Descartes, F-67084 Strasbourg Cedex (France); Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grote, David P., E-mail: grote1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lund, Steve M., E-mail: smlund@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-10-15

    We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts of using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development of Denavit's Forward Semi-Lagrangian (FSL) scheme (Denavit, 1972 [8]). However, it has recently been established (Campos Pinto, 2012 [20]) that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.

  11. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  12. Dynamics and segregation of particles in a cyclone

    International Nuclear Information System (INIS)

    Mothes, H.

    1982-01-01

    In cyclone separator systems, the separation efficiency increases with increasing dust concentration, although the centripetal force, which is responsible for particle separation in a vortex, decreases with increasing particle concentration. This is demonstrated by laser-doppler-velocity-measurements. The measurements of separation efficiency together with the determination of particle size using stray radiation show that the effect of particle agglomeration is of major importance in the case of higher particle concentrations. Also smaller particles can be separated from the gas by agglomeration to larger particles, which can easily be separated. The calculations show that the improved separation at higher concentrations can be explained by this particle agglomeration effect. Finally different cyclone design models are discussed on the basis of the experimental results and the theoretical considerations on the particle dynamics in a cyclone. (orig./DG) [de

  13. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  14. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    Science.gov (United States)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  15. Numerical simulations of slagging dynamics using a meshmeshless strategy

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2009-07-01

    In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)

  16. Mesh Refinement for Particle-In-Cell Plasma Simulations: Applications to - and benefits for - Heavy-Ion-Fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion. In particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at LBNL between the Applied Numerical Algorithms Group (ANAG) and the HIF group to couple the Adaptive Mesh Refinement (AMR) library (CHOMBO) developed by the ANAG group to the Particle-In-Cell accelerator code WARP developed by the HIF-VNL. They describe their progress and present their initial findings

  17. Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method

    Science.gov (United States)

    Verhoff, Ashley Marie

    Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a

  18. SIMULATION OF TRANSLATIONAL - ROTATIONAL MOTION OF WOOD PARTICLES DURING THE PROCESS OF PARTICLE ORIENTATION

    Directory of Open Access Journals (Sweden)

    Sergey PLOTNIKOV

    2014-09-01

    Full Text Available The simulation from the motion of flat particle revealed that the fall depends on the height of the drop, the thickness and density of the particles and does not depend on its length and width. The drop in air is about 20% longer than in vacuum. During orientation from angular particles the velocity of rotating particles with a length of 150mm is reduced by 18%, for particles with a length of 75mm by 12%. This reduction increases linearly with decreasing density of particles. A velocity field acting on the particle in the fall and rotation was presented. The results of the study prove the possibility to reduce the scatter of the particles during the mat's formation, that in turns can increase the board’s bending strength.

  19. Auxiliary plasma heating and fueling models for use in particle simulation codes

    International Nuclear Information System (INIS)

    Procassini, R.J.; Cohen, B.I.

    1989-01-01

    Computational models of a radiofrequency (RF) heating system and neutral-beam injector are presented. These physics packages, when incorporated into a particle simulation code allow one to simulate the auxiliary heating and fueling of fusion plasmas. The RF-heating package is based upon a quasilinear diffusion equation which describes the slow evolution of the heated particle distribution. The neutral-beam injector package models the charge exchange and impact ionization processes which transfer energy and particles from the beam to the background plasma. Particle simulations of an RF-heated and a neutral-beam-heated simple-mirror plasma are presented. 8 refs., 5 figs

  20. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  1. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  2. Simulation of spin dynamics to measure electric dipole moments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Marcel; Lehrach, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Collaboration: JEDI-Collaboration

    2013-07-01

    CP violation in the baryon sector, which is predicted by the Standard Model of Particle Physics, is too small to explain the matter and antimatter asymmetry in our universe. Permanent Electric Dipole Moments (EDMs) violate both P and T symmetries and are therefore, through the CPT theorem, also CP violating. No direct EDM measurements for protons, deuterons and light nuclei have been performed up to now. The JEDI collaboration at Forschungszentrum Juelich (FZJ) and the BNL-EDM collaboration at Brookhaven National Laboratory (BNL) pursue the goal to measure the EDMs of these particles in dedicated storage rings. Therefore different approaches are studied to reach an ultimate sensitivity of 10{sup -29} e.cm. A first direct measurement of the proton and deuteron EDM at a sensitivity level of 10{sup -24} e.cm will be performed in the existing conventional storage ring at FZJ, the Cooler Synchrotron COSY. Particle tracking simulations to explore the motion-correlated spin dynamics are a crucial part of feasibility studies of the planned storage ring EDM experiments. In a first step, a benchmarking of simulation codes with measurements at the Cooler Synchrotron COSY is performed.

  3. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  4. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085

  5. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model.

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo

    2014-09-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

  6. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs

  7. Dynamical injections as the source of near geostationary quiet time particle spatial boundaries

    International Nuclear Information System (INIS)

    Mauk, B.H.; Meng, C.I.

