WorldWideScience

Sample records for partially hydrogenated oils

  1. Supplementation with partially hydrogenated oil in grazing dairy cows in early lactation.

    Science.gov (United States)

    Schroeder, G F; Gagliostro, G A; Becu-Villalobos, D; Lacau-Mengido, I

    2002-03-01

    Effects of partially hydrogenated oil on performance, loss of body weight and body condition score, and blood metabolite and hormone concentrations were evaluated in 37 multiparous Holstein cows in grazing conditions during the first 100 d of lactation. Six additional Holstein cows, each fitted with a ruminal cannula, were allocated to a replicated 3 x 3 Latin square to evaluate effects of supplemental fat on rumen environment and pasture digestion. All cows grazed mixed pastures based on alfalfa (Medicago sativa) and orchardgrass (Dactylis glomerata L.) and received 5.4 kg/d of a basal concentrate to which 0, 0.5, or 1 kg/cow per day of partially hydrogenated oil (melting point 58 to 60 degrees C) containing 30.3, 34.9, 21.8, and 3.3% of C16:0, C18:0, C18:1, and C182, respectively, was added. Feeding 1 kg/d of supplemental fat increased fat-corrected milk from 23.4 to 26.3 kg/d, milk fat content from 3.44 to 3.78%, and milk fat yield from 0.87 to 1.03 kg/d compared to control. Milk protein percentage and yield were not affected. Cows fed 1 kg/d of fat increased the content and yield of C16:0 and C18:0 in milk compared with cows fed no added oil. Dry matter intake (DMI) from pasture decreased from 17.8 kg/d for control cows to 13.6 kg/d for cows fed 1 kg of oil, whereas DMI from concentrate was higher for cows fed 1 kg/d of fat (6.0 kg/d) than for controls (5.2 kg/d). Supplemental fat did not affect total dry matter or estimated energy intake and did not change losses of body weight or body condition scores. Plasma concentrations of nonesterified fatty acids, insulin, somatotrophin, and insulin-like growth factor-I did not differ among treatments. Concentration of plasma triglycerides was lowered from 318.5 to 271.2 mg/dl, whereas plasma cholesterol was elevated from 185.0 to 235.8 mg/dl in cows receiving 1 kg/d of supplemental fat compared with controls. Responses to lipolytic or insulin challenges were not affected by feeding oil. Supplemental fat did not affect

  2. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...... in rejection between FFA and glycerides and the highest flux (27 kg h−1 m−2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h−1 m−2) flux was achieved...... with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h−1 m−2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83...

  3. Association between hepatic cholesterol and oleic acid in the liver of rats treated with partially hydrogenated vegetable oil

    Directory of Open Access Journals (Sweden)

    Gabriela Salim Ferreira de Castro

    2012-02-01

    Full Text Available OBJECTIVE: The aim of the present study was to investigate the lipid profiles of the hepatic and adipose tissues of Wistar rats treated for 21 days with a diet high in saturated fat (high saturated fat, n=6 or high in hydrogenated fat, that is, having 50% partially hydrogenated vegetable oil in its composition (high hydrogenated fat, n=6, and compare them to those of a control group (control group, n=6. METHODS: Adipose tissue and total hepatic fat were higher in the saturated fat group than in the hydrogenated fat group. Hepatic lipid peroxidation was greatest in the saturated fat group, with consequent lower hepatic vitamin E and A levels. In contrast, serum vitamin A was highest in the saturated fat group. Analysis of hepatic lipid fractions found more cholesterol and less high density lipoprotein-cholesterol in the hydrogenated fat group. The hydrogenated fat group had the highest levels of triacylglycerols, followed by the saturated fat group. RESULTS: Significant amounts of trans fatty acids were detected in the hepatic and adipose tissues of the hydrogenated fat group. Among the identified fatty acids, 18:1n9 had a higher positive association with hepatic cholesterol and triacylglycerols, and a higher negative association with high density lipoprotein-cholesterol. Partially hydrogenated vegetable oil promotes greater accumulation of cholesterol and triacylglycerols in the liver than saturated fats. CONCLUSION: Trans fatty acids were incorporated into hepatocytes and adipocytes in a highly efficient manner.

  4. Partial replacement of corn grain by hydrogenated oil in grazing dairy cows in early lactation.

    Science.gov (United States)

    Salado, E E; Gagliostro, G A; Becu-Villalobos, D; Lacau-Mengido, I

    2004-05-01

    Thirty-six grazing dairy cows were used to determine milk production and composition, and dry matter and energy intake when corn grain was partially replaced by hydrogenated oil in the concentrate. Four additional cows, each fitted with a ruminal cannula, were used in a crossover design to evaluate effects of supplemental fat on rumen environment and pasture digestion. All cows grazed mixed pastures with an herbage allowance of 30 kg dry matter/cow per day. The control group was fed a concentrate containing corn grain (4.49 kg dry matter/cow per day) and fishmeal (0.37 kg dry matter/cow per day), whereas the other group (fat) received a concentrate containing corn grain (2.87 kg dry matter/cow per day), fishmeal (0.37 kg dry matter/cow per day) and fat (0.7 kg dry matter/cow per day). The fat was obtained by hydrogenation of vegetable oils (melting point 58 to 60 degrees C, 30.3% C16:0, 34.9% C18:0, 21.8% C18:1, 3.3% C18:2). Supplemental fat increased milk production (control = 23.7 vs. fat = 25.0 kg/cow per day), fat-corrected milk (control = 22.5 vs. fat = 24.5 kg/cow per day), milk fat content (control = 3.64% vs. fat = 3.86%) and yields of milk fat (control = 0.86 vs. fat = 0.97 kg/cow per day) and protein (control = 0.74 vs. fat = 0.78 kg/cow per day). Milk percentages of protein, lactose, casein, cholesterol, and urea nitrogen were not affected. Pasture DMI and total DMI of pasture and concentrate and estimated energy intake were unchanged. No differences in loss of body weight or body condition score were detected. Plasma concentrations of nonesterified fatty acids, somatotropin, insulin, and insulin-like growth factor were not affected by supplemental fat. Concentrations of plasma triglyceride and total cholesterol were increased by supplemented fat, and no changes in plasma glucose and urea nitrogen were observed. The acetate-to-propionate ratio was higher in rumen fluid of cows that consumed fat (fat = 3.39 vs. control = 3.27). In situ pasture NDF

  5. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  6. Limiting trans Fats in Foods: Use of Partially Hydrogenated Vegetable Oils in Prepacked Foods in Slovenia

    Science.gov (United States)

    Hribar, Maša; Pivk Kupirovič, Urška; Žmitek, Katja

    2018-01-01

    Consumption of industrially produced trans-fatty acids (TFAs) is a well-established health risk factor that correlates with the increased risk of developing cardiovascular disease. The recommended TFA intake is as low as possible, within the context of a nutritionally adequate diet. Different countries have introduced different measures to minimize the exposure of their population to TFAs. Previous data have shown that TFA content has significantly decreased in Western European countries, while this was not the case in many Central-Eastern European countries, including Slovenia. In the absence of regulatory requirements, a number of awareness campaigns were launched in Slovenia since 2015, with the common goal of lowering the use of partially hydrogenated oils (PHO), which are considered a major source of TFAs. To determine if this goal had been reached, we performed an assessment of the exposure of the population to prepacked foods containing PHOs in years 2015 and 2017. Altogether, data on the composition of 22,629 prepacked foods was collected from food labels, using a specifically developed smartphone application. Furthermore, the food categories with the most frequent use of PHOs were identified. The proportion of PHO-containing products was determined for each specific food category, and adjusted with the market share data. The results showed that in 2015, vegetable cream substitutes, soups, and biscuits were the categories with the highest penetration of declared PHO content. In 2017, the proportion of products with PHO decreased considerably. In vegetable cream substitutes the percentage of PHO containing items dropped from 30 down to 4%, in soups it decreased from 21 to 5%, in biscuits from 17 to 8%, and in crisps and snacks from 10 to 4%. However, PHO content remained notable among cakes, muffins, pastries, and biscuits. We can conclude that the voluntary guidelines and regular public communication of the risks related to the TFA consumption has had a

  7. Hydrogen Production via Synthetic Gas by Biomass/Oil Partial Oxidation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Tukač, V.; Veselý, Václav; Kováč, D.

    176-177, - (2011), s. 286-290 ISSN 1385-8947. [International Conference on Chemical Reactors CHEMREACTOR-19 /19./. Vienna, 05.09.2010-09.09.2010] R&D Projects: GA MPO 2A-2TP1/024 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen * biomass * partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.461, year: 2011

  8. Limiting trans Fats in Foods: Use of Partially Hydrogenated Vegetable Oils in Prepacked Foods in Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Zupanič

    2018-03-01

    Full Text Available Consumption of industrially produced trans-fatty acids (TFAs is a well-established health risk factor that correlates with the increased risk of developing cardiovascular disease. The recommended TFA intake is as low as possible, within the context of a nutritionally adequate diet. Different countries have introduced different measures to minimize the exposure of their population to TFAs. Previous data have shown that TFA content has significantly decreased in Western European countries, while this was not the case in many Central-Eastern European countries, including Slovenia. In the absence of regulatory requirements, a number of awareness campaigns were launched in Slovenia since 2015, with the common goal of lowering the use of partially hydrogenated oils (PHO, which are considered a major source of TFAs. To determine if this goal had been reached, we performed an assessment of the exposure of the population to prepacked foods containing PHOs in years 2015 and 2017. Altogether, data on the composition of 22,629 prepacked foods was collected from food labels, using a specifically developed smartphone application. Furthermore, the food categories with the most frequent use of PHOs were identified. The proportion of PHO-containing products was determined for each specific food category, and adjusted with the market share data. The results showed that in 2015, vegetable cream substitutes, soups, and biscuits were the categories with the highest penetration of declared PHO content. In 2017, the proportion of products with PHO decreased considerably. In vegetable cream substitutes the percentage of PHO containing items dropped from 30 down to 4%, in soups it decreased from 21 to 5%, in biscuits from 17 to 8%, and in crisps and snacks from 10 to 4%. However, PHO content remained notable among cakes, muffins, pastries, and biscuits. We can conclude that the voluntary guidelines and regular public communication of the risks related to the TFA

  9. 21 CFR 186.1551 - Hydrogenated fish oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated fish oil. 186.1551 Section 186.1551... Listing of Specific Substances Affirmed as GRAS § 186.1551 Hydrogenated fish oil. (a) Hydrogenated fish oil (CAS Reg. No. 91078-95-4) is a class of oils produced by partial hydrogenation of oils expressed...

  10. Reformulating partially hydrogenated vegetable oils to maximise health gains in India: is it feasible and will it meet consumer demand?

    Science.gov (United States)

    2013-01-01

    Background The consumption of partially hydrogenated vegetable oils (PHVOs) high in trans fat is associated with an increased risk of cardiovascular disease and other non-communicable diseases. In response to high intakes of PHVOs, the Indian government has proposed regulation to set limits on the amount of trans fat permissible in PHVOs. Global recommendations are to replace PHVOs with polyunsaturated fatty acids (PUFAs) in order to optimise health benefits; however, little is known about the practicalities of implementation in low-income settings. The aim of this study was to examine the technical and economic feasibility of reducing trans fat in PHVOs and reformulating it using healthier fats. Methods Thirteen semi-structured interviews were conducted with manufacturers and technical experts of PHVOs in India. Data were open-coded and organised according to key themes. Results Interviewees indicated that reformulating PHVOs was both economically and technically feasible provided that trans fat regulation takes account of the food technology challenges associated with product reformulation. However, there will be challenges in maintaining the physical properties that consumers prefer while reducing the trans fat in PHVOs. The availability of input oils was not seen to be a problem because of the low cost and high availability of imported palm oil, which was the input oil of choice for industry. Most interviewees were not concerned about the potential increase in saturated fat associated with increased use of palm oil and were not planning to use PUFAs in product reformulation. Interviewees indicated that many smaller manufacturers would not have sufficient capacity to reformulate products to reduce trans fat. Conclusions Reformulating PHVOs to reduce trans fat in India is feasible; however, a collision course exists where the public health goal to replace PHVOs with PUFA are opposed to the goals of industry to produce a cheap alternative product that meets

  11. Hydrogenizing oils, asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    1925-03-14

    The hydrogenation of carbonaceous solids in presence of combined sulfur, e.g., sulfides as described in the parent specification is applied to the treatment of rock oils, shale oils, resins, ozokerite, asphalt, and the like, or fractions, residues, or acid sludge or other conversion products thereof, alone or mixed. Preferably the hydrogen or other reducing gas is in excess and under pressure, and is either circuited or led through a series of treatment vessels, hydrogen being added for that used. In an example, residues from American crude oil are passed continuously with hydrogen at 200 atmospheres and 450 to 500/sup 0/C over pressed precipitated cobalt sulfide, the issuing gases being cooled to condense the light oil produced.

  12. Oils; destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    1928-03-01

    Coals, oil-shales, or other carbonaceous solids are dissolved in or extracted by solvents at temperatures over 200/sup 0/C, and under pressure, preferably over 30 atmospheres, in presence of halogens, hydrogen halides, or compounds setting free the halogen or halide under the conditions.

  13. Hydrogenating oils. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-31

    A safety fuel boiling within the limits 130/sup 0/ to 260/sup 0/C, is obtained by treating hydrocarbon mixtures boiling below 260/sup 0/C, and for the most part above 130/sup 0/C according to the process described in the parent Specification. A fraction boiling from 140/sup 0/ to 250/sup 0/ C, which has been distilled off from the liquefaction product obtained by the destructive hydrogenation of coal soaked with ferrous sulphate, is passed at 485/sup 0/C under a partial pressure of 1.5 atmos. and a hydrogen pressure of 50 atmos. over a catalyst consisting of nickel and tungsten sulphides. The gasification is only 2 to 5 percent and from the reaction product a fraction of the same boiling range as the initial material is distilled off with a yield of 85 percent and an octane number of 97.

  14. GC-MS evaluation of fatty acid profile and lipid bioactive of partially hydrogenated cooking oil consumed in Pakistan

    International Nuclear Information System (INIS)

    Kandhroab, A.A.; Sherazi, S.T.H.; Mahesar, S.A.; Talpura, M.Y.; Bhutto, A.A.

    2010-01-01

    Evaluation of fatty acid profile including trans fat and lipid bioactive (tocopherol and sterol contents) of most commonly used vanaspati ghee and cooking oil brands was made by gas chromatography coupled with mass spectrometer detector (GC-MSD). Among the saturated fatty acids (SFA), palmitic and stearic acid were dominant fatty acids; the mean value of SFA in ghee and oil was 44.98 and 30.83%, respectively. Mean values of monounsaturated, polyunsaturated and trans fatty acids in ghee were 47.51, 7.49 and 8.08%, and in oil 49.26, 19.90 and 0.91%, respectively. alpha-tocopherol was the major tocopherol while campesterol, stigmasterol and sitosterol were main phytosterols in terms of their quantity. (author)

  15. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  16. BIG hydrogen: hydrogen technology in the oil and gas sector

    International Nuclear Information System (INIS)

    2006-01-01

    The BIG Hydrogen workshop was held in Calgary, Alberta, Canada on February 13, 2006. About 60 representatives of industry, academia and government attended this one-day technical meeting on hydrogen production for the oil and gas industry. The following themes were identified from the presentations and discussion: the need to find a BIG hydrogen replacement for Steam Methane Reformer (SMR) because of uncertainty regarding cost and availability of natural gas, although given the maturity of SMR process (reliability, known capital cost) how high will H2 prices have to rise?; need for a national strategy to link the near-term and the longer-term hydrogen production requirements, which can take hydrogen from chemical feedstock to energy carrier; and in the near-term Canada should get involved in demonstrations and build expertise in large hydrogen systems including production and carbon capture and sequestration

  17. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  18. 21 CFR 173.275 - Hydrogenated sperm oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following prescribed...

  19. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Certain Adjuvants and Production Aids § 178.3280 Castor oil, hydrogenated. Hydrogenated castor oil may be...

  20. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  1. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  2. Impacts analysis regarding partially hydrogenated oils

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ellen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Turhollow, Jr., Anthony F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zimmerman, Gregory P.. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eaton, Laurence M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bast, Cheryl B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    The U.S. Food and Drug Administration (FDA) has the responsibility under the Federal Food, Drug, and Cosmetic Act (FD&C Act) [21 United States Code (U.S.C.) 301 et seq.] for assuring that the U.S. food supply is safe, sanitary, wholesome, and honestly labeled. Toward that end, FDA exercised approval authority over substances permitted for use as food additives. Substances that are generally recognized as safe (GRAS) are not subject to regulation as food additives under the FD&C Act.

  3. Dynamic conductivity and partial ionization in dense fluid hydrogen

    Science.gov (United States)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  4. Modeling of hydrogenation reactor of soya oil

    International Nuclear Information System (INIS)

    Sotudeh-Gharebagh, R.; Niknam, L.; Mostoufi, N.

    2008-01-01

    In this paper, a batch hydrogenation reactor performance was modeled using a hydrodynamic and reaction sub-models. The reaction expressions were obtained from the information reported in literature. Experimental studies were conducted in order to generate the experimental data needed to validate the model. The comparison between the experimental data and model predictions seems quite satisfactory considering the hydrodynamic limitations and simplifications made on the reaction scheme. The results of this study could be considered as framework in developing new process equipment and also soya oil product design for new applications

  5. Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid

    Directory of Open Access Journals (Sweden)

    Abdul Rajab

    2011-04-01

    Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

  6. Hydrogen retorting of oil shales from Eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, Ontario (Canada)); Synnott, J.; Boorman, R.S.; Salter, R.S.

    1984-04-01

    The liquid production potential of thirty oil shale samples from Eastern Canada was determined by Fischer assay retort and pyrochem retort. For all shales, the presence of hydrogen during pyrochem retorting resulted in a significant increase in oil yields compared to Fischer assay yields. Ten oil shale samples were selected for detailed evaluation in the pyrochem retort in the presence of nitrogen and hydrogen. Besides increasing yields, the presence of hydrogen lowered the specific gravity of liquid products and the content of sulphur but increased the content of nitrogen. This was attributed to the stabilization of precursors to nitrogen compounds which prevented their polymerization. (J.H.K.)

  7. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    Science.gov (United States)

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  8. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil

    Directory of Open Access Journals (Sweden)

    Ying-Ting Luo

    2016-10-01

    Full Text Available Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  9. Catalytic Partial Oxidation of Biomass/Oil Mixture

    Czech Academy of Sciences Publication Activity Database

    Veselý, Václav; Hanika, Jiří; Tukač, V.; Lederer, J.; Kovač, D.

    2013-01-01

    Roč. 7, č. 10 (2013), s. 1940-1945 ISSN 1934-8983 R&D Projects: GA TA ČR TE01020080; GA MPO 2A-2TP1/024 Institutional support: RVO:67985858 Keywords : hydrocarbon oil * biomass * catalytic partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.davidpublishing.com/journals_info.asp?jId=1718#

  10. Factors governing partial coalescence in oil-in-water emulsions

    NARCIS (Netherlands)

    Fredrick, E.; Walstra, P.; Dewettinck, K.

    2010-01-01

    The consequences of the instability mechanism partial coalescence in oil-in-water food emulsions show a discrepancy. On the one hand, it needs to be avoided in order to achieve an extended shelf life in food products like sauces, creams and several milk products. On the other hand, during the

  11. Partially acetylated sugarcane bagasse for wicking oil from contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S. [Samsung Engineering Co. Ltd., R and D Center, Suwon, Gyeonggi (Korea, Republic of); Suidan, M.T. [University of Cincinnati, School of Energy, Environmental, Biological and Medical Engineering, Cincinnati, OH (United States); Venosa, A.D. [NRMRL, U.S. EPA, Cincinnati, OH (United States)

    2011-12-15

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased hydrophobicity but not a limited capability to hold moisture for hydrocarbon biodegradation. Characterization results by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and surface area analyzer suggested that treated bagasse exhibited enhanced hydrophobicity and surface area. Oil wicking test results indicate that treated bagasse is more effective in wicking oil from highly saturated environments than raw bagasse and suggest that application of this material in remediation of oil spills in highly saturated wetlands is promising. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. An alternative process for hydrogenation of sunflower oil

    Directory of Open Access Journals (Sweden)

    Rosana de Cassia de Souza Schneider

    2010-12-01

    Full Text Available Classic methodologies for hydrogenation of vegetable oils have traditionally been carried out by nickel catalysts under high pressure of H2 and high temperature. An alternative method for hydrogenation of sunflower oil using limonene and palladium-on-carbon was investigated in this study. The use of limonene as a hydrogen donor solvent was proposed in order to avoid high temperature and high-pressure conditions. The catalytic transfer of hydrogenation was studied by using 0.5 to 2% of Pd as a catalyst, a limonene:oil ratio of 3:1, and reaction times from 0.5 to 2 hours. Under these conditions, high selectivities for oleic acid and low concentrations of stearic acid were obtained.

  13. Flavour changes due to effect of different packaging materials on storing of cottonseed oil, hydrogenated oil and margarine.

    Directory of Open Access Journals (Sweden)

    El-Shattory, Y.

    1997-04-01

    Full Text Available Bleached cottonseed oil, partially hydrogenated palm oil and margarine were packed in metal cans and white plastic bottles and stored for seven months at room temperature on side bench. Assessment of the stability of the oils towards flavour deterioration was reported. The deterioration of flavour developed from bleached cottonseed oil, partially hydrogenated palm oil and margarine was observed due to increase amount of aldehydes and ketones which play an important role in deterioration of the oils. From the results we found metal can offered suitable and better protection against deterioration than plastic package for cottonseed oil, partially hydrogenated palm oil. While plastic container was better for storing margarine and this is due to the presence of water and salt in margarine where they compose about 16% and 2% respectively.

    Aceite de semilla de algodón decolorado, aceite de palma parcialmente hidrogenado y margarina fueron envasados en latas metálicas y botellas de plástico blancas y almacenados durante siete meses a temperatura ambiente en estantes. Se relacionó la evaluación de la estabilidad de los aceites con la deterioración del flavor. La deterioración del flavor producida en aceite de semilla de algodón decolorado, aceite de palma parcialmente hidrogenado y margarina fue observada debido al aumento en la cantidad de aldehídos y cotonas que juegan un importante papel en la deterioración de los aceites. A partir de los resultados obtenidos se encontró que las latas metálicas ofrecieron una adecuada y mejor protección frente a la deterioración que los envases de plásticos para aceite de semilla de algodón y aceite de palma parcialmente hidrogenado. Por otra parte, los recipientes de plástico fueron mejores para el almacenamiento de margarina y esto es debido a la presencia de agua y sales en ella en una proporción del 16% y 2% respectivamente.

  14. Solubility of hydrogen in bio-oil compounds

    International Nuclear Information System (INIS)

    Qureshi, Muhammad Saad; Touronen, Jouni; Uusi-Kyyny, Petri; Richon, Dominique; Alopaeus, Ville

    2016-01-01

    Highlights: • Solubility of Hydrogen was measured in bio-oil compounds in the at temperatures from 342 to 473 K and pressures up to 16 MPa. • Phase equilibrium data were acquired using a visualization enabled continuous flow synthetic apparatus. • The measured solubility is modeled with Peng-Robinson EoS. - Abstract: The knowledge of accurate hydrogen solubility values in bio-oil compounds is essential for the design and optimization of hydroprocesses relevant to biofuel industry. This work reports the solubility of hydrogen in three industrially relevant bio-oil compounds (allyl alcohol, furan, and eugenol) at temperatures from 342 to 473 K and pressures up to 16 MPa. Phase equilibrium data were acquired using a continuous flow synthetic method. The method is based on the visual observation of the bubble point using a high resolution camera. The measured solubility is modeled with Peng-Robinson EoS with classical van der Waals one fluid mixing rules.

  15. Partial radiative recombination cross sections for excited states of hydrogen

    International Nuclear Information System (INIS)

    Fazio, P.M.

    1984-01-01

    In calculating the radiative recombination cross sections for interstellar H II regions, usually only the electric dipole term in the expansion of the interaction Hamiltonian is kept. The dipole and quadrupole transition strengths in closed analytical form are calculated here using the Coulomb wave functions because results for any electron energy and for recombination into any angular momentum state of hydrogen are needed. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate angular momentum states at low energies (w < 2eV) and where the free state angular momentum is greater than that of the bound state. Further, that specific intermediate angular momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the normal behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. This leads to minima in the corresponding quadrupole cross sections when plotted as a function of the free electron's kinetic energy. Finally, the partial cross sections for highly excited states are greater than previously calculated because of the additional effects of the quadrupole transitions

  16. Partial molar volumes of hydrogen and deuterium in niobium, vanadium, and tantalum

    International Nuclear Information System (INIS)

    Peterson, D.T.; Herro, H.M.

    1983-01-01

    The partial molar volumes of hydrogen and deuterium were measured in vanadium, niobium, and tantalum by a differential pressure technique. One-half of an electrolytically charged sample plat was compressed between hardened steel blocks in a hydraulic press. The activity of hydrogen in the hig pressure region was raised and caused hydrogen to diffuse into the low pressure region. The partia molar volume was calculated from the ratio of the hydrogen concentrations in the high and low pressure regions of the sample. Small isotope effects were found in the partial molar volume. Hydrogen had the larger volume in niobium and tantalum, but the reverse was true in vanadium

  17. Penetuan Bilangan Iodin pada Hydrogenated Palm Kernel Oil (HPKO) dan Refined Bleached Deodorized Palm Kernel Oil (RBDPKO)

    OpenAIRE

    Sitompul, Monica Angelina

    2015-01-01

    Have been conducted Determination of Iodin Value by method titration to some Hydrogenated Palm Kernel Oil (HPKO) and Refined Bleached Deodorized Palm Kernel Oil (RBDPKO). The result of analysis obtained the Iodin Value in Hydrogenated Palm Kernel Oil (A) = 0,16 gr I2/100gr, Hydrogenated Palm Kernel Oil (B) = 0,20 gr I2/100gr, Hydrogenated Palm Kernel Oil (C) = 0,24 gr I2/100gr. And in Refined Bleached Deodorized Palm Kernel Oil (A) = 17,51 gr I2/100gr, Refined Bleached Deodorized Palm Kernel ...

  18. Quantum effects on the formation of negative hydrogen ion by polarization electron capture in partially ionized dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-05-01

    The quantum effects on the formation of the negative hydrogen ion (H - ) by the polarization electron capture process are investigated in partially ionized dense hydrogen plasmas. It is shown that the quantum effect strongly suppresses the electron capture radius as well as the cross section for the formation of the negative hydrogen ion. In addition, it has been found that the electron capture position is receded from the center of the projectile with decreasing the quantum effect of the plasma. (author)

  19. Analysis of total hydrogen content in palm oil and palm kernel oil ...

    African Journals Online (AJOL)

    A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditio-nal methods in Ghana. An equipment consisting of an 241Am-Be neutron source and 3He neutron ...

  20. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  1. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  2. Heterogeneous hydrogenation of vegetable oils : A literature review

    NARCIS (Netherlands)

    Veldsink, JW; Bouma, MJ; Schoon, NH; Beenackers, AACM

    1997-01-01

    Hardening of vegetable oils is reviewed from an engineering point of view. The present review focuses on kinetics of the hydrogenation and relevant transport and adsorption steps. It aims to contribute to accelerate new research to improve substantially on selectivities in general and a decrease of

  3. Partial molar volumes of hydrogen and deuterium in niobium and vanadium

    International Nuclear Information System (INIS)

    Herro, H.M.

    1979-01-01

    Lattice dilation studies and direct pressure experiments gave comparable values for the partial molar volumes of hydrogen and deuterium in niobium and vanadium. Small isotope effects in the partial molar volume of hydrogen were measured in both metals by the differential isotope method. Hydrogen had a larger partial molar volume than deuterium in niobium, but the reverse was true in vanadium. The isotope effect measured in niobium can be represented as being due to the larger amplitude of vibration of the hydrogen atom than the deuterium atom in the metal lattice. Since hydrogen has a larger mean displacement from the equilibrium position than does deuterium, the average force hydrogen exerts on the metal atoms is greater than the force deuterium exerts. The isotope effect in vanadium is likely a result of anharmonic effects in the lattice and local vibrational modes

  4. Oil-free centrifugal hydrogen compression technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heshmat, Hooshang [Mohawk Innovative Technology Inc., Albany, NY (United States)

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  5. From oil sands to transportation fuels, to electricity, to hydrogen

    International Nuclear Information System (INIS)

    Yildirim, E.

    1993-01-01

    The Alberta Chamber of Resources programs and initiatives on oil sands and heavy oil, and strategies for revitalizing oilsands development in Alberta are described. The regional upgrader and satellite production facilities concept, and technology requirements for mineable oil sands by the year 2010 are discussed. Strategic alliances in furtherence of oil sands research and development and the National Task Force on Oil Sands Strategies are described. Changes in requirements for transportation fuels due to stricter regulations and environmental initiatives will cause a trend to lighter fuels with more hydrogen content, less aromatics, nitrogen, sulfur and metals. A preferred refinery configuration will be able to process heavier crudes and synthetic crudes, have no heavy fuel oil product, low sulfur products, low aromatics with high octane, and low operating cost. A regional or central facility that combines the processing capabilities of a bitumen upgrader with the process units of a refinery is preferred. Advantages of this concept are: value addition to the feedstock is maximized; dependence on refineries is eliminated; restriction on synthetic crude oil volumes due to capacity limitations at refineries is eliminated; directly marketable finished products are produced; more stringent quality specifications are satisfied; and the synergies between upgrading and refining improve overall economics of processing. It is recommended that the concept of regional upgraders be adopted for Alberta, strategic alliances be encouraged, incentives for bitumen production be provided, and a bitumen pipeline network be developed. 12 refs

  6. Plasma thermal conversion of bio-oil for hydrogen production

    International Nuclear Information System (INIS)

    Guenadou, David; Lorcet, Helene; Peybernes, Jean; Catoire, Laurent; Osmont, Antoine; Gokalp, Iskender

    2012-01-01

    Numerous processes exist or are proposed for the energetic conversion of biomass. The use of thermal plasma is proposed in the frame of the GALACSY project for the conversion of bio-oil to hydrogen and carbon monoxide. For this purpose, an experimental apparatus has been built. The feasibility of this conversion at very high temperature, as encountered in thermal plasma, is examined both experimentally and numerically. This zero dimensional study tends to show that a high temperature (around 2500 K or above) is needed to ensure a high yield of hydrogen (about 50 mol%) and about 95 mol% of CO+H 2 . Predicted CO+H 2 yield and CO/H 2 ratio are consistent with measurements. It is also expected that the formation of particles and tars is hampered. Thermodynamic data of selected bio-oil components are provided in the CHEMKINNASA format. (authors)

  7. Partially collisional model of the Titan hydrogen torus

    International Nuclear Information System (INIS)

    Hilton, D.A.

    1987-01-01

    A numerical model was developed for atomic hydrogen densities in the Titan hydrogen torus. The effects of occasional collisions were included in order to accurately simulate physical conditions inferred from the Voyager 1 and 2 Ultraviolet Spectrometer (UVS) results of Broadfoot et al. (1981) and Sandel et al. (1982). The model employed Lagrangian perturbation of orbital elements of hydrogen atoms launched from Titan and Monte Carlo simulation of collisions and loss mechanisms. The torus is found to be azimuthally symmetric with the density sharply peaked at Titan's orbit, and decreasing rapidly in the outward and perpendicular directions and more gradually inward from 17 to 5 R/sub s/. The energetic hydrogen atoms from Saturn's upper atmosphere, first predicted by Shemansky and Smith (1982), were also investigated. Collisions of these Saturnian atoms with the torus population do not contribute to the torus density, and will lead to a net loss of torus atoms if their launch speeds from Saturn extend above 40 km/sec. The Saturnian atoms produce a corona which was modeled using the theory of Chamberlain (1963)

  8. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  9. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  10. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  11. Chemical interesterification of soybean oil and fully hydrogenated soybean oil: Influence of the reaction time

    International Nuclear Information System (INIS)

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Grimaldi, Renato; Goncalves, Lireny Aparecida Guaraldo

    2009-01-01

    Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 deg C, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs. (author)

  12. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  13. Experimental determination of hydrogen content of oil extract from jatropha seeds

    International Nuclear Information System (INIS)

    Okunade, I.O.; Jonah, S.A.; Omede, M.O.

    2010-01-01

    The thermal neutron technique was used for the determination of hydrogen content of oil extract from Jatropha seeds. The experimental arrangement consists of a source holder, Am-Be neutron source embedded in paraffin wax and 3 He detector was used to measure reflection coefficient as a function of hydrogen content of various hydrocarbon materials used as calibration standards. The hydrogen content which is an important property of fuel oils was determined for jatropha oil and jatropha-synthetic diesel using their measured values of neutron reflection coefficients and calibration data. The result obtained showed that the hydrogen content of Jatropha oil exceeds that of the synthetic diesel, thus indicating its suitability as a fuel oil for powering diesel engines. The results obtained also indicated that hydrogen content of jatropha-synthetic diesel mixture increases as the volumetric concentration of jatropha oil in the mixture increases, indicating that jatropha oil can serve as a suitable additive to synthetic diesel oil.

  14. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure

    International Nuclear Information System (INIS)

    Xiong, X.L.; Zhou, Q.J.; Li, J.X.; Volinsky, Alex A.; Su, Y.J.

    2017-01-01

    Highlights: •Hydrostatic pressure increases the Volmer and the Heyrovsky reactions rates. •Hydrostatic pressure decreases the Tafel reaction rate. •Hydrogen adsorption conditions change with pressure under −1.2 and −1.3 V SSE . •Under −1.2 and −1.3 V SSE , the Heyrovsky reaction dominates the hydrogen recombination. •Under −1.0 and −1.1 V SSE , the Tafel reaction dominates the hydrogen recombination. -- Abstract: A new electrochemical impedance spectroscopy (EIS) model, which considers both the Tafel recombination and the Heyrovsky reaction under permeable boundary conditions, was developed to characterize the kinetic parameters of the hydrogen evolution reaction (HER) under hydrostatic pressure. The effect of the hydrostatic pressure on the kinetic parameters of the HER and the permeation of A514 steel in alkaline solution were measured using potentiodynamic polarization, the Devanathan cell hydrogen permeation, and EIS. The hydrostatic pressure accelerates the Volmer reaction and inhibits the Tafel recombination, which increases the number of adsorbed hydrogen atoms. On the other hand, the pressure accelerates the Heyrovsky reaction, which decreases the amount of adsorbed hydrogen atoms. At 10 to 40 MPa hydrostatic pressure within the −1.0 to −1.1 V SSE cathodic potential region, the HER is controlled by hydrogen partial pressure, and hydrogen adsorption is the Langmuir type. Within the −1.2 to −1.3 V SSE cathodic potential region, the HER is controlled by the potential, and hydrogen adsorption gradually transfers from the Langmuir type to the Temkin type with increasing hydrostatic pressure.

  15. Ácidos graxos plasmáticos, metabolismo lipídico e lipoproteínas de ratos alimentados com óleo de palma e óleo de soja parcialmente hidrogenado Plasma fatty acids, lipid metabolism and lipoproteins in rats fed on palm oil and partially hydrogenated soybean oil

    Directory of Open Access Journals (Sweden)

    Ana Paula Silva

    2005-04-01

    Full Text Available OBJETIVO: Comparar, em ratos jovens, os efeitos metabólicos de dietas distintas, à base de óleo de palma e de gordura hidrogenada. MÉTODOS: Ratas Wistar receberam dietas com diferentes fontes lipídicas durante a lactação, as quais continuaram a ser dadas aos filhotes machos do 21º dia ao 45º dia de vida, após ajuste às recomendações da American Institute of Nutrition-93, quando estes foram decapitados. Os tecidos adiposos epididimal e perirrenal foram retirados para determinação da taxa de lipogênese in vivo com ³H2O e, no plasma, avaliou-se o perfil de ácidos graxos por cromatografia gasosa, além da concentração dos triacilgliceróis e colesterol total, por meio de kits enzimáticos. RESULTADOS: A substituição, na dieta, da gordura hidrogenada pelo óleo de palma aumentou, no plasma, a proporção do ácido graxo araquidônico e diminuiu a proporção do ácido essencial linolênico e a concentração dos triacilgliceróis e colesterol. Elevou o conteúdo lipídico e a taxa lipogênica do epidídimo e perirenal, repercutindo em maior peso corporal, bem como na adiposidade nesses animais. CONCLUSÃO: O tipo de ácido graxo oferecido na dieta desde o período da lactação, pode influenciar o metabolismo lipídico do tecido adiposo na idade jovem, bem como o comportamento alimentar e ganho de peso corporal, com possíveis repercussões para o desenvolvimento de doenças crônicas não transmissíveis.OBJECTIVE: To compare the metabolic effects of diets based on palm oil and hydrogenated fat on young rats. METHODS: Wistar female rats, during lactation, were fed diets with different lipid sources, which were also adjusted to the recommendations (American Institute of Nutrition-93 and given to the male pups from the 21rst day to the 45th day of life, when they were killed. The epididimal and perirenal adipose tissues were extracted and had their lipogenesis rates measured in vivo with ³H2O. We also measured, in the plasma

  16. Quantum statistical mechanics of dense partially ionized hydrogen.

    Science.gov (United States)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  17. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  18. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey , Angel; Ballenegger , Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  19. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  20. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  1. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides.

    Directory of Open Access Journals (Sweden)

    Zaher, F. A.

    1998-12-01

    Full Text Available Partial glycerides were prepared by glycerolysis of sunflower oil in presence of lipase enzyme as catalyst. Six lipases of different origins were used and compared for their catalytic activity. These include Chromobacterium lipase, pancreatic lipase, Rhizopus arrhizus lipase, lyophilized lipase (plant lipase in addition to two lipase preparations derived from Rhizopus japonicas; Lilipase A-10 and Lilipase B-2. Chromobacterium lipase was found to be the most active as glycerolysis catalyst whereas lyophilized lipase; a plant preparation from wheat germ was the least active. The results have also shown that the lipase type affects also the product polarity and hence its field of application as a food emulsifier. Less polar products can be obtained using Chromobacterium lipase whereas the more polar ones using a fungal lipase preparation «Lipase A-10». The product polarity is also influenced by the process temperature but the mode of its effect is different for different lipases.

    Se prepararon glicéridos parciales mediante glicerolisis de aceite de girasol en presencia de lipasa como catalizador. Seis lipasas de orígenes diferentes se utilizaron y compararon en función de su actividad catalítica. Estas incluyeron lipasa de Chromobacterium, lipasa pancreática, lipasa de Rhizopus arrhizus, lipasa liofilizada (lipasa vegetal además de dos preparaciones de lipasa derivadas de Rhizopus japonicus: lilipase A-10 y lilipase B-2. Se encontró que la lipasa de Chromobacterium fue la más activa como catalizador en la glicerolisis mientras que la lipasa liofilizada, preparación vegetal a partir de germen de trigo, fue la menos activa. Los resultados mostraron que los tipos de lipasa afectan también a la polaridad de los productos y por tanto a los rendimientos en su aplicación como emulsificantes alimentarios. Los productos menos polares pueden obtenerse usando lipasa de

  2. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  3. Nippon oil's activities toward realization of hydrogen society

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kojiro; Okazaki, Junji; Kobori, Yoshihiro; Iki, Hideshi [Nippon Oil Corporation (Japan)

    2010-07-01

    Nippon Oil Corporation, a major Japanese energy distributor, has been devoting extensive efforts toward the establishment of hydrogen supply systems. The Council on Competitiveness-Nippon (COCN), an advisory organization which has influence on Japanese government policy, has announced that the establishment of hydrogen infrastructure should be started in 2015. By that time, we plan to have completed the development of necessary technologies for the infrastructure. It is well recognized that the storage and transportation of hydrogen is the sticking point on the path to realization of a hydrogen economy. The scope of our research covers key technologies for hydrogen storage and transportation, including carbon fiber reinforced plastic (CFRP) tanks for compressed hydrogen gas, hydrogen storage materials, and hydrogen transportation systems which utilize organic chemical hydride (OCH). This article describes Nippon Oil's strategy for realization of the hydrogen economy. (orig.)

  4. Analysis of total hydrogen content in palm oil and palm kernel oil using thermal neutron moderation method

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Dagadu, C.P.K.; Maaku, B.T.; Anim-Sampong, S.; Kyere, A.W.K.; Jonah, S.A.

    2001-01-01

    A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditional methods in Ghana. An equipment consisting of an 241 Am-Be neutron source and 3 He neutron detector was used in the investigation. The equipment was originally designed for detection of liquid levels in petrochemical and other process industries. Standards in the form of liquid hydrocarbons were used to obtain calibration lines for thermal neutron reflection parameter as a function of hydrogen content. Measured reflection parameters with respective hydrogen content with or without heat treatment of the three edible palm oils available on the market were compared with a brand cooking oil (frytol). The average total hydrogen content in the local oil samples prior to heating was measured to be 11.62 w% which compared well with acceptable value of 12 w% for palm oils in the sub-region. After heat treatment, the frytol oil (produced through bleaching process) had the least loss of hydrogen content of 0.26% in comparison with palm kernel oil of 0.44% followed by dzomi of 1.96% and by amidze of 3.22%. (author)

  5. Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Vitolo, S.; Ghetti, P. (Universita di Pisa, Pisa (Italy). Dipartimento di Ingegneria Chimica)

    1994-11-01

    Physical and combustion properties of a pyrolytic bio-oil are determined both as-obtained and after catalytic hydrodeoxygenation. The tests demonstrate that the hydrogenation treatment improves the oil as regards combustibility, viscosity and acidity. Combustion properties of the oil have been characterized by evaporation and temperature programmed combustion profiles. Short communication. 21 refs., 4 figs., 2 tabs.

  6. Fitting partially upgraded oils into pipelines and refinery markets

    International Nuclear Information System (INIS)

    Flaherty, G.

    2000-01-01

    The logistics of transporting partially upgraded crudes in feeder and trunk pipeline systems is discussed. Logistic alternatives are evaluated against economic drivers for partial upgrading, and the impact of crude transportation logistics on the quality of crude that reaches refinery gates is assessed. The potential advantages of partial upgrading in the field are reviewed (including reduction of diluent required to meet pipeline density and viscosity specifications, cost and availability of diluent, limitations in diluent transportation infrastructure, increased chemical stability, increased attractiveness to refineries, shortage of refinery coking capacity, higher market value). The pros and cons of various upgrading processes, and the implications of each for producers and refiners are explained. The advantages of moving to large common streams, as opposed to the concept of 'boutique' crudes, are stressed as the surest way for producers to realize the maximum value of partially upgraded crudes

  7. Identification of a partial oil palm polygalacturonase-inhibiting ...

    African Journals Online (AJOL)

    Basal stem rot disease (BSR) is a common and serious fungal disease of the oil palm caused by Ganoderma boninense. This fungal disease infects thousands of hectares of plantings in Southeast Asia every year causing not only yield but also tree losses. A natural plant self defence mechanism against fungal infection is ...

  8. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  9. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  10. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    Science.gov (United States)

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  11. EFFECT OF HYDROGENATED, LIQUID AND GHEE OILS ON SERUM LI-PIDS PROFILE

    Directory of Open Access Journals (Sweden)

    Noushin Mohammadifard

    2010-11-01

    Full Text Available BACKGROUND: Trans fatty acids are known as the most harmful type of dietary fats, so this study was done to compare the effects of hydrogenated, liquid and ghee oils on serum lipids profile of healthy adults.    METHODS: This study was a randomized clinical trial conducted on 129 healthy participants aged from 20 to 60 years old who were beneficiaries of Imam-e-Zaman charitable organization. Subjects were randomly divided into 3 groups and each group was treated with a diet containing cooking and frying liquid, ghee, or hydrogenated for 40 days. Fasting serum lipids, including total cholesterol (TC, triglyceride (TG, LDL-cholesterol (LDL-C, HDL-cholesterol (HDL-C, apoprotein A (Apo A, and apoprotein B (Apo B were measured before and after the study.    RESULTS: TC, TG and Apo B had a significant reduction in the liquid oil group compared to the hydrogenated oil group. In the ghee group TG declined and Apo A increased significantly (p < 0.01. Liquid oil group had a significant reduction in HDL-C, compared to the ghee oil group (P < 0.05.     CONCLUSION: It was concluded that consuming liquid oil along with frying oil caused to reduce all serum lipid levels. However, ghee oil only reduced TG and increased HDL-C levels.      Keywords: Serum lipids, Apoproteins, Liquid oil, Hydrogenated oil, Ghee, Clinical trial

  12. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  13. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  14. Genetic control of protein, oil and fatty acids content under partial ...

    African Journals Online (AJOL)

    The purpose of the present study was to map quantitative trait locus (QTLs) associated with percentage of seed protein, oil and fatty acids content under different conditions in a population of recombinant inbred lines (RILs) of sunflower. Three independent field experiments were conducted with well-, partial-irrigated and ...

  15. 76 FR 70105 - National Oil and Hazardous Substance Pollution Contingency Plan National Priorities List: Partial...

    Science.gov (United States)

    2011-11-10

    ... and Hazardous Substance Pollution Contingency Plan National Priorities List: Partial Deletion of the... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). EPA and the State... property PINs listed above. The deletion of these two parcels from the Site affects all surface soils...

  16. Sulfur Speciation of Crude Oils by Partial Least Squares Regression Modeling of Their Infrared Spectra

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Wagemans, R.W.P.; Blomberg, J.; Chaabani, H.; Soulimani, F.; Weckhuysen, B.M.

    2013-01-01

    Research has been carried out to determine the feasibility of partial least-squares regression (PLS) modeling of infrared (IR) spectra of crude oils as a tool for fast sulfur speciation. The study is a continuation of a previously developed method to predict long and short residue properties of

  17. Nanoparticle Structures with (Un-)Hydrogenated Castor Oil as Hydrophobic Paper Coating.

    Science.gov (United States)

    Samyn, Pieter; Vonck, Leo; Stanssens, Dirk; Abbeele, Henk Van den

    2018-05-01

    The encapsulation of vegetable oils within an aqueous dispersion of polymer nanoparticles provides an alternative route to create functional paper coatings from renewable resources, by combining the presentation of hydrophobic moieties together with variations in roughness at the paper surface. The effects of two selected vegetable oil types, i.e., castor oil and hydrogenated castor oil (wax), are compared in terms of nanoparticle synthesis, coating hydrophobicity and surface gloss. The nanoparticles were synthesized by adding 50 wt.-% oil during imidization of poly(styrene-co-maleic anhydride) with ammonium hydroxide. From evaluation of the thermal properties, the nanoparticles have a high glass transition temperature that is suppressed in presence of oil. The nanoparticles with hydrogenated castor oil have higher imide content and better thermal stability compared to castor oil, in parallel with lower chemical reactivity of the hydrogenated oil and less interference with the imidization reaction. After deposition as a coating on paper, the physical coating properties are discussed in parallel with the coating chemistry and morphology or roughness at different scale lengths. The nanoparticle coatings with hydrogenated oil provides a multi-scale roughness with an open, porous nanoparticles structures and presentation of some amount free oil augmenting hydrophobicity towards a water contact angle of 128° (static contact angle) or 138° (advancing contact angle). The differences in surface coverage of coated papers in terms of imide and oil contents are confirmed by chemical Raman mapping. The differences in surface roughness are confirmed by non-contact profilometry, laser interferometry and atomic force microscopy.

  18. Total, partial and differential ionization cross sections in proton-hydrogen collisions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shiyang [Graduate University for Advanced Studies, School of Mathematical and Physical Science, Toki, Gifu (Japan); Pichl, Lukas [University of Aizu, Foundation of Computer Science Laboratory, Aizuwakamatsu, Fukushima (Japan); Kimura, Mineo [Yamaguchi Univ., Graduate School of Science and Engineering, Ube, Yamaguchi (Japan); Kato, Takako [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-01-01

    Single-differential, partial and total ionization cross sections for the proton-hydrogen collision system at low energy range (0.1-10 keV/amu) are determined by using the electron translation factor corrected molecular-orbital close-coupling method. Full convergence of ionization cross sections as a function of H{sub 2}{sup +} molecular basis size is achieved by including up to 10 bound states, and 11 continuum partial waves. The present cross sections are in an excellent agreement with the recent experiments of Shah et al., but decrease more rapidly than the cross sections measured by Pieksma et al. with decreasing energy. The calculated cross section data are included in this report. (author)

  19. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  20. Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibraheem

    2013-05-01

    Full Text Available             The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K.            This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250  respectively .            The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.

  1. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y.; Araki, Y.; Honna, K. [Tsukuba-branch, Advanced Catalyst Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan); Miki, Y.; Sato, K.; Shimada, H. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan)

    2001-02-20

    The purpose of the present study was to elucidate the nature of the hydrogenation active sites on unsupported molybdenum sulfide catalysts, aimed at the improvement of the catalysts for the slurry processes. The number of hydrogenation active sites was found to relate to the 'inflection' on the basal plane of the catalyst particles. The comparison of the catalytic activity to that of an oil-soluble catalyst in the hydroprocessing of heavy oils suggests that the performance of the oil-soluble catalyst was near the maximum, unless another component such as Ni or Co was incorporated.

  2. Determination of hydrogen content of Jatropha biodiesel oil using neutron reflection technique

    International Nuclear Information System (INIS)

    Okunade, I. O.; Jonah, S. A.; Omede, M.

    2014-01-01

    Biofuel is an environmental-friendly alternative to fossil fuel and holds immense potential for the future energy needs of the country. Non-edible jatropha biodiesel oil has been identified as one of the suitable bio-fuel options. In this work, experimental measurements were performed to determine the total hydrogen content of jatropha oil and jatropha-synthetic diesel oil mixture. The work was carried out using a neutron reflection facility at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria. Jatropha oil and jatropha-synthetic diesel mixture were subjected to experimental measurements for the purpose of determining bulk hydrogen content using neutron reflection facility that had been previously calibrated using various hydrocarbon materials of known hydrogen content. The hydrogen content of the sample were subsequently determined using their measured neutron reflection coefficient values and calibration data. In general, results obtained indicate high hydrogen content range of 10.68-12.16wt% for jatropha oil and the various jatropha-synthetic diesel mixtures. The implication of this is that jatropha oil or jatrophal-synthetic diesel mixture can be used as alternative fuel to mitigate high carbon monoxide emission.

  3. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  4. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  5. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Improving Asphalt Mixture Performance by Partially Replacing Bitumen with Waste Motor Oil and Elastomer Modifiers

    Directory of Open Access Journals (Sweden)

    Sara Fernandes

    2017-08-01

    Full Text Available The environmental concern about waste generation and the gradual decrease of oil reserves has led the way to finding new waste materials that may partially replace the bitumens used in the road paving industry. Used motor oil from vehicles is a waste product that could answer that demand, but it can also drastically reduce the viscosity, increasing the asphalt mixture’s rutting potential. Therefore, polymer modification should be used in order to avoid compromising the required performance of asphalt mixtures when higher amounts of waste motor oil are used. Thus, this study was aimed at assessing the performance of an asphalt binder/mixture obtained by replacing part of a paving grade bitumen (35/50 with 10% waste motor oil and 5% styrene-butadiene-styrene (SBS as an elastomer modifier. A comparison was also made with the results of a previous study using a blend of bio-oil from fast pyrolysis and ground tire rubber modifier as a partial substitute for usual PG64-22 bitumen. The asphalt binders were tested by means of Fourier infrared spectra and dynamic shear rheology, namely by assessing their continuous high-performance grade. Later, the water sensitivity, fatigue cracking resistance, dynamic modulus and rut resistance performance of the resulting asphalt mixtures was evaluated. It was concluded that the new binder studied in this work improves the asphalt mixture’s performance, making it an excellent solution for paving works.

  7. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  8. Effect of substitution of low linolenic acid soybean oil for hydrogenated soybean oil on fatty acid intake.

    Science.gov (United States)

    DiRienzo, Maureen A; Astwood, James D; Petersen, Barbara J; Smith, Kim M

    2006-02-01

    Low linolenic acid soybean oil (LLSO) has been developed as a substitute for hydrogenated soybean oil to reduce intake of trans FA while improving stability and functionality in processed foods. We assessed the dietary impact of substitution of LLSO for hydrogenated soybean oil (HSBO) used in several food categories. All substitutions were done using an assumption of 100% market penetration. The impact of this substitution on the intake of five FA and trans FA was assessed. Substitution of LLSO for current versions of HSBO resulted in a 45% decrease in intake of trans FA. Impacts on other FA intakes were within the realm of typical dietary intakes. No decrease in intake of alpha-linolenic acid was associated with the use of LLSO in place of HSBO because LLSO substitutes for HSBO that are already low in alpha-linolenic acid.

  9. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. The bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal

  10. Lifting the US crude oil export ban: A numerical partial equilibrium analysis

    International Nuclear Information System (INIS)

    Langer, Lissy; Huppmann, Daniel; Holz, Franziska

    2016-01-01

    The upheaval in global crude oil markets and the boom in shale oil production in North America brought scrutiny on the US export ban for crude oil from 1975. The ban was eventually lifted in early 2016. This paper examines the shifts of global trade flows and strategic refinery investments in a spatial, game-theoretic partial equilibrium model. We consider detailed oil supply chain infrastructure with multiple crude oil types, distinct oil products, as well as specific refinery configurations and modes of transport. Prices, quantities produced and consumed, as well as infrastructure and refining capacity investments are endogenous to the model. We compare two scenarios: an insulated US crude oil market, and a counter-factual with lifted export restrictions. We find a significant expansion of US sweet crude exports with the lift of the export ban. In the US refinery sector, more (imported) heavy sour crude is transformed. Countries importing US sweet crude gain from higher product output, while avoiding costly refinery investments. Producers of heavy sour crude (e.g. the Middle East) are incentivised to climb up the value chain to defend their market share and maintain their dominant position. - Highlights: • We study the impacts of lifting the US crude ban on global oil flows and investments. • We find massive expansion of US sweet crude oil exports. • We analyze the resulting welfare effects for US producers, refiners and consumers. • We indicate the changes on global trade patterns. • We conclude that lifting the ban is the right policy for the US and the global economy.

  11. A fundamental research for upgrading heavy oil using syngas as hydrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Yan, D.; Yuan, M.; Sun, X.; Zhao, S. [China Univ. of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing

    2006-07-01

    The stock of heavy oil and residue from petroleum fractions has become more important as a component in supplying demands for fuel and petrochemical feeds. Finding economical means of upgrading heavy oils is extremely important in order to ensure future fuel supply. A number of new technologies for upgrading heavy oils have been evaluated, including residual fluid catalytic cracking (RFCC), hydrogenation, thermal conversion, and solvent deasphalting. However, the commercial application of such technologies is mainly constrained by the metal and residual carbon concentrations that are present in all heavy oils. Conventional technologies used to upgrade vacuum residue (VR) result in heavy coke formation, with a consequential reduction in the life of expensive, high-performance catalysts. The hydro upgrading process can significantly remove the concentration of heteroatom such as sulfur, nitrogen, and metals in the liquid products. This paper investigated upgrading of heavy oil using syngas as an alternative hydrogen source with a dispersed catalyst. The paper discussed the experiment with reference to the feedstock and catalyst precursors; finely dispersed catalysts preparation; experimental apparatus; experimental design and procedure; and analysis. The results were presented in terms of effects of catalyst dispersion; effect of hydro-upgrading heavy oil using syngas as alternative source; and effects of different catalysts on residue hydrocracking. Last, the paper discussed the properties of the hydrocracked oil treated with syngas. The study confirmed the effectiveness of the slurry bed hydrocracking catalyst using syngas as a hydrogen source. 23 refs., 8 tabs., 16 figs.

  12. APPLICATION OF ESSENTIAL OILS EXTRACTED FROM PEELS OF ORANGES AS A PARTIAL SUBSTITUTE OF FLOCCULANT

    Directory of Open Access Journals (Sweden)

    Anna Kowalczyk

    2016-05-01

    Full Text Available The study attempts to determine the optimum conditions of the process of mechanical dewatering of municipal sewage sludge and reduction of odours emitted during this process. The process of dewatering of municipal sewage sludge was carried out using laboratory sedimentation centrifuge of MPW-350 type. Municipal sewage sludge stabilized during anaerobic digestion, taken from Wastewater Treatment Plant Jamno. The dewatering process was aided by cationic flocculant Praestol 855BS of real solution concentration 0.3% and essential oil from orange, which was extracted from orange peels in the process of steam distillation. Constant parameters of dewatering process were: pH, temperature, colour, texture, smell, water content and dry matter content. Independent variables of dewatering process were: centrifugation time (in the range 1–10 min, centrifugation speed (in the range 1000–3000 rotations/min and dose of mixture of flocculant Praestol 855BS (79% + essential oil of orange (21% in the range 0–48 ml/dm3. Water content in the sludge after the process, dry matter content in the effluent and the duration of the smell of oil in the sediment were determined. Studies showed that the essential oil from orange may be used as a partial substitute of flocculant Praestol 855BS in the process of centrifugal sedimentation. Essential oil of orange significantly reduces unpleasant odours which are emitted from sludge during mechanical dewatering. Simultaneous application of both reagents, ie. flocculant Praestol 855BS 79%, and essential oil of orange 21% of volume is recommended.

  13. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae [Kyungpook National University, Daegu (Korea, Republic of)

    2013-04-15

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors.

  14. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    International Nuclear Information System (INIS)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae

    2013-01-01

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors

  15. Partial thermodynamic functions of hydrogen in complex hydrated vanadium(5) and tungsten(6) oxides

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.

    2003-01-01

    The partial thermodynamic characteristics of hydrogen in the complex hydrated vanadium(5) and tungsten(6) oxides, obtained through the sol-gel method, of the general formula H 2 V 12-y W y O 31+δ ·nH 2 O (0 ≤ x ≤ 0.33) are determined through the emf method. The changes in these values (ΔG-bar(H 2 ), ΔH-bar(H 2 ) and ΔS-bar(H 2 )) in dependence on the compound composition are discussed. It is established that ΔG-bar(H 2 ) phases, amorphous to X-rays are determined by the ΔS-bar(H 2 ) value and crystalline ones by ΔH-bar(H 2 ). The scheme of the phase relationships of the H 2 O-H-WO 3 -V 2 O 5 system, whereto the given phases are related are presented [ru

  16. Coupled-channel calculations of partial capture cross sections in multiply charged ion collisions with hydrogen

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.; University of Tennessee, Knoxville, Tennessee 37996)

    1989-01-01

    Partial cross sections for electron capture in 1--50-keV collisions of Ar 6+ and Ar 8+ with atomic hydrogen have been calculated using an atomic expansion including two complete principal shells of final states (n=4,5 for Ar 6+ and n=5,6 for Ar 8+ ). The qualitative structure of the results is in good accord with a reaction window picture. The results for Ar 6+ ions are in agreement with published experimental data when precaution is taken with respect to uncertainties in absolute normalization of the data and with respect to a proper analysis of translation energy spectra at lower impact energies. The limited experimental data for Ar 8+ do not agree with the present results

  17. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  18. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  19. Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat

    Directory of Open Access Journals (Sweden)

    R.F. Beims

    2018-04-01

    Full Text Available This article presents the experimental data on the thermal cracking of soybean oil and blends with hydrogenated fat. Thermal cracking experiments were carried out in a plug flow reactor with pure soybean oil and two blends with hydrogenated fat to reduce the degree of unsaturation of the feedstock. The same operational conditions was considered. The data obtained showed a total aromatics content reduction by 14% with the lowest degree of unsaturation feedstock. Other physicochemical data is presented, such as iodine index, acid index, density, kinematic viscosity. A distillation curve was carried out and compared with the curve from a petroleum sample.

  20. The production of hydrogen through the uncatalyzed partial oxidation of methane in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ghazi A.; Wierzba, I. [Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary (Canada)

    2008-04-15

    The thermodynamic and kinetic limitations of the uncatalyzed partial oxidation of methane for the production of synthesis gas, which is made up of mostly hydrogen and carbon monoxide in a variety of proportions, are reviewed. It is suggested that such processes can be made to proceed successfully in a conventional internal combustion engine when operated on excessively rich mixtures of methane and oxygenated air. This is achieved while simultaneously producing power and regenerative exhaust gas heating. Experimental results are described that show a dual fuel engine of the compression ignition type with pilot liquid fuel injection can be operated on excessively rich mixtures of methane and air supplemented with oxygen gas to produce hydrogen rich gas with high methane conversion rates. Similarly, a spark ignition engine was reported to be equally capable of such production and performance. It is shown that there are viable prospects for the simultaneous production of synthesis gas in engines with efficient useful mechanical power and exhaust gas regenerative heating. (author)

  1. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  2. Determination of Hydrogen and Carbon contents in crude oil and Petroleum fractions by NMR Spectroscopy

    International Nuclear Information System (INIS)

    Khadim, Mohammad A.; Wolny, R.A.; Al-Dhuwaihi, Abdullah S.; Al-Hajri, E.A.; Al-Ghamdi, M.A.

    2003-01-01

    Proton and carbon-13 NMR spectroscopic methods were developed for determining hydrogen and carbon contents in petroleum products. These methods are applicable to a wide of petroleum streams. A new reference standard, bis (trimethylsilyl) methane, BTMSM, is introduced fro both proton and carbon-13 NMR for the first time, which offers several advantages over those customarily employed. These methods are important for the calculation of the mass balance and hydrogen consumption in pilot plant studies. Unlike the ASTM D-5291 combustion method, the NMR methods also allow for the measurement of hydrogen and carbon content in low boiling fractions and those containing hydrogen as low as 1%. The NMR methods can also determine aromatic and aliphatic hydrogens carbons in a given sample without additional experimentation. The precision and accuracy of the newly developed NMR methods are compared with those of currently employed ASTM D-5291 combustion method. Using the proton NMR method, hydrogen content was determined in fifteen model compounds and sixty-eight petroleum fractions. The NMR and ASTM methods show an agreement within +5%for 48 out of a total number of 68 oil fractions. Using carbon-13 NMR, the carbon content was determined for four representative compounds and three fractions of crude oil. Both carbon-13 NMR and ASTM methods give comparable carbon content in model compounds and crude oil fractions. (author)

  3. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  5. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.

    Science.gov (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin

    2008-11-07

    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  6. A novel technique for hydrogen production from hog-manure in supercritical partial oxidation (SCWPO)

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Emhemmed A.; Charpentier, Paul [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Nakhla, George [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Elbeshbishy, Elsayed; Hafez, Hisham [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    In this study, the catalytic hydrogen production from hog manure using supercritical water partial oxidation was investigated in a batch reactor at a temperature of 500 C, and pressure of 28 MPa using several metallic catalysts. Hog manure was characterized by a total and soluble chemical oxygen demand (TCOD, SCOD) of 57000 and 28000 mg/L, total and volatile suspended solids (TSS, VSS) of 25000, 19000, and ammonia of 2400 mg/L, respectively. The order of H{sub 2} production was the following: Pd/AC > Ru/Al{sub 2}O{sub 3} > Ru/AC > AC > NaOH. The order of COD reduction efficiency was as follows: NaOH > Ru/AC > AC > Ru/Al{sub 2}O{sub 3} > Pd/AC. The behaviour of the volatile fatty acids (VFA's), ethanol, methanol, ammonia, H{sub 2}S, and Sulfate was investigated experimentally and discussed. A 35 % reduction in the H{sub 2} and CH{sub 4} yields was observed in the sequential gasification partial oxidation (oxidant at an 80 % of theoretical requirement) experiments compared to the gasification experiments (catalyst only). Moreover, this reduction in gas yields was coincided with a 45 % reduction in the liquid effluent chemical oxygen demand (COD), 60 % reduction of the ammonia concentration in the liquid effluent, and 20 % reduction in the H{sub 2}S concentration in the effluent gas. (orig.)

  7. Hydrogen production by the iodine-sulphur thermochemical cycle. Total and partial pressure measurements

    International Nuclear Information System (INIS)

    D Doizi; V Dauvois; J L Roujou; V Delanne; P Fauvet; B Larousse; O Hercher; P Carles; C Moulin

    2006-01-01

    The iodine sulphur thermochemical cycle appears to be one of the most promising candidate for the massive production of hydrogen using nuclear energy. The key step in this cycle is the HI distillation section which must be optimized to get a good efficiency of the overall cycle. The concept of reactive versus extractive distillation of HI has been proposed because of its potentiality. The design and the optimization of the reactive distillation column requires the knowledge of the liquid vapour equilibrium over the ternary HI-I 2 -H 2 O mixtures up to 300 C and 100 bars. A general methodology based on three experimental devices imposed by the very corrosive and concentrated media will be described: 1) I1 for the total pressure measurement versus different ternary compositions. 2) I2 for the partial and total pressure measurements around 130 C and 2 bars to validate the choice of the analytical optical 'online' techniques we have proposed. 3) I3 for the partial and total pressures measurements in the process domain. The results obtained on pure samples, binary mixtures HI-H 2 O and ternary mixtures using an experimental design analysis in the experimental device I2 will be discussed. (authors)

  8. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  9. Clean energy and hydrogen for oil sands development with CANDU SCWR nuclear reactors and Cu-Cl cycles

    International Nuclear Information System (INIS)

    Wang, Z.L.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the unique capabilities and advantages of SCWR technology for cleaner oil sands development are discussed from two perspectives: lower temperature steam generation by supercritical water for steam assisted gravity drainage (SAGD), and hydrogen production for oil sands upgrading by coupling SCWR with the thermochemical copper-chlorine (Cu-Cl) cycle. The heat requirements for bitumen extraction from the oil sands and the hydrogen requirements for bitumen upgrading are evaluated. A conceptual layout of SCWR coupled with oil sands development is presented. The reduction of CO 2 emissions due to the use of SCWR and thermo chemical hydrogen production cycle is also analyzed. (author)

  10. Determination of hydrogen content of petroleum products from Tema Oil Refinery using neutron backscatter technique

    International Nuclear Information System (INIS)

    Salifu, A. S.

    2015-01-01

    The hydrogen content of hydrocarbon materials is very important in several areas of industrial process such as mining, vegetable oil extraction and crude oil exploration and refining. A fast and more universal technique based on thermal neutron reflection was employed to determine the total hydrogen contents of petroleum samples from Tema Oil Refinery (TOR) and Crude oil samples from Jubilee field and Nigeria. The experimental set-up consisted of a source-holder housing a 1Ci Am-Be neutron source and a He-3 neutron detector. Two geometrical arrangements were considered and their sensitivities were compared. The set-up was used to measure the excess neutron count in both geometrical considerations and their reflection parameters were calculated as a function of hydrogen content of the samples. Calibration lines were deduced using liquid hydrocarbons containing well-known hydrogen and carbon contents as standards. Two linear equations were generated from the calibration lines and were used to further determine the hydrogen content of thirteen (13) petroleum samples obtained from Quality Control Department of TOR. The total hydrogen contents were found to be in the range of 7.211(hw %) - 15.069 (hw %) for vertical geometry and 7.206 (hw %) - 14.948 (hw %) for horizontal geometry respectively. The results obtained agreed constructively with other results obtained using different methodologies by other studies. The percentage error of the hydrogen contents denoted by (% E) for the various petroleum samples were also obtained and noticed to be within an acceptable range. The neutron backscatter technique was observed as an alternative and more generalized method for quality assurance and standardization in the petroleum industries

  11. [Main Components of Xinjiang Lavender Essential Oil Determined by Partial Least Squares and Near Infrared Spectroscopy].

    Science.gov (United States)

    Liao, Xiang; Wang, Qing; Fu, Ji-hong; Tang, Jun

    2015-09-01

    This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum (NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100~4500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction (RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares (PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two

  12. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  13. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  14. A hydrogen infrastructure - what, why, when and how - an oil industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, A. [Shell International Ltd., Shell Hydrogen, Cheshire (United Kingdom)

    1999-12-01

    Shell Oil`s exploration of profitable business opportunities afforded by fuel cells and by the emergence of a viable hydrogen economy is discussed. The emphasis in this paper is on the transportation sector, particularly the importance of a refueling infrastructure and the influence that consumer attitudes will have on which technological solution will gain the upper hand in hydrogen-powered vehicle development. Key issues facing the oil industry with regard to development of hydrogen as the new energy carrier are also reviewed. Methanol reformer fuel cell cars are the most likely to gain acceptability in the short term, but the probability of methanol fuel cell vehicles being replaced by gasoline or hydrogen fuelled fuel cell vehicles or be superseded by advances in internal combustion engine and after-treatment technology, are very real. Government regulations, fiscal incentives and societal pressures will be the principal determinants of development. Beyond hydrogen energy there are a number of other potentially game-changing technologies that also have to be reckoned with. Among these possibilities are lightweight vehicles, direct methanol fuel cells, new proton exchange membrane fuel cells and driverless highways.

  15. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  16. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  17. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  18. On the effect of electron's runaway in partially ionized hydrogen semiclassical nonideal plasma

    International Nuclear Information System (INIS)

    Turekhanova, K.M.

    2011-01-01

    Complete text of publication follows. The effect of runaway electrons occurs frequently in tokamak plasmas. The majority of experiments in tokamak research have been devoted to the study of confinement properties of runaway electrons. Runaway electrons are reason of various destroying untolarance in tokamak plasmas. At high plasma density, when the critical energy is comparable with the rest energy the multiplication of runaway electrons accelerate at the sacrifice of increase of plasma density. The plasma conductivity is determined by electrons with energy several times higher than the thermal one and does not practically depend on slower electrons distribution. It is important to analyze the probability of runaway electrons at investigation of physical properties of nonideal plasmas under external electric field and running numerical simulations of their. The present paper is devoted to the investigation of effect of runaway electrons in partially ionized hydrogen dense plasma using the effective potentials of particle's interaction. At the investigation of composition of plasma we used the Saha equation with corrections to nonideality (lowering of ionization potentials). The Saha equation was solved for obtaining of plasma ionization stages at the different number density and temperature. As well, when take into account quantum-mechanical diffraction and screening effects, whereas free path of electrons increases with increase of plasma coupling parameter. The condition for appearance of runaway electrons in semiclassical partially ionized plasma is more favorable in regime of dense plasma. In summary it means that the probability of runaway electron in dense plasma is more than the same in rarified plasma that is possibly connected with formation of some ordered structures in dense plasma.

  19. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  20. Electrochemical impedance spectroscopy of fully hydrated Nafion membranes at high and low hydrogen partial pressures

    International Nuclear Information System (INIS)

    Tsampas, M.N.; Brosda, S.; Vayenas, C.G.

    2011-01-01

    The proton transport mechanism in fully hydrated Nafion 117 membranes was examined via electrochemical impedance spectroscopy (EIS) and steady-state current–potential measurements both in a symmetric H 2 , Pt|Nafion|Pt, H 2 cell and in a H 2 , Pt|Nafion|Pt, air PEM fuel cell with hydrogen partial pressure values, P H 2 , varied between 0.5 kPa and 100 kPa. In agreement with recent studies it is found that for low P H 2 values the steady-state current–potential curves exhibit bistability and regions of positive slope. In these regions the Nyquist plots are found to exhibit negative real part impedance with a large imaginary component, while the Bode plots show a pronounced negative phase shift. These observations are consistent with the mechanism involving two parallel routes of proton conduction in fully hydrated Nafion membranes, one due to proton migration in the aqueous phase, the other due to proton transfer, probably involving tunneling, between adjacent sulfonate groups in narrow pores. The former mechanism dominates at high P H 2 values and the latter dominates in the low P H 2 region where the real part of the impedance is negative.

  1. Partial radiative-recombination cross sections for excited states of hydrogen

    International Nuclear Information System (INIS)

    Fazio, P.M.; Copeland, G.E.

    1985-01-01

    The squares of the dipole and quadrupole matrix elements for the free-to-bound transitions of hydrogen up to bound states Vertical Barn = 20,l = 19> are derived in closed analytic form as a function of the kinetic energy of the free electron. Coulomb wave functions are used for the free as well as the bound states and, thus, the results are good for any electron energy. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate-angular-momentum states at low energies (w<1 eV) and where the free-state angular momentum is greater than that of the bound state. Further, that specific intermediate-angular-momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the ''normal'' behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. These ''zeros'' produce minima in the corresponding quadrupole cross sections. Finally, the calculated partial cross sections for recombination into high-angular-momentum states are greater when quadrupole transitions are included

  2. Production of natural antioxidants from vegetable oil deodorizer distillates: effect of catalytic hydrogenation.

    Science.gov (United States)

    Pagani, María Ayelén; Baltanás, Miguel A

    2010-02-01

    Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.

  3. The Influence of Injection Timing on Performance Characteristics of Diesel Engine Using Jatropha Biodiesel with and without Partial Hydrogenation

    Directory of Open Access Journals (Sweden)

    Rizqon Fajar

    2014-07-01

    Full Text Available Experimental research has been conducted to investigate the effects of blend of hydrogenated and unhydrogenated Jatropha biodiesel with diesel fuel in volume ratio of 30:70 (B30 on combustion characteristics (BSFC, thermal efficiency and smoke emission of single cylinder diesel engine. In this experiment, engine speed was kept constant at 1,500, 2,500, and 3,500 rpm with maximum engine load at BMEP 5 bar and injection timings were varied. Experimental result showed that at engine speed 1,500 rpm, BSFC of B30 hydrogenated and unhydrogenated Jatropha biodiesel were higher than it of diesel fuel at all injection timings (10° to 18° BTDC. At the same condition, partial hydrogenated Jatropha biodiesel showed higher BSFC than unhydrogenated Jatropha biodiesel. However, the difference in BSFC became smaller for all fuels at engine speed 2,500 rpm and 3,500 rpm at all injection timing. Jatropha biodiesel with and without partial hydrogenation tend to have higher thermal efficiency compared with diesel fuel at all engine speed and injection timing. The best injection timings to operate B30 Jatropha biodiesel with and without hydrogenation were 14°, 18° and 24° BTDC at engine speed 1,500, 2,500, and 3,500 rpm respectively. This conclusion was deduced based on the minimum value of BSFC and the maximum value of thermal efficiency. Smoke emissions for all fuels were in the same level for all conditions.

  4. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  5. A hydrogen infrastructure - what, why, when and how - an oil industry perspective

    International Nuclear Information System (INIS)

    Livesey, A.

    1999-01-01

    Shell Oil's exploration of profitable business opportunities afforded by fuel cells and by the emergence of a viable hydrogen economy is discussed. The emphasis in this paper is on the transportation sector, particularly the importance of a refueling infrastructure and the influence that consumer attitudes will have on which technological solution will gain the upper hand in hydrogen-powered vehicle development. Key issues facing the oil industry with regard to development of hydrogen as the new energy carrier are also reviewed. Methanol reformer fuel cell cars are the most likely to gain acceptability in the short term, but the probability of methanol fuel cell vehicles being replaced by gasoline or hydrogen fuelled fuel cell vehicles or be superseded by advances in internal combustion engine and after-treatment technology, are very real. Government regulations, fiscal incentives and societal pressures will be the principal determinants of development. Beyond hydrogen energy there are a number of other potentially game-changing technologies that also have to be reckoned with. Among these possibilities are lightweight vehicles, direct methanol fuel cells, new proton exchange membrane fuel cells and driverless highways

  6. A hydrogen infrastructure - what, why, when and how - an oil industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, A. [Shell International Ltd., Shell Hydrogen, Cheshire (United Kingdom)

    1999-07-01

    Shell Oil's exploration of profitable business opportunities afforded by fuel cells and by the emergence of a viable hydrogen economy is discussed. The emphasis in this paper is on the transportation sector, particularly the importance of a refueling infrastructure and the influence that consumer attitudes will have on which technological solution will gain the upper hand in hydrogen-powered vehicle development. Key issues facing the oil industry with regard to development of hydrogen as the new energy carrier are also reviewed. Methanol reformer fuel cell cars are the most likely to gain acceptability in the short term, but the probability of methanol fuel cell vehicles being replaced by gasoline or hydrogen fuelled fuel cell vehicles or be superseded by advances in internal combustion engine and after-treatment technology, are very real. Government regulations, fiscal incentives and societal pressures will be the principal determinants of development. Beyond hydrogen energy there are a number of other potentially game-changing technologies that also have to be reckoned with. Among these possibilities are lightweight vehicles, direct methanol fuel cells, new proton exchange membrane fuel cells and driverless highways.