    1983-01-01

    To test our understanding of quasi-stationary magnetospheric particle convection, we address here a particular class of particle feature (plasma dropouts at 0 eV to 5 keV) observed regularly by near geostationary satellites in the noon to dusk quadrant, often during the apparent absence of recent (hours) substorm activity. At first consideration the feature appears to result from the passage of the satellites toward and into the so-called ''forbidden zones'' of the quasi-stationary particle convection patterns. It is demonstrated here that the energy dispersion of the feature cannot be explained by simple stationary convection models even when loss processes are imposed on those particles that penetrate most closely to the earth. Also, the radial position of the feature does not vary with geomagnetic activity as expected from steady convection models. It is concluded that dynamical processes are responsible. However, models based on the modification of the so-called cross-tail field configuration against initial stationary convection patterns are rejected here because these models preserve the qualitative sense of the energy dispersions of the initial patterns. It is proposed that the spatial structures of pase (24 hours) dynamical, nightside particle injections determine to a great extent the character of the feature. It is shown that detailed simulations based on the double-spiraled ''injection boundary'' concept (used previously to reproduce the fast changing nighttime features) reproduce very well the character and dispersion senses of the noon-to-dusk feature by allowing the distributions to evolve for many hours. It is emphasized that the portion of the original injection boundary which gives rise to this feature of interest is the decidely ''non-Alfvenic'' portion

  8. Regular and stochastic particle motion in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1979-08-01

    A Hamiltonian formalism is presented for the study of charged-particle trajectories in the self-consistent field of the particles. The intention is to develop a general approach to plasma dynamics. Transformations of phase-space variables are used to separate out the regular, adiabatic motion from the irregular, stochastic trajectories. Several new techniques are included in this presentation

  9. A splitting integration scheme for the SPH simulation of concentrated particle suspensions

    Science.gov (United States)

    Bian, Xin; Ellero, Marco

    2014-01-01

    Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.

  10. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations.

    Science.gov (United States)

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-08-06

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s(-1) for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks.

  11. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Hongkui, E-mail: lvhk@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong; He, Huihai; Liu, Jia [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Hou, Chao; Zhao, Jing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km{sup 2} array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10{sup 5} photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10{sup 5}, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  12. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Science.gov (United States)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as "two outputs" device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×105 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 105, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  13. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    International Nuclear Information System (INIS)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-01-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km 2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10 5 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10 5 , which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described

  14. Simulating immersed particle collisions: the Devil's in the details

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  15. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations

    International Nuclear Information System (INIS)

    Marzouk, Youssef M.; Ghoniem, Ahmed F.

    2005-01-01

    A number of complex physical problems can be approached through N-body simulation, from fluid flow at high Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work introduces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We demonstrate that the number of particle-cluster interactions and the order at which they are performed are directly affected by partition geometry. Weighted k-means partitions minimize the sum of clusters' second moments and create well-localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-order approximations and fewer cells. We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay and Krasny [Journal of Computational Physics 172 (2) (2001) 879-907]. The method is applied to vortex simulations of a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the domain than a global oct-tree

  16. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.

    2017-05-15

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  17. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients

    Science.gov (United States)

    Anderson, Richard L.; Bray, David J.; Ferrante, Andrea S.; Noro, Massimo G.; Stott, Ian P.; Warren, Patrick B.

    2017-09-01

    We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.

  18. Artificial biomembrane morphology: a dissipative particle dynamics study.

    Science.gov (United States)

    Becton, Matthew; Averett, Rodney; Wang, Xianqiao

    2017-09-18

    Artificial membranes mimicking biological structures are rapidly breaking new ground in the areas of medicine and soft-matter physics. In this endeavor, we use dissipative particle dynamics simulation to investigate the morphology and behavior of lipid-based biomembranes under conditions of varied lipid density and self-interaction. Our results show that a less-than-normal initial lipid density does not create the traditional membrane; but instead results in the formation of a 'net', or at very low densities, a series of disparate 'clumps' similar to the micelles formed by lipids in nature. When the initial lipid density is high, a membrane forms, but due to the large number of lipids, the naturally formed membrane would be larger than the simulation box, leading to 'rippling' behavior as the excess repulsive force of the membrane interior overcomes the bending energy of the membrane. Once the density reaches a certain point however, 'bubbles' appear inside the membrane, reducing the rippling behavior and eventually generating a relatively flat, but thick, structure with micelles of water inside the membrane itself. Our simulations also demonstrate that the interaction parameter between individual lipids plays a significant role in the formation and behavior of lipid membrane assemblies, creating similar structures as the initial lipid density distribution. This work provides a comprehensive approach to the intricacies of lipid membranes, and offers a guideline to design biological or polymeric membranes through self-assembly processes as well as develop novel cellular manipulation and destruction techniques.

  19. The dynamics of the rapid solidification of two successive aluminum particles in molten state

    Science.gov (United States)

    Zirari, M.; El-Hadj, A. Abdellah; Bacha, N.

    2013-12-01

    A finite element method is used to simulate coating deposition in the thermal spraying process. The model uses a method based on a fixed-grid Eulerian control volume to solve the fluid dynamics and energy conservation equations. A volume-of-fluid algorithm was used to track free surface deformation. The specific heat method (SHM) is used for the solidification phenomenon. This work deals mainly numerically, the problem related to solidification during impact of two identical aluminium drops, impacting successively on the same point and time-shifted, onto a smooth steel substrate. In the first part of this study, a completely melted particle, sprayed onto substrate tool steel H13 is considered in the objective of identification. Then, we examine four possible cases of successive impacts of two particles and their effects on the sprawl dynamics in different states (fully and/or partially melted). It was found that the internal energy in conjunction with the metallurgical state of the droplet play a key role in the final morphology of the coating.