  7. Simulation for estimation of hydrogen sulfide scavenger injection dose rate for treatment of crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2015-12-01

    Full Text Available The presence of hydrogen sulfide in the hydrocarbon fluids is a well known problem in many oil and gas fields. Hydrogen sulfide is an undesirable contaminant which presents many environmental and safety hazards. It is corrosive, malodorous, and toxic. Accordingly, a need has been long left in the industry to develop a process which can successfully remove hydrogen sulfide from the hydrocarbons or at least reduce its level during the production, storage or processing to a level that satisfies safety and product specification requirements. The common method used to remove or reduce the concentration of hydrogen sulfide in the hydrocarbon production fluids is to inject the hydrogen sulfide scavenger into the hydrocarbon stream. One of the chemicals produced by the Egyptian Petroleum Research Institute (EPRI is EPRI H2S scavenger. It is used in some of the Egyptian petroleum producing companies. The injection dose rate of H2S scavenger is usually determined by experimental lab tests and field trials. In this work, this injection dose rate is mathematically estimated by modeling and simulation of an oil producing field belonging to Petrobel Company in Egypt which uses EPRI H2S scavenger. Comparison between the calculated and practical values of injection dose rate emphasizes the real ability of the proposed equation.

  8. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    Science.gov (United States)

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  9. Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2011-01-01

    Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm 3 H 2 /h) and 360 kW (90 Nm 3 H 2 /h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H 2 and $7.55/kg H 2 . The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H 2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H 2 at base case conditions. The life cycle CO 2 emissions is 6.35 kg CO 2 /kg H 2 including hydrogen delivery to the upgrader via compressed gas trucks. -- Highlights: ► This study involves development of a data intensive techno-economic model for estimation cost of hydrogen production from wind energy. ► Wind energy based electricity is used for electrolysis to produce hydrogen in Western Canada for bitumen upgrading for oil sands. ► Several scenarios were developed to study the electricity generation and hydrogen production from wind energy. ► The cost of production of hydrogen is significantly higher than natural based hydrogen in Western Canada.

  10. Influence of fish oil alone or in combination with hydrogenated palm oil on sensory characteristics and fatty acid composition of bovine cheese

    DEFF Research Database (Denmark)

    Vargas-Bello-Pérez, Einar; Íñiguez-González, Gonzalo; Fehrmann-Cartes, Karen

    2015-01-01

    The objective of the present study was to evaluate the effect of dietary supplementation of fish oil (FO) alone or in combination with hydrogenated palm oil (FOPO) on the fatty acid (FA) profile of milk and cheese from dairy cows, and the sensory characteristics of cheese. Nine Holstein cows (173...

  11. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  12. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  13. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  14. Human health cost of hydrogen sulfide air pollution from an oil and gas Field.

    Science.gov (United States)

    Kenessary, Dinara; Kenessary, Almas; Kenessariyev, Ussen Ismailovich; Juszkiewicz, Konrad; Amrin, Meiram Kazievich; Erzhanova, Aya Eralovna

    2017-06-08

    Introduction and objective. The Karachaganak oil and gas condensate field (KOGCF), one of the largest in the world, located in the Republic of Kazakhstan (RoK) in Central Asia, is surrounded by 10 settlements with a total population of 9,000 people. Approximately73% of this population constantly mention a specific odour of rotten eggs in the air, typical for hydrogen sulfide (H2S) emissions, and the occurrence of low-level concentrations of hydrogen sulfide around certain industrial installations (esp. oil refineries) is a well known fact. Therefore, this study aimed at determining the impact on human health and the economic damage to the country due to H2S emissions. Materials and method. Dose-response dependency between H2S concentrations in the air and cardiovascular morbidity using multiple regression analysis was applied. Economic damage from morbidity was derived with a newly-developed method, with Kazakhstani peculiarities taken into account. Results.Hydrogen sulfide air pollution due to the KOGCF activity costs the state almost $60,000 per year. Moreover, this is the reason for a more than 40% rise incardiovascular morbidity in the region. Conclusion. The reduction of hydrogen sulfide emissions into the air is recommended, as well as successive constant ambient air monitoring in future. Economic damage evaluation should be made mandatory, on a legal basis, whenever an industrial facility operation results in associated air pollution.

  15. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts

    NARCIS (Netherlands)

    Mahfud, F. H.; Ghijsen, F.; Heeres, H. J.

    2007-01-01

    The use of homogeneous ruthenium catalysts to hydrogenate the water-soluble fraction of pyrolysis oil is reported. Pyrolysis oil, which is obtained by fast pyrolysis of lignocellulosic biomass at 450-600 degrees C, contains significant amounts of aldehydes and ketones (e.g. 1-hydroxy-2-propanone (1)

  16. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  17. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  18. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.; Hellgardt, K.

    2015-01-01

    -MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production

  19. Synthesis of Biokerosene through Electrochemical Hydrogenation of Terpene Hydrocarbons from Turpentine Oil

    Directory of Open Access Journals (Sweden)

    Tedi Hudaya

    2016-12-01

    Full Text Available Indonesia possesses great potential for developing renewable resources as alternative fuels. For example, turpentine oil obtained from Pinus merkusii, which contains mostly monoterpene hydrocarbons (C10H16. The oil is highly suitable to be processed for biokerosene or even jet biofuel. It consists of hydrocarbons within the range of C10 to C15. However, it contains insufficient H and thus needs to be upgraded. In the present work, electrochemical hydrogenation was used for upgrading. In the electrochemical cell, stainless steel, silver, and carbon were used alternately for the anode, while copper and silver Raschig rings were used for the cathode. An electrolyte solution of cuprous ammonium formate was utilized not only as a source of H but also to draw the unsaturated hydrocarbons into the aqueous phase. The electrolyte : oil ratio (up to 2:1, electrolyte concentration (between 0.4 and 2 M and reaction time were varied throughout the experiments. The bromine number (unsaturation level of the turpentine oil, which was initially 1,86 (mole Br2/mole, was lowered significantly to 0.69-0.90. Promising increase of smoke point values were observed from 11 mm to 16-24 mm, indicating a higher H content of the processed oil, thus making it suitable as a substitute for petroleum kerosene.

  20. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  1. Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1.

    Science.gov (United States)

    Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R

    2015-04-01

    In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.

  2. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  3. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  4. Influence of solubilizer PEG-40 hydrogenated castor oil on carbopol gels’ structural-mechanical properties

    Directory of Open Access Journals (Sweden)

    Ye. V. Gladukh

    2017-12-01

    Full Text Available Rheological properties affect all stages of the drug development – from development to production, the characteristics of the final products and stability. A lot of substances have complex rheological properties; their viscosity and elasticity can vary depending on conditions acting from the outside, such as stress, deformation, time factor and temperature. Concentration, stability and composition also significantly affect the rheological properties of drugs. One of the current trends in modern pharmacy is the development of drugs in the form of gels. The rheological properties of gels are significantly influenced by surface-active substances, stabilizers, solubilizers, stabilizing their structure. A special group of stabilizers are hydrogenated vegetable oils and their compounds with polymers, which have the ability to structure formation in interphase layers and in the volume of phases. For this purpose, PEG-40 hydrogenated castor oil is widely used. The aim of this work is to study the effect of hydrogenated castor oil, used as an emulsifier, solubilizer, viscosity modifier and solvent in the technology of semisolid dosage forms, on the structural and mechanical properties of carbopol gels. Materials and methods. 1% gel carbopol with additives PEG-40 hydrogenated castor oil in the concentration range from 1 to 5 % was investigated as experimental samples of the gel base. A 10 % propylene glycol additive was used as humectant and plasticizer. Structural and mechanical studies were carried out using a rotational viscometer «RheolabQC», Anton Paar (Austria with coaxial cylinders CCC27/SS. The graphs of the gels were automatically plotted using the computer program. Results. Analysis of the rheological parameters of the carbopol with PEG-40 hydrogenated castor oil gel base shows that the solubilizer has an active influence on the structural and mechanical properties of the base. Addition of PEG-40 GMM to the carbopol gel increases the yield

  5. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    Science.gov (United States)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  6. Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Domenichini, R.; Gallio, M. [Foster Wheeler Italiana Spa, via Caboto 1, 20094 Corsico (Milano) (Italy); Lazzaretto, A. [University of Padova, Department of Mechanical Engineering, via Venezia 1, 35131 Padova (Italy)

    2010-05-15

    Integrated Gasification Combined Cycle (IGCC) represents a commercially proven technology available for the combined production of hydrogen and electricity power from coal and heavy residue oils. When associated with CO{sub 2} capture and sequestration facilities, the IGCC plant gives an answer to the search for a clean and environmentally compatible use of high sulphur and heavy metal contents fuels, the possibility of installing large size plants for competitive electric power and hydrogen production, and a low cost of CO{sub 2} avoidance. The paper describes two new and realistic configurations of IGCC plant fed by refinery heavy residues and including a CO{sub 2} capture section, which are proposed on the basis of the experience gained in the construction of similar plants. They are based on oxygen blown entrained bed gasification and sized to produce a large amount of hydrogen and to feed one or two gas turbines of the combined cycle unit. The main thermodynamic and technological characteristics of the total plants are evaluated focusing on the heat integration between syngas cooling and combined cycle sections. Moreover, the overall performance characteristics and investment cost are estimated to supply a reliable estimate for the cost of electricity, given a value for the hydrogen selling price. (author)

  7. Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations

    International Nuclear Information System (INIS)

    Domenichini, R.; Gallio, M.; Lazzaretto, A.

    2010-01-01

    Integrated Gasification Combined Cycle (IGCC) represents a commercially proven technology available for the combined production of hydrogen and electricity power from coal and heavy residue oils. When associated with CO 2 capture and sequestration facilities, the IGCC plant gives an answer to the search for a clean and environmentally compatible use of high sulphur and heavy metal contents fuels, the possibility of installing large size plants for competitive electric power and hydrogen production, and a low cost of CO 2 avoidance. The paper describes two new and realistic configurations of IGCC plant fed by refinery heavy residues and including a CO 2 capture section, which are proposed on the basis of the experience gained in the construction of similar plants. They are based on oxygen blown entrained bed gasification and sized to produce a large amount of hydrogen and to feed one or two gas turbines of the combined cycle unit. The main thermodynamic and technological characteristics of the total plants are evaluated focusing on the heat integration between syngas cooling and combined cycle sections. Moreover, the overall performance characteristics and investment cost are estimated to supply a reliable estimate for the cost of electricity, given a value for the hydrogen selling price.

  8. Hydrogen or Soot?: Partial Oxidation of High-boiling Hydrocarbon Wastes

    Czech Academy of Sciences Publication Activity Database

    Lederer, J.; Hanika, Jiří; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2015-01-01

    Roč. 29, č. 1 (2015), s. 5-11 ISSN 0352-9568 Institutional support: RVO:67985858 Keywords : partial oxidation * waste * hydrocarbon Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.675, year: 2015

  9. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evidence of quantum correlations in the H/D-transfer dynamics in the hydrogen bonds in partially deuterated benzoic acid crystals

    Science.gov (United States)

    Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.

    1992-10-01

    A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.

  11. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  12. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  13. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  14. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Libánská, A.; Bouša, D.; Sedmidubský, D.; Matějková, Stanislava; Sofer, Z.

    2016-01-01

    Roč. 22, č. 25 (2016), s. 8627-8634 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA15-09001S Institutional support: RVO:61388963 Keywords : electrocatalysis * electrochemistry * graphene * hydrogenation * sensing Subject RIV: CA - Inorganic Chemistry Impact factor: 5.317, year: 2016

  15. Influence of Cr upon hydrogen permeationin Ni3Al at low partial pressure of oxygen

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Rothová, Věra

    2001-01-01

    Roč. 9, č. 3 (2001), s. 245-251 ISSN 0966-9795 R&D Projects: GA AV ČR IBS2041105; GA ČR GA106/99/1179 Institutional research plan: CEZ:AV0Z2041904 Keywords : hydrogen * intermetallics * permeation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.239, year: 2001

  16. Partial filling of d-band of nickel on hydrogen diffusion

    International Nuclear Information System (INIS)

    Kapoor, N.; Nigam, A.N.

    1987-01-01

    It is seen that low-temperature annealing of nickel wires forbids the complete filling in of the d-band of nickel when the latter is subjected to cathodic-hydrogen diffusion. At a certain low-temperature range irreversible changes occur in the orientation of the surface planes of nickel which persist even if the temperature is raised to the room temperature

  17. The Antioxidant Content and Protective Effect of Argan Oil and Syzygium aromaticum Essential Oil in Hydrogen Peroxide-Induced Biochemical and Histological Changes.

    Science.gov (United States)

    Bakour, Meryem; Soulo, Najoua; Hammas, Nawal; Fatemi, Hinde El; Aboulghazi, Abderrazak; Taroq, Amal; Abdellaoui, Abdelfattah; Al-Waili, Noori; Lyoussi, Badiaa

    2018-02-18

    Oxidative stress is an important etiology of chronic diseases and many studies have shown that natural products might alleviate oxidative stress-induced pathogenesis. The study aims to evaluate the effect of Argan oil and Syzygium aromaticum essential oil on hydrogen peroxide (H₂O₂)-induced liver, brain and kidney tissue toxicity as well as biochemical changes in wistar rats. The antioxidant content of Argan oil and Syzygium aromaticum essential oil was studied with the use of gas chromatography. The animals received daily by gavage, for 21 days, either distilled water, Syzygium aromaticum essential oil, Argan oil, H₂O₂ alone, H₂O₂ and Syzygium aromaticum essential oil, or H₂O₂ and Argan oil. Blood samples were withdrawn on day 21 for the biochemical blood tests, and the kidney, liver and brain tissue samples were prepared for histopathology examination. The results showed that the content of antioxidant compounds in Syzygium aromaticum essential oil is higher than that found in Argan oil. H₂O₂ increased level of blood urea, liver enzymes, total cholesterol, Low Density Lipoprotein (LDL-C), Triglycerides (TG) and Very Low Density Lipoprotein (VLDL), and decreased the total protein, albumin and High Density Lipoprotein-cholesterol (HDL-C). There was no significant effect on blood electrolyte or serum creatinine. The histopathology examination demonstrated that H₂O₂ induces dilatation in the central vein, inflammation and binucleation in the liver, congestion and hemorrhage in the brain, and congestion in the kidney. The H₂O₂-induced histopathological and biochemical changes have been significantly alleviated by Syzygium aromaticum essential oil or Argan oil. It is concluded that the Argan oil and especially the mixture of Argan oil with Syzygium aromaticum essential oil can reduce the oxidative damage caused by H₂O 2, and this will pave the way to investigate the protective effects of these natural substances in the diseases attributed

  18. Palm Oil Fuel Ash (POFA and Eggshell Powder (ESP as Partial Replacement for Cement in Concrete

    Directory of Open Access Journals (Sweden)

    Mohamad Mazizah Ezdiani

    2018-01-01

    Full Text Available This study is an attempt to partially replace Ordinary Portland cement (OPC in concrete with palm oil fuel ash (POFA and eggshell powder (ESP. The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  19. A New Way to Calculate Flow Pressure for Low Permeability Oil Well with Partially Penetrating Fracture

    Directory of Open Access Journals (Sweden)

    Xiong Ping

    2018-01-01

    Full Text Available In order to improve the validity of the previous models on calculating flow pressure for oil well with partially perforating fracture, a new physical model that obeys the actual heterogeneous reservoir characteristics was built. Different conditions, including reservoir with impermeable top and bottom borders or the reservoir top which has constant pressure, were considered. Through dimensionless transformation, Laplace transformation, Fourier cosine transformation, separation of variables, and other mathematical methods, the analytical solution of Laplace domain was obtained. By using Stephenson numerical methods, the numerical solution pressure in a real domain was obtained. The results of this method agree with the numerical simulations, suggesting that this new method is reliable. The following sensitivity analysis showed that the pressure dynamic linear flow curve can be divided into four flow streams of early linear flow, midradial flow, advanced spherical flow, and border controlling flow. Fracture length controls the early linear flow. Permeability anisotropy significantly affects the midradial flow. The degree of penetration and fracture orientation dominantly affect the late spherical flow. The boundary conditions and reservoir boundary width mainly affect the border controlling flow. The method can be used to determine the optimal degree of opening shot, vertical permeability, and other useful parameters, providing theoretical guidance for reservoir engineering analysis.

  20. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  1. Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete

    Science.gov (United States)

    Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.

    2017-11-01

    Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.

  2. Crystallization of low saturated lipid blends of palm and canola oils with sorbitan monostearate and fully hydrogenated palm oil.

    Science.gov (United States)

    Barbosa, Karina Martins; Cardoso, Lisandro Pavie; Ribeiro, Ana Paula Badan; Kieckbusch, Theo Guenter; Buscato, Monise Helen Masuchi

    2018-03-01

    Several scientific investigations have focused on providing new strategies for supporting the development of low saturated and zero trans lipid materials, as healthier fat alternatives for food application. This work evaluated the consistency, crystallization behavior, microstructure and polymorphism of six blends composed of palm and canola oils at different concentrations (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100, in w/w%) added with 5.0% of fully hydrogenated palm oil (FHPO) or with a mixture of 2.5% of FHPO and 2.5% of sorbitan monostearate (SMS). The results were compared with the non-structured blends (standard samples). Through microstructure images, the formation of a more homogeneous and denser packed crystal network was observed for samples added with both crystallization modifiers (FHPO/SMS) compared to the corresponding standard samples, after stabilization at 25 °C during 3 h. In particular, enhanced crystallization modifications were observed for the 40:60 blend, in which the crystal form β' emerged after the addition of FHPO/SMS. Moreover, the 40:60 blend structured with FHPO/SMS showed increased consistency (from 30 to 658 g F /cm 2 ) and induced onset crystallization in a higher temperature (from 13.1 to 23.9 °C) compared with the non-structured one, due to the specific crystallization effects provided by both added structurants.

  3. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  4. Fruit quality in the peach and nectarine with application of hydrogenated cyanamide and mineral oil

    Directory of Open Access Journals (Sweden)

    Sarita Leonel

    Full Text Available This work evaluated the quality of the fruit in peach and nectarine cultivars with and without the application of hydrogenated cyanamide and mineral oil, for two production cycles (2009 and 2010. The experiment was carried out at the School of Agricultural Science of the São Paulo State University (UNESP, at Botucatu in the Brazilian state of São Paulo, located at latitude 22º51'55" S and longitude 48º26'22" E, at an altitude of 810 m. The predominant climate type is warm temperate (mesothermal with rains in the summer and dry in the winter. The following were evaluated: soluble solids, titratable acidity, pH, ratio, firmness, vitamin C and pulp yield. The use of hydrogenated cyanamide and mineral oil had no effect on the quality attributes of the fruit, except for pH, where those fruits under application of the products showed higher values. The cultivars all had a pulp yield greater than 90%, with 'Tourmaline' showing the highest yield (96 %. The levels of vitamin C varied according to the cultivars, where 'Marli' (16.9 mg 100 g-1 and 'Dourado-2' (16.5 mg 100 g-1, stood out for having the highest levels.

  5. Simulation of gas hydrogen diffusion through partially water saturated mono-modal materials

    International Nuclear Information System (INIS)

    Boher, C.; Lorente, S.; Frizon, F.; Bart, F.

    2012-01-01

    Concerning the disposal of nuclear wastes, it is important to design concrete envelopes with pore networks that allow the diffusion of hydrogen towards the outside. This work documents the relationship between geo-polymers, which are materials with a quasi mono-modal pore network, and their gaseous diffusivity capacities. Using a mono-modal material allows studying a specific pore size contribution to gaseous diffusion. The pore network is characterized by mercury porosimetry. These experimental results are used as data in a model named MOHYCAN. The modeling work consists of creating a virtual pore network. Then, water layers are deposited in this network to simulate variable water saturation levels. Finally hydrogen is transported through the virtual network using a combination of ordinary diffusion and Knudsen diffusion. MOHYCAN calculates the hydrogen diffusion coefficient for water saturation degree from 0% to 100%. The impacts of the pore network arrangement or the pore network discretization have been studied. The results are, for a quasi mono-modal material: -) the diffusion coefficient is not sensitive to different virtual pore network arrangement; -) the diffusion coefficient values have a sharp drop at specific water saturation (this is due to the water saturation of the main and unique pore family); -) a 2 pores family based model is sufficient to represent the pore network. Theses observations will not be valid if we consider a material with a large pore size distribution, like cementitious materials

  6. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  7. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  8. Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction

    International Nuclear Information System (INIS)

    Sarkar, Omprakash; Butti, Sai Kishore; Venkata Mohan, S.

    2017-01-01

    H 2 partial pressure drives the reduction of carboxylic acid (short chain fatty acids) formed as primary metabolites in acidogenic fermentation to form bioalcohols. Microbial catalysis under the influence of H 2 partial pressure was evaluated in comparison with a reactor operated at atmospheric pressure under identical conditions. Carboxylic acid reduction gets regulated selectively by the influence of elevated pressures and redox conditions, resulting in the formation of alcohols. The non-equilibrium of the intra and extracellular H 2 ions causes the anaerobic bacteria to alter their pathways as a function of interspecies H 2 transfer. Ethanol production was quantified, as acetic acid was the major carboxylic acid synthesised during acidogenesis. H 2 pressure influenced the electrochemical activity which was reflected in the distinct variation of the electron transfer rates and the catalytic activity of redox mediators (NAD + /NADH, flavoproteins and iron-sulphur clusters). The bioprocess depicted in this communication depicted a non-genetic regulation of product formation, understanding the acidogenic metabolism and alternate route for alcohol production. - Highlights: • H 2 partial pressure in HPR aided in the reduction of carboxylic acids to alcohols. • Production and consumption rate of VFAs were correlating with alcohol formation. • Metabolic shift was evident with bioelectrochical analysis. • NADH/NAD + ratio and H 2 partial pressure coupled in enhanced solventogenesis.

  9. Determination of the hydrogen content of oil samples from Nigeria using an Am-Be neutron source

    International Nuclear Information System (INIS)

    Jonah, S.A.; Elegba, S.B.; Zakari, I.I.

    1998-01-01

    A 5 Ci Am-Be neutron source-based facility, which utilises the principles of thermal neutron reflection technique in combination with foil activation method, has been used to determine the total hydrogen content of commercial oil samples from Nigeria. With an established detection limit of 0.25 H w% for oil matrix of volume 600-ml, the total hydrogen contents of the samples were found to be in the range of 11.11-14.22 H w%. The facility is economical and suitable for the determination of moisture in solid samples. A brief description of the ongoing projects and future plans concerning the CRP are enumerated. (author)

  10. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  11. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    Science.gov (United States)

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H 2 O 2 ). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H 2 O 2 . We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H 2 O 2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H 2 O 2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  12. Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni-Cu catalysts using isopropanol

    Science.gov (United States)

    Transfer hydrogenation and hydrodeoxygenation of model bio-oil compounds (p-cresol and furfural) and bio-oils derived from biomass via traditional pyrolysis and tail-gas reactive pyrolysis (TGRP) were conducted. Mild batch reaction conditions were employed, using isopropanol as a hydrogen donor over...

  13. Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency

    International Nuclear Information System (INIS)

    Skidmore, Bradley E.; Baker, Ryan A.; Banjade, Dila R.; Bray, Jason M.; Tree, Douglas R.; Lewis, Randy S.

    2013-01-01

    Producing biofuels from gasified biomass (synthesis gas) via microbial fermentation is currently being pursued as one alternative in biofuels development. In synthesis gas fermentation, reducing equivalents from H 2 oxidation via hydrogenase is important towards directing more carbon towards product formation. In this work, kinetic studies of H 2 utilization via the Clostridium P11 hydrogenase enzyme were performed to determine the most appropriate model to predict hydrogenase activity as a function of H 2 partial pressure. An important aspect of this work included the proper analysis of electron acceptors used in the kinetic studies. The K H 2 model parameter governing the effect of H 2 partial pressure on activity was ∼30 kPa (absolute), independent of the type and concentration of electron acceptor. The K H 2 value indicates that H 2 partial pressures typically associated with syngas fermentation will result in compromised efficiency of the hydrogenase activity. -- Highlights: ► We model hydrogenase activity as a function of H 2 and electron acceptors. ► Model shows the H 2 kinetic parameter is independent of electron acceptor. ► Hydrogenase efficiency is compromised at H 2 levels observed in gasified biomass

  14. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    Science.gov (United States)

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 78 FR 67169 - Tentative Determination Regarding Partially Hydrogenated Oils; Request for Comments and for...

    Science.gov (United States)

    2013-11-08

    ... States Department of Agriculture (USDA) granted any explicit prior sanction or approval for any use of... Agriculture (USDA) National Nutrition Database for Standard Reference, Release 23, 2010 (Internet address.... Vrijkotte, et al., ``Maternal n-3, n-6, and Trans Fatty Acid Profile Early in Pregnancy and Term Birth...

  16. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  17. Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure

    International Nuclear Information System (INIS)

    Peng, Li; Yao, Kailun; Zhu, Sicong; Ni, Yun; Zu, Fengxia; Wang, Shuling; Guo, Bin; Tian, Yong

    2014-01-01

    We report ab initio calculations of electronic transport properties of heterostructure based on MoS 2 nanoribbons. The heterostructure consists of edge hydrogen-passivated and non-passivated zigzag MoS 2 nanoribbons (ZMoS 2 NR-H/ZMoS 2 NR). Our calculations show that the heterostructure has half-metallic behavior which is independent of the nanoribbon width. The opening of spin channels of the heterostructure depends on the matching of particular electronic orbitals in the Mo-dominated edges of ZMoS 2 NR-H and ZMoS 2 NR. Perfect spin filter effect appears at small bias voltages, and large negative differential resistance and rectifying effects are also observed in the heterostructure.

  18. Statistical Analysis of Partial Discharge Characteristics in Transformer Oil at the “Point-Plane” Electrode at Alternating Voltage

    Directory of Open Access Journals (Sweden)

    Korobeynikov S.M.

    2017-08-01

    Full Text Available In this paper, we consider the problems related to measuring and analyzing the characteristics of partial discharges which are the main instrument for oil-filled high-voltage electrical equipment diagnosing. The experiments on recording of partial discharges in transformer oil have been carried out in the “point-plane” electrode system at alternating current. The instantaneous voltage and the apparent charge have been measured depending on the root-mean-square voltage and the phase angle of partial discharges. This paper aimes at carrying out a statistical analysis of the obtained experimental results, in particular, the construction of a parametric probabilistic model of the dependence of the partial discharge inception voltage distribution on the value of the root-mean-square voltage. It differs from usual discharges which occur in liquid dielectric materials in case of sharp inhomogeneous electrode system. It has been suggested that discharges of a different type are the discharges in gas bubbles that occur when partial discharges in a liquid emerge. This assumption is confirmed by the fact that the number of such discharges increases with increasing the root-mean-square voltage value. It is the main novelty of this paper. This corresponds to the nature of the occurrence of such discharges. After rejecting the observations corresponding to discharges in gas bubbles, a parametric probabilistic model has been constructed. The model obtained makes it possible to determine the probability of partial discharge occurrence in a liquid at a given value of the instantaneous voltage depending on the root-mean-square voltage.

  19. Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil.

    Science.gov (United States)

    Alves, Junia O; Botelho, Bruno G; Sena, Marcelo M; Augusti, Rodinei

    2013-10-01

    Direct infusion electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS] is used to obtain fingerprints of aqueous-methanolic extracts of two types of olive oils, extra virgin (EV) and ordinary (OR), as well as of samples of EV olive oil adulterated by the addition of OR olive oil and other edible oils: corn (CO), sunflower (SF), soybean (SO) and canola (CA). The MS data is treated by the partial least squares discriminant analysis (PLS-DA) protocol aiming at discriminating the above-mentioned classes formed by the genuine olive oils, EV (1) and OR (2), as well as the EV adulterated samples, i.e. EV/SO (3), EV/CO (4), EV/SF (5), EV/CA (6) and EV/OR (7). The PLS-DA model employed is built with 190 and 70 samples for the training and test sets, respectively. For all classes (1-7), EV and OR olive oils as well as the adulterated samples (in a proportion varying from 0.5 to 20.0% w/w) are properly classified. The developed methodology required no ions identification and demonstrated to be fast, as each measurement lasted about 3 min including the extraction step and MS analysis, and reliable, because high sensitivities (rate of true positives) and specificities (rate of true negatives) were achieved. Finally, it can be envisaged that this approach has potential to be applied in quality control of EV olive oils. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Growth performance, liver and thyroid functions in buffalo calves reared on milk replacers supplemented with hydrogenated oils

    International Nuclear Information System (INIS)

    Abdelaal, A.E.; EL-Ashry, M.A.; Fekry, A.E.; Elwan, K.M.

    1991-01-01

    25 buffalo calves reared on natural milk (up to one week of age) were alloted to: A) controls: fed natural milk, and four experimental groups (B, C, D and E) constituting a 2 x 2 factorial design, where two brands (sultan and momtaz) and two levels (20% and 30% D M) of hydrogenated oils were added to skim milk-based replacers. Calf starter and hay were offered ad libitum with the liquid diets from the fourth week of age. Daily body gain and serum levels of : T 4 , T 3 , cholesterol, total proteins, albumin and the activities of transaminase (GOT and GPT) and alkaline phosphatase were determined at 3,6,9, and 12 weeks of age. The daily weight gain was significantly less in the groups receiving hydrogenated oils. However, feeding different brands and levels of hydrogenated oils added to skim milk caused significant decreases in the mean values of cholesterol, T 3 and T 4 and the T 4 /T 3 ratio. Addition of sultan oil to skim milk resulted in significant increases in serum levels of total proteins and globulins and significant decreases in A/G ratio, and both of GOT and alkaline phosphatase activities. The versed responses were noted in blood constituents and enzymatic activity when momtaz oil was added. The decrease in thyroid function and body weight gain is a clear observation shown in this study and needs further research

  1. Potential Fish Production Impacts from Partial Removal of Decommissioned Oil and Gas Platforms off the Coast of California

    Science.gov (United States)

    Claisse, J.; Pondella, D.; Love, M.; Zahn, L.; Williams, C.; Bull, A. S.

    2016-02-01

    When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  2. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Partial local thermal equilibrium in a low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Hey, J.D.; Chu, C.C.; Rash, J.P.S.

    1999-01-01

    If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  5. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    OpenAIRE

    Avinash Alagumalai

    2015-01-01

    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17....

  6. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  7. Physical, chemical and microbiological properties of mixed hydrogenated palm kernel oil and cold-pressed rice bran oil as ingredients in non-dairy creamer

    Directory of Open Access Journals (Sweden)

    Kunakorn Katsri

    2014-02-01

    Full Text Available The physical, chemical and microbiological properties of hydrogenated palm kernel oil (PKO and cold-pressed rice bran oil (RBOas ingredients in the production of liquid and powdered non-dairy creamer (coffee whitener were studied. The mixing ratios between hydrogenated PKO and cold-pressed RBO were statistically designed as of 100:0, 90:10,80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90 and 0:100.The color, absorbanceand viscosity of the mixtures were investigated. As the ratio of cold-pressed RBO increased, the color became darker (L*of 93.06 to 86.25 and the absorbance significantly increased, while the viscosity of the mixtures of 20:80, 10:90 and 0:100 (54 cp. were the highest amongst the ratios tested.The hydrogenated PKO and cold-pressed RBO mixtures were further chemically tested for fatty acids, -oryzanol, -tocopherol, trans-fat contents andantioxidant activity. There were 10 fatty acids present in hydrogenated PKO with saturated fatty acid being the most predominant. Comparatively, there were only 5 fatty acids found in cold-pressed RBO with monounsaturated fatty acid being the major fatty acid. -Oryzanol and -tocopherol contents were higher with increasingcold-pressed RBO from 0-100% (0 to 1,155.00 mg/100g oil and 0.09 to 30.82 mg/100g oil, respectively. Antioxidant activity was increased with increasing cold-pressed RBO from 0-100% (9.26 to 94.24%.The pure hydrogenated PKO contained higher trans-fat content than that of the 90:10 and 80:20 mixtures (2.73, 1.93 and 1.85mg/100g oil,respectively while other samples had no trans-fat. No microorganisms were present in any of the samples.Therefore, substitution of hydrogenated PKO by cold-pressed RBO from 30-100% would offer more nutritional values and better chemical and physical properties of non-dairy creamer.

  8. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  9. Studies on dual fuel operation of rubber seed oil and its bio-diesel with hydrogen as the inducted fuel

    Energy Technology Data Exchange (ETDEWEB)

    Edwin Geo, V.; Nagalingam, B. [Department of Mechanical Engineering, KCG College of Technology, Chennai, Tamil Nadu 600097 (India); Nagarajan, G. [Department of Mechanical Engineering, IC Engineering Division, Anna University, Chennai, Tamil Nadu 600025 (India)

    2008-11-15

    The main problems with the use of neat vegetable oils in diesel engines are higher smoke levels and lower thermal efficiency as compared to diesel. The problem can be tackled by inducting a gaseous fuel in the intake manifold along with air. In this investigation, hydrogen is used as the inducted fuel and rubber seed oil (RSO), rubber seed oil methyl ester (RSOME) and diesel are used as main fuels in a dual fuel engine. A single cylinder diesel engine with rated output of 4.4 kW at 1500 rpm was converted to operate in the dual fuel mode. Dual fuel operation of varying hydrogen quantity with RSO and RSOME results in higher brake thermal efficiency and significant reduction in smoke levels at high outputs. The maximum brake thermal efficiency is 28.12%, 29.26% and 31.62% with RSO, RSOME and diesel at hydrogen energy share of 8.39%, 8.73% and 10.1%, respectively. Smoke is reduced from 5.5 to 3.5 BSU with RSOME and for RSO it is from 6.1 to 3.8 BSU at the maximum efficiency point. The peak pressure and maximum rate of pressure rise increase with hydrogen induction. Heat release rate indicates an increase in the combustion rate with hydrogen induction. On the whole it is concluded that hydrogen can be inducted along with air in order to reduce smoke levels and improve thermal efficiency of RSO and its bio-diesel fuelled diesel engines. (author)

  10. Assessment of partial coalescence in whippable oil-in-water food emulsions.

    Science.gov (United States)

    Petrut, Raul Flaviu; Danthine, Sabine; Blecker, Christophe

    2016-03-01

    Partial coalescence influences to a great extent the properties of final food products such as ice cream and whipped toppings. In return, the partial coalescence occurrence and development are conditioned, in such systems, by the emulsion's intrinsic properties (e.g. solid fat content, fat crystal shape and size), formulation (e.g. protein content, surfactants presence) and extrinsic factors (e.g. cooling rate, shearing). A set of methods is available for partial coalescence investigation and quantification. These methods are critically reviewed in this paper, balancing the weaknesses of the methods in terms of structure alteration (for turbidity, dye dilution, etc.) and assumptions made for mathematical models (for particle size determination) with their advantages (good repeatability, high sensitivity, etc.). With the methods proposed in literature, the partial coalescence investigations can be conducted quantitatively and/or qualitatively. Good correlation were observed between some of the quantitative methods such as dye dilution, calorimetry, fat particle size; while a poor correlation was found in the case of solvent extraction method with other quantitative methods. The most suitable way for partial coalescence quantification was implied to be the fat particle size method, which would give results with a high degree of confidence if used in combination with a microscopic technique for the confirmation of partial coalescence as the main destabilization mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. EXTRACTION AND PARTIAL CHARACTERISATION OF PHYTOSTEROL FROM ETHANOLYSIS REACTION MIXTURE OF OIL DEODERISER DISTILLATES

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Various plants and plant products (e.g. vegetable oil) are the major sources of phytosterols. Phytosterols are naturally occurring in either free form, or esters of fatty acids or glycoside forms, depending on their natural sources. As a potential industrial product, the main source is from...... deodoriser distillate (DOD) which is a by-product of oil refinery. Major applications of phystosterols are used as a functional food additive and a building block. Phytosterols are found to have cholesterol lowering effect by the inhibition of cholesterol absorption in the intestine lumen. As a building...... block, phytosteryl derivatives can be developed and introduced to pharmaceutical and cosmetic industries. Recently, we have successfully converted phytosteryl ester from industrial rapeseed and soybean oil DOD ethanolysed mixture to free phytosterols by using enzymatic transesterification. This study...

  12. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen sulfide booster compressors for HWP Manuguru - oil reclamation study - BHEL experience (Paper No. 5.2)

    International Nuclear Information System (INIS)

    Godbole, A.; Santanam, N.; Murthy, T.S.R.

    1992-01-01

    BHEL undertook the development of hydrogen sulphide booster compressor with a view to indigenise this most critical equipment in a heavy water plant. Throughout the design, manufacture and shop testing of these booster compressors BHEL had close interaction with Heavy Water Board. This paper describes the problems faced during commissioning of compressors at KCR -Manuguru such as deficiencies in the sizing of LP seal oil drain, development of a process for reclamation of oil and development of alternate sealing arrangement, etc. (author). 1 tab., 4 figs

  14. The effect of partial substitution of pork back fat with vegetable oils and walnuts on chemical composition, texture profile and sensorial properties of meatloaf

    Directory of Open Access Journals (Sweden)

    Gabriel Dănuţ MOCANU

    2015-08-01

    Full Text Available The present study investigates the effects of the partial substitution of the pork back fat with different vegetable oils (sea buckthorn, walnut and sunflower and walnuts on the chemical composition, texture profile and sensory characteristics of meatloaves. The dry matter and ash content of meatloaf with vegetable oils and walnuts were higher than the control sample (P < 0.05. The cooking loss, energy values and lipid oxidation for the samples with walnuts and vegetable oils were lower than the control sample. The meatloaf sample containing walnuts and sea buckthorn oil had the highest total antioxidant capacity. The partial substitution of pork back fat showed a positive effect on textural and sensorial characteristics. Results reveal that the incorporation of vegetable oils and walnuts has successfully reduced the animal fat content in the finite products while improving the quality characteristics.

  15. A possible role of partially pyrolysed essential oils in Australian Aboriginal traditional ceremonial and medicinal smoking applications of Eremophila longifolia (R. Br.) F. Muell (Scrophulariaceae).

    Science.gov (United States)

    Sadgrove, N J; Jones, G L

    2013-06-03

    Eremophila longifolia is one of the most respected of the traditional medicines used by Australian Aboriginal people. Customary use involves smoldering the leaves over hot embers of a fire to produce an acrid smoke, believed to have therapeutic effects broadly consistent with antimicrobial, antifungal and anti-inflammatory capacity. The current study aims to examine the contribution of partially pyrolysed and non-pyrolysed essential oils in traditional usage of Eremophila longifolia. Non-pyrolysed and partially pyrolysed essential oils were produced by hydrodistillation and part-wet/part-dry distillation, respectively. All samples were tested for antimicrobial activity by broth dilution. Some of these samples were further treated to an incrementally stepped temperature profile in a novel procedure employing a commercial thermocycler in an attempt to mimic the effect of temperature gradients produced during smoking ceremonies. Components from the pyrodistilled oils were compared with the non-pyrodistilled oils, using GC-MS, GC-FID and HPLC-PAD. The 2,2-diphenyl-1-picrylhydrazyl method, was used to compare free radical scavenging ability. Partially pyrolysed oils had approximately three or more times greater antimicrobial activity, enhanced in cultures warmed incrementally to 60°C and held for 30s and further enhanced if held for 2 min. Partially pyrolysed oils showed a radical scavenging capacity 30-700 times greater than the corresponding non-pyrolysed oils. HPLC-PAD revealed the presence of additional constituents not present in the fresh essential oil. These results, by showing enhanced antimicrobial and antioxidant activities, provide the first known Western scientific justification for the smoking ceremonies involving leaves of Eremophila longifolia. During customary use, both partially pyrolysed as well as non-pyrolysed essential oils may contribute significantly to the overall intended medicinal effect. Copyright © 2013 Elsevier Ireland Ltd. All rights

  16. Fabrication of modified hydrogenated castor oil/GPTMS-ZnO composites and effect on UV resistance of leather.

    Science.gov (United States)

    Ma, Jianzhong; Duan, Limin; Lu, Juan; Lyu, Bin; Gao, Dangge; Wu, Xionghu

    2017-06-16

    Leather products are made from the natural skin collagen fibers. It is vulnerable to the environmental factor such as solar ultraviolet irradiation in the using process. Therefore anti-UV performance is a very important quality, particularly for chrome-free leather. ZnO is a well-known UV absorber commonly used in the cosmetic industry. We have investigated its potential to increase the anti-UV performance of chrome-free leather. Modified hydrogenated castor oil/GPTMS-ZnO (MHCO/ GPTMS-ZnO) composites were prepared using spherical ZnO nanoparticles, hydrogenated castor oil, maleic anhydride and sodium bisulfite. MHCO/GPTMS-ZnO composites have better anti-UV ability and stability. MHCO/GPTMS-ZnO composites were applied to the leather processing. The treated samples were exposed to artificial sunlight. Anti-yellowing tests showed that MHCO/GPTMS-ZnO composites significantly improved anti-UV performance of leather.

  17. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  18. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles.

    Science.gov (United States)

    Xie, Shuyu; Pan, Baoliang; Wang, Ming; Zhu, Luyan; Wang, Fenghua; Dong, Zhao; Wang, Xiaofang; Zhou, WenZhong

    2010-07-01

    The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug. PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy. Pharmacokinetics were studied after oral, subcutaneous and intramuscular administration in mice. The diameter, polydispersivity index, zeta potential, encapsulation efficiency and loading capacity of the nanoparticles were 344.0 +/- 15.1 nm, 0.31 +/- 0.08, -16.7 +/- 0.5 mV, 62.17 +/- 6.53% and 12.43 +/- 1.31%, respectively. In vitro release of PZQ-loaded HCO-SLN exhibited an initial burst release followed by a sustained release. SLN increased the bioavailability of PZQ by 14.9-, 16.1- and 2.6-fold, and extended the mean residence time of the drug from 7.6, 6.6 and 8.2 to 95.9, 151.6 and 48.2 h after oral, subcutaneous and intramuscular administration, respectively. The PZQ-loaded HCO-SLN could be a promising formulation to enhance the pharmacological activity of PZQ.

  19. Simple Synthesis Hydrogenated Castor Oil Fatty Amide Wax and Its Coating Characterization.

    Science.gov (United States)

    Yu, Xiuzhu; Wang, Ning; Zhang, Rui; Zhao, Zhong

    2017-07-01

    A simple method for incorporating amine groups in hydrogenated castor oil (HCO) to produce wax for beeswax or carnauba wax substitution in packaging and coating was developed. From the conversion rate of the products, HCO was reacted with ethanolamine at 150°C for 5 h, and the molar ratio of HCO and ethanolamine was 1:4. The hardness of the final product was seven times higher than that of beeswax, the cohesiveness of the final product was 1.3 times higher than that of beeswax and approximately one half of that of carnauba wax, and the melting point of the final product is 98°C. The Fourier transform Infrared spectroscopy showed that the amide groups were incorporated to form the amide products. In coating application, the results showed that the force of the final product coating cardboard was higher than that of beeswax and paraffin wax and less than that of carnauba wax. After 24 h soaking, the compression forces were decreased. HCO fatty acid wax can be an alternative wax for carnauba wax and beeswax in coating applications.

  20. The emulsion crystallization of hydrogenated castor oil into long thin fibers

    Science.gov (United States)

    De Meirleir, Niels; Pellens, Linda; Broeckx, Walter; De Malsche, Wim

    2013-11-01

    The present study discusses the optimal crystal growth conditions required for the emulsion crystallization of hydrogenated castor oil (HCO) into several crystal morphologies. The best possible crystal shape is furthermore identified in case high rheology modifying performance is required. HCO was crystallized in a meso- and micro-continuous process which allowed for a controlled and fast screening of several crystal morphologies at different crystallization conditions. Applying high isothermal temperatures (above 55 °C) resulted in a combination of rosettes, thick fibers and thin fibers. At lower isothermal temperatures (below 55 °C) the shape gradually evolved to a combination of short needles, spherically shaped and/or irregularly shaped crystals. Crystals with the highest aspect ratio were obtained when crystals were grown between 30 °C and 45 °C and were subsequently reheated above 63 °C, forming high amounts of large thin fibrous crystals. When diluted to 0.25 wt% these fibrous crystals increased the low shear viscosity far better compared to the other crystal shapes.

  1. Results of a demonstration experiment: Hydrogenation of pyrolysis oils from biomass; Ergebnisse eines Demonstrationsversuchs zur Hydrierung von Pyrolyseoelen aus Biomassen

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    Sump phase hydrogenation is a technique specially developed for coal liquefaction; it provides a possibility of processing the liquid products of biomass pyrolyis into high-grade carburettor fuels. A demonstration experiment was carried out at the hydrogenation plant of DMT. The plant has a capacity of 10 kg/h. The technical feasibility of hydrogenation of biomass oils was demonstrated in a continuous experiment. The contribution describes the experimental conditions, yields, and product qualities. (orig.) [Deutsch] Die fuer die Kohleverfluessigung entwickelte Sumpfphasenhydrierung bietet die Moeglichkeit, die Fluessigprodukte der Pyrolyse von Biomassen zu hochwertigen Vergaserkraftstoffen zu veredeln. Im Hydriertechnikum der DMT wurde hierzu ein Demonstrationsversuch durchgefuehrt. Die Anlage ist fuer einen Kohledurchsatz von 10 kg/h ausgelegt. In einem kontinuierlichen Versuchslauf wurde mit dieser Anlage die technische Machbarkeit der Hydrierung von Bio-Oelen demonstriert. In dem vorliegenden Beitrag werden die Versuchsbedingungen, Ausbeuten und Produktqualitaeten vorgestellt. (orig.)

  2. Achievement report for fiscal 1997 on research under New Sunshine Program. Research on heavy oil hydrogenation and heavy oil/coal coprocessing; 1997 nendo jushitsuyu no suisoka shori narabi ni jushitsuyu/sekitan no coprocessing ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The achievements of the Hokkaido National Industrial Research Institute relating to the titled research are reported. In the study relating to the structural properties of heavy oils, the structures of products of Green River shale oil carbonization is analyzed, heterofunctional groups contained in the oil are subjected to FT-IR (Fourier transform infrared) spectroscopic analysis, and their forms of existence are investigated. In the study relating to the hydrogenation process of heavy oils, findings obtained from experiments are reported, which involve the processing of shale oil by hydrogenation and changes brought about in its chemical structure, hydrogenation of oil sand bitumen, kinetics of hydrocracking of bitumen at a high conversion rate, and a lumping model for bitumen hydrocracking reaction. In the study relating to the coprocessing of heavy oil/coal, coprocessing is experimented for coal and shale oil, coal and oil sand bitumen, and other combinations, and the results are reported. Also, a review is made of the transfer of hydrogen in coprocessing. (NEDO)

  3. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  4. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  5. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  6. Hydrogenation impairs the hypolipidemic effect of corn oil in humans. Hydrogenation, trans fatty acids, and plasma lipids.

    Science.gov (United States)

    Lichtenstein, A H; Ausman, L M; Carrasco, W; Jenner, J L; Ordovas, J M; Schaefer, E J

    1993-02-01

    The effects of plasma lipoproteins and apolipoproteins of replacing corn oil with corn-oil margarine in stick form as two thirds of the fat in the National Cholesterol Education Program (NCEP) Step 2 diet were assessed in 14 middle-aged and elderly women and men (age range, 44-78 years) with moderate hypercholesterolemia (low density lipoprotein cholesterol [LDL-C] range, 133-219 mg/dl [3.45-5.67 mmol/l] at screening). During each 32-day study phase, subjects received all their food and drink from a metabolic kitchen. Subjects were first studied while being fed a diet approximating the composition of the current US diet (baseline), which contained 35% of calories as fat (13% saturated fatty acids [SFAs], 12% monounsaturated fatty acids [MUFAs; 0.8% 18:1n-9 trans], and 8% polyunsaturated fatty acids [PUFAs]) and 128 mg cholesterol/1,000 kcal. This baseline phase was followed by a corn oil-enriched diet containing 30% fat (6% SFA, 11% MUFA [0.4% 18:1n-9 trans], and 10% PUFA) and 83 mg cholesterol/1,000 kcal, and then a corn-oil margarine-enriched diet containing 30% fat (8% SFA, 12% MUFA [4.2% 18:1n-9 trans], and 8% PUFA) and 77 mg cholesterol/1,000 kcal. All diets were isocaloric. Mean fasting LDL-C and apolipoprotein (apo) B levels were 153 mg/dl (3.96 mmol/l) and 101 mg/dl on the baseline diet, 17% and 20% lower (both p oil-enriched diet, and 10% and 10% lower (both p < 0.01) on the margarine-enriched diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Catalytic treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-23

    A process is described for increasing the octane number of a hydrocarbon oil. The substance is subjected under pressure to a temperature between 800 and 1100/sup 0/C. Catalysts include metal compounds of Groups IV, V, Vi, or VIII (Group VI is perferred). Experiments are performed under a hydrogen atmosphere. Reaction time, temperature, pressure, and partial pressure of the hydrogen are adjusted so that there will be no net hydrogen consumption. The reaction gases (including the products) are recycled in whole or in part to supply the hydrogen gas required.

  8. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    Science.gov (United States)

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  9. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field

    International Nuclear Information System (INIS)

    Bao Mutai; Chen Qingguo; Li Yiming; Jiang Guancheng

    2010-01-01

    Partially hydrolyzed polyacrylamide (HPAM) in production water after polymer flooding in oil filed causes environmental problems, such as increases the difficulty in oil-water separation, degrades naturally to produce toxic acrylamide and endanger local ecosystem. Biodegradation of HPAM may be an efficient way to solve these problems. The biodegradability of HPAM in an aerobic environment was studied. Two HPAM-degrading bacterial strains, named PM-2 and PM-3, were isolated from the produced water of polymer flooding. They were subsequently identified as Bacillus cereus and Bacillus sp., respectively. The utilization of HPAM by the two strains was explored. The amide group of HPAM could serve as a nitrogen source for the two microorganisms, the carbon backbone of these polymers could be partly utilized by microorganisms. The HPAM samples before and after bacterial biodegradation were analyzed by the infrared spectrum, high performance liquid chromatography and scanning electronic microscope. The results indicated that the amide group of HPAM in the biodegradation products had been converted to a carboxyl group, and no acrylamide monomer was found. The HPAM carbon backbone was metabolized by the bacteria during the course of its growth. Further more, the hypothesis about the biodegradation of HPAM in aerobic bacterial culture is proposed.

  10. Moisture Migration in an Oil-Paper Insulation System in Relation to Online Partial Discharge Monitoring of Power Transformers

    Directory of Open Access Journals (Sweden)

    Wojciech Sikorski

    2016-12-01

    Full Text Available Most power transformers operating in a power system possess oil-paper insulation. A serious defect of this type of insulation, which is associated with long operation time, is an increase in the moisture content. Moisture introduces a number of threats to proper operation of the transformer, e.g., ignition of partial discharges (PDs. Due to the varying temperature of the insulation system during the unit’s normal operation, a dynamic change (migration of water takes place, precipitating the oil-paper system from a state of hydrodynamic equilibrium. This causes the PDs to be variable in time, and they may intensify or extinguish. Studies on model objects have been conducted to determine the conditions (temperature, humidity, time that will have an impact on the ignition and intensity of the observed phenomenon of PDs. The conclusions of this study will have a practical application in the evaluation of measurements conducted in the field, especially in relation to the registration of an online PD monitoring system.

  11. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  12. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    International Nuclear Information System (INIS)

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-01-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO 2 (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO 2 -equivalent/kg H 2 for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO 2 -equivalent/kg H 2 for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO 2 -eq emissions.(author)

  13. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study

  14. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  15. Study of biodegradation of partially hydrolyzed polyacrylamide in an oil reservoir after polymer flooding

    International Nuclear Information System (INIS)

    Bao, M.; Chen, Q.; Li, Y.; Jiang, G.

    2009-01-01

    Studies have demonstrated that the amide group of polyacrylamides can provide a nitrogen source for microorganisms. However, the carbon backbone of the polymers cannot be cleaved by microbial activity. This study examined the biodegradability of partially hydrolyzed polyacrylamide (HPAM) in an aerobic environment both before and after bacterial biodegradation. Results of the infrared spectrum study indicated that the amide group of HPAM in the products was converted to a carboxyl group. High performance liquid chromatography analyses did not demonstrate the presence of acrylamide monomers. A scanning electron microscopy (SEM) study showed that the surfaces of HPAM particles had been altered by the biodegradation process. Results of the study indicated that the HPAM carbon backbone was metabolized by the bacteria during the course of its growth. It was hypothesized that the HPAM was initially utilized by the bacteria as a nitrogen source by the hydrolysis of the HPAM amide groups using an amidase enzyme. Oxidation of the carbon backbone chain then occurred by monooxygenase catalysis. It was concluded that the HPAM carbon backbone then served as a source for further bacterial growth and metabolism. 13 refs., 5 figs

  16. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Xie Shuyu

    2011-11-01

    Full Text Available Abstract Background Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN. Methods Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD50 was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters. Results After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group. Conclusions The results revealed that the LD50 of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the

  17. Properties of organogels of high stearic soybean oil

    Science.gov (United States)

    Recently, the U.S. Food and Drug Administration (FDA) announced that food companies have to phase out the use of partially hydrogenated oils containing trans-fats by 2018. The use of high-stearic oils has been recognized as one of the ways to replace trans fats in food. Organogels also have drawn a ...

  18. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  19. Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer

    Directory of Open Access Journals (Sweden)

    Wen Si

    2018-03-01

    Full Text Available The ultra high voltage direct current (UHVDC transmission system has advantages in delivering electrical energy over long distance at high capacity. UHVDC converter transformer is a key apparatus and its insulation state greatly affects the safe operation of the transmission system. Partial discharge (PD characteristics of oil-pressboard insulation under combined AC-DC voltage are the foundation for analyzing the insulation state of UHVDC converter transformers. The defect pattern recognition based on PD characteristics is an important part of the state monitoring of converter transformers. In this paper, PD characteristics are investigated with the established experimental platform of three defect models (needle-plate, surface discharge and air gap under 1:1 combined AC-DC voltage. The different PD behaviors of three defect models are discussed and explained through simulation of electric field strength distribution and discharge mechanism. For the recognition of defect types when multiple types of sources coexist, the Random Forests algorithm is used for recognition. In order to reduce the computational layer and the loss of information caused by the extraction of traditional features, the preprocessed single PD pulses and phase information are chosen to be the features for learning and test. Zero-padding method is discussed for normalizing the features. Based on the experimental data, Random Forests and Least Squares Support Vector Machine are compared in the performance of computing time, recognition accuracy and adaptability. It is proved that Random Forests is more suitable for big data analysis.

  20. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    Science.gov (United States)

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  1. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    Science.gov (United States)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  2. Catalytic Steam Reforming of Bio-Oil to Hydrogen Rich Gas

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus

    heating value and high content of oxygen, which makes it unsuited for direct utilization in engines. One prospective technology for upgrading of bio-oil is steam reforming (SR), which can be used to produce H2 for upgrading of bio-oil through hydrodeoxygenation or synthesis gas for processes like......-oil. There are two main pathways to minimize carbon deposition in steam reforming; either through optimization of catalyst formulation or through changes to the process parameters, like changes in temperature, steam to carbon ratio (S/C), or adding O2 or H2 to the feed. In this thesis both pathways have been...

  3. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  4. A theoretical study on the mechanism of hydrogen evolution on non-precious partially oxidized nickel-based heterostructures for fuel cells.

    Science.gov (United States)

    Pan, Xinju; Zhou, Gang

    2018-03-28

    It is desirable, yet challenging, to utilize non-precious metals instead of noble-metals as efficient catalysts in the renewable energy manufacturing industry. Using first principles calculations, we study the structural characteristics of partially oxidized nickel-based nanoheterostructures (NiO/Ni NHSs), and the interfacial effects on hydrogen evolution. The origin of the enhanced hydrogen evolution performance is discussed at the microscopic level. This study identifies two types of active sites of the exposed Ni surface available for the hydrogen evolution reaction (HER). One is the hcp-hollow sites near the perimeter boundary that exhibit a more excellent HER performance than platinum (Pt), and the other the second nearest neighbor fcc-hollow sites away from the boundary that exhibit a similar performance to Pt. The interfacial effects result from the competitive charge transfer between NiO and Ni surfaces in NHSs, and enhance the reactivity of NiO/Ni NHSs by shifting the d-states of surface atoms down in energy. The illumination of the mechanism would be helpful for the design of more efficient and cheap transition metal-based catalysts.

  5. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice

    Directory of Open Access Journals (Sweden)

    Yoko Hashimoto

    2014-01-01

    Full Text Available Canola oil (Can and hydrogenated soybean oil (H2-Soy are commonly used edible oils. However, in contrast to soybean oil (Soy, they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK 1 in H2-Soy and unidentified component(s in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC] levels were significantly lower in the Can group than in the Soy group (p < 0.05. However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044 or was almost significantly lower (in H2-Soy; p = 0.053 than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s among the three dietary groups.

  6. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil.

    Science.gov (United States)

    Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  7. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clay-rock in the context of a nuclear waste geological disposal

    International Nuclear Information System (INIS)

    Lassin, A.; Dymitrowska, M.; Azaroual, M.

    2011-01-01

    In nuclear waste geological disposals, large amounts of hydrogen (H 2 ) are expected to be produced by different (bio-)geochemical processes. Depending on the pressure generated by such a process, H 2 could be produced as a gas phase and displace the neighbouring pore water. As a consequence, a water-unsaturated zone could be created around the waste and possibly affect the physical and physic-chemical properties of the disposal and the excavation disturbed zone around it. The present study is the first part of an ongoing research program aimed at evaluating the possible chemical evolution of the pore water-minerals-gas system in such a context. The goal of this study was to evaluate, in terms of thermodynamic equilibrium conditions, the geochemical disturbance of the pore water due to variations in hydrogen pressure, temperature and relative humidity. No heterogeneous reactions involving mineral phases of the clay-rock or reactive surface sites were taken into account in the thermodynamic analysis. In the case sulphate reduction reaction is allowed, geochemical modelling results indicate that the main disturbance is the increase in pH (from around 7 up to more than 10) and an important decrease in the redox potential (Eh) related to hydrogen dissolution. This occurs from relatively low H 2 partial pressures (∼1 bar and above). Then, temperature and relative humidity (expressed in terms of capillary pressure) further displace the thermodynamic equilibrium conditions, namely the pH and the aqueous speciation as well as saturation indices of mineral phases. Finally, the results suggest that the generation of hydrogen, combined with an increase in temperature (between 30 deg. C and 80 deg. C) and a decrease in relative humidity (from 100% to 30%), should increase the chemical reactivity of the pore water-rock-gas system. (authors)

  8. Human health cost of hydrogen sulfide air pollution from an oil and gas Field

    Directory of Open Access Journals (Sweden)

    Dinara Kenessary

    2017-06-01

    The reduction of hydrogen sulfide emissions into the air is recommended, as well as successive constant ambient air monitoring in future. Economic damage evaluation should be made mandatory, on a legal basis, whenever an industrial facility operation results in associated air pollution.

  9. Optimum injection dose rate of hydrogen sulfide scavenger for treatment of petroleum crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2016-03-01

    Full Text Available Hydrogen sulfide H2S scavengers are chemicals that favorably react with hydrogen sulfide gas to eliminate it and produce environmental friendly products. These products depend on the type and composition of the scavenger and the conditions at which the reaction takes place. The scavenger should be widely available and economical for industry acceptance by having a low unit cost. The optimum values of H2S scavenger injection dose rate of scavenging hydrogen sulfide from the multiphase fluid produced at different wells conditions in one of the Petroleum Companies in Egypt were studied. The optimum values of H2S scavenger injection dose rate depend on pipe diameter, pipe length, gas molar mass velocity, inlet H2S concentration and pressure. The optimization results are obtained for different values of these parameters using the software program Lingo. In general, the optimum values of H2S scavenger injection dose rate of the scavenging of hydrogen sulfide are increased by increasing of the pipe diameter and increasing the inlet H2S concentration, and decreased by increasing the pipe length, gas molar mass velocity and pressure.

  10. Destructive hydrogenation; dehydrogenation and dehydrogenation processes; purifying oils; polynuclear organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1934-02-08

    Unitary organic compounds containing four or more nuclei are recovered from the high boiling fractions of destructive hydrogenation products of bituminous, resinous, or ligneous materials. Cooling, precipitation, crystallization, selective dissolution and distillation are some of the techniques discussed. These techniques may also be applied to the recovery of polynuclear compounds.

  11. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  12. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Aika, Ken-ichi; Seshan, K.; Lefferts, Leon

    Studies were conducted with acetic acid (HAc) as model oxygenate for the design of active and stable catalysts for steam reforming of bio-oil. Pt/ZrO2 catalysts were prepared by wet impregnation technique. The Pt/ZrO2 catalysts showed high activities at initial time on stream, but lost its activity

  13. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    International Nuclear Information System (INIS)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinkó, J.

    2013-01-01

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  14. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.

    Science.gov (United States)

    Owolabi, Abdulwahab F; Haafiz, M K Mohamad; Hossain, Md Sohrab; Hussin, M Hazwan; Fazita, M R Nurul

    2017-02-01

    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Partial Reform Equilibrium in Russia: A Case Study of the Political Interests of and in the Russian Gas and Oil Industry

    Science.gov (United States)

    Everett, Rabekah

    While several theories abound that attempt to explain the obstacles to democracy in Russia, Joel Hellman's partial reform equilibrium model is an institutional theory that illustrates how weak institutions, combined with an instrumentalist cultural approach to the law and authoritarian-minded leadership, allowed the struggle over interests to craft and determine the nature of Russia's political structure. This thesis builds on the work of Hellman by using the partial reform theory to understand the evolution of interest infiltration and their impact on the formation of policies and institutions in favour of the elites or winners from 2004 to the present time period that allow them to wield law as a political weapon. The hypothesis posits that through their vested interests in state politics, the political and economic elites of the oil and gas industry have successfully stalled reform in Russia resulting in partial reform equilibrium. This is illustrated in a case study that was designed to collect the names, backgrounds, and social networks of gas and oil executives in order to determine how many of them have a history of, or are currently working as, ministers in the government or representatives in the Federation Council. The objective being to measure the degree to which gas and oil interests are present in government decision-making and conversely, the degree to which the government is present in the gas and oil industry. The thesis stresses the importance of institutional structure in determining Russia's political evolution, and uses vested interests as a primary source of structural institutional change, while also stressing on the social and international implications of this evolution.

  16. Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil

    OpenAIRE

    Akhlaghi, Shahin

    2017-01-01

    Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen ...

  17. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds.

    Science.gov (United States)

    Claisse, Jeremy T; Pondella, Daniel J; Love, Milton; Zahn, Laurel A; Williams, Chelsea M; Bull, Ann S

    2015-01-01

    When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  18. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds.

    Directory of Open Access Journals (Sweden)

    Jeremy T Claisse

    Full Text Available When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes. "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  19. Structural, hydrogen storage and thermodynamic properties of some mischmetal-nickel alloys with partial substitutions for nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Anil; Maiya, M. Prakash [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Murthy, S. Srinivasa [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ssmurthy@iitm.ac.in; Viswanathan, B. [National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai 600036 (India)

    2009-05-12

    Mischmetal-nickel (Mm-Ni) alloys with single (Al) and multiple (Al, Co, Mn, Fe) substitutions for Ni are studied for their structural, hydrogen storage and thermodynamic properties. The alloys considered are MmNi{sub 5}, MmNi{sub 4.7}Al{sub 0.3,} MmNi{sub 4.5}Al{sub 0.5}, MmNi{sub 4.2}Al{sub 0.8} and MmNi{sub 4}Al for single substitution, and MmNi{sub 3.9}Co{sub 0.8}Mn{sub 0.2}Al{sub 0.1}, MmNi{sub 3.8}Co{sub 0.7}Mn{sub 0.3}Al{sub 0.2}, MmNi{sub 3.7}Co{sub 0.7}Mn{sub 0.3}Al{sub 0.3}, MmNi{sub 3.6}Co{sub 0.6}Mn{sub 0.3}Al{sub 0.3}Fe{sub 0.2} and MmNi{sub 3.5}Co{sub 0.4}Mn{sub 0.4}Al{sub 0.4}Fe{sub 0.3} for multiple substitutions. The XRD patterns of all the alloys show single phase with the reflection peaks related to the CaCu{sub 5} hexagonal structure. All the multiple substituted alloys absorb and desorb hydrogen at sub-atmospheric pressures. The equilibrium pressure and hysteresis decrease, while enthalpy of formation ({delta}H) and plateau slope increase with increase in unit cell volume, indicating an increase in the stability of the alloys.

  20. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  1. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The In Vitro-In Vivo Safety Confirmation of PEG-40 Hydrogenated Castor Oil as a Surfactant for Oral Nanoemulsion Formulation.

    Science.gov (United States)

    Rachmawati, Heni; Novel, Miranti Anggraeni; Ayu, Sri; Berlian, Guntur; Tandrasasmita, Olivia Mayasari; Tjandrawinata, Raymond Rubianto; Anggadiredja, Kusnandar

    2017-03-31

    Evaluation on the safety use of high concentration of polyoxyl 40 (PEG-40) hydrogenated castor oil as a surfactant for oral nanoemulsion was performed in Webster mice. As previously reported, nearly 20% of PEG-40 hydrogenated castor oil was used to emulsify the glyceryl monooleate (GMO) as an oil to the aqueous phase. Thermodynamically stable and spontaneous nanoemulsion was formed by the presence of co-surfactant polyethylene glycol 400 (PEG-400). Standard parameters were analyzed for nanoemulsion including particle size and particle size distribution, the surface charge of nanoemulsion, and morphology. To ensure the safety of this nanoemulsion, several cell lines were used for cytotoxicity study. In addition, 5000 mg/kg body weight (BW) of the blank nanoemulsion was given orally to Webster mice once a day for 14 days. Several parameters such as gross anatomy, body weight, and main organs histopathology were observed. In particular, by considering the in vivo data, it is suggested that nanoemulsion composed with a high amount of PEG-40 hydrogenated castor oil is acceptable for oral delivery of active compounds.

  4. Effect of partial replacement of pork meat with olive oil on the sensory quality of dry-ripened venison sausage

    Directory of Open Access Journals (Sweden)

    M.C. Utrilla

    2015-12-01

    Full Text Available Six assays of low-fat venison salchichon were produced using varying proportions of olive oil to replace the traditional pork meat added. The control contained 75% lean venison and 25% pork meat; in the other assays, 15, 25, 35, 45 and 55% of the pork meat was replaced by olive oil. Samples were evaluated by quantitative descriptive sensory analysis and consumer testing. Descriptive sensory analysis revealed significant differences for most of the attributes studied. The replacement of 35% or more of pork meat by olive oil, prompted a decrease in odour intensity, spicy odour, hardness and an increase of fat mouthfeel, together with the olive oil perception. By contrast, the replacement of 25% of pork meat by olive oil yielded a salchichon not greatly different to the control. Consumers accepted all assays, but preferred those in which no more than 25% of the pork meat was replaced by olive oil. From a sensory standpoint, therefore, it is recommended that the replacement of pork meat by olive oil in this product should not exceed 25%.

  5. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  6. Development of a biofiltration system to remove hydrogen sulphide from small oil and gas production facilities

    International Nuclear Information System (INIS)

    Dombroski, E.C.; Gaudet, I. D.; Coleman, R. N.

    1997-01-01

    Environmental regulations require sulphur separation in any processing operation that produces more than one tonne of sulphur per day. This leaves about 50 small operations in Alberta where the daily production of sulphur is less than one tonne. In these cases, the extracted acid gases are usually flared. Since flares are often inefficient and do not completely oxidize the hydrogen sulfide, an alternate, cost-effective technology that could replace flaring and eliminate atmospheric discharge would be of considerable interest. Biofiltration is known to be capable of oxidizing hydrogen sulfide in an air stream to non-volatile sulphate. The objective of this paper was to investigate the effectiveness of this technology in controlling H 2 S and SO 2 emissions from sour gas plants. Results of this laboratory-scale experiment were encouraging, justifying further studies on a demonstration-scale to determine if a full-scale biofilter could provide a practical, cost-effective technology for sulfur emission control from gas plants. 9 refs., 7 figs

  7. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  8. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Ananna; Kim, Donghwi [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Yim, Un Hyuk; Shim, Won Joon [Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834 (Korea, Republic of); Kim, Sunghwan, E-mail: sunghwank@knu.ac.kr [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Green Nano Center, Department of Chemistry, Daegu 702-701 (Korea, Republic of)

    2015-10-15

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N{sub 1} class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S{sub 1}O{sub 1} compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N{sup +}· and [N − H + D]{sup +} ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H]{sup +} and [N + D]{sup +} ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S{sub 1}O{sub 1} + H]{sup +} and [S{sub 1}O{sub 1} + D]{sup +} ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S{sub 1} class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  9. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-01-01

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N 1 class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S 1 O 1 compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N + · and [N − H + D] + ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H] + and [N + D] + ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S 1 O 1 + H] + and [S 1 O 1 + D] + ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S 1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components

  10. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  11. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  12. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers.

    Science.gov (United States)

    Granja-Salcedo, Yury Tatiana; Duarte Messana, Juliana; Carneiro de Souza, Vinícius; Lino Dias, Ana Veronica; Takeshi Kishi, Luciano; Rocha Rebelo, Lucas; Teresinha Berchielli, Telma

    2017-11-01

    The objective of this study was to determine whether a combination of crude glycerin (CG) and soyabean oil (SO) could be used to partially replace maize in the diet of Nellore steers while maintaining optimum feed utilisation. Eight castrated Nellore steers fitted with ruminal and duodenal cannulas were used in a double 4×4 Latin square design balanced for residual effects, in a factorial arrangement (A×B), when factor A corresponded to the provision of SO, and factor B to the provision of CG. Steers feed SO and CG showed similar DM intake, DM, organic matter and neutral-detergent fibre digestibility to that of steers fed diets without oil and without glycerine (P>0·05). Both diets with CG additions reduced the acetate:propionate ratio and increased the proportion of iso-butyrate, butyrate, iso-valerate and valerate (Pdiets containing SO had less total N excretion (Pdiet generated a greater ruminal abundance of Prevotella, Succinivibrio, Ruminococcus, Syntrophococcus and Succiniclasticum. Archaea abundance (P=0·002) and total ciliate protozoa were less in steers fed diets containing SO (P=0·011). CG associated with lipids could be an energy source, which is a useful strategy for the partial replacement of maize in cattle diets, could result in reduced total N excretion and ruminal methanogens without affecting intake and digestibility.

  13. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    Science.gov (United States)

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  14. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  15. Destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; Dufour, L

    1929-01-21

    Oils of high boiling point, e.g. gas oil, lamp oil, schist oil, brown coal tar etc., are converted into motor benzine by heating them at 200 to 500/sup 0/C under pressure of 5 to 40 kilograms/cm/sup 2/ in the presence of ferrous chloride and gases such as hydrogen, or water gas, the desulfurization of the oils proceeding simultaneously. One kilogram of lamp oil and 100 g. ferrous chloride are heated in an autoclave in the presence of water gas under a pressure of 18 kg/cm/sup 2/ to 380 to 400/sup 0/C. The gaseous products are allowed to escape intermittently and are replaced by fresh water gas. A product distilling between 35 and 270/sup 0/C is obtained.

  16. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-01-01

    Full Text Available Biogas released from palm oil mill effluent (POME could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4 has been utilized as a fuel in a lab-scale furnace. A computational approach by standard k-ε combustion and turbulence model is applied. Hydrogen is added to the biogas components and the impacts of hydrogen enrichment on the temperature distribution, flame stability, and pollutant formation are studied. The results confirm that adding hydrogen to the POME biogas content could improve low calorific value (LCV of biogas and increases the stability of the POME biogas flame. Indeed, the biogas flame length rises and distribution of the temperature within the chamber is uniform when hydrogen is added to the POME biogas composition. Compared to the pure biogas combustion, thermal NOx formation increases in hydrogen-enriched POME biogas combustion due to the enhancement of the furnace temperature.

  17. Hydrogen alternatives for a regional upgrader

    International Nuclear Information System (INIS)

    Bailey, R.T.; Padamsey, R.

    1991-01-01

    For a proposed regional upgrader in Alberta, hydrogen will be needed to upgrade the bitumen and heavy oil to be processed by that facility. The upgrader will rely on high conversion hydrocracking which consumes 3.4 wt % hydrogen to produce a 106% volume yield of high quality synthetic crude. The costs of producing hydrogen via steam reforming of methane, partial oxidation of coal or upgrading residues, and electrolysis are compared, showing that steam reforming is the cheapest. However, an even cheaper source of hydrogen is available in the Edmonton and Fort Saskatchewan area as byproducts from petrochemical plants. An economic analysis is presented of a proposed scheme to capture, purify, compress, and transfer hydrogen from one or two such plants to a nearby regional upgrader. The two plants could supply a total of 126.6 million ft 3 /d of hydrogen at a total installed capital cost of about half of that of a steam reforming plant of equivalent size. When operating costs are added (including the cost of replacing the hydrogen, currently used as fuel at the two plants, with natural gas), the total cost of hydrogen is substantially less than the costs for a hydrogen plant within the upgrader. 3 refs., 5 figs., 4 tabs

  18. Production of Bio-Hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-02-01

    Full Text Available Waste cooking oil with a high-acid-value (28.7 mg-KOH/g-oil was converted to bio-hydrogenated diesel by a hydrotreatment process over supported Ru catalysts. The standard reaction temperature, H2 pressure, liquid hourly space velocity (LHSV, and H2/oil ratio were 350 °C, 2 MPa, 15.2 h–1, and 400 mL/mL, respectively. Both the free fatty acids and the triglycerides in the waste cooking oil were deoxygenated at the same time to form hydrocarbons in the hydrotreatment process. The predominant liquid hydrocarbon products (98.9 wt% were n-C18H38, n-C17H36, n-C16H34, and n-C15H32 when a Ru/SiO2 catalyst was used. These long chain normal hydrocarbons had high melting points and gave the liquid hydrocarbon product over Ru/SiO2 a high pour point of 20 °C. Ru/H-Y was not suitable for producing diesel from waste cooking oil because it formed a large amount of C5–C10 gasoline-ranged paraffins on the strong acid sites of HY. When Al-polyoxocation-pillared montmorillonite (Al13-Mont was used as a support for the Ru catalyst, the pour point of the liquid hydrocarbon product decreased to −15 °C with the conversion of a significant amount of C15–C18 n-paraffins to iso-paraffins and light paraffins on the weak acid sites of Al13-Mont. The liquid product over Ru/Al13-Mont can be expected to give a green diesel for current diesel engines because its chemical composition and physical properties are similar to those of commercial petro-diesel. A relatively large amount of H2 was consumed in the hydrogenation of unsaturated C=C bonds and the deoxygenation of C=O bonds in the hydrotreatment process. A sulfided Ni-Mo/Al13-Mont catalyst also produced bio-hydrogenated diesel by the hydrotreatment process but it showed slow deactivation during the reaction due to loss of sulfur. In contrast, Ru/Al13-Mont did not show catalyst deactivation in the hydrotreatment of waste cooking oil after 72 h on-stream because the waste cooking oil was not found to contain sulfur

  19. Preparation, characterization, and pharmacokinetics of tilmicosin- and florfenicol-loaded hydrogenated castor oil-solid lipid nanoparticles.