  20. Modeling of particle mixing in the atmosphere

    International Nuclear Information System (INIS)

    Zhu, Shupeng

    2015-01-01

    This thesis presents a newly developed size-composition resolved aerosol model (SCRAM), which is able to simulate the dynamics of externally-mixed particles in the atmosphere, and evaluates its performance in three-dimensional air-quality simulations. The main work is split into four parts. First, the research context of external mixing and aerosol modelling is introduced. Secondly, the development of the SCRAM box model is presented along with validation tests. Each particle composition is defined by the combination of mass-fraction sections of its chemical components or aggregates of components. The three main processes involved in aerosol dynamic (nucleation, coagulation, condensation/ evaporation) are included in SCRAM. The model is first validated by comparisons with published reference solutions for coagulation and condensation/evaporation of internally-mixed particles. The particle mixing state is investigated in a 0-D simulation using data representative of air pollution at a traffic site in Paris. The relative influence on the mixing state of the different aerosol processes and of the algorithm used to model condensation/evaporation (dynamic evolution or bulk equilibrium between particles and gas) is studied. Then, SCRAM is integrated into the Polyphemus air quality platform and used to conduct simulations over Greater Paris during the summer period of 2009. This evaluation showed that SCRAM gives satisfactory results for both PM2.5/PM10 concentrations and aerosol optical depths, as assessed from comparisons to observations. Besides, the model allows us to analyze the particle mixing state, as well as the impact of the mixing state assumption made in the modelling on particle formation, aerosols optical properties, and cloud condensation nuclei activation. Finally, two simulations are conducted during the winter campaign of MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for

  1. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  2. Beam Dynamics Simulations of the REX-ISOLDE A/q-separator

    CERN Document Server

    Fraser, M A; Wenander, F

    2014-01-01

    The REX-ISOLDE A=q-separator selects the radioactive species of interest from the background of residual gas ions coming from the EBIS ion source. In the context of the HIE-ISOLDE upgrade, including the implementation of a multi-harmonic buncher and an upgraded EBIS, the separator and the beam line between the EBIS and RFQ, which we will call the Low Energy Beam Transfer (LEBT) line, has been simulated by tracking particles through the field maps of each active element using the TRACK [4] code. The simulations were benchmarked with a COSY-1 model that was improved to take into account the fringe fields of the electrostatic quadrupoles, electrostatic deflector and magnetic bender; the model can be used to tune and optimise the separator with higher-order effects taken into account. In this note the beam dynamics simulations are documented and the transverse and longitudinal acceptance of the separator line studied to provide design constraints for the EBIS upgrade.

  3. Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes

    Directory of Open Access Journals (Sweden)

    Samuel Frimpong

    2016-06-01

    Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.

  4. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  5. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  6. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    Science.gov (United States)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  7. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors

    International Nuclear Information System (INIS)

    Nishiura, Daisuke; Sakaguchi, Hide

    2011-01-01

    Over the last few decades, the computational demands of massive particle-based simulations for both scientific and industrial purposes have been continuously increasing. Hence, considerable efforts are being made to develop parallel computing techniques on various platforms. In such simulations, particles freely move within a given space, and so on a distributed-memory system, load balancing, i.e., assigning an equal number of particles to each processor, is not guaranteed. However, shared-memory systems achieve better load balancing for particle models, but suffer from the intrinsic drawback of memory access competition, particularly during (1) paring of contact candidates from among neighboring particles and (2) force summation for each particle. Here, novel algorithms are proposed to overcome these two problems. For the first problem, the key is a pre-conditioning process during which particle labels are sorted by a cell label in the domain to which the particles belong. Then, a list of contact candidates is constructed by pairing the sorted particle labels. For the latter problem, a table comprising the list indexes of the contact candidate pairs is created and used to sum the contact forces acting on each particle for all contacts according to Newton's third law. With just these methods, memory access competition is avoided without additional redundant procedures. The parallel efficiency and compatibility of these two algorithms were evaluated in discrete element method (DEM) simulations on four types of shared-memory parallel computers: a multicore multiprocessor computer, scalar supercomputer, vector supercomputer, and graphics processing unit. The computational efficiency of a DEM code was found to be drastically improved with our algorithms on all but the scalar supercomputer. Thus, the developed parallel algorithms are useful on shared-memory parallel computers with sufficient memory bandwidth.

  8. RadSim: a program to simulate individual particle interactions for educational purposes

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Palefsky, Steven; DeBlois, Francois

    2006-01-01

    A program was developed, RadSim, which can be used to simulate certain individual interactions of photons, electrons, positrons and alpha particles with a single atom for educational purposes. The program can be run in two modes: manual and simulated. In the manual mode, an individual particle undergoing a specified interaction with a target atom can be simulated, which essentially comes down to a graphical evaluation of kinematic equations. In the simulated mode, a preset number of identical particles are allowed to undergo a specified interaction type with a target atom. The exit channel of the interaction is sampled from probability distributions using Monte Carlo methods. The incoming and outgoing particles are visualized and the frequency distribution of the kinematic variables of the exit channel is displayed graphically. It has to be emphasized that RadSim was mainly developed for educational purposes. (note)

  9. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  10. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  11. Dynamic bremsstrahlung from relativistic particles scattered by atom

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bujmistrov, V.M.; Krotov, Yu.A.; Mikhajlov, L.K.; Trakhtenberg, L.I.

    1985-01-01

    The bremsstrahlung cross section for a relativistic particle scattered by an atom is calculated. In contrast to the screening approximation usually employed, the influence of the atomic electron on the bremsstrahlung is taken into account exactly, viz., the atomic electron is considered as a moving particle interacting with the electromagnetic field and not only as the source of a static external field. Consequently, along with the static term which leads to the Bethe-Heitw,ler formula, a ne dynamic, term appears in the transition amplitude. The corresponding cross section, the dynamic bremsstrahlung cross section, in certain frequensy ranges and certain ranges of the directions of photon emission exceeds considerably the static bremsstrahlung cross section

  12. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    Schuetz, Anne

    2015-05-01

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  13. Conditions for minimization of halo particle production during transverse compression of intense ion charge bunches in the Paul Trap Simulator Experiment (PTSX)

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Grote, David P.; Majeski, Richard; Startsev, Edward A.