    Science.gov (United States)

    Ling, Z; Yonghong, L; Changqing, S; Junfeng, L; Li, Z; Chunyu, J; Xianqiang, L

    2017-06-01

    To effectively control bovine mastitis, tilmicosin (TIL)- and florfenicol (FF)-loaded solid lipid nanoparticles (SLN) with hydrogenated castor oil (HCO) were prepared by a hot homogenization and ultrasonication method. In vitro antibacterial activity, properties, and pharmacokinetics of the TIL-FF-SLN were studied. The results demonstrated that TIL and FF had a synergistic or additive antibacterial activity against Streptococcus dysgalactiae, Streptococcus uberis, and Streptococcus agalactiae. The size, polydispersity index, and zeta potential of nanoparticles were 289.1 ± 13.7 nm, 0.31 ± 0.05, and -26.7 ± 1.3 mV, respectively. The encapsulation efficiencies for TIL and FF were 62.3 ± 5.9% and 85.1 ± 5.2%, and the loading capacities for TIL and FF were 8.2 ± 0.6% and 3.3 ± 0.2%, respectively. The TIL-FF-SLN showed no irritation in the injection site and sustained release in vitro. After medication, TIL and FF could maintain about 0.1 μg/mL for 122 and 6 h. Compared to the control solution, the SLN increased the area under the concentration-time curve (AUC 0-t ), elimination half-life (T ½ke ), and mean residence time (MRT) of TIL by 33.09-, 23.29-, and 37.53-fold, and 1.69-, 5.00-, and 3.83-fold for FF, respectively. These results of this exploratory study suggest that the HCO-SLN could be a useful system for the delivery of TIL and FF for bovine mastitis therapy. © 2016 John Wiley & Sons Ltd.

  20. Polyoxyethylene hydrogenated castor oil modulates benzalkonium chloride toxicity: comparison of acute corneal barrier dysfunction induced by travoprost Z and travoprost.

    Science.gov (United States)

    Uematsu, Masafumi; Kumagami, Takeshi; Shimoda, Kenichiro; Kusano, Mao; Teshima, Mugen; To, Hideto; Kitahara, Takashi; Kitaoka, Takashi; Sasaki, Hitoshi

    2011-10-01

    To determine the element that modulates benzalkonium chloride (BAC) toxicity by using a new electrophysiological method to evaluate acute corneal barrier dysfunction induced by travoprost Z with sofZia (Travatan Z(®)), travoprost with 0.015% BAC (Travatan(®)), and its additives. Corneal transepithelial electrical resistance (TER) was measured in live white Japanese rabbits by 2 Ag/AgCl electrodes placed in the anterior aqueous chamber and on the cornea. We evaluated corneal TER changes after a 60-s exposure to travoprost Z, travoprost, and 0.015% BAC. Similarly, TER changes were evaluated after corneas were exposed for 60 s to the travoprost additives ethylenediaminetetraacetic acid disodium salt, boric acid, mannitol, trometamol, and polyoxyethylene hydrogenated castor oil 40 (HCO-40) with or without BAC. Corneal damage was examined after exposure to BAC with or without travoprost additives using scanning electron microscopy (SEM) and a cytotoxicity assay. Although no decreases of TER were noted after exposure to travoprost Z with sofZia and travoprost with 0.015% BAC, a significant decrease of corneal TER was observed after 0.015% BAC exposure. With the exception of BAC, no corneal TER decreases were observed for any travoprost additives. After corneal exposure to travoprost additives with BAC, HCO-40 was able to prevent the BAC-induced TER decrease. SEM observations and the cytotoxicity assay confirmed that there was a remarkable improvement of BAC-induced corneal epithelial toxicity after addition of HCO-40 to the BAC. Travoprost Z with sofZia and travoprost with BAC do not induce acute corneal barrier dysfunction. HCO-40 provides protection against BAC-induced corneal toxicity.

  1. Method for removing hydrogen sulphide from oil-containing water and equipment therefore; Fremgangsmaate for aa fjerne hydrogensulfid fra oljeholdig vann

    Energy Technology Data Exchange (ETDEWEB)

    Hoeyvik, H; Hovland, J; Eskilt, J P

    1995-02-27

    The invention relates to an method for removing hydrogen sulphide (H{sub 2}S) from oil-containing water and equipment therefore. Oil-containing water and nitrate is conducted through a bioreactor to remove H{sub 2}S. Nitrate is added to the oil-containing water in a dose ratio (sulphide:nitrate) of 1:10 to 1:40. The retention time in the reactor tank is for 10-60 minutes. After this treatment, purified water, where >90% of the H{sub 2}S-amount is removed, is let out of the tank. The equipment for performing the above mentioned method, is based on a bioreactor having large density of denitrifying bacteria. The reactor tank, is filled with carrying material providing large contact area. Even distribution of oil-containing water and nitrate over the carrying material which already may be covered by septic mud, forms an active sulphide oxidizing biofilm having large surface. This biofilm makes an extremely effective equipment for removing sulphide from oil-containing water. 3 figs.

  2. Development of coal partial hydropyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Hideaki Yabe; Takafumi Kawamura; Kohichiroh Gotoh; Akemitsu Akimoto [Nippon Steel Corporation, Chiba (Japan)

    2005-07-01

    Coal partial hydropyrolysis process aims at co-production of high yield of light oil such as BTX and naphthalene and synthesis gas from a low rank coal under a mild hydropyrolysis condition. The characteristic of this process is in the two-staged entrained hydropyrolysis reactor composed of the reformer and gasifier. This reactor arrangement gives us high heat efficiency of this process. So far, in order to evaluate the process concept a small-scale basic experiment and a 1t/day process development unit study were carried out. The experimental results showed that coal volatiles were partially hydrogenated to increase the light oil and hydrocarbon gases at the condition of partial hydropyrolysis such as pressure of 2-3MPa, temperature of 700-900{sup o}C and hydrogen concentration of 30-50%. This process has a possibility of producing efficiently and economically liquid and gas products as chemicals and fuel for power generation. As a further development in the period of 2003 to 2008, a 20t/day pilot plant study named ECOPRO (efficient co-production with coal flash hydropyrolysis technology) has been started to establish the process technologies for commercialization. 12 refs., 6 figs., 3 tabs.

  3. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  4. Detection of partial discharges in oil transformers with the aid of acoustic emission analysis; Detektion von Teilentladungen in Oeltransformatoren durch die Schallemissionsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Loehr, M. [Physical Acoustics BV - Deutschland, Hamburg (Germany)

    2007-07-01

    Since the early eighties, acoustic emission analysis has been used for functional testing of transformers. Partial discharges of 150 pC and above are detected reliably. Transformers with oil/paper insulation as a rule are inspected during operation by analysis of the transformer oil at regular intervals or continuously. This integral method provides no information on the operating conditions causing partial discharge and no information on their location. This information gap may be closed by acoustic emission analysis, which will provide the key information required for selective planning of preventive measures. Physical Acoustics (PAC) tested several hundreds of transformers successfully for their operating performance (see also EPRI Project I.D. No. 051481). As a result, e.g., transformers can now be operated for a longer period of time below critical load. [German] Die Schallemissionsanalyse wird seit den fruehen 80-iger Jahren letzten Jahrhunderts von Transformator-Herstellern bei der Funktionspruefung eingesetzt. Hierbei werden Teilentladungen von 150 pC und mehr zuverlaessig detektiert. Oel-papierisolierte Transformatoren werden in der Regel waehrend des Betriebs durch eine Analyse des Transformator-Oels inspeziert. Die Oelanalyse kann in regelmaessigen Abstaenden oder dauerhaft erfolgen. Als integrales Verfahren bietet diese Methode keine Information zu den Betriebsbedingungen unter den Teilentladungen auftreten und gibt auch keine Information zum Ort deren Auftretens. Diese Informationsluecke kann durch den Einsatz einer Schallemissionspruefung (AT) geschlossen werden. Mit dem Messen der Schallemission durch am Trafokessel angebrachte Sensoren kann der Ort und der Zeitpunkt von Stoerungen festgestellt werden. Mit diesen Schluesselinformationen wird es moeglich, die weiteren notwendigen Massnahmen gezielt zu planen. Physical Acoustics (PAC) hat mehrere hunderte von Transformatoren erfolgreich auf ihr Betriebsverhalten untersucht (siehe auch EPRI-Projekt I

  5. Nonhydrogenated cottonseed oil can be used as a deep fat frying medium to reduce trans-fatty acid content in french fries.

    Science.gov (United States)

    Daniel, Darla R; Thompson, Leslie D; Shriver, Brent J; Wu, Chih-Kang; Hoover, Linda C

    2005-12-01

    The purpose of this research study was to evaluate the fatty acid profile, in particular trans-fatty acids, of french fries fried in nonhydrogenated cottonseed oil as compared with french fries fried in partially hydrogenated canola oil and french fries fried in partially hydrogenated soybean oil. Cottonseed oil, partially hydrogenated canola oil, and partially hydrogenated soybean oil were subjected to a temperature of 177 degrees C for 8 hours per day, and six batches of french fries were fried per day for 5 consecutive days. French fries were weighed before frying, cooked for 5 minutes, allowed to drain, and reweighed. Oil was not replenished and was filtered once per day. Both the oil and the french fries were evaluated to determine fatty acid profiles, trans-fatty acids, and crude fat. A randomized block design with split plot was used to analyze the data collected. Least-squares difference was used as the means separation test. No significant differences were found between fries prepared in the three oil types for crude fat. Fatty acid profiles for the french fries remained stable. The french fries prepared in cottonseed oil were significantly lower in trans-fatty acids. The combined total of the trans-fatty acid content and saturated fatty acid content were lower in french fries prepared in cottonseed oil. Because deep fat frying remains a popular cooking technique, health professionals should educate the public and the food service industry on the benefits of using nonhydrogenated cottonseed oil as an alternative to the commonly used hydrogenated oils.

  6. Characteristic of sausages as influenced by partial replacement of pork back-fat using pre-emulsified soybean oil stabilized by fish proteins isolate

    Directory of Open Access Journals (Sweden)

    Nopparat Cheetangdee

    2017-08-01

    Full Text Available Substitution of animal fat with oils rich in n-3 is a feasible way to improve the nutritive value of comminuted meat product. The effect on the characteristics of sausages was investigated of partial replacement of porcine fat with soybean oil (SBO using a pre-emulsification technique. Fish protein isolate (FPI produced from yellow stripe trevally (Selaroides leptolepis was used as an emulsifier to prepare pre-emulsified SBO (preSBO, and its concentration effect (1%, 2% and 3%, w/v was observed in comparison with soy protein isolate (SPI. Substitution of porcine fat using preSBO enhanced the product stability. SPI exhibited better emulsifying ability than FPI. However, FPI was more effective at reinforcing the protein matrix of the sausages than SPI, as suggested by a lowered cooking loss and the restored textural attributes of the sausages formulated with FPI stabilized preSBO. The effective concentration of FPI to improve the product stability was 2%. This work suggested that FPI was promising in the preparation of emulsified meat products.

  7. Efficient method for location and detection of partial discharge in transformer oil by DOA estimation of circular array of ultrasonic sensors

    Science.gov (United States)

    Saravanakumar, N.; Sathiyasekar, K.

    2018-01-01

    The electrical insulation failures in oil transformers are mainly occurs due to the inappropriate placing of Partial Discharge (PD) sources. In order to eliminate the insulation defects and also to locate the PD sources in an appropriate location, a new approach called circular array of ultrasonic sensors (CAUS) with various analysis is proposed. At first de-noise the PD signal from the CAUS using the fast independent component analysis (Fast ICA) algorithm. Secondly, the wide band signal from CAUS is converted into narrow band signal by using the total least square algorithm (TLS). Third, parse representation of array covariance vector (SRACV) technique is utilized to separate DOA (Direction of Arrival) in three directions from PD to CAUS. Finally, the PD sources are placed in an appropriate location by using the pitch and azimuth angles of those three DOAs and the exact coordination of three planes are calculated by using the particle swarm optimization algorithm. The simulation result demonstrates the effectiveness of proposed approach in terms of PD location in transformer oil.

  8. Oils

    Energy Technology Data Exchange (ETDEWEB)

    1927-12-21

    The abstract describes a process for obtaining liquids from solid carbonaceous materials. The treatment, which involves heating them under pressures of 10 to 1000 atm with high-boiling hydrocarbons or their derivatives containing no constituent which boils below 300/sup 0/C, can be performed in the presence of gases containing nitrogen, carbon dioxide, or carbon monoxide, and excluding hydrogen. Catalytic substances used are sulfides of alkali or alkaline earth metals or other substances which have an alkaline reaction.

  9. Irradiation of Oil / Water Biphasic Systems: the Importance of Interfacial Surface Area on the Production of Hydrogen and Other Deleterious Products

    International Nuclear Information System (INIS)

    Causey, Patrick-W.; Stuart, Craig-R.

    2012-09-01

    Occasionally, organic materials, such as lubricating oils, can enter irradiated aqueous reactor systems. This can upset the chemistry control of the reactor, resulting in elevated hydrogen gas concentrations, changes in system pH and the formation of unwanted degradation products. Most available information on the radiation chemistry of oil is extrapolated from irradiations of neat simple hydrocarbons like hexane; there is little information available as to the radiolytic breakdown of larger hydrocarbons in the presence of water. In the absence of water, the general radiation effects on hydrocarbons can be divided into fragmentation and polymerizations reactions. Some factors that can influence the degradation of hydrocarbons include the extent of hydrocarbon branching, the degree of bond-saturation, and the presence of scavenging molecules and dissolved gases. The mechanism of water radiolysis is well understood and tools are available to simulate such radiation chemistry. Additionally, irradiations of aqueous systems containing trace quantities of soluble organic species and ion exchange resins have also been studied. However, at least initially, oils that enter irradiated aqueous systems are essentially insoluble in water. This leads to a non-homogeneous system where radiation energy is deposited in both water and organic phases, each of which will have distinct irradiation behaviours. In addition to the irradiation effects in the aqueous and organic phases, the effects of irradiation on the chemistry at the interface between the phases and the rate of production of soluble hydrocarbon fragments from the degradation of the oil are unknown. A program was initiated to examine the radiation chemistry effects on aqueous systems contaminated with insoluble hydrocarbon-based oils. A unique vessel has been designed and fabricated for the irradiation of hydrocarbon-water mixtures in a Gammacell 60 Co γ-irradiator. The design allows for variation of the hydrocarbon

  10. Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils.

    Science.gov (United States)

    Terra, Luciana A; Filgueiras, Paulo R; Tose, Lílian V; Romão, Wanderson; de Souza, Douglas D; de Castro, Eustáquio V R; de Oliveira, Mirela S L; Dias, Júlio C M; Poppi, Ronei J

    2014-10-07

    Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

  11. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  12. Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2013-01-01

    Highlights: • Development of a techno-economic model for UCG-CCS and SMR-CCS. • Estimation of H 2 production costs with and without CCS for UCG and SMR. • UCG is more economical for H 2 production with CCS. • SMR is more cost efficient for H 2 production without CCS. • Cost competiveness is highly sensitive to the IRR differential between UCG and SMR. - Abstract: This paper examines the techno-economic viability of hydrogen production from underground coal gasification (UCG) in Western Canada, for the servicing of the oil sands bitumen upgrading industry. Hydrogen production for bitumen upgrading is predominantly achieved via steam methane reforming (SMR); which involves significant greenhouse gas (GHG) emissions along with considerable feedstock (natural gas) cost volatility. UCG is a formidable candidate for cost-competitive environmentally sustainable hydrogen production; given its negligible feedstock cost, the enormity of deep coal reserves in Western Canada and the favourable CO 2 sequestration characteristics of potential UCG sites in the Western Canadian sedimentary basin (WCSB). Techno-economic models were developed for UCG and SMR with and without CCS, to estimate the cost of hydrogen production including delivery to a bitumen upgrader. In this paper, at base case conditions, a 5% internal rate of return (IRR) differential between UCG and SMR was considered so as to account for the increased investment risk associated with UCG. The cost of UCG hydrogen production without CCS is estimated to be $1.78/kg of H 2 . With CCS, this increases to range of $2.11–$2.70/kg of H 2 , depending on the distance of the site for CO 2 sequestration from the UCG plant. The SMR hydrogen production cost without CCS is estimated to be $1.73/kg of H 2 . In similar fashion to UCG, this rises to a range of $2.14 to $2.41/kg of H 2 with the consideration of CCS. Lastly, for hydrogen production without CCS, UCG has a superior cost competitiveness in comparison to SMR

  13. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-07-08

    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  14. Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghearachchi, H.S.; Sarma, Priyangshu M.; Singh, Sneha; Mandal, Ajay K.; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resource Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110 003 (India); Aginihotri, Anil [Corporate HSF, Oil and Natural Gas Corporation, New Delhi (India)

    2009-09-15

    Present study investigated fermentative hydrogen production of two novel isolates of Enterobacter aerogenes HGN-2 and HT 34 isolated from oil water mixtures. The two isolates were identified as novel strains of E. aerogenes based on 16S rRNA gene. The batch fermentations of two strains from glucose and xylose were carried out using economical culture medium under various conditions such as temperature, initial pH, NaCl, Ni{sup +}/Fe{sup ++}, substrate concentrations for enhanced fermentation process. Both the strains favoured wide range of pH (6.5-8.0) at 37 C for optimum production (2.20-2.23 mol H{sub 2}/mol-glucose), which occurred through acetate/butyrate pathway. At 55 C, both strains favoured 6.0-6.5 and acetate type fermentation was predominant in HT 34. Hydrogen production by HT 34 from xylose was highly pH dependant and optimum production was at pH 6.5 (circa 1.98 mol-H{sub 2}/mol-xylose) through acetate pathway. The efficiency of the strain HGN-2 at pH 6.5 was 1.92-1.94 mol-H{sub 2}/mol-xylose, and displayed both acetate and butyrate pathways. At 55 C, very low hydrogen production was detected (less than 0.5 m mol/mol-xylose). (author)

  15. Optimization of fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket fixed film bioreactor

    Directory of Open Access Journals (Sweden)

    Parviz Mohammadi

    2017-09-01

    Full Text Available Response surface methodology with a central composite design was applied to optimize fermentative hydrogen production from palm oil mill effluent (POME in an upflow anaerobic sludge blanket fixed film reactor. In this study, the concurrent effects of up-flow velocity (Vup and feed flow rate (QF as independent operating variables on biological hydrogen production were investigated. A broad range of organic loading rate between 10 and 60 g COD L−1 d−1 was used as the operating variables. The dependent parameters as multiple responses were evaluated. Experimental results showed the highest value of yield at 0.31 L H2 g−1 COD was obtained at Vup and QF of 0.5 m h−1 and 1.7 L d−1, respectively. The optimum conditions for the fermentative hydrogen production using pre-settled POME were QF = 2.0–3.7 L d−1 and Vup = 1.5–2.3 m h−1. The experimental results agreed very well with the model prediction.

  16. EXPERIMENTAL INVESTIGATIONS ON THE EFFECT OF HYDROGEN INDUCTION ON PERFORMANCE AND EMISSION BEHAVIOUR OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH PALM OIL METHYL ESTER AND ITS BLEND WITH DIESEL

    Directory of Open Access Journals (Sweden)

    BOOPATHI D.

    2017-07-01

    Full Text Available Internal combustion engines are an integral part of our daily lives, especially in the agricultural and transportation sector. With depleting fossil fuel and increasing environmental pollution, the researchers are foraying into alternate sources for fuelling the internal combustion engine. Vegetable oils derived from plant seeds is one such solution, but using them in unmodified diesel engine leads to reduced thermal efficiency and increased smoke emissions. Hydrogen if induced in small quantities in the air intake manifold can enhance the engine performance running on biodiesel. In this work, experiments were performed to evaluate the engine performance when hydrogen was inducted in small quantities and blends of esterified palm oil and diesel was injected as pilot fuel in the conventional manner. Tests were performed on a single cylinder, 4 - stroke, water cooled, direct injection diesel engine running at constant speed of 1500 rpm under variable load conditions and varying hydrogen flow. At full load for 75D25POME (a blend of 75% diesel and 25% palm oil methyl ester by volume, the results indicated an increase in brake thermal efficiency from 29.75% with zero hydrogen flow to a maximum of 30.17% at 5lpm hydrogen flow rate. HC emission reduced from 34 to 31.5 ppm, by volume at maximum load. Whereas, CO emission reduced from 0.09 to 0.045 % by volume at maximum load. Due to higher combustion rates with hydrogen induction, NOx emission increased from 756 to 926 ppm, at maximum load.

  17. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2012-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF-α. These cytokines stimulate the synthesis of nitric oxide (NO and hydrogen peroxide (H2O2, leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.

  18. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet.

    Science.gov (United States)

    Sargi, Sheisa Cyléia; Dalalio, Márcia Machado de Oliveira; Visentainer, Jesuí Vergílio; Bezerra, Rafael Campos; Perini, João Ângelo de Lima; Stevanato, Flávia Braidotti; Visentainer, Jeane Eliete Laguila

    2012-05-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H₂O₂), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H₂O₂. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H₂O₂, predominantly in the chronic phase of infection.

  19. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  20. Prediction of retention indices for frequently reported compounds of plant essential oils using multiple linear regression, partial least squares, and support vector machine.

    Science.gov (United States)

    Yan, Jun; Huang, Jian-Hua; He, Min; Lu, Hong-Bing; Yang, Rui; Kong, Bo; Xu, Qing-Song; Liang, Yi-Zeng

    2013-08-01

    Retention indices for frequently reported compounds of plant essential oils on three different stationary phases were investigated. Multivariate linear regression, partial least squares, and support vector machine combined with a new variable selection approach called random-frog recently proposed by our group, were employed to model quantitative structure-retention relationships. Internal and external validations were performed to ensure the stability and predictive ability. All the three methods could obtain an acceptable model, and the optimal results by support vector machine based on a small number of informative descriptors with the square of correlation coefficient for cross validation, values of 0.9726, 0.9759, and 0.9331 on the dimethylsilicone stationary phase, the dimethylsilicone phase with 5% phenyl groups, and the PEG stationary phase, respectively. The performances of two variable selection approaches, random-frog and genetic algorithm, are compared. The importance of the variables was found to be consistent when estimated from correlation coefficients in multivariate linear regression equations and selection probability in model spaces. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Science.gov (United States)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  2. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  3. The effect of the partial pressure of H2 gas and atomic hydrogen on diamond films deposited using CH3OH/H2O gas

    International Nuclear Information System (INIS)

    Lee, Kwon-Jai; Koh, Jae-Gui; Shin, Jae-Soo; Kwon, Ki-Hong; Lee, Chang-Hee

    2006-01-01

    Diamond films were deposited on Si(100) substrates by hot filament chemical vapor deposition (HFCVD) with a CH 3 OH/H 2 O gas mixture while changing the gas ratio. The films were analyzed with scanning electron microscopy (SEM), Raman spectroscopy, and optical emission spectroscopy (OES). The diamond films were grown with CH 3 OH being 52 % by volume of the gas mixture. The effect of atomic hydrogen on the film was different from that of the CH 4 /H 2 gas mixture. Analysis with OES during film growth indicated that among the thermally dissociated hydrogen radicals, only H α contributed to the etching of graphite.

  4. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    International Nuclear Information System (INIS)

    Mobarak, H.M.; Masjuki, H.H.; Mohamad, E. Niza; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-01-01

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC

  5. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  6. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  7. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  8. Preparation of the Pt/CNTs Catalyst and Its Application to the Fabrication of Hydrogenated Soybean Oil Containing a Low Content of Trans Fatty Acids Using the Solid Polymer Electrolyte Reactor.

    Science.gov (United States)

    Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai

    2018-08-01

    Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.

  9. Production of reduction gases: partial oxidation of hydrocarbons and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1976-04-01

    After some general remarks on reduction gas and quality demands, the Texaco process of partial oxidation with scrubbing is dealt with. A comparison of current iron-sponge techniques shows that a heat demand below 3 M kcal/t Fe should be envisaged, which means that heavy fuel oil or coal should be used. The special features of oxygen generation, coal processing, demands made on fuel oil, gasoline, and natural gas, gas generation, soot recovery, hydrogen sulphide-carbon dioxide scrubbing, system Benfield HP process, recycle-carbon dioxide scrubbing, auxiliary steam system, gas preheating, recycle gas cooling and compression, process data and heat balances for natural gas (one-heat system) and heating fuel oil or naphtha (two-heat system) are given.

  10. Improvement of thermal exchange between feedstock and effluent in a hydrocarbon processing unit under hydrogen atmosphere by partial recycling of the product

    Energy Technology Data Exchange (ETDEWEB)

    Orieux, A.

    1990-01-19

    Heat exchange is improved in light naphta hydroisomerization and catalytic reforming by recirculation of a part of the product in the thermal exchange zone at a temperature higher than the dew point of the effluent under hydrogen atmosphere and preferentially as a temperature lower than the temperature of the recycled product.

  11. Treatment of palm oil mill effluent by electrocoagulation with presence of hydrogen peroxide as oxidizing agent and polialuminum chloride as coagulant-aid

    Directory of Open Access Journals (Sweden)

    Mohd Nasrullah

    2017-06-01

    Full Text Available The purposes of this study were to investigate the effects of operating parameters, such as electrode material, current density, percentage of hydrogen peroxide and amount of polialuminum chloride (PAC on chemical oxygen demand (COD removal of palm oil mill effluent (POME. The current density was varied between 30–80 mA cm−2, PAC (1–3 g L−1 as coagulant-aid and 1 and 2% of hydrogen peroxide as an oxidizing agent. As for the performance of electrode type, iron was more effective than aluminum. It appeared that the removal of COD increased with the increased of current density. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The overall results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30–80 mA cm−2 reliant upon the concentration of H2O2 and PAC.

  12. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural).

    Science.gov (United States)

    Bizkarra, K; Barrio, V L; Arias, P L; Cambra, J F

    2016-09-01

    In the present work m-xylene and an equimolecular mixture of m-xylene, 1-butanol and furfural, all of them bio-oil model compounds, were studied in steam reforming (SR) conditions. Three different nickel catalysts, which showed to be active in 1-butanol SR (Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3), were tested and compared with thermodynamic equilibrium values. Tests were carried out at temperatures from 800 to 600°C at atmospheric pressure with a steam to carbon ratio (S/C) of 5.0. Despite the different bio-oils fed, the amount of moles going through the catalytic bed was kept constant in order to obtain comparable results. After their use, catalysts were characterized by different techniques and those values were correlated with the activity results. All catalysts were deactivated during the SR of the mixture, mainly by coking. The highest hydrogen yields were obtained with Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts in the SR of m-xylene and SR of the mixture, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Downhole Upgrading of Orinoco Basin Extra-Heavy Crude Oil Using Hydrogen Donors under Steam Injection Conditions. Effect of the Presence of Iron Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Cesar Ovalles

    2015-03-01

    Full Text Available An extra-heavy crude oil underground upgrading concept and laboratory experiments are presented which involve the addition of a hydrogen donor (tetralin to an Orinoco Basin extra-heavy crude oil under steam injection conditions (280–315 °C and residence times of at least 24-h. Three iron-containing nanocatalysts (20 nm, 60 nm and 90 nm were used and the results showed increases of up to 8° in API gravity, 26% desulfurization and 27% reduction in the asphaltene content of the upgraded product in comparison to the control reaction using inert sand. The iron nanocatalysts were characterized by SEM, XPS, EDAX, and Mössbauer spectroscopy before and after the upgrading reactions. The results indicated the presence of hematite (Fe2O3 as the predominant iron phase. The data showed that the catalysts were deactivating by particle sintering (~20% increase in particle size and also by carbon deposition. Probable mechanisms of reactions are proposed.

  15. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  16. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting

    Science.gov (United States)

    Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui

    2017-03-01

    A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.

  17. Hydrogen isotope dynamic effects on partially reduced paramagnetic six-atom Ag clusters in low-symmetry cage of zeolite A

    Directory of Open Access Journals (Sweden)

    Amgalanbaatar Baldansuren

    2016-12-01

    Full Text Available A well-defined, monodisperse Ag6+ cluster was prepared by mild chemical treatments including aqueous ion-exchange, dehydration, oxygen calcination at 673 K and hydrogen reduction 293 K, rather than autoreduction and irradiations with γ-ray and X-ray. H2 reduction was proved as a crucial step to form the nanosize cluster with six equivalent silver atoms. Hydrogen isotope exchange and dynamics were probed by EPR and HYSCORE to provide information relevant to the cluster geometry, size, charge state and spin state. Desorption experiments result in the deuterium desorption energy of 0.78 eV from the cluster, exceeding the experimental value of 0.38 eV for the single crystal Ag(111 surface. These experiments indicate that the EPR-active clusters are in delicate equilibrium with EPR-silent clusters.

  18. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  19. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  20. Investigation of partial oxidation of hydrogen sulfide for dry desulfurisation of fuel gases; Untersuchung der Partialoxidation von Schwefelwasserstoff zur Trockenentschwefelung von Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Kliemczak, U.

    2002-07-01

    Three process variants for direct desulfurisation in the dry state of coal gasification gases by partial oxidation of H{sub 2}S were investigated in Prenflo conditions: 1. Heterogeneously catalyzed partial oxidation of H{sub 2}S on fly dust followed by sulfur deposition on the dust; 2. Non-catalyzed partial oxidation of H{sub 2}S in a homogeneous gaseous phase followed by sulfur deposition in a spray separator; 3. Heterogeneously catalyzed partial oxidation of H{sub 2}S in a fixed bed. The experiments were carried out in conditions similar to the crude gas conditions of slag bath gasification at SVZ Schwarze Pumpe. The fixed bed materials investigated were hearth furnace coke, Berl saddles, and an activated carbon developed specially for the investigations, Oxorbon CJ. The focus of the investigations was on the envisaged continuous operation of the process. [German] Im Rahmen der vorliegenden Arbeit wurde an einer zu diesem Zweck modifizierten Technikumsanlage die trockene Direktentschwefelung von Brenngasen aus der Kohlevergasung durch partielle Oxidation von H{sub 2}S untersucht. Im Vordergrund standen zwei Verfahrensvarianten, deren Eignung fuer die Bedingungen der Prenflo-Vergasung ueberprueft werden sollte: Variante 1: die heterogen katalysierte Partialoxidation von H{sub 2}S an Flugstaub mit anschliessender Schwefelabscheidung auf dem Staub und, Variante 2: die nichtkatalysierte Partialoxidation von H{sub 2}S in homogener Gasphase mit anschliessender Schwefelabscheidung in einem Spruehabscheider. Ausgehend von den Versuchsergebnissen der Verfahrensvarianten 1 und 2 wurde zusaetzlich als Verfahrensvariante 3 die heterogen katalysierte Partialoxidation von H{sub 2}S am Festbett untersucht. Diese Versuche orientierten sich an den Rohgasbedingungen der Schlackebadvergasung des SVZ Schwarze Pumpe. Als Festbettmaterialien kamen Herdofenkoks, Berlsaettel und eine, speziell fuer diese Verfahrensvariante entwickelte Aktivkohle Oxorbon CJ, zum Einsatz. Die Eignung des

  1. Quality characteristics of Dutch-style fermented sausages manufactured with partial replacement of pork back-fat with pure, pre-emulsified or encapsulated fish oil

    NARCIS (Netherlands)

    Josquin, N.M.; Linssen, J.P.H.; Houben, J.H.

    2012-01-01

    Dutch-style fermented sausages were manufactured with 15% and 30% pork back-fat substitution by pure or commercial encapsulated fish oil, either added as such or as pre-emulsified mixture with soy protein isolate. Adding commercial encapsulated fish oil was the most important factor influencing the

  2. Hydrogen production by steam reforming of bio-oil aqueous fraction over Co-Fe/ZSM-5

    Science.gov (United States)

    Chen, Mingqiang; Wang, Yishuang; Liang, Tian; Yang, Zhonglian

    2018-02-01

    A series of Co-Fe/ZSM-5 catalysts were prepared by impregnation method and their catalytic performance under steam reforming bio-oil aqueous fraction (SRBAF). The as-prepared catalysts were characterized by XRD, BET, and SEM. The characterization results revealed the Co-Fe alloy phase was formed in Co0.5Fe0.5/ZSM-5 catalyst, and this catalyst exhibited unique pore volume (0.28 cm3/g) and pore size (8.4 nm). The results of experiment demonstrated the addition of Fe species could significantly increase C conversion and H2 yield, and the formation of Co-Fe alloy effectively inhibited methanation reaction and improved water-gas shift (WGS) reaction. The highest H2 yield (81%) and C conversion (85%) was obtained at the following reaction conditions: 2.5 g of C0.5F0.5/Z catalyst, T = 700 °C, S/C = 10-14,.feed flow rate was 10.0 gbio-oil/h, N2 flow rate was 0.16 L/min.

  3. Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling

    Directory of Open Access Journals (Sweden)

    Lifita N. Tande

    2016-01-01

    Full Text Available This work focuses on thermodynamic analysis of the autothermal reforming of palm empty fruit bunch (PEFB bio-oil for the production of hydrogen and syngas. PEFB bio-oil composition was simulated using bio-oil surrogates generated from a mixture of acetic acid, phenol, levoglucosan, palmitic acid and furfural. A sensitivity analysis revealed that the hydrogen and syngas yields were not sensitive to actual bio-oil composition, but were determined by a good match of molar elemental composition between real bio-oil and surrogate mixture. The maximum hydrogen yield obtained under constant reaction enthalpy and pressure was about 12 wt% at S/C = 1 and increased to about 18 wt% at S/C = 4; both yields occurring at equivalence ratio Φ of 0.31. The possibility of generating syngas with varying H2 and CO content using autothermal reforming was analysed and application of this process to fuel cells and Fischer-Tropsch synthesis is discussed. Using a novel simple modelling methodology, reaction mechanisms were proposed which were able to account for equilibrium product distribution. It was evident that different combinations of reactions could be used to obtain the same equilibrium product concentrations. One proposed reaction mechanism, referred to as the ‘partial oxidation based mechanism’ involved the partial oxidation reaction of the bio-oil to produce hydrogen, with the extent of steam reforming and water gas shift reactions varying depending on the amount of oxygen used. Another proposed mechanism, referred to as the ‘complete oxidation based mechanism’ was represented by thermal decomposition of about 30% of bio-oil and hydrogen production obtained by decomposition, steam reforming, water gas shift and carbon gasification reactions. The importance of these mechanisms in assisting in the eventual choice of catalyst to be used in a real ATR of PEFB bio-oil process was discussed.

  4. Effects of Partial Substitution of Lean Meat with Pork Backfat or Canola Oil on Sensory Properties of Korean Traditional Meat Patties (Tteokgalbi)

    Science.gov (United States)

    Imm, Bue-Young; Kim, Chung Hwan; Imm, Jee-Young

    2014-01-01

    Korean traditional meat patties (Tteokgalbi) were prepared by replacing part of the lean meat content with either pork backfat or canola oil and the effect of substitution on sensory quality of the meat patties was investigated. Compared to the control patties, pork-loin Tteokgalbi with 10% pork backfat or 10% canola oil had significantly higher overall acceptability and higher perceived intensity of meat flavor, sweetness, umami, and oiliness. The pork-loin patties containing 10% fat also had lower perceived firmness, toughness, and chalkiness of than the control Tteokgalbi. The chicken breast Tteokgalbi with 10% canola oil had the lowest perceived firmness and chalkiness (control > pork backfat > canola oil). No significant difference was noted in the overall acceptability of chicken breast patties with 10% pork backfat and those with 10% canola oil. These results indicate that substituting 10% of lean meat of Tteokgalbi with fat improved the sensory acceptability of the product for Korean customers regardless of the lean meat and/or fat source used in the patties. Lean meat patties formulated with a limited amount of vegetable oil such as canola oil can be a healthy option for Korean consumers by providing desirable fatty acid profiles without sacrificing sensory quality of the product. PMID:26761287

  5. The vulnerability of oil collection pipelines to corrosion under conditions of stratified oil-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Marichev, F N; Chernobay, L A; Teterina, O P; Yarmizin, V G

    1980-01-01

    Problems with oil industry equipment and pipeline corrosion have recently highlighted the problems of increased water content in oil and the presence of biogenic hydrogen sulphide in petroleum matter. These findings underscore the importance of taking these problems into consideration when formulating long-term production plans. A study of pipeline corrosion and its causes, as well as other factors, has permitted researchers to correlate hydrodynamic parameters for gas-fluid transportability and structural contour flows. The water phase simultaneously carries corrosion-active ions of dissolved hydrogen sulphide and material which interact to corrode metal in the lower sections of pipelines. In order to determine the susceptibility of pipelines to corrosion, it is necessary to establish the presence of stratified fluids in oil and water as well as the gas-fluid flow. Analysis has shown that those sections with stratified emulsion could be identified and that it is necessary to disclose the pipeline's ability to withstand such conditions. The proper selection of transport parameters permits the technological protection of the oil collection pipelines. Partially as a result of the increased flow speed guaranteeing an emulsion flow regime for the gas-water-oil flow, it was found that the operational service-life of pipelines could be prolonged by a reduction of corrosion in oil collection pipelines.