    2007-01-01

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory Paul trap that simulates propagation of a long, thin charged-particle bunch coasting through a multi-kilometer-long magnetic alternating-gradient (AG) transport system by putting the physicist in the frame-of-reference of the beam. The transverse dynamics of particles in both systems are described by the same sets of equations-including all nonlinear space-charge effects. The time-dependent quadrupolar voltages applied to the PTSX confinement electrodes correspond to the axially dependent magnetic fields applied in the AG system. This paper presents the results of experiments in which the amplitude of the applied confining voltage is changed over the course of the experiment in order to transversely compress a beam with an initial depressed tune ν/ν 0 ∼0.9. Both instantaneous and smooth changes are considered. Particular emphasis is placed on determining the conditions that minimize the emittance growth and, generally, the number of particles that are found at large radius (so-called halo particles) after the beam compression. The experimental data are also compared with the results of particle-in-cell (PIC) simulations performed with the WARP code

  14. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  15. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  16. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  17. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  18. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  19. Classical trajectory Monte Carlo simulations of particle confinement using dual levitated coils

    Directory of Open Access Journals (Sweden)

    R. A. Lane

    2014-07-01

    Full Text Available The particle confinement properties of plasma confinement systems that employ dual levitated magnetic coils are investigated using classical trajectory Monte Carlo simulations. Two model systems are examined. In one, two identical current-carrying loops are coaxial and separated axially. In the second, two concentric and coplanar loops have different radii and carry equal currents. In both systems, a magnetic null circle is present between the current loops. Simulations are carried out for seven current loop separations for each system and at numerous values of magnetic field strength. Particle confinement is investigated at three locations between the loops at different distances from the magnetic null circle. Each simulated particle that did not escape the system exhibited one of four modes of confinement. Reduced results are given for both systems as the lowest magnetic field strength that exhibits complete confinement of all simulated particles for a particular loop separation.

  20. Experimental and simulation study of the effects of cosmic particles on CMOS/SOS RAMs

    International Nuclear Information System (INIS)

    Worley, E.; Williams, R.; Groninger, J.

    1990-01-01

    Van De Graaff particle accelerator data was taken on three different CMOS/SOS RAM cells. The resulting LET upset thresholds were then used to calculate the deposited charge needed to upset the cells. Detailed SPICE simulations of the various cells were used to determine the collected charge required for upset. A comparison of the two values indicated that the charge needed to upset the cells was greater than the deposited charge, thus confirming Rollins' results. Shorter channel lengths and higher power supply voltages caused the ratio, M, of upset charge to deposited charge to increase. As a result of this multiplication factor, actual devices are more likely to upset (i.e., upset at lower energy) than expected from an analysis of only the collected charge. A mixed mode simulator was then used to model the charge collection process. This simulator study showed that the M factor is a very fluid number which is dependent on minority carrier lifetime, drain voltage, and the switching dynamics of the cell in addition to the dependence on mobility ratio and channel length. Parasitic bipolar gain at high injection levels appears to be the primary mechanism allowing collected charge to be greater than deposited charge. In conclusion, the simulator and experimental data show that, as floating body static memory transistors are down scaled, the particle energy needed to upset the cell is reduced because of the enhanced parasitic bipolar gain effect as well as a reduction in the node capacitance. This result is shown by simulation to also apply to fully depleted SOI transistors

  1. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    International Nuclear Information System (INIS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  2. Mesoscopic modelling and simulation of soft matter.

    Science.gov (United States)

    Schiller, Ulf D; Krüger, Timm; Henrich, Oliver

    2017-12-20

    The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.

  3. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    Science.gov (United States)

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.

  4. Molecular dynamic simulations of the sputtering of multilayer organic systems

    CERN Document Server

    Postawa, Z; Piaskowy, J; Krantzman, K; Winograd, N; Garrison, B J

    2003-01-01

    Sputtering of organic overlayers has been modeled using molecular dynamics computer simulations. The investigated systems are composed of benzene molecules condensed into one, two and three layers on an Ag left brace 1 1 1 right brace surface. The formed organic overlayers were bombarded with 4 keV Ar projectiles at normal incidence. The development of the collision cascade in the organic overlayer was investigated. The sputtering yield, mass, internal and kinetic energy distributions of ejected particles have been analyzed as a function of the thickness of the organic layer. The results show that all emission characteristics are sensitive to the variation of layer thickness. Although most of the ejected intact benzene molecules originate from the topmost layer, the emission of particles located initially in second and third layers is significant. The analysis indicates that the metallic substrate plays a dominant role in the ejection of intact organic molecules.

  5. Summary report of the group on single-particle nonlinear dynamics

    International Nuclear Information System (INIS)

    Axinescu, S.; Bartolini, R.; Bazzani, A.

    1996-10-01

    This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects

  6. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  7. Parallel treatment of simulation particles in particle-in-cell codes on SUPRENUM

    International Nuclear Information System (INIS)

    Seldner, D.

    1990-02-01

    This report contains the program documentation and description of the program package 2D-PLAS, which has been developed at the Nuclear Research Center Karlsruhe in the Institute for Data Processing in Technology (IDT) under the auspices of the BMFT. 2D-PLAS is a parallel program version of the treatment of the simulation particles of the two-dimensional stationary particle-in-cell code BFCPIC which has been developed at the Nuclear Research Center Karlsruhe. This parallel version has been designed for the parallel computer SUPRENUM. (orig.) [de

  8. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    Science.gov (United States)

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  9. A software framework for the portable parallelization of particle-mesh simulations

    DEFF Research Database (Denmark)

    Sbalzarini, I.F.; Walther, Jens Honore; Polasek, B.