  6. Hydroprocesssing of light gas oil - rape oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walendziewski, Jerzy; Stolarski, Marek; Luzny, Rafal; Klimek, Bartlomiej [Faculty of Chemistry, Wroclaw University of Technology, ul. Gdanska 7/9, 50-310 Wroclaw (Poland)

    2009-05-15

    Two series of experiments of hydroprocessing of light gas oil - rape oil mixtures were carried out. The reactor feed was composed of raw material: first series - 10 wt.% rape oil and 90 wt.% of diesel oil; second series - 20 wt.% rape oil and 80 wt.% of diesel oil. Hydroprocessing of both mixtures was performed with the same parameter sets, temperature (320, 350 and 380 C), hydrogen pressure 3 and 5 MPa, LHSV = 2 h{sup -} {sup 1} and hydrogen feed ratio of 500 Nm{sup 3}/m{sup 3}. It was stated that within limited range it is possible to control vegetable oil hydrogenolysis in the presence of light gas oil fraction (diesel oil boiling range) through the proper selection of the process parameters. Hydrogenolysis of ester bonds and hydrogenation of olefinic bonds in vegetable oils are the main reactions in the process. Basic physicochemical properties of the obtained hydroprocessed products are presented. (author)

  7. 21 CFR 184.1555 - Rapeseed oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Rapeseed oil. 184.1555 Section 184.1555 Food and... Substances Affirmed as GRAS § 184.1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of...

  8. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  9. Pineapple by-product and canola oil as partial fat replacers in low-fat beef burger: Effects on oxidative stability, cholesterol content and fatty acid profile.

    Science.gov (United States)

    Selani, Miriam M; Shirado, Giovanna A N; Margiotta, Gregório B; Rasera, Mariana L; Marabesi, Amanda C; Piedade, Sonia M S; Contreras-Castillo, Carmen J; Canniatti-Brazaca, Solange G

    2016-05-01

    The effect of freeze-dried pineapple by-product and canola oil as fat replacers on the oxidative stability, cholesterol content and fatty acid profile of low-fat beef burgers was evaluated. Five treatments were performed: conventional (CN, 20% fat) and four low-fat formulations (10% fat): control (CT), pineapple by-product (PA), canola oil (CO), and pineapple by-product and canola oil (PC). Low-fat cooked burgers showed a mean cholesterol content reduction of 9.15% compared to the CN. Canola oil addition improved the fatty acid profile of the burgers, with increase in the polyunsaturated/saturated fatty acids ratio and decrease in the n-6/n-3 ratio, in the atherogenic and thrombogenic indexes. The oxidative stability of the burgers was affected by the vegetable oil addition. However, at the end of the storage time (120 days), malonaldehyde values of CO and PC were lower than the threshold for the consumer's acceptance. Canola oil, in combination with pineapple by-product, can be considered promising fat replacers in the development of healthier burgers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hydrogen storage in planetary physics

    International Nuclear Information System (INIS)

    Baltensperger, W.

    1984-01-01

    Hydrogen in contact with most substances undergoes first order phase transitions with increasing pressure during which hydrides are formed. This applies to the core of hydrogen rich planets. It is speculated that a partial hydrogen storage in the early history of the earth could have lead to the formation of continents. Primordial carbon hydrides are synthesized during this process. (Author) [pt

  11. Hydrogenation of aromatic compounds during gas oil hydrodewaxing. Part 1. Effect of ruthenium content and method of nickel catalyst preparation

    Energy Technology Data Exchange (ETDEWEB)

    Masalska, Aleksandra [Wroclaw University of Technology, Faculty of Chemistry, 7/9 Gdanska Street, 50-344 Wroclaw (Poland)

    2008-09-30

    Ni-based (8 wt.% NiO) dewaxing catalysts for the hydroconversion of the hydroraffinate of oil fraction (d{sub 20} {sub C} = 0.845 g/cm{sup 3}; cloud point (CP) -2 C; aromatics = 25.8 wt.%; S = 25 ppm) were modified with Ru. The effect of Ru content (0.6, 0.75 and 0.9 wt.% of RuO{sub 2}) and the methods of Ni catalyst preparation were examined. The catalysts were characterised by N{sub 2} sorption, TPR, ICP, XRD, SEM, XPS, H{sub 2} chemisorption. Activity was tested in a continuous-flow system at 6 MPa (LHSV, 2.5 h{sup -1}; H{sub 2}:CH, 350 N m{sup 3}/m{sup 3}). NiO and RuO{sub 2} were found to exert a synergic effect on catalytic activity. The rise in RuO{sub 2} content from 0.6 to 0.9 wt.% increased the HDA of HON from 23 to 65% at 240 C and was parallelled by a drop in CP (by about 15 C). The effect of Ru was found to depend on the method of Ni catalyst preparation. (author)

  12. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial.

    Science.gov (United States)

    Gebauer, Sarah K; Destaillats, Frédéric; Dionisi, Fabiola; Krauss, Ronald M; Baer, David J

    2015-12-01

    Adverse effects of industrially produced trans fatty acids (iTFAs) on the risk of coronary artery disease are well documented in the scientific literature; however, effects of naturally occurring trans fatty acids (TFAs) from ruminant animals (rTFA), such as vaccenic acid (VA) and cis-9,trans-11 conjugated linoleic acid (c9,t11-CLA), are less clear. Although animal and cell studies suggest that VA and c9,t11-CLA may be hypocholesterolemic and antiatherogenic, epidemiologic data comparing rTFAs and iTFAs are inconsistent, and human intervention studies have been limited, underpowered, and not well controlled. We determined the effects of VA, c9,t11-CLA, and iTFA, in the context of highly controlled diets (24 d each), on lipoprotein risk factors compared with a control diet. We conducted a double-blind, randomized, crossover feeding trial in 106 healthy adults [mean ± SD age: 47 ± 10.8 y; body mass index (in kg/m(2)): 28.5 ± 4.0; low-density lipoprotein (LDL) cholesterol: 3.24 ± 0.63 mmol/L]. Diets were designed to have stearic acid replaced with the following TFA isomers (percentage of energy): 0.1% mixed isomers of TFA (control), ∼3% VA, ∼3% iTFA, or 1% c9,t11-CLA. Total dietary fat (34% of energy) and other macronutrients were matched. Total cholesterol (TC), LDL cholesterol, triacylglycerol, lipoprotein(a), and apolipoprotein B were higher after VA than after iTFA; high-density lipoprotein (HDL) cholesterol and apolipoprotein AI also were higher after VA. Compared with control, VA and iTFA both increased TC, LDL cholesterol, ratio of TC to HDL cholesterol, and apolipoprotein B (2-6% change; P cholesterol, apolipoprotein AI, apolipoprotein B, and lipoprotein(a) (2-6% change; P < 0.05), whereas iTFA did not. c9,t11-CLA lowered triacylglycerol (P ≤ 0.01) and had no effect on other lipoprotein risk factors. With respect to risk of cardiovascular disease, these results are consistent with current nutrition labeling guidelines, with the requirement of VA, but not c9,t11-CLA, to be listed under TFA on the Nutrition Facts Panel. This trial was registered at clinicaltrials.gov as NCT00942656. © 2015 American Society for Nutrition.

  13. Extracting oils

    Energy Technology Data Exchange (ETDEWEB)

    Patart, G

    1926-03-15

    In the hydrogenation or extraction of by-products from organic substances at high temperatures and pressures, the gases or liquids, or both, used are those which are already heated and compressed during industrial operations such as exothermic synthesizing reactions such as the production of methanol from hydrogen and carbon monoxide in a catalytic process. Gases from this reaction may be passed upwardly through a digester packed with pine wood while liquid from the same catalytic process is passed downwardly through the material. The issuing liquid contains methanol, pine oil, acetone, isopropyl alcohol, and acetic acid. The gases contain additional hydrogen, carbon monoxide, methane, ethylene, and its homologs which are condensed upon the catalyser to liquid hydrocarbons. Petroleum oils and coal may be treated similarly.

  14. Photocatalytic Desulfurization of Waste Tire Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Napida Hinchiranan

    2011-11-01

    Full Text Available Waste tire pyrolysis oil has high potential to replace conventional fossil liquid fuels due to its high calorific heating value. However, the large amounts of sulfurous compounds in this oil hinders its application. Thus, the aim of this research was to investigate the possibility to apply the photo-assisted oxidation catalyzed by titanium dioxide (TiO2, Degussa P-25 to partially remove sulfurous compounds in the waste tire pyrolysis oil under milder reaction conditions without hydrogen consumption. A waste tire pyrolysis oil with 0.84% (w/w of sulfurous content containing suspended TiO2 was irradiated by using a high-pressure mercury lamp for 7 h. The oxidized sulfur compounds were then migrated into the solvent-extraction phase. A maximum % sulfur removal of 43.6% was achieved when 7 g/L of TiO2 was loaded into a 1/4 (v/v mixture of pyrolysis waste tire oil/acetonitrile at 50 °C in the presence of air. Chromatographic analysis confirmed that the photo-oxidized sulfurous compounds presented in the waste tire pyrolysis oil had higher polarity, which were readily dissolved and separated in distilled water. The properties of the photoxidized product were also reported and compared to those of crude oil.

  15. Effect of partial replacement of pork meat with an olive oil organogel on the physicochemical and sensory quality of dry-ripened venison sausages.

    Science.gov (United States)

    Utrilla, M C; García Ruiz, A; Soriano, A

    2014-08-01

    A venison salchichon was made using varying proportions of olive oil to replace the traditional pork meat and to obtain a healthier product. Six types of salchichon were produced. The control type contained 75% lean venison and 25% pork meat; in the other types, 15%, 25%, 35%, 45% and 55% of the pork meat were replaced by olive oil introduced in the form of an organogel (olive oil emulsified with soy protein and water). All types were satisfactory in terms of physicochemical characteristics (pH, a(w), moisture loss) and instrumental colour throughout ripening, and displayed acceptable levels of lipolysis (acidity index) and lipid oxidation (TBARS). Higher proportions of olive oil prompted an increase in monounsaturated fatty acid content (mainly C18:1). All six types of salchichon were judged acceptable by consumers, the highest scores being given to those in which no more than 25% of the pork meat was replaced by olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Oxidation in fish-oil-enriched mayonnaise 2 : Assessment of the efficacy of different tocopherol antioxidant systems by discriminant partial least squares regression analysis

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Lund, Pia

    2000-01-01

    . The rheological and structural properties of the mayonnaise were also affected by the addition of extra emulsifier, but this did not influence the formation of fishy and rancid off-flavours. Addition of the A system caused the immediate formation of distinct fish; and rancid off-flavours in the fresh mayonnaises......Oxidative protection of mayonnaises with 16% fish oil was studied during cold storage (5 degrees C) after supplementation with different tocopherol systems: the ternary antioxidant system ascorbic acid, lecithin and tocopherol (A/L/T), and two commercial mixtures, an oil-soluble (Toco 70......) preparation and a water-soluble (Grindox 1032) preparation, The physical structure of the fish-oil-enriched mayonnaise was manipulated by adding extra emulsifier (Panodan TR) with the purpose of investigating whether or not this affected the antioxidative activity of the tocopherol mixtures. A number...

  17. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  18. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  19. Deodorizing petroleum oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Haller, A

    1906-06-14

    A process of purifying and deodorizing petroleum oils, gasolines, ethers, benzines, shale oils, resins, and similar products, consisting essentially in passing the vapors of the liquids with a current of hydrogen or of gases high in hydrogen over divided metals, such as nickel, copper, cobalt, iron, platinum, etc., heated to a temperature between 100/sup 0/C and 350/sup 0/C, the vapors passing before entering the apparatus through a column of copper heated to above 350/sup 0/C.

  20. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  1. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  2. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake

    Czech Academy of Sciences Publication Activity Database

    Szeiffová Bačová, B.; Vinczenzová, C.; Žurmanová, J.; Kašparová, Dita; Knezl, V.; Egan Beňová, T.; Pavelka, Stanislav; Soukup, Tomáš; Tribulová, N.

    2017-01-01

    Roč. 147, č. 1 (2017), s. 63-73 ISSN 0948-6143 R&D Projects: GA MŠk(CZ) LH15279; GA MŠk(CZ) 7AMB14SK123 Grant - others:AV ČR(CZ) SAV-15-03 Program:Bilaterální spolupráce Institutional support: RVO:67985823 Keywords : thyroid hormones * cardiac arrhythmias * connexin-43 * PKC * red palm oil Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 2.553, year: 2016

  3. Effect of the partial replacement of fish meal and oil by vegetable products on performance and quality traits of juvenile shi drum (Umbrina cirrosa L.

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available A four-month growth trial was carried out in order to evaluate performance and quality traits of juvenile shi drum fedwith two isonitrogenous and isoenergetic diets having different amounts of vegetable products (Vegetable diet vs. Controldiet. Compared to the Control diet, the Vegetable diet was formulated by increasing the replacement of fish meal (14%with soybean and cereal products, and fish oil (12% with a mixture of vegetable oil. On June, 4 groups of 225 fish (2replicates per dietary treatment were sorted according to live weight and reared in fibreglass tanks over a four- monthlong experimental period. Fish were hand fed to apparent satiety. Offered feed, growth parameters and feed efficiencywere recorded as productive performance. At the end of the trial (October biometric, chemical and reological traits wereexamined to assess fish quality. The dietary treatments showed similar productive performance. The relatively high inclusionof vegetable sources led to a significant modification of body shape, mesenteric fat and viscera weight. Among qualitytraits, Vegetable diet-fed fish demonstrated a significantly lower whole body and fillet crude protein content.Yellowness value of the cooked fillet was significantly lower in the Control diet-fed fish, whereas fillet texture was similar.The results of this research showed that shi drum is a suitable candidate for Mediterranean marine aquaculture andits dietary formulation might include at least the amount of vegetable sources used in this trial.

  4. A national inventory of greenhouse gas (GHG), criteria air contaminants (CAC) and hydrogen sulphide (H2S) emissions by the upstream oil and gas industry : volume 1, overview of the GHG emissions inventory : technical report

    International Nuclear Information System (INIS)

    2004-09-01

    A detailed inventory of greenhouse gas (GHG) emissions from the upstream oil and gas sector in Canada was presented along with explanations of the methodologies and data sources used. This report is based on previous work done on methane and volatile organic compound emissions from the upstream oil and gas sector for the period of 1990 to 1995, but it includes key improvements in identifying primary types of emissions sources such as emissions from fuel combustion, flaring, venting, fugitive equipment leaks and accidental releases. It also includes criteria air contaminants and hydrogen sulfide emissions, an analysis of GHG emission intensities and a change in the definition of volatile organic compounds from comprising all non-methane hydrocarbons to comprising all non-methane and non-ethane hydrocarbons. The report covers portions of the upstream oil and gas industry in Canada plus the natural gas transmission and natural gas distribution industries with reference to well drilling, oil production, and natural gas production, processing, transmission and distribution. Accidents and equipment failures are also included. The report reveals the total GHG emissions by source type, sub-sector, facility type and sub-type for the year 2000 at the national level. In 2000, the total carbon dioxide equivalent GHG emissions from the entire oil and gas sector were 101,211 kilo tonnes. For the upstream oil and gas sector alone, total GHG emissions were 84,355 kilo tonnes, representing 12 per cent of Canada's total national emissions of GHGs in 2000. This is an increase of about 25 per cent from 1995 levels. The biggest primary source of these emissions is fuel combustion, which accounts for 40.8 per cent of the total. This report also includes a provincial breakdown of GHG emissions for the natural gas transmission, storage and distribution sub-sectors in Canada for the year 2000. refs., tabs., figs

  5. Low Trans Hydrogenation

    Science.gov (United States)

    Although hydrogenation has been the technology of choice for fat formulation for many years recent concerns over the health and nutrition of trans fatty acids have had a profound effect on the edible oil industry. Since Jan. 1, 2006, TFA has been required on nutrition labels along with saturated an...

  6. Destructive hydrogenation. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1929-07-15

    Liquid or readily liquefiable products are obtained from solid distillable carbonaceous materials such as coals, oil shales or other bituminous substances by subjecting the said initial materials to destructive hydrogenation under mild conditions so that the formation of benzine is substantially avoided, and then subjecting the treated material to extraction by solvents. By hydrogenating under mild conditions the heavy oils which prevent the asphaltic substances from being precipitated are preserved, and the separation of the liquid products from the solid residue is facilitated. Solid paraffins and high boiling point constituents suitable for the production of lubricating oils may be removed before or after the extraction process. The extraction is preferably carried out under pressure with solvents which do not precipitate asphaltic substances. Brown coal containing 11 per cent ash is passed at 450/sup 0/C, and 200 atmospheres pressure in counter current to hydrogen; 40 per cent of the coal is converted into liquid products which are condensed out of the hydrogen stream; the pasty residue, on extraction with benzene, yields 45 per cent of high molecular weight products suitable for the production of lubricating oil.

  7. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  8. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  9. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  10. Distilling oils

    Energy Technology Data Exchange (ETDEWEB)

    Leffer, L G

    1912-01-29

    In a process for converting heavy hydrocarbons, such as petroleum or shale oil, into light hydrocarbons by distilling under the pressure of an inert gas, the operation is conducted at a temperature not exceeding 410/sup 0/C and under an accurately regulated pressure, the gas being circulated through the still and the condenser by means of a pump. The oil in the still may be agitated by stirring vanes or by blowing the gas through it. Hydrogen, nitrogen, carbon dioxide, methane, or gases generated in the distillation may be used as pressure media; the gas is heated before its admission to the still. A pressure of from 11 to 12 atmospheres is used in treating gas oil. Specification 10,277/89 is referred to.

  11. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  12. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  13. Refining mineral oils

    Energy Technology Data Exchange (ETDEWEB)

    1946-07-05

    A process is described refining raw oils such as mineral oils, shale oils, tar, their fractions and derivatives, by extraction with a selected solvent or a mixture of solvents containing water, forming a solvent more favorable for the hydrocarbons poor in hydrogen than for hydrocarbons rich in hydrogen, this process is characterized by the addition of an aiding solvent for the water which can be mixed or dissolved in the water and the solvent or in the dissolving mixture and increasing in this way the solubility of the water in the solvent or the dissolving mixture.

  14. Palm Oil Consumption Increases LDL Cholesterol Compared with Vegetable Oils Low in Saturated Fat in a Meta-Analysis of Clinical Trials.

    Science.gov (United States)

    Sun, Ye; Neelakantan, Nithya; Wu, Yi; Lote-Oke, Rashmi; Pan, An; van Dam, Rob M

    2015-07-01

    Palm oil contains a high amount of saturated fat compared with most other vegetable oils, but studies have reported inconsistent effects of palm oil on blood lipids. We systematically reviewed the effect of palm oil consumption on blood lipids compared with other cooking oils using data from clinical trials. We searched PubMed and the Cochrane Library for trials of at least 2 wk duration that compared the effects of palm oil consumption with any of the predefined comparison oils: vegetable oils low in saturated fat, trans fat-containing partially hydrogenated vegetable oils, and animal fats. Data were pooled by using random-effects meta-analysis. Palm oil significantly increased LDL cholesterol by 0.24 mmol/L (95% CI: 0.13, 0.35 mmol/L; I(2) = 83.2%) compared with vegetable oils low in saturated fat. This effect was observed in randomized trials (0.31 mmol/L; 95% CI: 0.20, 0.42 mmol/L) but not in nonrandomized trials (0.03 mmol/L; 95% CI: -0.15, 0.20 mmol/L; P-difference = 0.02). Among randomized trials, only modest heterogeneity in study results remained after considering the test oil dose and the comparison oil type (I(2) = 27.5%). Palm oil increased HDL cholesterol by 0.02 mmol/L (95% CI: 0.01, 0.04 mmol/L; I(2) = 49.8%) compared with vegetable oils low in saturated fat and by 0.09 mmol/L (95% CI: 0.06, 0.11 mmol/L; I(2) = 47.8%) compared with trans fat-containing oils. Palm oil consumption results in higher LDL cholesterol than do vegetable oils low in saturated fat and higher HDL cholesterol than do trans fat-containing oils in humans. The effects of palm oil on blood lipids are as expected on the basis of its high saturated fat content, which supports the reduction in palm oil use by replacement with vegetable oils low in saturated and trans fat. This systematic review was registered with the PROSPERO registry at http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42012002601#.VU3wvSGeDRZ as CRD42012002601. © 2015 American Society for Nutrition.

  15. Study of the electrochemical behavior of the niobium in relation to the hydrogen cyclical charge and uncharge; Estudo do comportamento eletroquimico do niobio em relacao ao carregamento e descarregamento ciclicos de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.G.S.G. da; Ponte, H.A.; Pashchuk, A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Lab. de Eletroquimica de Superficie e Corrosao (LESK)], e-mail: aleksantos@hotmail.com

    2006-07-01

    One of the greatest problems found in the oil industry is the control of the deterioration at the steels structures of the units that compose the process petroleum refine. This deterioration is related the mechanisms involving processes of hydrogen embrittlement. The work had as objective to study the electrochemical behavior of the niobium (Nb) with relation to the charging and uncharging of hydrogen, to evaluate the potential to use of the Nb in the construction of electrochemical hydrogen probes. For this study techniques of cronopotenciometry and potential of open circuit (OCP) for the pure Nb submitted the different hydrogen charging conditions had been used. The gotten partial results indicate the viability to use of the niobium as hydrogen probe, however, it is necessary one better understanding of the mechanisms of hydrogen interaction with the niobium. (author)

  16. Effect of heating oils and fats in containers of different materials on their trans fatty acid content.

    Science.gov (United States)

    Kala, A L Amrutha; Joshi, Vishal; Gurudutt, K N

    2012-08-30

    The nature of the container material and temperature employed for deep-frying can have an influence on the development of trans fatty acids (TFAs) in the fat used. The present study was undertaken to determine the effect of heating vegetable oils and partially hydrogenated vegetable fats with different initial TFA content in stainless steel, Hindalium (an aluminium alloy), cast iron and glass containers. Ground nut oil (oil 1), refined, bleached and deodorised (RBD) palmolein (oil 2) and two partially hydrogenated vegetable oils with low (fat 1) and high (fat 2) TFA content were uniformly heated at 175-185 °C over a period of 12 h. An increase in TFA content to 20 g kg⁻¹ was observed in oil 2 in the cast iron container, while a decrease in TFA content of 20-30 g kg⁻¹ was observed in fat 2 in all containers. The heating process of fats and oils also led to an increase in Butyro refractometer reading and colour values. This study showed that the TFA 18:1t content of oil 1, oil 2 and fat 1 increased with repeated or prolonged heating. The cast iron container showed the highest increase in TFA 18:1t for RBD palmolein (oil 2). The amount of linoleic acid trans isomers formed in the heating process was negligible. Fat 2 with high initial TFA content showed a decrease in TFA 18:1 and 18:2 on heating in all containers. Oils heated in glass and stainless steel containers showed less TFA 18:1t formation. Copyright © 2012 Society of Chemical Industry.

  17. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  18. Fe(CO)5-catalyzed coprocessing of coal and heavy oil vacuum residue using syngas-water as a hydrogen source; Fe(CO)5 shokubai ni yoru gosei gas-mizu wo suisogen to suru sekitan-jushitsuyu no coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Wada, K.; Mitsudo, T. [Kyoto University, Kyoto (Japan)

    1996-10-28

    Improvement in efficiency and profitability of hydrogenation reaction of heavy hydrocarbon resources is the most important matter to be done. In this study, coprocessing of coal and heavy oil vacuum residue was conducted using syngas-water as a hydrogen source. For the investigation of effect of the reaction temperature during the coprocessing of Wandoan coal and Arabian heavy vacuum residue using Fe(CO)5 as a catalyst, the conversion, 66.0% was obtained at 425{degree}C. For the investigation of effect of reaction time, the yield of light fractions further increased during the two stage reaction at 400{degree}C for 60 minutes and at 425{degree}C for 60 minutes. Finally, almost 100% of THF-soluble matter was obtained through the reaction using 2 mmol of Fe(CO)5 catalyst at 400{degree}C for 60 minutes, and hydrogenation of heavy oil was proceeded simultaneously. When comparing coprocessing reactions using three kinds of hydrogen sources, i.e., hydrogen, CO-water, and syngas-water, the conversion yield and oil yield obtained by using syngas-water were similar to those obtained by using hydrogen, which demonstrated the effectiveness of syngas-water. 2 refs., 2 figs., 2 tabs.

  19. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. Orbisphere: an immediate measurement of hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The device presented here, has in the beginning been conceived for nuclear industries (nuclear power plants, waste processing, uranium enrichment) and can measure the concentration of dissolved hydrogen and the partial pressures of gaseous hydrogen. This hydrogen analyser has numerous applications, particularly in metal corrosion research and control, water processing, organic and mineral synthesis, in pharmaceutic industry, for gas purity control [fr

  1. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  2. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  3. Partial gigantism

    Directory of Open Access Journals (Sweden)

    М.М. Karimova

    2017-05-01

    Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.

  4. The solar-hydrogen economy: an analysis

    Science.gov (United States)

    Reynolds, Warren D.

    2007-09-01

    The 20th Century was the age of the Petroleum Economy while the 21st Century is certainly the age of the Solar-Hydrogen Economy. The global Solar-Hydrogen Economy that is now emerging follows a different logic. Under this new economic paradigm, new machines and methods are once again being developed while companies are restructuring. The Petroleum Economy will be briefly explored in relation to oil consumption, Hubbert's curve, and oil reserves with emphasis on the "oil crash". Concerns and criticisms about the Hydrogen Economy will be addressed by debunking some of the "hydrogen myths". There are three major driving factors for the establishment of the Solar-Hydrogen Economy, i.e. the environment, the economy with the coming "oil crash", and national security. The New Energy decentralization pathway has developed many progressive features, e.g., reducing the dependence on oil, reducing the air pollution and CO II. The technical and economic aspects of the various Solar-Hydrogen energy options and combinations will be analyzed. A proposed 24-hour/day 200 MWe solar-hydrogen power plant for the U.S. with selected energy options will be discussed. There are fast emerging Solar Hydrogen energy infrastructures in the U.S., Europe, Japan and China. Some of the major infrastructure projects in the transportation and energy sectors will be discussed. The current and projected growth in the Solar-Hydrogen Economy through 2045 will be given.

  5. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  6. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  7. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  8. Kuwaiti oil fires — Air quality monitoring

    Science.gov (United States)

    Amin, Mohamed B.; Husain, Tahir

    Just before the Gulf War was concluded in early March 1991, more than 700 wells in Kuwaiti oil fields were set on fire. About 6 million barrels per day of oil were lost in flames and a large number of pools and lakes were formed. Burning wells in Kuwait emitted several thousand tons of gases such as sulfur dioxide, carbon monoxide, hydrogen sulfide, carbon dioxide, and the oxides of nitrogen, as well as particulate matter, on a daily basis containing partially burned hydrocarbons and metals, all of which were potential for affecting human health and vegetation growth. This paper summarizes the real-time measurements of various gaseous pollutants in the Eastern Province of Saudi Arabia in Dhahran, Abqaiq, Rahimah, Jubail and Tanajib. The statistics on monthly variation of gaseous pollutants showed that pollution concentration in general was high in May 1991. The levels of typical pollutants such as sulfur dioxide (SO 2), carbon monoxide (CO) and nitrogen dioxide (NO 2) in the ambient air were much lower than the permissible limits defined in the Meteorology and Environmental Protection Agency (MEPA) standards. The pollutants measured during the Kuwaiti Oil Fires were compared with the corresponding values measured in the previous year. The comparison shows that although the concentration of gaseous pollutants were within the MEPA limits, during the period of oil well fires, the concentration level increased persistently which might have been harmful for human health. The harmful effects of the major pollutants on human health and vegetation are also briefly discussed in the paper.

  9. Hydrogenation of shale

    Energy Technology Data Exchange (ETDEWEB)

    Bedwell, A J; Clark, E D; Miebach, F W

    1935-09-28

    A process for the distillation, cracking, and hydrogenation of shale or other carbonaceous material consists in first distilling the material to produce hydrocarbon oils. Steam is introduced and is passed downwardly with hydrocarbon vapors from the upper portion of the retort where the temperature is maintained between 400/sup 0/C and 450/sup 0/C over the spent carbonaceous materials. The material is drawn off at the bottom of the retort which is maintained at a temperature ranging from 600/sup 0/C to 800/sup 0/C whereby the hydrocarbon vapors are cracked in the pressure of nascent hydrogen obtained by the action of the introduced steam on the spent material. The cracked gases and undecomposed steam are passed through a catalyst tower containing iron-magnesium oxides resulting in the formation of light volatile oils.

  10. PREPARATION, CHARACTERIZATION, ACTIVITY, DEACTIVATION, AND REGENERATION TESTS OF CoO-MoO/ZnO AND CoO-MoO/ZnO-ACTIVATED ZEOLITE CATALYSTS FOR THE HYDROGEN PRODUCTION FROM FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization, activation, deactivation, and regeneration tests of CoO-MoO/ZnO and CoO-MoO/ZnO-Activated Zeolite (AZ catalysts for the hydrogen production using steam reforming of alcohols in fusel oil have been conducted. Both catalysts were prepared by impregnation of Co and Mo onto ZnO or ZnO-AZ powder then followed by calcination at 400 °C for 5 h under N2 stream. The BET method and pyridine adsorption were used for catalysts characterization. The study of activation, deactivation, and regeneration of catalysts were conducted by using steam reforming method in the semi flow reactor. The reaction condition were: weight ratio of catalysts/feed = 0.1, temperature: 450 °C, duration: 45 min. The gas product was trapped in a 250 mL vacuum pyrex bottle filled with 50 mL of 4 M NaOH solution and analyzed by GC with TCD system to determine H2 existance and HCl titration to determine CO2 produced during the process that was dissolved in NaOH solution. The results showed that CoO-MoO/ZnO-AZ catalyst produced higher gas conversion than CoO-MoO/ZnO catalyst. However, it had short catalyst lifetime due to its high amount of coke deposited during the process. The regeneration test could enhance the catalyst activity. The gas product consisted of H2 (14.70% and CO2 (24.41%.   Keywords: fusel oil, steam reforming, deactivation, regeneration, hydrogen production.

  11. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  12. Polymercaptanized soybean oil – properties and tribological characterization

    Science.gov (United States)

    Polymercaptanized vegetable oils are produced in industrial scale by the addition of hydrogen sulfide across double bonds or epoxides of vegetable oils, in the presence of UV-light. To date, soybean oil, epoxidized soybean oil, and castor oil has been mercaptanized using such a procedure. Depending ...

  13. A nuclear based hydrogen economy

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Tamm, G.; Kunze, J.

    2005-01-01

    Exhausting demands are being imposed upon the world's ability to extract and deliver oil to the nations demanding fluid fossil fuels. This paper analyzes these issues and concludes that there must be no delay in beginning the development of the 'hydrogen economy' using nuclear energy as the primary energy source to provide both the fluid fuel and electrical power required in the 21st century. Nuclear energy is the only proven technology that is abundant and available worldwide to provide the primary energy needed to produce adequate hydrogen fluid fuel supplies to replace oil. Most importantly, this energy transition can be accomplished in an economical and technically proven manner while lowering greenhouse gas emissions. Furthermore, a similar application of using wind and solar to produce hydrogen instead of electricity for the grid can pave the way for the much larger production scales of nuclear plants producing both electricity and hydrogen. (authors)

  14. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  15. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  16. Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands

    International Nuclear Information System (INIS)

    Nasiri, Masoud; Ramazani Khorshid-Doust, Reza; Bagheri Moghaddam, Nasser

    2013-01-01

    Countries face many problems for the development of renewable energy technologies. However these problems are not the same for different countries. This paper provides insight into the development of Hydrogen and Fuel Cell Technology (HFCT) in Iran (1993–2010), as an alternative for increasing sustainability of energy system in long-term. This is done by applying the Technological Innovation System (TIS) approach and studying the structure and dynamics of seven key processes that affect the formation of HFCT TIS. Thereafter, the pattern of HFCT development in Iran is compared with the Netherlands, using a multi-level perspective. Then, it is shown that under-development and oil-dependency, which are two macro-economic factors at landscape level, can explain the main differences between these countries at regime and niche levels. This means that macro-economic factors cause Iran and the Netherlands to experience different ways for the development of HFCT. - Highlights: • Hydrogen and fuel cell technology development is modeled, using innovation systems. • This technology development in Iran and Netherlands are compared. • The causes of underdevelopment of this technology in Iran are explained

  17. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  18. Pipeline transportation of emerging partially upgraded bitumen

    International Nuclear Information System (INIS)

    Luhning, R.W.; Anand, A.; Blackmore, T.; Lawson, D.S.

    2002-01-01

    The recoverable reserves of Canada's vast oil deposits is estimated to be 335 billion barrels (bbl), most of which are in the Alberta oil sands. Canada was the largest import supplier of crude oil to the United States in 2001, followed by Saudi Arabia. By 2011, the production of oil sands is expected to increase to 50 per cent of Canada's oil, and conventional oil production will decline as more production will be provided by synthetic light oil and bitumen. This paper lists the announced oil sands projects. If all are to proceed, production would reach 3,445,000 bbl per day by 2011. The three main challenges regarding the transportation and marketing of this new production were described. The first is to expand the physical capacity of existing pipelines. The second is the supply of low viscosity diluent (such as natural gas condensate or synthetic diluent) to reduce the viscosity and density of the bitumen as it passes through the pipelines. The current pipeline specifications and procedures to transport partially upgraded products are presented. The final challenge is the projected refinery market constraint to process the bitumen and synthetic light oil into consumer fuel products. These challenges can be addressed by modifying refineries and increasing Canadian access in Petroleum Administration Defense District (PADD) II and IV. The technology for partial upgrading of bitumen to produce pipeline specification oil, reduce diluent requirements and add sales value, is currently under development. The number of existing refineries to potentially accept partially upgraded product is listed. The partially upgraded bitumen will be in demand for additional upgrading to end user products, and new opportunities will be presented as additional pipeline capacity is made available to transport crude to U.S. markets and overseas. The paper describes the following emerging partial upgrading methods: the OrCrude upgrading process, rapid thermal processing, CPJ process for

  19. Dirt-binding particles consisting of hydrogenated castor oil beads constitute a nonirritating alternative for abrasive cleaning of recalcitrant oily skin contamination in a three-step programme of occupational skin protection.

    Science.gov (United States)

    Mahler, V; Erfurt-Berge, C; Schiemann, S; Michael, S; Egloffstein, A; Kuss, O

    2010-04-01

    In occupational fields with exposure to grease, oil, metal particles, coal, black lead or soot, cleansing formulations containing abrasive bodies (e.g. refined walnut shell, corn, wood, plastic or pumice) are used. These may constitute an irritant per se. As an alternative, hydrogenated castor oil (also known as castor wax) beads have been developed as dirt-binding particles. A polar surface contributes to their mechanical cleaning effects in removal of oily grime. Standardized examination of the in vivo effects upon the skin barrier of castor wax beads in comparison with abrasive bodies and pure detergent. Three cleansing preparations - (i) detergent, (ii) detergent containing castor wax beads, (iii) detergent containing walnut shell powder - were each repetitively applied in vivo (four times daily for 3 weeks), mimicking workplace conditions, in 30 healthy volunteers (15 with and 15 without an atopic skin diathesis) and compared vs. (iv) no treatment. The treatment effects upon the skin barrier were monitored by repeated measurements of functional parameters [transepidermal water loss (TEWL), redness] and surface topography. After a 3-week treatment, a significant global treatment effect (P dirt and use of skin protection and skin care measures under real workplace conditions, this component may now be used and examined further in different occupations.

  20. An alternate mathematical approach to recover hydrogen with high permeate purity from gas streams of small-medium level oil refineries

    International Nuclear Information System (INIS)

    Ahsan, M.; Hussain, A.

    2013-01-01

    Gas separation processes play a vital role in many industries like hydrogen recovery, air separation, natural gas dehydration. Membrane based gas separation processes offer a great potential for these industrial applications because of their environmental friendliness, energy efficiency and ease of scale up. Mathematical modeling of membrane based gas separation process can help to predict the performance of such separation processes. In this study, a numerical method is proposed by comparing different numerical techniques which are used to solve model equations of co-current flow. Numerical methods such as Bogacki-Shampine method, Dormand-Prince method, Adams-Bashforth-Moulton method, numerical differentiation formulas, modified Rosenbrock formula of order 2, Trapezoidal rule with free interpolant and Trapezoidal rule with backward difference formula of order 2 are used to solve the system of coupled nonlinear differential equations. This approach is used for the first time in a multicomponent membrane based gas separation process. This technique requires least computational time, improved solution stability and has been validated for the separation of hydrogen from multicomponent gas mixture. This numerical technique helps to predict the concentration of hydrogen in reject (retentate) and permeate streams. The simulation results show good agreement with experimental data. (author)

  1. Purifying oils, cracking oils, catalysts. [British Patent

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-05

    Hydrocarbon oils are refined by treating while substantially in the liquid phase between 200/sup 0/ and 400/sup 0/C with a phosphoric acid catalyst deposited on metallurgical coke, a suitable blast furnace slag, silica gel or other carrier with similar properties, until the objectionable components are converted into innocuous substances by polymerization cracking, isomerization and/or alkylation. By this treatment the bromine number is reduced, the end-point of the A.S.T.M. distillation is increased, the octane number is raised, mercaptans are converted to hydrogen sulphide and olefines, thioethers and thiophenes are converted to mereaptans, and the initial boiling point is lowered. The process is applicable to gasoline, cracked distillate, kerosine and lubricating oil, obtained by distilling or cracking petroleum, shale and hydrogenated oils; and is particularly applicable for stabilizing cracked distillates.

  2. Chemical Composition and Cytotoxicity Evaluation of Essential Oil from Leaves of Casearia Sylvestris, Its Main Compound α-Zingiberene and Derivatives

    Directory of Open Access Journals (Sweden)

    Patricia Sartorelli

    2013-08-01

    Full Text Available Casearia sylvestris (Salicaceae, popularly known as “guaçatonga”, is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ and fully hydrogenated a-zingiberene (THZ derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65mg/mL was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  3. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives.

    Science.gov (United States)

    Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia

    2013-08-08

    Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  4. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  5. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  6. The Physical State of Emulsified Edible Oil Modulates Its in Vitro Digestion.

    Science.gov (United States)

    Guo, Qing; Bellissimo, Nick; Rousseau, Dérick

    2017-10-18

    Emulsified lipid digestion was tailored by manipulating the physical state of dispersed oil droplets in whey protein stabilized oil-in-water (O/W) emulsions, where the oil phase consisted of one of five ratios of soybean oil (SO) and fully hydrogenated soybean oil (FHSO). The evolution in particle size distribution, structural changes during oral, gastric, and intestinal digestion, and free fatty acid release during intestinal digestion were all investigated. Irrespective of the physical state and structure of the dispersed oil/fat, all emulsions were stable against droplet size increases during oral digestion. During gastric digestion, the 50:50 SO:FHSO emulsion was more stable against physical breakdown than any other emulsion. All emulsions underwent flocculation and coalescence or partial coalescence upon intestinal digestion, with the SO emulsion being hydrolyzed the most rapidly. The melting point of all emulsions containing FHSO was above 37 °C, with the presence of solid fat within the dispersed oil droplets greatly limiting lipolysis. Fat crystal polymorph and nanoplatelet size did not play an important role in the rate and extent of lipid digestion. Free fatty acid release modeled by the Weibull distribution function showed that the rate of lipid digestion (κ) decreased with increasing solid fat content, and followed an exponential relationship (R 2 = 0.95). Overall, lipid digestion was heavily altered by the physical state of the dispersed oil phase within O/W emulsions.

  7. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  8. Workshop Papers: Directions and Marketing of Synthetic Crude Oil and Heavy Oil

    International Nuclear Information System (INIS)

    1997-01-01

    This workshop was organized by the National Centre for Upgrading Technology in an effort to bring together experts from the various sectors of the petroleum industry to outline their views of the directions that the synthetic crude oil market will pursue over the next decade and into the 21. century. The motivation for the Workshop came from the many announcements during 1996 and 1997 by several Canadian oil companies about plans to initiate or expand their heavy oil and synthetic crude production. During the same period, at least one US refiner also announced plans to revamp an existing refinery to allow it to process Canadian heavy oil and synthetic crude. The workshop was organized to review these plans and to discuss such questions as (1) Would the selected technologies be the familiar carbon rejection or hydrogen addition methods, or would there be radical advanced technologies? (2) Would the products be fully or partially upgraded? (3) How would they be processed in the refinery? (4) Would there be a market? This collection of papers or viewgraphs comprise all the formal presentations given at the workshop. The final section also contains the edited notes recorded during the question and answer periods. refs., tabs., figs

  9. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  10. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  11. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    Science.gov (United States)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  12. Hydrogen from nuclear power

    International Nuclear Information System (INIS)

    Miller, A.I.

    2006-01-01

    A few years ago, one frequently heard the view that LNG would cap the price of natural gas in North America at around 5 or 6 US$/GJ just as soon as sufficient terminal capacity could be installed. Recent experience with international LNG prices suggests that this is unlikely. While oil and gas prices have proven almost impossible to predict it seems likely that the price of gas will in future broadly track its energy equivalent in oil. Consequently, planning for natural gas at 10 $/GJ would seem prudent. Using steam-methane reforming, this produces hydrogen at 1500 $/t. If CO 2 has to be sequestered, adding another 500 $/t H 2 is a likely additional cost. So is water electrolysis now competitive? Electrolysis would deliver hydrogen at 2000$/t if electricity costs 3.7 US cents/kWh. This is lower than the Alberta Pool average supply price but very close to AECL's estimated cost for power from a new reactor. However, electricity prices in deregulated markets vary hugely and there would be large leverage on the hydrogen price in delivering a mix of electricity (when the Pool price is high) and hydrogen (when it is low). The key to that possibility - as well as other issues of interruptibility - is low-cost cavern storage, similar to that used for natural gas. One long-standing example for hydrogen storage exists in the UK. The nuclear-electrolysis route offers long-term price stability. It also has co-product possibilities if a use can be found for oxygen (equivalent to about 300 $/t H 2 ) and to produce heavy water (provided the scale is at least 100 MW)

  13. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  14. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  15. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  16. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    Science.gov (United States)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  17. Hydrogen & fuel cells: advances in transportation and power

    National Research Council Canada - National Science Library

    Hordeski, Michael F

    2009-01-01

    ... race, it became more of an economics issue since as long as petroleum was available and cheap there was no need to develop a hydrogen technology. Now, we see much more investment in fuel cell technology, hydrogen fueled vehicles and even hydrogen fuel stations. The technology is being pushed by economics as oil prices continue to rise with dwind...

  18. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  19. Inorganic elements and organic compounds degradation studies by gamma irradiation in used lubricating oils

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio

    2008-01-01

    The automotive lubricating oils have partial degradation of organic compounds and addition of undesirable inorganic elements, during its use. These substances classify the used lubricating oils as dangerous and highly toxic. According to global consensus, concerning the environmental conservation, the best is to perform a reuse treatment of these lubricating oils. For this purpose, the uses of an alternative and effective technology have been sought. In this work, the efficacy and technical feasibility of the advanced oxidation process (AOP), by gamma radiation, for used automotive lubricating oil treatment has been studied. Different quantities of hydrogen peroxide and water Milli-Q were added to oil samples. They were submitted to the Cobalt-60 irradiator, type Gammacell, with 100, 200 and 500 kGy absorbed doses. The inorganic analysis by X-ray fluorescence (WDXRF) showed inorganic elements removal, mainly to sulphur, calcium, iron and nickel elements at acceptable levels by environmental protection law for oils reusing. The gas chromatography (GC/MS) analysis showed that the advanced oxidation process promotes the organic compounds degradation. The main identified compounds were tridecane, 2-methyl-naphthalene, and trietilamina-tetramethyl urea, which have important industrial applications. The multivariate analysis, Cluster Analysis, showed that advanced oxidation process application is a viable and promising treatment for used lubricating oil reusing. (author)

  20. Preparing interesting hydrocarbons by hydrogenation, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-02-15

    Now, it has been found that gasoline and a combustible oil are produced by destructive hydrogenation of pastes prepared from solid carbonaceous materials and mixtures of middle oils and the mud in question, by regulating the composition of the products removed as vapors in a way that they contain at least the total new heavy oil formed in the course of the destructive hydrogenation and in using as mixing agent for the new raw material the mud proceeding from the operation and middle oil, having withdrawn from this mud all or part of the solid constituents. This destructive hydrogenation is carried out in a converter where a constant level of liquid is maintained, the vapors escaping at the top of the converter and the mud being drawn off at one or more places from the column of liquid undergoing reaction.

  1. Olive oil and cancer

    OpenAIRE

    Muriana, Francisco J.G.; Abia, Rocío; Bermúdez, Beatriz; Pacheco, Yolanda M.; López, Sergio

    2004-01-01

    In the last years, numerous studies have examined the association of dietary fat and cancer. Polyunsaturated fatty acids (PUFA) from n -6 family display a strong promoting effect, this may be partially due to the especially prone to lipid peroxidation of PUFA that leads to formation of aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. On the contrary, there are growing evidences that monounsaturated oils, like olive oil, may be associated with a decre...

  2. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  3. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  4. Field effect-gas sensor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plihal, M [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorium

    1977-01-01

    MIS diodes with palladium gate can be used to detect and to measure quantitatively the hydrogen concentration in gas mixtures. The dependence of the differential capacitance of these diodes on the partial pressure of hydrogen in nitrogen, oxygen and air is investigated. A theoretical model is developed which gives satisfactory agreement with most of the experimental results.

  5. 21 CFR 172.723 - Epoxidized soybean oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Epoxidized soybean oil. 172.723 Section 172.723... CONSUMPTION Other Specific Usage Additives § 172.723 Epoxidized soybean oil. Epoxidized soybean oil may be... reacting soybean oil in toluene with hydrogen peroxide and formic acid. (b) It meets the following...

  6. Hydrogen solubility in polycrystalline - and nonocrystalline niobium

    International Nuclear Information System (INIS)

    Ishikawa, T.T.; Silva, J.R.G. da

    1981-01-01

    Hydrogen solubility in polycrystalline and monocrystalline niobium was measured in the range 400 0 C to 1000 0 C at one atmosphere hydrogen partial pressure. The experimental technique consists of saturation of the solvent metal with hydrogen, followed by quenching and analysis of the solid solution. It is presented solubility curves versus reciprocal of the absolute doping temperature, associated with their thermodynamical equation. (Author) [pt

  7. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  8. Desulfurization and denitrogenation in copyrolysis of coal with hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-06-01

    Desulfurization and denitrogenation were systematically investigated by analyzing the chars and tars from copyrolysis of Yanzhou high sulfur bituminous coal with coke-oven gas (COG), synthesis gas (SG) and hydrogen. The results indicated that under the conditions of 3MPa, up to 650{degree}C with a heating rate of 10{degree}C/min, the desulfurization of coal pyrolysis with COG, SG and hydrogen were almost equal (about 80%, w%, ad), the order of denitrogenation were: hydrogen (41%) {gt} SG(35%) {gt} COG(30%). The distributions of sulfur in char, oil and gas was very similar under the three reactive gases, i.e., about 205 in char, 105 in tar and 70% (diff.) in gas, respectively. Compared with hydropyrolysis at the same hydrogen partial pressure, the desulfurization of coal pyrolysis with coke oven gas was increased by about 4.5%, while the denitrogenation was decreased by about 3.5%. There is an important desulfurization advantage for hydropyrolysis using COG and SG instead of pure hydrogen. Compared with the copyrolysis of coal with COG, Yanzhou coal pyrolysis under SG can achieve the same level of desufurization but higher denitrogenation. 11 refs., 3 figs., 4 tabs.

  9. The relation between dietary intake of vegetable oils and serum lipids and apolipoprotein levels in central Iran

    Directory of Open Access Journals (Sweden)

    Hossein Khosravi Boroujeni

    2012-01-01

    Full Text Available BACKGROUND: The detrimental effects of partially hydrogenated vegetable oils (PHVOs on apolipoproteins have been reported from several parts of the world. However, little data is available in this regard from the understudied region of the Middle East. The present study therefore tried to evaluate the association between type of vegetable oils and serum lipids and apolipoprotein levels among Iranians. METHODS: In this cross-sectional study, data from 1772 people (795 men and 977 women aged 19-81 years, who were selected with multistage cluster random sampling method from three cities of Isfahan, Najaf Abad and Arak in "Isfahan Healthy Heart Program" (IHHP, was used. To assess participants' usual dietary intakes, a validated food frequency questionnaire was used. Hydrogenated vegetable oil (commonly consumed for cooking in Iran and margarine were considered as the category of PHVOs. Soy, sunflower, corn, olive and canola oils were considered as non-HVOs. After an overnight fasting, serum cholesterol (total, low density lipoprotein (LDL and high density lipoprotein (HDL cholesterol and triglyceride as well as apolipoproteins A and B were measured using standard methods. RESULTS: Participants with the highest intakes of non-HVOs and PHVOs were younger and had lower weight than those with lowest intakes. High consumption of non-HVOs and PHVOs was associated with lower intakes of energy, carbohydrate, dietary fiber, and higher intakes of fruits, vegetables, meat, milk and grains. No overall significant differences were found in serum lipids and apolipoprotein levels across the quartiles of non-HVOs and PHVOs after controlling for potential confounding. CONCLUSION: We did not find any significant associations between hydrogenated or non-hydrogenated vegetable oil and serum lipid and apolipoprotein levels. Thus, further studies are needed in this region to explore this association. Keywords: Vegetable Oils, Cardiovascular Risk Factors, Lipids

  10. Misturas binárias e ternárias de gorduras hidrogenadas e óleo de soja Binary and ternary blends of hydrogenated fats and soybean oil

    Directory of Open Access Journals (Sweden)

    Ilka Sumiyoshi SIMÕES

    1997-12-01

    interactions. Compared with traditional techniques, designed experimentation saves both time and resources, and identify "true"optimums. The designed strategy allows determination of effects of individual variables or interactions between them. The objective of this study was to investigate the interactions that occur in binary and ternary mixtures of two hydrogenated fats (FATGILL PF38 and FATGILL PF42 and soybean oil, by analyzing their physical and chemical properties. A ten-run designed was used, corresponding to 3 individual samples, 3 binary blends and 4 ternary blends. The samples were analysed for fatty acid composition, iodine and saponification values, softening and melting points, kinematic viscosity, hardness and consistency. A special cubic multiple regression model was applied to some analytical data. The results showed that the three components interactions were not significative. Hardness only depended on hydrogenated fat FATGILL PF42. In another way, viscosity was dependent on the three components and melting and softening points were dependent on hydrogenated fats. The negative coefficients for hardness showed an antagonic effect, typical of eutectic interactions of fats. Contour lines were indicated by triangular diagrams. A perfect mixing model was attested for viscosity and softening and melting points.

  11. Effects of Hydrogen-Donating or Metal-Chelating Antioxidants on the Oxidative Stability of Organogels Made of Beeswax and Grapeseed Oil Exposed to Light Irradiation.

    Science.gov (United States)

    Hong, Seungmi; Kim, Mi-Ja; Park, Sungkwon; Lee, Suyong; Lee, Jonggil; Lee, JaeHwan

    2018-04-01

    To enhance the oxidative stability of organogels made from grapeseed oil, the antioxidant effects of sesamol, α-tocopherol, β-carotene, ethylenediaminetetraacetic acid (EDTA), and citric acid were determined in beeswax-based organogels stored under light or in the dark conditions at 25 °C. Without the addition of antioxidants, the organogels rapidly oxidized under light irradiation but not during storage in the dark. Sesamol showed the highest antioxidant activity at concentrations of 10 to 40 ppm, whereas the other compounds exhibited no antioxidant activity at 10 ppm. α-Tocopherol and β-carotene improved the oxidative stability of organogels at concentrations above 40 and 100 ppm, respectively. The addition of sesamol yielded better oxidative stability than the addition of EDTA or a mixture of sesamol and citric acid. Sesamol can improve the oxidative stability of organogels, which could lead to economic benefits for the food industry. Recently, interest in organogels has increased due to their properties of maintaining a solid state at room temperature and composition of trans-free and highly unsaturated fatty acids. However, the addition of antioxidants is necessary due to the high degree of unsaturation in organogels. The results of this study showed that the addition of sesamol significantly enhanced the oxidative stability of organogels under light irradiation. Therefore, the use of sesamol-supplemented organogels could prolong the shelf-life of bakery or meat food products. © 2018 Institute of Food Technologists®.

  12. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  13. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  14. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  15. Method for production of fuel oils and diesel motor oils free of sediments and with unlimited miscibility

    Energy Technology Data Exchange (ETDEWEB)

    1942-01-13

    A method is described for the production of fuel and diesel oils free of sediments and with unlimited miscibility by their recovery from substances poor in hydrogen, such as tars of fossil carbon, from lignite, from peat, from schist oils, from wood, or tar oils of corresponding extracts, poorly hydrogenated carbohydrates and the like, characterized by the fact that these substances are being subjected without mixing with selective solvents to a chemical purification and then immediately subjected to a redistillation and the obtained distillates being cut with hydrogen-rich oils to obtain normal diesel oils.

  16. The car on hydrogen: problems and solutions

    International Nuclear Information System (INIS)

    Koroteev, A.S.; Smolyarov, V.A.

    2004-01-01

    Development of the hydrogen power for transformation of the most power-consumption branch of the industry and transport into new power source - hydrogen as strategy direction for the reduction of pollution of environment and deficit of oil motor fuel is considered. On the basis of comparison of different type of electrochemical generators conclusion on advantages of electrochemical generator with solid polymer membrane was made. Different systems of hydrogen storage in automobile are considered. The system of the gaseous hydrogen storage at high pressure in cistern from composite materials is the most promise [ru

  17. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  18. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  19. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Directory of Open Access Journals (Sweden)

    Kim Hye-Jin

    2011-01-01

    Full Text Available Abstract Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC, compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS or a low trans fat (LC diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR. Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.

  20. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Science.gov (United States)

    2011-01-01

    Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503

  1. The study of hydrogen removal

    International Nuclear Information System (INIS)

    Yasufuku, Katsumi; Fukuhara, Masashi; Izaki, Takashi; Nakase, Takeshi

    1979-01-01

    Two methods of hydrogen removal from the helium coolant for high temperature helium gas-cooled nuclear reactor plants were investigated; the one is the process absorbing hydrogen with titanium sponges and the other is the water removal with zeolite, after hydrogen is converted to water utilizing copper oxide (CuO). The special feature of these two hydrogen removal methods is to treat the very low hydrogen concentration in helium about 0.06 mm Hg (2 Vpm, 41 ata). As for the titanium sponge method, a preliminary experimental facility was constructed to test the temperature dependences of the quantity of equilibrium absorption of hydrogen and the diffusion velocity inside titanium sponge by the batch type constant volume process. The temperature of titanium sponge was 800 deg C, the vacuum was from 2 to 3 x 10 -7 mm Hg and hydrogen partial pressure was from 1.0 to 10 -4 mm Hg in the experiment. The measured hydrogen absorption rate and the diffusion velocity data are presented, and the experimental conditions were evaluated. After the preliminary experiment, a mini-loop was constructed to confirm the temperature and velocity dependences of overall capacity factor, and the overall capacity factor and the regenerating characteristics of titanium sponge were tested. These experimental data are shown, and were evaluated. Concerning the hydrogen removal method utilizing CuO, the experiment was carried out under the following test conditions: the temperature from 400 to 265 deg C, the linear velocity from 50.3 to 16.7 cm/sec and the hydrogen concentration from 12.0 to 1.93 mm/Hg. The hydrogen removal rate and capacity were obtained in this experiment, and the data are presented and explained. (Nakai, Y.)

  2. Heavy oils clean up

    International Nuclear Information System (INIS)

    Collitt, R.

    1997-01-01

    High production, transport and refining costs have long led oil companies to shun heavy crude oils. Advances in the technology of upgrading heavy oils, however, are likely to reduce transport costs and improve the refinery output. Research and development by Venezuela's state oil company, Petroleos de Venezuela (PDVSA), has resulted in a process called Aquaconversion which permits the upgrading of heavy crude oils using a catalyst and the hydrogen from steam. This may be carried out at the wellhead in small low-pressure and relatively inexpensive units. In addition, higher distillate yields of higher value could be produced by revamping the thermal cracking units of refineries to incorporate the new technology. This has generated considerable interest in Venezuela's large extra-heavy crude oil reserves and has led multinational oil companies along with PDVSA to pledge $17 billion to their development. Even at a $2 to $3 per barrel upgrading cost, Venezuela's extra heavy crudes are competitive with lighter oils from other countries. Other major markets for the new technology are likely to be China and Russia, given their own large heavy crude reserves. (UK)

  3. Oil spills

    International Nuclear Information System (INIS)

    Katsouros, M.H.

    1992-01-01

    The world annually transports 1.7 billion tons of oil by sea, and oil spills, often highly concentrated discharges, are increasing from a variety of sources. The author discusses sources of oils spills: natural; marine transportation; offshore oil production; atmospheric sources; municipal industrial wastes and runoff. Other topics include: the fate of the spilled oil; the effects of the oil; the response to oil spills; and prevention of oil spills. 30 refs., 1 fig., 4 tabs

  4. Solar Hybrid Hydrogen Production in Sunbelt and Shipping to Japan as a Liquid fuel of Methanol

    International Nuclear Information System (INIS)

    Tamaura, Y.; Hasegawa, N.; Kaneko, H.; Utamura, M.; Katayama, Y.; Onozaki, M.; Hasuike, H.

    2006-01-01

    Solar hybrid methanol (SH-methanol) production (6000 t/day) from natural gas and coal using H 2 and O 2 gases, which are produced by electrolysis with solar thermal power (Tokyo Tech Beam-down concentration solar power generation with molten salt heat-storage system) at Sunbelt in Australia was studied from the economical view point. This system is the combined system of O 2 -burning coal gasification (C+1/2O 2 =CO), natural gas reforming by O 2 -partial oxidation (CH 4 + 1/2O 2 = CO + 2H 2 ), and water decomposition by electrolysis with solar thermal power (H 2 O = H 2 + 1/2O 2 ). In this production system, the SH-methanol is produced with zero CO 2 emission, shipped to Japan by oil tanker, and can be used as solar hybrid hydrogen in Japan for fuel cell. The solar hybrid methanol production cost of 24 yen/kg (58 US dollars bbl crude oil equivalent, April, 2006) is obtained with the solar power cost of the Tokyo Tech Beam-down solar concentration solar power generation with molten salt heat-storage. This cost is lower than the crude oil (67 US dollars bbl crude oil equivalent, April, 2006) and LPG (72 US dollars/ bbl crude oil equivalent, January, 2006). (authors)

  5. Will Hydrogen be Competitive in Europe without Tax-Favours?

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.

    2010-01-01

    -fossil power-based hydrogen becomes the most cost competitive fuel. General fuel taxes lower the threshold at which the international oil price reverses this competitiveness order. The highest fuel tax rates applied in Europe lowers this threshold oil price considerably, whereas the lowest fuel taxes may...... production, the international oil price, and fuel taxes. At low oil prices, the highest per kilometre costs were found for non-fossil power-based hydrogen, the second highest for natural gas-based hydrogen, and the lowest for conventional fuels. At high oil prices, this ranking is reversed and non...... be insufficient to make hydrogen competitive without tax favours. Alternative adjustments of the EU minimum fuel tax rates with a view to energy efficiency and CO2-emissions are discussed...

  6. Oil Spills

    Science.gov (United States)

    ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ...

  7. Analysis of the kerogen of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Quass, F W; Down, A L

    1939-01-01

    Comments are given on the method developed by F. W. Quass for reducing the amount of mineral matter present in certain coals and oil shales (torbanites). The method consisted of grinding oil shale with water in a porcelain ball mill in the presence of oil. The oil formed a paste with the carbonaceous material, and a greater portion of the mineral matter remained suspended in the water and was separated. Ultimate analyses of the enriched samples indicated that the percent of carbon was higher, the percent of hydrogen and oxygen was lower, and the ratio of carbon to hydrogen and carbon to oxygen increased in the enriched samples.

  8. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  9. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  10. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  11. Conversion of tall oil soap and lignin into liquid fuels; Suovan ja ligniinin jalostaminen polttonesteiksi

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; McKeough, P. [VTT Energy, Espoo (Finland)

    1998-12-31

    The objective of the project was to evaluate the following upgrading processes for producing bio-oils for energy production: catalytic upgrading of kraft black liquor, thermal treatment of tall oil soap, and catalytic hydrotreatment of Milox-lignin. The best-quality product from black liquor was obtained by treating black liquor (20% moisture) at 420 deg C with an ammoniumheptamolybdate (AHM) catalyst under hydrogen for 60 minutes. The product was washed with water (product:water = 1:2) in order to remove the inorganics. The oil product contained 74% of the energy content of the black liquor organics. Regeneration of the AHM catalyst appears technically feasible. Raw tall oil soap cracks at 450 deg C under nitrogen into straight-chain hydrocarbons and naphthalene and phenanthrene derivatives. The best-quality oil product was obtained at a residence time of 60 - 120 minutes. This product contained no fatty acids as impurities. The process concept consists of two steps: heat treatment at 450 deg C and product separation. The energy yield of the hydrocarbon oil product is about 50%. The residue slurry (estimated energy content 20%) and gases (energy content 25%) are led to the recovery boiler. Milox lignin can be hydrotreated at 420 deg C (60 minutes) with a mixture (1:1) of sulphided NiMo- and Cr{sub 2}O{sub 3}-catalysts to a high-quality oil product (42 wt% yield of hexane solubles). The activity of catalysts decreased in order: sulphided NiMo/Al{sub 2}O{sub 3}:Cr{sub 2}O{sub 3} (1:1), sulphided NiMo/zeolite, NiMo/Al{sub 2}O{sub 3}, ATTM (no activity). A decrease in hydrogen partial pressure yielded a lower quality product. (orig.)

  12. Chemical characteristics and fatty acid composition on oils and fats stored in different packaging materials

    Directory of Open Access Journals (Sweden)

    El-Shattory, Y.

    1996-12-01

    Full Text Available Bleached cottonseed oil, partially hydrogenated palm oil and margarine were stored in metal (tin cans and white plastic (polyethylene bottles with air in head space and served at room temperature during the whole period of investigation. The analytical techniques used to analyse these materials has been done at zero time storing (control, after four and seven months of storage. This study showed that storing oils in metal cans have better results than plastic packages specially for bleached cottonseed and hydrogenated oils.

    Aceite de semilla de algodón decolorado, aceite de palma parcialmente hidrogenado y margarina fueron almacenados en latas metálicas (estaño y en botellas de plástico blanco (polietileno con aire en el espacio de cabeza y a temperatura ambiente durante todo el período de investigación. Las técnicas analíticas usadas para analizar estos materiales fueron ensayados a tiempo cero de almacenamiento (control, y después de cuatro y siete meses de almacenamiento. Este estudio mostró que los aceites almacenados en latas metálicas tienen mejores resultados que los envases de plástico, especialmente para los aceites hidrogenados y de semilla de algodón decolorado.

  13. Hydrogen in niobium-titanium alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Cabral, F.A.O.; Florencio, O.

    1985-01-01

    High purity Nb-Ti polycrystalline alloys were doped with hydrogen in equilibrium with the gaseous atmosphere at a pressure of 80 torr. at different temperatures. The partial molar enthalpy and entropy of the hydrogen solution at high dilution, ΔH sup(-) 0 and ΔS sup(-) 0 , were calculated from the equilibrium solubility data. The ΔH sup(-) 0 values are compared with the electron screened proton model of metal-hydrogen solutions. The addition of titanium to niobium has the effect to increase the hydrogen solubility at a given equilibrium temperature. (Author) [pt

  14. Extensive analysis of hydrogen costs

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, D M; Martin, D; Garcia-Alegre, M C; Guinea, D [Consejo Superior de Investigaciones Cientificas, Arganda, Madrid (Spain). Inst. de Automatica Industrial; Agila, W E [Acciona Infraestructuras, Alcobendas, Madrid (Spain). Dept. I+D+i

    2010-07-01

    Cost is a key issue in the spreading of any technology. In this work, the cost of hydrogen is analyzed and determined, for hydrogen obtained by electrolysis. Different contributing partial costs are taken into account to calculate the hydrogen final cost, such as energy and electrolyzers taxes. Energy cost data is taken from official URLs, while electrolyzer costs are obtained from commercial companies. The analysis is accomplished under different hypothesis, and for different countries: Germany, France, Austria, Switzerland, Spain and the Canadian region of Ontario. Finally, the obtained costs are compared to those of the most used fossil fuels, both in the automotive industry (gasoline and diesel) and in the residential sector (butane, coal, town gas and wood), and the possibilities of hydrogen competing against fuels are discussed. According to this work, in the automotive industry, even neglecting subsidies, hydrogen can compete with fossil fuels. Hydrogen can also compete with gaseous domestic fuels. Electrolyzer prices were found to have the highest influence on hydrogen prices. (orig.)

  15. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States). Clean Energy Research Institute

    2008-09-30

    the problem, it became clear that it would be necessary to manufacture a synthetic fuel using the new primary energy sources. Hydrogen is the lightest, the most efficient, the cleanest, and the best fuel for transportation. The resulting energy system was called 'Hydrogen Energy System' or 'Hydrogen Economy', since energy is the locomotive of economy. The author was quite sure this was the best solution to the depletion of fossil fuels and the global environmental problems they are causing, such as global warming, climate change, ozone layer depletion, acid rain, air pollution, oil spills, etc. In order to inform the scientific community about the proposed solution and get their reaction and input, the author organized an international conference named The Hydrogen Economy Miami Energy (THEME) Conference which opened on March 18, 1974 with the participation of more than 700 scientists from some eighty countries. By the end of 1974, the International Association for Hydrogen Energy (IAHE) was established. As a result of the research and development activities around the world, World Hydrogen Energy Conferences, and the publication and dissemination of the research and development results through the International Journal of Hydrogen Energy, foundations of the Hydrogen Energy System were established during the quarter century from 1974 to 2000. Starting with the twenty-first century, the implementation of the Hydrogen Energy System began. Some hydrogen fuel cells became commercially available. All major car companies came up with various models of experimental hydrogen-fuelled cars. In several major cities of the world, hydrogen-fuelled buses started being operated on a trial basis. Airbus and Boeing Companies started programs for building hydrogen fuelled subsonic, supersonic and hypersonic passenger planes. Home appliances running on hydrogen have been built and tested. Hydrogen electric batteries have been commercialized. At CERI, a model study

  16. Hydrogen in air transportation. Proceedings of the international symposium, Stuttgart, West Germany, September 11-14, 1979, and supplement

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Symposium emphasizes future oil prospects, experience with gaseous hydrogen pipeline systems, hydrogen fueled turbofan engines, liquid hydrogen airport requirements, and a liquid hydrogen experimental airline project. Papers were given on the impacts of fossil fuel on the environment, alternate fuels for aircraft, production of hydrogen by coal gasification, production of hydrogen from solar energy and water, handling of hydrogen, liquid hydrogen fueled aircraft, turbofan engine and fuel system for liquid hydrogen use, liquid hydrogen engines, and design concept for LH2 airport facilities.

  17. Coal Liquefaction characteristics and chemical structure of product oil; Sekitan ekika hanno tokusei to seiseibutsu no kagaku kozo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.; Sato, M.; Chiba, T.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Sasaki, M. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Through the hydrogenolysis of Wandoan coal and Tanito Harum coal which are used for the NEDOL process, differences of liquefaction characteristics between them were found. The purpose of this study is to grasp these differences as differences of chemical structures of oil fractions. The compound type analysis was conducted for oil fractions obtained at varied reaction temperature for varied reaction time. Coal liquefaction characteristics of these coals were discussed by relating oil yields and chemical structures. For Tanito Harum coal, yields of gas and oil were considered to be lower than those for Wandoan coal, which reflected that the contents of partially hydrogenated hydroaromatics in oil fraction from the former were lower than those from the latter, and that the remarkable change of composition did not occur with the progress of the reaction. For both the coals, the remarkable changes in the average molecular weight of oil fraction were not observed with the progress of the reaction. While, the content of methane gradually increased with the progress of the reaction, which suggested that oil was gradually dealkylated. 5 figs.

  18. Steam Reforming of Bio-oil Model Compounds

    DEFF Research Database (Denmark)

    Trane, Rasmus; Jensen, Anker Degn; Dahl, Søren

    The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst.......The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst....

  19. MAHRES: Spanish hydrogen geography

    International Nuclear Information System (INIS)

    Bordallo, C.R.; Moreno, E.; Brey, R.; Guerrero, F.M.; Carazo, A.F.

    2004-01-01

    Nowadays, it is common to hear about the hydrogen potential as an energetic vector or the renewable character of fuel cells; thus, the conjunction between both of them as a way to produce electricity, decreasing pollutant emission, is often discussed. However, that renewable character is only guaranteed in the case that the hydrogen used comes from some renewable energy source. Because of that, and due to the Spanish great potential related to natural usable resources like water, sun, wind or biomass, for instance, it seems attractive to make a meticulous study (supported by the statistical Multicriteria Decision Making Method) in order to quantify that potential and place it in defined geographical areas. Moreover, the growth of the electricity demand is always significant, and in this way the energy consumption in Spain is estimated to grow up to 3'4 % above the average during the next ten years. On the other hand, it must be taken into account that the contribution of the oil production will not be enough in the future. The study being carried out will try to elaborate 'The Spanish Renewable Hydrogen Map', that would contemplate, not only the current situation but also predictable scenarios and their implementation. (author)

  20. Will hydrogen be competitive in Europe without tax favours?

    International Nuclear Information System (INIS)

    Hansen, Anders Chr.

    2010-01-01

    Hydrogen is one of the alternative transport fuels expected to replace conventional oil based fuels. The paper finds that it is possible for non-fossil-based hydrogen to become the lowest cost fuel without favourable tax treatment. The order of per kilometre cost depends on performance in hydrogen production, the international oil price, and fuel taxes. At low oil prices, the highest per kilometre costs were found for non-fossil power-based hydrogen, the second highest for natural gas-based hydrogen, and the lowest for conventional fuels. At high oil prices, this ranking is reversed and non-fossil power-based hydrogen becomes the most cost competitive fuel. General fuel taxes lower the threshold at which the international oil price reverses this competitiveness order. The highest fuel tax rates applied in Europe lowers this threshold oil price considerably, whereas the lowest fuel taxes may be insufficient to make hydrogen competitive without tax favours. Alternative adjustments of the EU minimum fuel tax rates with a view to energy efficiency and CO 2 -emissions are discussed.

  1. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  2. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  3. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  4. Refining crude oils and gasolines, etc

    Energy Technology Data Exchange (ETDEWEB)

    1931-11-23

    A process of refining crude oils and gasolines distilled from shale and the like is described, consisting of submitting them to a prewash with soda, an oxidation preferably with hypochlorite solution, a hydrogenation with nascent hydrogen, and finally rectification and neutralization.

  5. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  6. Hydrogen - the fuel of the future

    International Nuclear Information System (INIS)

    Schoenwiesner, R.; Prosnan, J.

    2003-01-01

    Experts see hydrogen as the best possible long-term solution of the transport problem. Hydrogen as the fuel of the future should increase the competition amongst fuel suppliers and at the same time decrease the dependence of developed countries on oil import. Hydrogen can be produced from renewable sources - biomass, water, wind or solar energy. Hydrogen can be used as power source of mobile phones, computers, printers, television sets or even whole buildings. Hydrogen can be used as fuel for traditional combustion engines of cars but the system of mixing with air would have to be adjusted. For instance car producers like BMW or Hyundai have already started tests with hydrogen engines. These would then be much 'cleaner' then the traditional engines using diesel, petrol or natural gas. But rather then using hydrogen in traditional engines the experts consider fuel cells more perspective. According to company Shell Hydrogen first transformers would produce hydrogen using natural gas or other traditional fuels but this should decrease the volume of green-house-gasses by about 50 percent. In the opinion of company Shell the use of fuel cells would represent the most effective way of using minerals. Shell currently operates hydrogen filling stations on Island and in Tokyo, recently has opened a new one in Luxembourg and by the end of this month another one should open in Amsterdam. These plans are connected to a project of city busses run in cooperation of European Union and car producer Daimler Chrysler. (Authors)

  7. Fenologia, brotação de gemas e produção de frutos de macieira em resposta à aplicação de cianamida hidrogenada e óleo mineral Phenology, budbreak and apple fruit production by hydrogen cyanamide and mineral oil application

    Directory of Open Access Journals (Sweden)

    Fernando José Hawerroth

    2009-01-01

    , detecting this effects along of productive season became important. Thus, this study was carried out during 2007/2008 season, in Caçador, Santa Catarina State, Brazil, aiming to evaluate different hydrogen cyanamide and mineral oil combinations on phenology, budbreak and apple fruit production. The experimental design was a randomized block, with six replications, in factorial arrangement (5x2, with five budbreak promoter treatments (1. control; 2. mineral oil 3.2%; 3. mineral oil 3.2% + hydrogen cyanamide 0.20%; 4. mineral oil 3.2% + hydrogen cyanamide 0.39%; 5. mineral oil 3.2% + hydrogen cyanamide 0.59% and two cultivars (Imperial Gala and Suprema's Fuji. The budbreak promoters application anticipated and reduced the blooming period, increasing the blooming overlap between Imperial Gala and Suprema's Fuji cultivars. The budbreak promoters equalized and increased the budbreak in axillary and terminal buds, with the major budbreak level observed in Imperial Gala cultivar with 0.44% of hydrogen cyanamide and 3.2% of mineral oil treatment. The increase of hydrogen cyanamide concentration showed the tendency to decrease the fruit set. It was observed different treatment responses on production and mean fruit weight, probably to be related to fruit production predominance in different frutification structures.

  8. Oil Spills

    Science.gov (United States)

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil ...

  9. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  10. HYDROGENATION OF TOLUENE ON Ni-Co-Mo SUPPORTED ...

    African Journals Online (AJOL)

    HOD

    Keywords: Hydro treating catalysts; Hydrogenation; Toluene conversion; Surface area; Pore diameter. 1. ... decades in refineries to upgrade heavy oil fractions and residue. Metals often ...... "Hydroprocessing of heavy petroleum feeds: Tutorial ...

  11. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  12. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  13. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  14. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  15. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReOx Bimetallic Catalyst.