    2006-01-01

    Abstract: We present a software framework for the transparent and portable parallelization of simulations using particle-mesh methods. Particles are used to transport physical properties and a mesh is required in order to reinitialize the distorted particle locations, ensuring the convergence...

  10. Constraining Diameters of Ash Particles in Io's Pele Plume by DSMC Simulation

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2013-10-01

    The black “butterfly wings” seen at Pele are produced by silicate ash which is to some extent entrained in the gas flow from very low altitudes. These particles are key to understanding the volcanism at Pele. However, the Pele plume is not nearly as dusty as Prometheus, and these are not the only particles in the plume, as the SO2 in the plume will also condense as it cools. It is therefore difficult to estimate a size distribution for the ash particles by observation, and the drag on ash particles from the plume flow is significant enough that ballistic models are also of limited use. Using Direct Simulation Monte Carlo, we can simulate a gas plume at Pele which demonstrates very good agreement with observations. By extending this model down to nearly the surface of the lava lake, ash particles can be included in the simulation by assuming that they are initially entrained in the very dense (for Io) gas immediately above the magma. Particles are seen to fall to the ground to the east and west of the vent, agreeing with the orientation of the “butterfly wings”, and particles with larger diameters fall to the ground closer to the lava lake. We present a model for mapping simulated deposition density to the coloration of the surface and we use it to estimate the size distribution of ash particles in the plume.

  11. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    Science.gov (United States)

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Analysis of the dynamic interaction between SVOCs and airborne particles

    DEFF Research Database (Denmark)

    Liu, Cong; Shi, Shanshan; Weschler, Charles J.

    2013-01-01

    A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...

  13. Kawasaki dynamics with two types of particles : critical droplets

    NARCIS (Netherlands)

    Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.

    2012-01-01

    This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large finite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding

  14. Kawasaki dynamics with two types of particles : critical droplets

    NARCIS (Netherlands)

    Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.

    2012-01-01

    This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large ¿nite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding

  15. Diffusive real-time dynamics of a particle with Berry curvature

    Science.gov (United States)

    Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto

    2018-02-01

    We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.

  16. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  17. Dynamic Simulation of AN Helium Refrigerator

    Science.gov (United States)

    Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.

    2008-03-01

    A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.

  18. Simulation study of effects of initial particle size distribution on dissolution

    International Nuclear Information System (INIS)

    Wang, G.; Xu, D.S.; Ma, N.; Zhou, N.; Payton, E.J.; Yang, R.; Mills, M.J.; Wang, Y.

    2009-01-01

    Dissolution kinetics of γ' particles in binary Ni-Al alloys with different initial particle size distributions (PSD) is studied using a three-dimensional (3D) quantitative phase field model. By linking model inputs directly to thermodynamic and atomic mobility databases, microstructural evolution during dissolution is simulated in real time and length scales. The model is first validated against analytical solution for dissolution of a single γ' particle in 1D and numerical solution in 3D before it is applied to investigate the effects of initial PSD on dissolution kinetics. Four different types of PSD, uniform, normal, log-normal and bimodal, are considered. The simulation results show that the volume fraction of γ' particles decreases exponentially with time, while the temporal evolution of average particle size depends strongly on the initial PSD

  19. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  20. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    International Nuclear Information System (INIS)

    Chang, Y.H.; Mosleh, A.; Dang, V.N.

    2003-01-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  1. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.H.; Mosleh, A.; Dang, V.N

    2003-03-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  2. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    Science.gov (United States)

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  3. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  4. Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows

    Science.gov (United States)

    Kong, Bo; Patel, Ravi G.; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2017-11-01

    In this work, we study the performance of three simulation techniques for fluid-particle flows: (1) a volume-filtered Euler-Lagrange approach (EL), (2) a quadrature-based moment method using the anisotropic Gaussian closure (AG), and (3) a traditional two-fluid model. By simulating two problems: particles in frozen homogeneous isotropic turbulence (HIT), and cluster-induced turbulence (CIT), the convergence of the methods under grid refinement is found to depend on the simulation method and the specific problem, with CIT simulations facing fewer difficulties than HIT. Although EL converges under refinement for both HIT and CIT, its statistical results exhibit dependence on the techniques used to extract statistics for the particle phase. For HIT, converging both EE methods (TFM and AG) poses challenges, while for CIT, AG and EL produce similar results. Overall, all three methods face challenges when trying to extract converged, parameter-independent statistics due to the presence of shocks in the particle phase. National Science Foundation and National Energy Technology Laboratory.

  5. Monte Carlo simulation of particle-induced bit upsets

    Science.gov (United States)

    Wrobel, Frédéric; Touboul, Antoine; Vaillé, Jean-Roch; Boch, Jérôme; Saigné, Frédéric

    2017-09-01

    We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER) for a given device in a given environment.

  6. Monte Carlo simulation of particle-induced bit upsets

    Directory of Open Access Journals (Sweden)

    Wrobel Frédéric

    2017-01-01

    Full Text Available We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER for a given device in a given environment.

  7. Single-particle beam dynamics in Boomerang

    International Nuclear Information System (INIS)

    Jackson, Alan; Nishimura, Hiroshi

    2003-01-01

    We describe simulations of the beam dynamics in the storage ring (Boomerang), a 3-GeV third-generation light source being designed for the Australian Synchrotron Project[1]. The simulations were performed with the code Goemon[2]. They form the basis for design specifications for storage ring components (apertures, alignment tolerances, magnet quality, etc.), and for determining performance characteristics such as coupling and beam lifetime

  8. Natural tracer test simulation by stochastic particle tracking method

    International Nuclear Information System (INIS)

    Ackerer, P.; Mose, R.; Semra, K.