    Science.gov (United States)

    Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb

    2018-05-09

    High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improving the robustness of a partial least squares (PLS) model based on pure component selectivity analysis and range optimization: Case study for the analysis of an etching solution containing hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngbok [Department of Chemistry, College of Natural Sciences, Hanyang University Haengdang-Dong, Seoul 133-791 (Korea, Republic of); Chung, Hoeil [Department of Chemistry, College of Natural Sciences, Hanyang University Haengdang-Dong, Seoul 133-791 (Korea, Republic of)]. E-mail: hoeil@hanyang.ac.kr; Arnold, Mark A. [Optical Science and Technology Center and Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States)

    2006-07-14

    Pure component selectivity analysis (PCSA) was successfully utilized to enhance the robustness of a partial least squares (PLS) model by examining the selectivity of a given component to other components. The samples used in this study were composed of NH{sub 4}OH, H{sub 2}O{sub 2} and H{sub 2}O, a popular etchant solution in the electronic industry. Corresponding near-infrared (NIR) spectra (9000-7500 cm{sup -1}) were used to build PLS models. The selective determination of H{sub 2}O{sub 2} without influences from NH{sub 4}OH and H{sub 2}O was a key issue since its molecular structure is similar to that of H{sub 2}O and NH{sub 4}OH also has a hydroxyl functional group. The best spectral ranges for the determination of NH{sub 4}OH and H{sub 2}O{sub 2} were found with the use of moving window PLS (MW-PLS) and corresponding selectivity was examined by pure component selectivity analysis. The PLS calibration for NH{sub 4}OH was free from interferences from the other components due to the presence of its unique NH absorption bands. Since the spectral variation from H{sub 2}O{sub 2} was broadly overlapping and much less distinct than that from NH{sub 4}OH, the selectivity and prediction performance for the H{sub 2}O{sub 2} calibration were sensitively varied depending on the spectral ranges and number of factors used. PCSA, based on the comparison between regression vectors from PLS and the net analyte signal (NAS), was an effective method to prevent over-fitting of the H{sub 2}O{sub 2} calibration. A robust H{sub 2}O{sub 2} calibration model with minimal interferences from other components was developed. PCSA should be included as a standard method in PLS calibrations where prediction error only is the usual measure of performance.

  17. Essays on partial retirement

    NARCIS (Netherlands)

    Kantarci, T.

    2012-01-01

    The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial

  18. Superação da dormência de cultivares de mirtileiro em ambiente protegido com cianamida hidrogenada e óleo mineral Dormancy breaking of blueberries cultivars in a protected environment with hydrogen cyanamide and mineral oil

    Directory of Open Access Journals (Sweden)

    Roberto Coletti

    2011-06-01

    Full Text Available O mirtileiro é uma frutífera de clima temperado que necessita de frio no outono/inverno. A insuficiência de frio pode provocar deficiente e desuniforme brotação e floração, com reflexos na produção. A pesquisa realizada na Universidade de Passo Fundo-RS, teve por objetivo estudar a superação da dormência de cultivares de mirtileiro (Georgiagem, Climax e Aliceblue em ambiente protegido, tratadas em 25-07-2007 com cianamida hidrogenada (CH, nas doses de 0,52% e 1,04% (1% e 2% do produto comercial Dormex®, com a adição de 0,5% de óleo mineral (OM, comparando com plantas sem tratamento. As plantas encontravam-se no terceiro ciclo vegetativo e no primeiro de produção. O plantio foi realizado em 2005, no espaçamento de 0,7 m x 2,0 m, com irrigação por gotejamento. De acordo com os resultados obtidos, a aplicação no final de julho de CH + OM concentrou e uniformizou a floração e antecipou a brotação das cvs. Georgiagem e Clímax. A cianamida hidrogenada, nas concentrações de 0,52% e 1,04% (1% e 2% de Dormex®, combinado com 0,5% de óleo mineral, não teve efeito na porcentagem de brotação, mas reduziu a produção, evidenciando efeitos fitotóxicos.Blueberry require chilling hours accumulation in the fall/winter. Insufficient cold accumulation can cause deficient and desuniform sprouting and blooming, with negative consequences on yield. The research conducted in Passo Fundo University, state of Rio Grande do Sul, had the objective of studying the dormancy breaking of blueberries cultivars (Georgiagem, Climax and Aliceblue under greenhouse conditions, submitted to treatments with hydrogen cyanamide (HC at the doses of 0.52% and 1.04% (1% and 2% of the commercial product Dormex®, with the addition of 0.5% of mineral oil (MO, and compare them to a control, without hydrogen cyanamide treatment. Planting was made in December 2005, at a 0.7 m x 2.0 m space, with drip irrigation. The plants were evaluated in the third

  19. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  20. OPEC's optimal crude oil price

    International Nuclear Information System (INIS)

    Horn, Manfred

    2004-01-01

    OPEC decided to stabilise oil prices within a range of 22-28 US Dollar/barrel of crude oil. Such an oil-price-level is far beyond the short and long run marginal costs of oil production, beyond even that in regions with particularly high costs. Nevertheless, OPEC may achieve its goal if world demand for oil increases substantially in the future and oil resources outside the OPEC are not big enough to accordingly increase production. In this case OPEC, which controls about 78% of world oil reserves, has to supply a large share of that demand increase. If we assume OPEC will behave as a partial monopolist on the oil market, which takes into consideration the reaction of the other producers to its own sales strategy, it can reach its price target. Lower prices before 2020 are probable only if the OPEC cartel breaks up. Higher prices are possible if production outside OPEC is inelastic as assumed by some geologists, but they would probably stimulate the production of unconventional oil based on oil sand or coal. Crude oil prices above 30 US Dollar/barrel are therefore probably not sustainable for a long period. (Author)

  1. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  2. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Research of losses of oil oil and mineral oil at transportation and storage

    International Nuclear Information System (INIS)

    Akzhigitov, A.S.

    2005-01-01

    Full text : All way of hydrocarbonic raw material from a mouth of oil wells up to the consumer is accompanied by losses which occur as a result of evaporation, outflow and change of quality. Therefore preservation of quantity and quality of oil and mineral oil during transportation and storages is the major not only economic, but also an ecological problem. The facilitated fractional structure, the big maintenance concern to prominent features of the majority oil from underground salts adjournment Prycaspi in them of the easy hydrocarbons, the raised gas factor in conditions of deposits and presence in structure of gases, except for hydrocarbons and sour a component, - hydrogen sulphide, carbonic gas, etc. The superficial tests stabilized on phase structure oil depending on conditions of preparation for external transport and the subsequent processing can contain this or that quantity of residual hydrogen sulphide, easy hydrocarbons and the lowest sulfhydrates. For change of temperature and external pressure, during transportation and storage the part of easy hydrocarbons and not hydrocarbonic connections (sulfur organic) can be allocated from oil in a gaseous phase and in case of hit in an atmosphere sharply worsens ecology. In the Western Kazakhstan during the years period the temperature of air sometimes reaches up to 40-45 degrees. As is known, at such temperature there is a strengthened warming up of the open surface of oil tanks, that finally leads to increase evaporation easy oil and oil hydrocarbons. With this purpose experiences by quantitative definition evaporation lungs oil and petromixes of the Western Kazakhstan were spent. As a result of the lead works it is found out, that the size of losses at the given fixed temperature depends on evaporation by nature, fractional and hydrocarbonic structures of oil

  4. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  5. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri

    2011-08-01

    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  6. Balancing functional and nutritional quality of oils and fats: Current requirements and future trends

    Directory of Open Access Journals (Sweden)

    Van den Bremt Karen

    2012-03-01

    Full Text Available Oils and fats play an important role in the structure, aroma and stability of a wide variety of food products, as well as in their nutritional properties. For Puratos, a producer of ingredients for bakery, patisserie and chocolate sector, functionality and taste are of utmost importance, but the company also wants to contribute to the balanced diet of consumers. Vegetable oils and fats are used in margarines and releasing agents, vegetable creams, compound chocolate, fillings and emulsifiers. Each application requires an oil or fat with specific physicochemical properties in order to ensure the optimal structure, stability and taste of the end product. Traditionally, (partially hydrogenated vegetable oils deliver important functional characteristics concerning crystallization behaviour, directly linked with the workability, melting properties, stability and mouth feel of the food product. However, due to negative nutritional implications, trans fats are to be replaced by healthier alternatives, preferably not by saturated fats. Consumers – and in some regions, legal instances – demand transfree or hydro-free products while not compromising on taste. Alternative fats and oils will be discussed concerning their functional and nutritional properties.

  7. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su [SK energy Institution of Technology, Daejeon (Korea, Republic of)] (and others)

    2006-02-15

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

  8. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    International Nuclear Information System (INIS)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su

    2006-02-01

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range

  9. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  10. A kinetic study of the electrochemical hydrogenation of ethylene

    International Nuclear Information System (INIS)

    Sedighi, S.; Gardner, C.L.

    2010-01-01

    In this study, we have examined the kinetics of the electrochemical hydrogenation of ethylene in a PEM reactor. While in itself this reaction is of little industrial interest, this reaction can be looked upon as a model reaction for many of the important hydrogenation processes including the refining of heavy oils and the hydrogenation of vegetable oils. To study the electrochemical hydrogenation of ethylene, several experimental techniques have been used including polarization measurements, measurement of the composition of the exit gases and potential step, transient measurements. The results show that the hydrogenation reaction proceeds rapidly and essentially to completion. By fitting the experimental transient data to the results from a zero-dimensional mathematical model of the process, a set of kinetic parameters for the reactions has been obtained that give generally good agreement with the experimental results. It seems probable that similar experimental techniques could be used to study the electrochemical hydrogenation of other unsaturated organic molecules of more industrial significance.

  11. Fatty acid composition of commercially available Iranian edible oils

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2009-08-01

    Full Text Available

    • BACKGROUND: Trans-fatty acids (TFAs, unsaturated fats with at least one double bond in the Trans configuration, are industrially formed in large quantities when vegetable oils are partially hydrogenated. This study was  ndertaken to quantify the amounts of the common fatty acids in several commercial oils marketing in Iran.
    • METHODS: The most consumed commercially available brands of vegetable oils were randomly selected from products available in supermarkets. A 10g sample was drawn from each mixed sample and prepared for fatty cid analysis by gas chromatography (GC.
    • RESULTS: Palmitic acid (C16:0 and stearic acid (C18:0 jointly constituted 21% of total fatty acids in partially hydrogenated vegetable oils (PHVOs. More than one third of total fatty acids in Iranian PHVOs were Trans fats. TFAs constituted almost 1% and 3% of total fatty  cids in Iranian cooking and frying oils. This study  howed higher contents of TFAs in Iranian commercially available hydrogenated vegetable oils. Statistical Package for Social Sciences was used for all statistical analyses.
    • CONCLUSIONS: Although

    • Conversion of tall oil soap and lignin into liquid fuels II; Suovan ja ligniinin jalostaminen polttonesteiksi II

      Energy Technology Data Exchange (ETDEWEB)

      Oasmaa, A.; McKeough, P. [VTT Energy, Espoo (Finland)

      1995-11-01

      The objective of the project was to evaluate the following upgrading processes for producing bio-oils for energy production: catalytic upgrading of kraft black liquor, thermal treatment of tall oil soap, and catalytic hydrotreatment of Milox-lignin. The best-quality product from black liquor was obtained by treating black liquor (20 % moisture) at 420 deg C with an ammoniumheptamolybdate (AHM) catalyst under hydrogen for 60 minutes.The product was washed with water (product:water = 1:2) in order to remove the inorganics. The oil product contained 74 % of the energy content of the black liquor organics. Regeneration of the AHM catalyst appears technically feasible. Raw tall oil soap cracks at 450 degr. C under nitrogen into straight-chain hydrocarbons and naphthalene and phenanthrene derivatives. The best-quality oil product was obtained at a residence time of 60 - 120 minutes. This product contained no fatty acids as impurities. The process concept consists of two steps: heat treatment at 450 degr. C and product separation. The energy yield of the hydrocarbon oil product is about 50 %. The residue slurry (estimated energy content 20 %) and gases (energy content 25 %) are led to the recovery boiler. Milox lignin can be hydrotreated at 420 deg C (60 minutes) with a mixture (1:1) of sulphided NiMo- and Cr{sub 2}O{sub 3}-catalysts to a high-quality oil product (42 wt% yield of hexane solubles). The activity of catalysts decreased in order: sulphided NiMo/Al{sub 2}O{sub 3}:Cr{sub 2}O{sub 3} (1:1), sulphided NiMo/zeolite, NiMo/Al{sub 2}O{sub 3}, ATTM (no activity). A decrease in hydrogen partial pressure yielded a lower quality product. (author)

    • Destructive hydrogenation of carbonaceous material, etc

      Energy Technology Data Exchange (ETDEWEB)

      1938-07-30

      A process is described for the destructive hydrogenation of solid distillable carbonaceous material, consisting of mixing the raw material in a paste by means of a mixture practically free from asphalt, from an oil obtained initially from the products coming out of the reaction space as vapor, particularly heavy oil, and oils obtained by pushing just to the state of pitch or coke the distillation of all the products which come out of the reaction space in any state but the vapor and which restrain some of the raw material intact and part of the products.

    • Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

      Energy Technology Data Exchange (ETDEWEB)

      Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

      2009-07-01

      Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

    • Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

      International Nuclear Information System (INIS)

      Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

      2009-01-01

      Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

    • Distilling oils and bituminous materials

      Energy Technology Data Exchange (ETDEWEB)

      Hutz, H

      1925-08-25

      In the distillation of bituminous materials such as coal, brown coal, peat, or mineral and tar oils or tar, in the presence of hot neutral gases such as hydrogen, illuminating gas, or water-gas, sulfur dioxide is also fed into the above-mentioned materials or into the vapors evolved therefrom. By this treatment better products are obtained.

    • Wind in the future hydrogen economy

      International Nuclear Information System (INIS)

      Andres, P.

      2006-01-01

      Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

    • Susceptibility of rats with altered thyroid status to malignant arrhythmias is primarily related to myocardial levels of connexin-43 and can be partially ameliorated by supplementation with red palm oil

      Czech Academy of Sciences Publication Activity Database

      Bačová, B.; Vinczenzová, C.; Žurmanová, J.; Kašparová, Dita; Knezl, V.; Radošinská, J.; Beňová, T.; Pavelka, Stanislav; Soukup, Tomáš; Tribulová, N.

      2013-01-01

      Roč. 18, Suppl A (2013), 41A-46A ISSN 1205-6626 R&D Projects: GA MŠk(CZ) 7AMB12SK158; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259 Grant - others:Univerzita Karlova(CZ) 628412 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : thyroid hormones * cardiac arrhythmias * connexin-43 * PKC.epsilon * red palm oil Subject RIV: ED - Physiology Impact factor: 0.758, year: 2013

    • Research advancements in palm oil nutrition*

      Science.gov (United States)

      May, Choo Yuen; Nesaretnam, Kalanithi

      2014-01-01

      Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

    • Research advancements in palm oil nutrition.

      Science.gov (United States)

      May, Choo Yuen; Nesaretnam, Kalanithi

      2014-10-01

      Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers ( sn) -2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

  1. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.

    Science.gov (United States)

    Demorest, Zachary L; Coffman, Andrew; Baltes, Nicholas J; Stoddard, Thomas J; Clasen, Benjamin M; Luo, Song; Retterath, Adam; Yabandith, Ann; Gamo, Maria Elena; Bissen, Jeff; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2016-10-13

    The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.

  2. Ethanol pilot project: an energy alternative project for a total or partial substitution of fuel oil in thermoelectric generation plants; Projeto piloto do etanol - PPE: alternativa energetica para substituicao parcial ou total do oleo combustivel em plantas de geracao termoeletrica

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Joao Simoes

    2004-07-01

    The actual stage of technological development is strongly dependent on wide use of petroleum combustibles, in which its trade market defines the rules of socio economical and geopolitics interdependencies. The economic growth has been driven by the 'readily available - cheap energy' stimulus, limiting studies on natural sources of energy (geothermal, solar) and development of renewable ones (bio combustibles). However, economical, financial crisis may change this scenario, and new opportunities for a change in the technological matrix and in technological structure might occur. In Brazil, the 'Agenda 21', especially the PPA - Applied Research Program in the Energetic Area, intend to develop case studies and implement 'pilots projects' to research conventional and renewable sources of energy, bringing to present the value of this project, developed between 1979 and 1980, to evaluate the technical feasibility of ethylic alcohol utilization as a complementary combustible or in a total substitute for the fuel oil in boilers of conventional thermoelectric generation plants. This work presents the performance of one of the Piratininga thermal power plant's boiler, as well as the main data acquired from direct experimentation and the characteristics of this plant, from the use of ethylic alcohol as a substitute of fuel oil. (author)

  3. Ethanol pilot project: an energy alternative project for a total or partial substitution of fuel oil in thermoelectric generation plants; Projeto piloto do etanol - PPE: alternativa energetica para substituicao parcial ou total do oleo combustivel em plantas de geracao termoeletrica

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Joao Simoes

    2004-07-01

    The actual stage of technological development is strongly dependent on wide use of petroleum combustibles, in which its trade market defines the rules of socio economical and geopolitics interdependencies. The economic growth has been driven by the 'readily available - cheap energy' stimulus, limiting studies on natural sources of energy (geothermal, solar) and development of renewable ones (bio combustibles). However, economical, financial crisis may change this scenario, and new opportunities for a change in the technological matrix and in technological structure might occur. In Brazil, the 'Agenda 21', especially the PPA - Applied Research Program in the Energetic Area, intend to develop case studies and implement 'pilots projects' to research conventional and renewable sources of energy, bringing to present the value of this project, developed between 1979 and 1980, to evaluate the technical feasibility of ethylic alcohol utilization as a complementary combustible or in a total substitute for the fuel oil in boilers of conventional thermoelectric generation plants. This work presents the performance of one of the Piratininga thermal power plant's boiler, as well as the main data acquired from direct experimentation and the characteristics of this plant, from the use of ethylic alcohol as a substitute of fuel oil. (author)

  4. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  5. A hydrogen economy and its impact on the world as we know it

    International Nuclear Information System (INIS)

    Blanchette, Stephen

    2008-01-01

    An assortment of governmental, technological, environmental, and economic factors has combined to spur renewed interest in alternatives to petroleum, and especially in hydrogen. While there is no clear consensus on the viability of the technology, governments and corporations alike have vigorous hydrogen research programs. The result is that hydrogen may stand on the verge of becoming a true successor to oil. A transition from oil to hydrogen would alter familiar global economic and political structures in profound ways. The ramifications will influence developed and developing nations, oil importers, and exporters alike. New alliances among governments, corporations, and other groups may challenge existing notions of governance. Although a hydrogen-based economy may be decades away, the vision for it requires near- and mid-term thinking to manage the transition smoothly. Further, hydrogen is only a metaphor; any change from the current oil economy will entail dramatic changes to the global status quo that must be planned for now

  6. Oil risk in oil stocks

    NARCIS (Netherlands)

    Scholtens, Bert; Wang, L

    2008-01-01

    We assess the oil price sensitivities and oil risk premiums of NYSE listed oil & gas firms' returns by using a two-step regression analysis under two different arbitrage pricing models. Thus, we apply the Fama and French (1992) factor returns in a study of oil stocks. In all, we find that the return

  7. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  8. Hydrogen delivery technology rRoadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-11-01

    Hydrogen holds the long-term potential to solve two critical problems related to the energy infrastructure: U.S. dependence on foreign oil and U.S. emissions of greenhouse gases and pollutants. The U.S. transportation sector is almost completely reliant on petroleum, over half of which is currently imported, and tailpipe emissions remain one of the country’s key air quality concerns. Fuel cell vehicles operating on hydrogen produced from domestically available resources – including renewable resources, coal with carbon sequestration, or nuclear energy – would dramatically decrease greenhouse gases and other emissions, and would reduce dependence on oil from politically volatile regions of the world. Clean, domestically-produced hydrogen could also be used to generate electricity in stationary fuel cells at power plants, further extending national energy and environmental benefits.

  9. Improved hydrogen monitoring helps control corrosion

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1985-01-01

    Hydrogen analyzers have long been used for corrosion monitoring in both fossil-fired boilers and nuclear steam generators. The most recent stimulus for hydrogen monitoring has been provided by cracking of recirculation piping in water reactors. This paper examines the Hydran 202N, which represents an adaption of one instrument that has been used to monitor the degradation of transformer oils and fiberoptic cables. The sensing probe consists of a flow-through cell, an isolating membrane, and a miniature hydrogen/air fuel cell. The use of Hydran 202N at several fossil-fired and nuclear plants is described and the fossilplant application related to the effectiveness of water-chemistry control for a 400 psig oil-fired boiler is examined at a refinery

  10. Controlling the frying stability of vegetable oils with tocopherols and phytosterols

    Science.gov (United States)

    Polyunsaturated vegetable oils are usually oxidatively stable for salad oils; however, in high stability applications such as frying, these oils are not resistant to the deteriorative processes of oxidation, hydrolysis and polymerization. To solve this problem in the past, oils were hydrogenated an...

  11. Report on the achievements in the Sunshine Project in fiscal 1992 on research and development of coal energy. Studies on coal liquefying catalysts and a method for analyzing liquefied oil; 1992 nendo sekitan ekikayo shokubai oyobi ekikayu bunsekiho no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1992 on research of coal liquefying catalysts and a method for analyzing liquefied oil. Oxidative regeneration was performed on an Ni-W based waste catalyst used in reforming (hydrogenating) coal liquefied light oil fraction. If the regeneration can be done with low oxygen partial pressure and step-wise temperature rise, the activity after the regeneration can be restored to the level of a new catalyst, with sulfate production being suppressed. Model reaction was discussed by changing the amount of W and Mo carried by alumina. Suppressing the carrying amount can control the hydrogenation activity and the hydrogenating decomposition activity. Comparison was given on compositions of woods and such hydrogenation products as peat and coal. Analysis was performed on composition of the circulating solvent used in the NEDO bituminous coal liquefying PSU. In the initial stage of the operation, the solvent had higher concentrations in the groups of compounds not having alkyl groups, and compounds having the alkyl groups increased in the end of the operation. Discussions were given also on index materials to control the operation of solvent hydrogenating process. Efficient preparation conditions were discussed on an iron sulfide particulate catalyst that utilizes surface reaction of a solid metal while mechanical impact such as vibration is being given. Effects of the catalyst concentration in coal liquefaction were experimented by using oil soluble molybdenum, wherein no change was found in the reaction mechanism. (NEDO)

  12. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  13. French hydrogen markets in 2008-Overview and future prospects

    International Nuclear Information System (INIS)

    Le Duigou, A.; Amalric, Y.; Miguet, M.

    2011-01-01

    This study analyses the current industrial hydrogen markets in France on both a European and international scale, while endeavouring to assess future prospects by 2030. Hydrogen is produced either on purpose or unintentionally as a co-product. Intentional production of hydrogen, generally from natural gas, is classified as captive or merchant hydrogen. France produces about 920,000 metric tons of hydrogen annually. The producer and consumer industries are, in decreasing order of importance are: oil for refinery and petrochemicals, ammonia, iron and steel (co-production), chemicals, and chlorine (co-production). The intentional production of hydrogen from natural gas amounts to less than that co-produced: 40% compared with 60%. The amount of burned hydrogen is about 25% of the total. Production-related carbon dioxide emissions range between 1% and 2% of the total emissions in France. There is an increasing trend in the industrial hydrogen production, essentially due to the oil industry whereas a decline in production is expected in the ammonia industry. The annual production around 2030 should therefore be greater than 1 million metric tons (MMT) per year. If the iron and steel industry were to use hydrogen in every possible situation, it would double the total quantity of hydrogen produced and consumed in France. (authors)

  14. Lavender oil

    Science.gov (United States)

    Lavender oil is an oil made from the flowers of lavender plants. Lavender poisoning can occur when ... further instructions. This is a free and confidential service. All local poison control centers in the United ...

  15. Petroleum Oils

    Science.gov (United States)

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  16. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  17. Hydrogen-powered lawn mower: 14 years of operation

    International Nuclear Information System (INIS)

    Yvon, K.; Lorenzoni, J.-L.

    2006-01-01

    Our hydrogen-powered lawn mower [Yvon K, Lorenzoni J-L. Hydrogen powered lawn mower. Int J Hydrogen Energy 1993; 18, 345-48] has been operated without major interruption during the past 14 years. The commercial model was originally running on gasoline and was adapted to hydrogen by making small adjustments to the carburettor and by installing a hydrogen reservoir containing solid-state metal hydrides. During the evaluation period the only maintenance work was changing the lubricating oil of the engine once a year, and reactivating the metal hydride powder by external heating after an accidental inlet of air into the reservoir. There occurred no technical failure, and there was no safety incident, neither during operation nor during recharging of hydrogen. This demonstrates that a hydrogen-operated device of this type is mature for use by greater public. Cost and marketing issues are discussed. (author)

  18. The cost analysis of hydrogen life cycle in China

    International Nuclear Information System (INIS)

    Yao, Fei; Jia, Yuan; Mao, Zongqiang

    2010-01-01

    Currently, the increasing price of oil and the possibility of global energy crisis demand for substitutive energy to replace fossil energy. Many kinds of renewable energy have been considered, such as hydrogen, solar energy, and wind energy. Many countries including China have their own plan to support the research of hydrogen, because of its premier features. But, at present, the cost of hydrogen energy production, storage and transportation process is higher than that of fossil energy and its commercialization progress is slow. Life cycle cost analysis (LCCA) was used in this paper to evaluate the cost of hydrogen energy throughout the life cycle focused on the stratagem selection, to demonstrate the costs of every step and to discuss their relationship. Finally, the minimum cost program is as follows: natural gas steam reforming - high-pressure hydrogen bottles transported by car to hydrogen filling stations - hydrogen internal-combustion engines. (author)

  19. Hydrogen management in the MiRO refinery

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, G. [Mineraloelraffinerie Oberrhein GmbH und Co. KG, Karlsruhe (Germany)

    2010-12-30

    The importance of hydrogen in refineries has increased over the last 20 years as new regulations affecting gasoline and diesel composition have been implemented throughout Europe and in an environment of increasingly stringent clean fuel regulations, decreasing heavy fuel oil demand and increasing heavy more sour crude supply. In Germany, the introduction of sulphur free gasoline and diesel with less than 10ppm sulphur(Auto Oil Program) and light home fuel oil with less than 50ppm this year were the last link in a long chain of environmental regulations, which had a considerable effect on the hydrogen demand in refineries. In the complex MiRO-refinery with a large FCC- and Coker-Unit for atmospheric residue conversion and a total throughput of more than 15 Mio.T/ a and more than 14 Mio.T/a crude oils of different origin from high sulphur, bituminous crudes to medium, low sulphur crudes for calcinate-production from green coke the only source of hydrogen for a long time was catalytic reforming. The only chance of balancing the hydrogen production and consumption was to improve the existing catalytic reforming and the optimisation of hydrogen recovery from waste or purge streams and the hydrogen network of the refinery. In 2007 a new hydrogen plant via steam reforming of natural gas went on stream. The main reason for this step was the shrinking market for gasoline in the last ten years and the blending of bio-ethanol into the gasoline pool, which released reforming capacities and the demand for octane. Another important issue is the production planning taking into account the potentials of hydrogen production via catalytic and steam reforming and the hydrogen consumption via desulphurisation and the saturation of olefins and (poly-)aromatics of the main product streams, gasoline, diesel and light home fuel oil. (orig.)

  20. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  1. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  2. Successful removable partial dentures.

    Science.gov (United States)

    Lynch, Christopher D

    2012-03-01

    Removable partial dentures (RPDs) remain a mainstay of prosthodontic care for partially dentate patients. Appropriately designed, they can restore masticatory efficiency, improve aesthetics and speech, and help secure overall oral health. However, challenges remain in providing such treatments, including maintaining adequate plaque control, achieving adequate retention, and facilitating patient tolerance. The aim of this paper is to review the successful provision of RPDs. Removable partial dentures are a successful form of treatment for replacing missing teeth, and can be successfully provided with appropriate design and fabrication concepts in mind.

  3. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  4. Absorption of hydrogen by vanadium-palladium alloys

    International Nuclear Information System (INIS)

    Artman, D.; Lynch, J.F.; Flanagan, T.B.

    1976-01-01

    Pressure composition isotherms (273-373 K) have been determined for the absorption of hydrogen by a series of six palladium alloys (f.c.c) in the composition range from 1 to 8 at.% vanadium. At a given hydrogen content, the equilibrium hydrogen pressure progressively increases with vanadium content. Thermodynamic parameters for the absorption of hydrogen are reported at infinite dilution of hydrogen and for the formation of the nonstoichiometric hydride from the hydrogen-saturated alloy. The relative, partial molar enthalpy of solution of hydrogen at infinite dilution increases slightly with vanadium content. The presence of vanadium, which absorbs hydrogen itself in its normal b.c.c. structure, greatly inhibits the ability of palladium to absorb hydrogen. For example, the isobaric solubility of hydrogen (1 atm, 298K) decreases from H/Pd=0.7 (palladium) to 0.024 (V(6%)-Pd). The lattice expansion due to the presence of interstitial hydrogen has been determined by X-ray diffraction. From these data it can be concluded that the formation of two non-stoichiometric hydride phases does not occur at vanadium contents greater that 5 at.% (298 K). Electrical resistance has been measured as a function of the hydrogen content of the alloys. The electrical resistance increases more markedly with hydrogen content for these alloys than for any of the palladium alloys previously examined. (Auth.)

  5. Hydrogen-related effects in crystalline semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H + in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H 2 . Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs

  6. Abdominal obesity and type 2 diabetes in Asian Indians: dietary strategies including edible oils, cooking practices and sugar intake.

    Science.gov (United States)

    Gulati, S; Misra, A

    2017-07-01

    Obesity and type 2 diabetes are increasing in rural and urban regions of South Asia including India. Pattern of fat deposition in abdomen, ectopic fat deposition (liver, pancreas) and also low lean mass are contributory to early-onset insulin resistance, dysmetabolic state and diabetes in Asian Indians. These metabolic perturbations are further exacerbated by changing lifestyle, diet urbanization, and mechanization. Important dietary imbalances include increasing use of oils containing high amount of trans fatty acids and saturated fats (partially hydrogenated vegetable oil, palmolein oil) use of deep frying method and reheating of oils for cooking, high intake of saturated fats, sugar and refined carbohydrates, low intake of protein, fiber and increasing intake of processed foods. Although dietary intervention trials are few; the data show that improving quality of carbohydrates (more complex carbohydrates), improving fat quality (more monounsaturated fatty acids and omega 3 polyunsaturated fatty acids) and increasing protein intake could improve blood glucose, serum insulin, lipids, inflammatory markers and hepatic fat, but more studies are needed. Finally, regulatory framework must be tightened to impose taxes on sugar-sweetened beverages, oils such as palmolein, and dietary fats and limit trans fats.

  7. Computations between metallocalix(4)arene host and a series of four oil-based fuel pollutant guests

    International Nuclear Information System (INIS)

    Pathak, D.A.; Street, N.C.

    2006-01-01

    Calculations using PM3 and mechanics methods on metallocalix(4)arene hosts (1-10) and substituted dibenzothiophene guests (A-D), which are generally known as oil-based fuel pollutants, show that host-guest formation is energetically favored. Calculations have been carried out for both 1/1 and 1/4 ratios of host/guest. There is no direct bonding between the metal center of the host and the sulfur of the guest in the host-guest complex. Sterically hundered dibenzothiophene guests show similar energies to the unhindered analogs. For calix(4)arenas (5-10) in partial cone conformations and having hydrogen rather than p-tert-butyl groups on the wide rim, host-guest formation occurs within the narrow rim rather than the wide rim. Host-guest association appears to occur via Pie-Pie interactions between host and guest phenyl groups rather than via metal-sulfur bonding. The study has importance especially in oil refining to obtain environmentally safe fuel oils and help supramolecular chemists in designing and synthesizing more sophisticated host molecules for the removal of sulfur from crude oil / refinery oil. (author)

  8. [Modern conceptions about the possible impact of palm oil on human health].

    Science.gov (United States)

    Medvedev, O S; Medvedeva, N A

    2016-01-01

    Review of the scientific literature on the evidence of the relationship between palm oil (PO) and its components and adverse effects on human health, on the mechanisms of cholesterol control and risks for development of cardiovascular diseases. PO is solid or semisolid at room temperature and often is used as a natural substitute for partially hydrogenated vegetable oils containing trans fatty acids which increase risks of hypercholesteremia. PO contains both saturated and unsaturated fats as well as substances with antioxidant activity. Taking into account the lipid theory of atherosclerosis pathogenesis, and sn-2 hypothesis, PO was compared with other vegetable oils, like olive, sunflower or soybean oils, and did not show great differences in changes of LDL, HDL or total cholesterol levels. Comparison of diets rich in PO with diets rich in trans fatty acids shows improvement of lipid profiles in groups with PO, and serves as a basis for replacement of trans fatty acids in food with PO and its fractions. In addition to fatty acids content, PO contains several phytonutrients including 4 forms of tocopherols and tocotrienols, carotenoids, sterols, and some others. Most of these compounds are considered beneficial for human health, mainly on account of their antioxidant activity. It is concluded that PO is safe component of food, when we pay attention to the rather high content of saturated fats in it.

  9. HYDROGEN INDUCED CRACKING IN MICROALLOYED STEELS

    Directory of Open Access Journals (Sweden)

    Duberney Hincapie-Ladino

    2015-03-01

    Full Text Available The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2 S and carbon dioxide (CO2 , requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2 S, particularly, when related to the Hydrogen Induced Cracking (HIC phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2 S presence effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

  10. Partial knee replacement - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  11. Purifying mineral oils

    Energy Technology Data Exchange (ETDEWEB)

    Hood, J J

    1919-02-24

    A natural or an uncracked oil is desulfurized by vaporizing it and bringing the vapor into contact with granular alumina or ignited magnesite at a temperature below the boiling-point of sulfur. The alumina may be prepared from the trihydrate or bauxite. Sulfuretted hydrogen resulting from the dissociation of the sulfur compounds may be absorbed in oxide of iron, Weldon mud, or the like. Specifications 5,208/83, 14,405/92, 7,272/14, and 109,077 are referred to.

  12. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  13. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra

  14. Risks incurred by hydrogen escaping from containers and conduits

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Grilliot, E.S. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  15. New concepts in hydrogen production in Iceland

    International Nuclear Information System (INIS)

    Arnason, B.; Sigfusson, T.I.; Jonsson, V.K.

    1993-01-01

    The paper presents some new concepts of hydrogen production in Iceland for domestic use and export. A brief overview of the Icelandic energy consumption and available resources is given. The cost of producing hydrogen by electrolysis is calculated for various alternatives such as plant size, load factors and electricity cost. Comparison is made between the total cost of liquid hydrogen delivered to Europe from Iceland and from Northern America, showing that liquid hydrogen delivered to Europe from Iceland would be 9% less expensive. This assumes conventional technology. New technologies are suggested in the paper and different scenarios for geothermally assisted hydrogen production and liquefaction are discussed. It is estimated that the use of geothermal steam would lead to 19% lower hydrogen gas production costs. By analysing the Icelandic fishing fleet, a very large consumer of imported fuel, it is argued that a transition of fuel technology from oil to hydrogen may be a feasible future option for Iceland and a testing ground for changing fuel technology. (Author)

  16. Volumetric, acoustic and viscometric behaviour of dipotassium hydrogen phosphate and disodium hydrogen phosphate in aqueous solution of N-acetyl glycine at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Mittal, Heena

    2016-01-01

    Highlights: • Densities, speeds of sound, viscosities of phosphate salts in aqueous N-acetyl glycine. • Large values of partial molar volume for dipotassium hydrogen phosphate. • Partial molar volume of transfer are positive for phosphate salts. • Positive B-coefficient values indicate ion–solvent interactions. - Abstract: Densities, speeds of sound and viscosities of dipotassium hydrogen phosphate (DPHP) and disodium hydrogen phosphate (DSHP) in aqueous solutions of N-acetyl glycine (AcGly) are reported at different temperatures. Densities and speeds of sound have been used to calculate apparent molar volume, apparent molar isentropic compression, partial molar volume, partial molar isentropic compression, partial molar volume of transfer, partial molar isentropic compression of transfer and partial molar expansivity. Pair and triplet interaction coefficients have also been calculated. Experimental viscosities have been used to determine B-coefficients. Further pair and triplet interaction coefficients have also been calculated. The results are discussed in terms of solute–solvent interactions.

  17. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  18. Methods and apparatuses for deoxygenating pyrolysis oil

    Science.gov (United States)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    2017-09-12

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactor effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.

  19. Oil price and the dollar

    International Nuclear Information System (INIS)

    Coudert, V.; Mignon, V.; Penot, A.

    2007-01-01

    Oil prices and the United States (US) dollar exchange rate are driving the evolution of the world economy. This paper investigated long-term relationships between oil prices and the US effective exchange rate. An empirical study was performed on oil prices and the dollar real effective exchange rate between 1974 to 2004. The impact of the dollar exchange rate was also explored, and the effects of oil prices on supply and demand were considered. A dynamic partial equilibrium framework study was evaluated in order to compare how other countries used revenues from oil exports in dollars. The study showed that both variables had similar evolutions when price fluctuations were low. Strong increases in the dollar were associated with lower oil prices. However, adjustment speeds of the dollar real effective exchange rate was slow. Co-integration and causality tests showed that oil prices influenced the exchange rate, and that the link between the 2 variables was transmitted through the country's net foreign asset position. It was concluded that higher oil prices improved US net foreign asset position in relation to other countries, and had a positive impact on dollar appreciation. 24 refs., 6 tabs., 1 fig

  20. Neutron Backscattered Technique for Quantification of Oil Palm Fruit Oil Content

    International Nuclear Information System (INIS)

    Ismail Mustapha; Samihah Mustaffha; Md Fakarudin Ab Rahman; Roslan Yahya; Lahasen Norman Shah Dahing; Nor Paiza Mohd Hasan; Jaafar Abdullah

    2013-01-01

    Non-destructive and real time method becomes a well-liked method to researchers in the oil palm industry since 2000. This method has the ability to detect oil content in order to increase the production of oil palm for better profit. Hence, this research investigates the potential of neutron source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical formula C 55 H 96 O 6 . For this paper, oil palm loose fruit was being used and divided into three groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each group were collected from a private plantation in Malaysia. Each sample was scanned using neutron backscattered technique. The higher neutron count, the more hydrogen content, and the more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r 2 =0.98. This research proves that neutron backscattered technique can be used as a non-destructive and real time grading system for palm oil. (author)