    1990-01-01

    Stochastic particle tracking methods are well adapted to 3D transport simulations where discretization requirements of other methods usually cannot be satisfied. They do need a very accurate approximation of the velocity field. The described code is based on the mixed hybrid finite element method (MHFEM) to calculated the piezometric and velocity field. The random-walk method is used to simulate mass transport. The main advantages of the MHFEM over FD or FE are the simultaneous calculation of pressure and velocity, which are considered as unknowns; the possibility of interpolating velocities everywhere; and the continuity of the normal component of the velocity vector from one element to another. For these reasons, the MHFEM is well adapted for particle tracking methods. After a general description of the numerical methods, the model is used to simulate the observations made during the Twin Lake Tracer Test in 1983. A good match is found between observed and simulated heads and concentrations. (Author) (12 refs., 4 figs.)

  9. Flow simulation of a Pelton bucket using finite volume particle method

    International Nuclear Information System (INIS)

    Vessaz, C; Jahanbakhsh, E; Avellan, F

    2014-01-01

    The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is an arbitrary Lagrangian-Eulerian method, which combines attractive features of Smoothed Particle Hydrodynamics and conventional mesh-based Finite Volume Method. This method is able to satisfy free surface and no-slip wall boundary conditions precisely. The fluid flow is assumed weakly compressible and the wall boundary is represented by one layer of particles located on the bucket surface. In the present study, the simulations of the flow in a stationary bucket are investigated for three different impinging angles: 72°, 90° and 108°. The particles resolution is first validated by a convergence study. Then, the FVPM results are validated with available experimental data and conventional grid-based Volume Of Fluid simulations. It is shown that the wall pressure field is in good agreement with the experimental and numerical data. Finally, the torque evolution and water sheet location are presented for a simulation of five rotating Pelton buckets

  10. Dynamic simulation of a reboiler

    International Nuclear Information System (INIS)

    Moeck, E.O.; McMorran, P.D.

    1977-07-01

    A hybrid-computer simulation of reboiler dynamics was prepared, comprising models of steam condensation in tubes, heat conduction, steam generation, a surge tank, steam transmission line and flow-control valve. Time and frequency responses were obtained to illustrate the dynamics of this multivariable process. (author)

  11. NVU dynamics. II. Comparing to four other dynamics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Toxværd, Søren; Schrøder, Thomas

    2011-01-01

    -potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.......e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented...... on the constant-potential-energy hypersurface, and to Nos-Hoover NVT dynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVE dynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times....

  12. Formation and dynamic change of aerosol particles

    International Nuclear Information System (INIS)

    Kasahara, Mikio

    1986-01-01

    Processes of aerosol particle nucleation are roughly grouped into two types. In one, aerosol is produced as a result of dispersion of solid or liquid by mechanical force while in the other it is formed through phase transition from gas to solid or liquid due to cohesion caused by cooling, expansion or chemical reaction. This article reviews various aspects of aerosol particle nucleation through the latter type of processes and behaviors of the particles formed. Gas-to-particle conversion processes are divided into those of homogeneous and heterogeneous nucleation, and the former include homogeneous homomolecular and homogeneous heteromolecular nucleation processes. Here, homoneneous homomolecular nucleation is described centering on the theories proposed by Backer and Doring-Zeldovich-Volmer-Frenkel while homogeneous heteromolecular systems are outlined citing the theory developed by Kiang and Stauffer. Heterogeneous nucleation (or heterogeneous condensation) is discussed on the basis of the relationship between the mean free path of air molecules and the particle size. Various theories for particle formation and growth are listed and briefly outlined. Some of them are compared with experimental results. Models are cited to explain behaviors of aerosol particles after being formed. Also described is simulation of particle nucleation and growth in relation to atmospheric pollution and possible accidents of liquid-metal fast breeder reactors. (Nogami, K.)

  13. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  14. Dynamics of many-body localization in the presence of particle loss

    Science.gov (United States)

    van Nieuwenburg, EPL; Yago Malo, J.; Daley, AJ; Fischer, MH

    2018-01-01

    At long times, residual couplings to the environment become relevant even in the most isolated experiments, a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a cold-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the ‘non-local’ nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment.

  15. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    Science.gov (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  16. Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

    Directory of Open Access Journals (Sweden)

    J. Xu

    2007-01-01

    Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

  17. Modeling the locomotion of the African trypanosome using multi-particle collision dynamics

    International Nuclear Information System (INIS)

    Babu, Sujin B; Stark, Holger

    2012-01-01

    The African trypanosome is a single flagellated micro-organism that causes the deadly sleeping sickness in humans and animals. We study the locomotion of a model trypanosome by modeling the spindle-shaped cell body using an elastic network of vertices with additional bending rigidity. The flagellum firmly attached to the model cell body is either straight or helical. A bending wave propagates along the flagellum and pushes the trypanosome forward in its viscous environment, which we simulate with the method of multi-particle collision dynamics. The relaxation dynamics of the model cell body due to a static bending wave reveals the sperm number from elastohydrodynamics as the relevant parameter. Characteristic cell body conformations for the helically attached flagellum resemble experimental observations. We show that the swimming velocity scales as the root of the angular frequency of the bending wave reminiscent of predictions for an actuated slender rod attached to a large viscous load. The swimming velocity for one geometry collapses on a single master curve when plotted versus the sperm number. The helically attached flagellum leads to a helical swimming path and a rotation of the model trypanosome about its long axis as observed in experiments. The simulated swimming velocity agrees with the experimental value. (paper)

  18. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  19. Single-Particle Quantum Dynamics in a Magnetic Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  20. STUDY ON SIMULATION METHOD OF AVALANCHE : FLOW ANALYSIS OF AVALANCHE USING PARTICLE METHOD

    OpenAIRE

    塩澤, 孝哉

    2015-01-01

    In this paper, modeling for the simulation of the avalanche by a particle method is discussed. There are two kinds of the snow avalanches, one is the surface avalanche which shows a smoke-like flow, and another is the total-layer avalanche which shows a flow like Bingham fluid. In the simulation of the surface avalanche, the particle method in consideration of a rotation resistance model is used. The particle method by Bingham fluid is used in the simulation of the total-layer avalanche. At t...

  1. Ensemble simulations with discrete classical dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2013-01-01

    For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...

  2. The common component architecture for particle accelerator simulations

    International Nuclear Information System (INIS)

    Dechow, D.R.; Norris, B.; Amundson, J.

    2007-01-01

    Synergia2 is a beam dynamics modeling and simulation application for high-energy accelerators such as the Tevatron at Fermilab and the International Linear Collider, which is now under planning and development. Synergia2 is a hybrid, multilanguage software package comprised of two separate accelerator physics packages (Synergia and MaryLie/Impact) and one high-performance computer science package (PETSc). We describe our approach to producing a set of beam dynamics-specific software components based on the Common Component Architecture specification. Among other topics, we describe particular experiences with the following tasks: using Python steering to guide the creation of interfaces and to prototype components; working with legacy Fortran codes; and an example component-based, beam dynamics simulation.

  3. Dynamics of magnetic nano-particle assembly

    International Nuclear Information System (INIS)

    Kondratyev, V N

    2010-01-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  4. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    Science.gov (United States)

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining

    International Nuclear Information System (INIS)

    Khasin, M.; Kosloff, R.

    2010-01-01

    An algorithm for simulation of quantum many-body dynamics having su(2) spectrum-generating algebra is developed. The algorithm is based on the idea of dynamical coarse-graining. The original unitary dynamics of the target observables--the elements of the spectrum-generating algebra--is simulated by a surrogate open-system dynamics, which can be interpreted as weak measurement of the target observables, performed on the evolving system. The open-system state can be represented by a mixture of pure states, localized in the phase space. The localization reduces the scaling of the computational resources with the Hilbert-space dimension n by factor n 3/2 (ln n) -1 compared to conventional sparse-matrix methods. The guidelines for the choice of parameters for the simulation are presented and the scaling of the computational resources with the Hilbert-space dimension of the system is estimated. The algorithm is applied to the simulation of the dynamics of systems of 2x10 4 and 2x10 6 cold atoms in a double-well trap, described by the two-site Bose-Hubbard model.

  6. MPPhys—A many-particle simulation package for computational physics education

    Science.gov (United States)

    Müller, Thomas

    2014-03-01

    In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent

  7. New insights in particle dynamics from group cohomology

    International Nuclear Information System (INIS)

    Aldaya, V; Jaramillo, J L; Guerrero, J

    2002-01-01

    The dynamics of a particle moving in background electromagnetic and gravitational fields is revisited from a Lie group cohomological perspective. Physical constants characterizing the particle appear as central extension parameters of a group which is obtained from a centrally extended kinematical group (Poincare or Galilei) by making some subgroup local. The corresponding dynamics is generated by a vector field inside the kernel of a pre-symplectic form which is derived from the canonical left-invariant 1-form on the extended group. A non-relativistic limit is derived from the geodesic motion via an Inoenue-Wigner contraction. A deeper analysis of the cohomological structure reveals the possibility of a new force associated with a non-trivial mixing of gravity and electromagnetism leading to, in principle, testable predictions. (letter to the editor)

  8. Physical dynamics of quasi-particles in nonlinear wave equations

    International Nuclear Information System (INIS)

    Christov, Ivan; Christov, C.I.

    2008-01-01

    By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field

  9. Physical dynamics of quasi-particles in nonlinear wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Ivan [Department of Mathematics, Texas A and M University, College Station, TX 77843-3368 (United States)], E-mail: christov@alum.mit.edu; Christov, C.I. [Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 (United States)], E-mail: christov@louisiana.edu

    2008-02-04

    By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.

  10. Dynamics and Thermodynamics of Transthyretin Association from Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Cedrix J. Dongmo Foumthuim

    2018-01-01

    Full Text Available Molecular dynamics simulations are used in this work to probe the structural stability and the dynamics of engineered mutants of transthyretin (TTR, i.e., the double mutant F87M/L110M (MT-TTR and the triple mutant F87M/L110M/S117E (3M-TTR, in relation to wild-type. Free energy analysis from end-point simulations and statistical effective energy functions are used to analyze trajectories, revealing that mutations do not have major impact on protein structure but rather on protein association, shifting the equilibria towards dissociated species. The result is confirmed by the analysis of 3M-TTR which shows dissociation within the first 10 ns of the simulation, indicating that contacts are lost at the dimer-dimer interface, whereas dimers (formed by monomers which pair to form two extended β-sheets appear fairly stable. Overall the simulations provide a detailed view of the dynamics and thermodynamics of wild-type and mutant transthyretins and a rationale of the observed effects.

  11. The measurement and modeling of alpha-particle-induced charge collection in dynamic memories

    International Nuclear Information System (INIS)

    Oldiges, P.J.

    1989-01-01

    This thesis addresses the problem of α-particle-induced charge collection in high-density dynamic random access memories. A novel technique for the measurement of charge collection in high-density memory cells and bit lines due to α-particle strikes was developed. The technique involves D.C. tests on simple test structures with an α-particle source on the device package as a lid. The advantages of this new measurement technique are: the method allows for in-situ measurements of charge collection on both MOS capacitors and bit lines found in present-day memories; the on-chip measurement technique minimizes errors due to external probes loading the device under test; the measurements can be controlled by a personal computer, with the data being able to be reduced on the same machine. Results obtained using this new measurement technique show that the charge collection is found to depend upon test-structure size and the configuration of its neighbors. Results of two-dimensional simulations of charge flow along the surface of an MOS capacitor from current injection due to an α-particle strike indicate that a spatial potential variation of 0.5V may occur between the point of current injection and capacitor edge for a 1M dRAM capacitor

  12. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    Science.gov (United States)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  13. Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners

    International Nuclear Information System (INIS)

    Gómez, M.A.; Porteiro, J.; Patiño, D.; Míguez, J.L.

    2015-01-01

    Highlights: • A thermally thick treatment is used to simulate of fuel the thermal conversion of solid biomass. • A dynamic subgrid scale is used to model the advance of reactive fronts inside the particle. • Efficient solution algorithms are applied to calculate the temperatures and volume of the internal layers. • Several tests were simulated and compared with experimental data. - Abstract: The thermally thick treatment of fuel particles during the thermal conversion of solid biomass is required to consider the internal gradients of temperature and composition and the overlapping of the existing biomass combustion stages. Due to the implied mixture of scales, the balance between model resolution and computational efficiency is an important limitation in the simulation of beds with large numbers of particles. In this study, a subgrid-scale model is applied to consider the intraparticle gradients, the interactions with other particles and the gas phase using a Euler–Euler CFD framework. Numerical heat transfer and mass conservation equations are formulated on a subparticle scale to obtain a system of linear equations that can be used to resolve the temperature and position of the reacting front inside the characteristic particle of each cell. To simulate the entire system, this modelling is combined with other submodels of the gas phase, the bed reaction and the interactions. The performance of the new model is tested using published experimental results for the particle and the bed. Similar temperatures are obtained in the particle-alone tests. Although the mass consumption rates tend to be underpredicted during the drying stage, they are subsequently compensated. In addition, an experimental batch-loaded pellet burner was simulated and tested with different air mass fluxes, in which the experimental ignition rates and temperatures are employed to compare the thermally thick model with the thermally thin model that was previously developed by the authors

  14. Radial particle distributions in PARMILA simulation beams

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1984-03-01

    The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table

  15. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  16. Numerical simulation of DPF filter for selected regimes with deposited soot particles

    Science.gov (United States)

    Lávička, David; Kovařík, Petr

    2012-04-01

    For the purpose of accumulation of particulate matter from Diesel engine exhaust gas, particle filters are used (referred to as DPF or FAP filters in the automotive industry). However, the cost of these filters is quite high. As the emission limits become stricter, the requirements for PM collection are rising accordingly. Particulate matters are very dangerous for human health and these are not invisible for human eye. They can often cause various diseases of the respiratory tract, even what can cause lung cancer. Performed numerical simulations were used to analyze particle filter behavior under various operating modes. The simulations were especially focused on selected critical states of particle filter, when engine is switched to emergency regime. The aim was to prevent and avoid critical situations due the filter behavior understanding. The numerical simulations were based on experimental analysis of used diesel particle filters.

  17. Fortran interface layer of the framework for developing particle simulator FDPS

    Science.gov (United States)

    Namekata, Daisuke; Iwasawa, Masaki; Nitadori, Keigo; Tanikawa, Ataru; Muranushi, Takayuki; Wang, Long; Hosono, Natsuki; Nomura, Kentaro; Makino, Junichiro

    2018-06-01

    Numerical simulations based on particle methods have been widely used in various fields including astrophysics. To date, various versions of simulation software have been developed by individual researchers or research groups in each field, through a huge amount of time and effort, even though the numerical algorithms used are very similar. To improve the situation, we have developed a framework, called FDPS (Framework for Developing Particle Simulators), which enables researchers to develop massively parallel particle simulation codes for arbitrary particle methods easily. Until version 3.0, FDPS provided an API (application programming interface) for the C++ programming language only. This limitation comes from the fact that FDPS is developed using the template feature in C++, which is essential to support arbitrary data types of particle. However, there are many researchers who use Fortran to develop their codes. Thus, the previous versions of FDPS require such people to invest much time to learn C++. This is inefficient. To cope with this problem, we developed a Fortran interface layer in FDPS, which provides API for Fortran. In order to support arbitrary data types of particle in Fortran, we design the Fortran interface layer as follows. Based on a given derived data type in Fortran representing particle, a PYTHON script provided by us automatically generates a library that manipulates the C++ core part of FDPS. This library is seen as a Fortran module providing an API of FDPS from the Fortran side and uses C programs internally to interoperate Fortran with C++. In this way, we have overcome several technical issues when emulating a `template' in Fortran. Using the Fortran interface, users can develop all parts of their codes in Fortran. We show that the overhead of the Fortran interface part is sufficiently small and a code written in Fortran shows a performance practically identical to the one written in C++.

  18. A direct simulation method for flows with suspended paramagnetic particles

    NARCIS (Netherlands)

    Kang, T.G.; Hulsen, M.A.; Toonder, den J.M.J.; Anderson, P.D.; Meijer, H.E.H.

    2008-01-01

    A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a

  19. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  20. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of