WorldWideScience

Sample records for partially distinct neural

  1. The neural signatures of distinct psychopathic traits.

    Science.gov (United States)

    Carré, Justin M; Hyde, Luke W; Neumann, Craig S; Viding, Essi; Hariri, Ahmad R

    2013-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy.

  2. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  3. Neural correlates of the food/non-food visual distinction.

    Science.gov (United States)

    Tsourides, Kleovoulos; Shariat, Shahriar; Nejati, Hossein; Gandhi, Tapan K; Cardinaux, Annie; Simons, Christopher T; Cheung, Ngai-Man; Pavlovic, Vladimir; Sinha, Pawan

    2016-03-01

    An evolutionarily ancient skill we possess is the ability to distinguish between food and non-food. Our goal here is to identify the neural correlates of visually driven 'edible-inedible' perceptual distinction. We also investigate correlates of the finer-grained likability assessment. Our stimuli depicted food or non-food items with sub-classes of appealing or unappealing exemplars. Using data-classification techniques drawn from machine-learning, as well as evoked-response analyses, we sought to determine whether these four classes of stimuli could be distinguished based on the patterns of brain activity they elicited. Subjects viewed 200 images while in a MEG scanner. Our analyses yielded two successes and a surprising failure. The food/non-food distinction had a robust neural counterpart and emerged as early as 85 ms post-stimulus onset. The likable/non-likable distinction too was evident in the neural signals when food and non-food stimuli were grouped together, or when only the non-food stimuli were included in the analyses. However, we were unable to identify any neural correlates of this distinction when limiting the analyses only to food stimuli. Taken together, these positive and negative results further our understanding of the substrates of a set of ecologically important judgments and have clinical implications for conditions like eating-disorders and anhedonia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Distinct pathways of neural coupling for different basic emotions.

    Science.gov (United States)

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  5. Constructing general partial differential equations using polynomial and neural networks.

    Science.gov (United States)

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Speech reconstruction using a deep partially supervised neural network.

    Science.gov (United States)

    McLoughlin, Ian; Li, Jingjie; Song, Yan; Sharifzadeh, Hamid R

    2017-08-01

    Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more recently, restricted Boltzmann machine arrays; however, deep neural network (DNN)-based systems have been hampered by the limited amount of training data available from individual voice-loss patients. The authors propose a novel DNN structure that allows a partially supervised training approach on spectral features from smaller data sets, yielding very good results compared with the current state-of-the-art.

  7. Forged Signature Distinction Using Convolutional Neural Network for Feature Extraction

    Directory of Open Access Journals (Sweden)

    Seungsoo Nam

    2018-01-01

    Full Text Available This paper proposes a dynamic verification scheme for finger-drawn signatures in smartphones. As a dynamic feature, the movement of a smartphone is recorded with accelerometer sensors in the smartphone, in addition to the moving coordinates of the signature. To extract high-level longitudinal and topological features, the proposed scheme uses a convolution neural network (CNN for feature extraction, and not as a conventional classifier. We assume that a CNN trained with forged signatures can extract effective features (called S-vector, which are common in forging activities such as hesitation and delay before drawing the complicated part. The proposed scheme also exploits an autoencoder (AE as a classifier, and the S-vector is used as the input vector to the AE. An AE has high accuracy for the one-class distinction problem such as signature verification, and is also greatly dependent on the accuracy of input data. S-vector is valuable as the input of AE, and, consequently, could lead to improved verification accuracy especially for distinguishing forged signatures. Compared to the previous work, i.e., the MLP-based finger-drawn signature verification scheme, the proposed scheme decreases the equal error rate by 13.7%, specifically, from 18.1% to 4.4%, for discriminating forged signatures.

  8. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    Science.gov (United States)

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  9. Distinct neural mechanisms for body form and body motion discriminations

    NARCIS (Netherlands)

    Vangeneugden, Joris; Peelen, Marius V; Tadin, Duje; Battelli, Lorella

    2014-01-01

    Actions can be understood based on form cues (e.g., static body posture) as well as motion cues (e.g., gait patterns). A fundamental debate centers on the question of whether the functional and neural mechanisms processing these two types of cues are dissociable. Here, using fMRI, psychophysics, and

  10. Musical and verbal semantic memory: two distinct neural networks?

    Science.gov (United States)

    Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H

    2010-02-01

    Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  11. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  12. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    Science.gov (United States)

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  13. Distinctive and common neural underpinnings of major depression, social anxiety, and their comorbidity.

    Science.gov (United States)

    Hamilton, J Paul; Chen, Michael C; Waugh, Christian E; Joormann, Jutta; Gotlib, Ian H

    2015-04-01

    Assessing neural commonalities and differences among depression, anxiety and their comorbidity is critical in developing a more integrative clinical neuroscience and in evaluating currently debated categorical vs dimensional approaches to psychiatric classification. Therefore, in this study, we sought to identify patterns of anomalous neural responding to criticism and praise that are specific to and common among major depressive disorder (MDD), social anxiety disorder (SAD) and comorbid MDD-SAD. Adult females who met formal diagnostic criteria for MDD, SAD or MDD-SAD and psychiatrically healthy participants underwent functional magnetic resonance imaging as they listened to statements directing praise or criticism at them or at another person. MDD groups showed reduced responding to praise across a distributed cortical network, an effect potentially mediated by thalamic nuclei undergirding arousal-mediated attention. SAD groups showed heightened anterior insula and decreased default-mode network response to criticism. The MDD-SAD group uniquely showed reduced responding to praise in the dorsal anterior cingulate cortex. Finally, all groups with psychopathology showed heightened response to criticism in a region of the superior frontal gyrus implicated in attentional gating. The present results suggest novel neural models of anhedonia in MDD, vigilance-withdrawal behaviors in SAD, and poorer outcome in MDD-SAD. Importantly, in identifying unique and common neural substrates of MDD and SAD, these results support a formulation in which common neural components represent general risk factors for psychopathology that, due to factors that are present at illness onset, lead to distinct forms of psychopathology with unique neural signatures. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Yu, Rong [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Jin, Shao-Bo [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Han, Liwei [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Lendahl, Urban [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Zhao, Jian, E-mail: Jian.Zhao@ki.se [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Nistér, Monica [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden)

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  15. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    International Nuclear Information System (INIS)

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-01-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  16. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    Science.gov (United States)

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  17. Distinct Neural Activity Associated with Focused-Attention Meditation and Loving-Kindness Meditation

    Science.gov (United States)

    Lee, Tatia M. C.; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C. Y.; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C. H.

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing. PMID:22905090

  18. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory

    Directory of Open Access Journals (Sweden)

    Kara J Blacker

    2016-11-01

    Full Text Available Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM: spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations versus relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations versus relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.

  19. Semantic and episodic memory of music are subserved by distinct neural networks.

    Science.gov (United States)

    Platel, Hervé; Baron, Jean-Claude; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis

    2003-09-01

    Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. However, these results were essentially obtained with verbal and visuospatial material. The aim of this work was to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. To study musical semantic memory, we designed a task in which the instruction was to judge whether or not the musical extract was felt as "familiar." To study musical episodic memory, we constructed two delayed recognition tasks, one containing only familiar and the other only nonfamiliar items. For each recognition task, half of the extracts (targets) were presented in the prior semantic task. The episodic and semantic tasks were to be contrasted by a comparison to two perceptive control tasks and to one another. Cerebral blood flow was assessed by means of the oxygen-15-labeled water injection method, using high-resolution PET. Distinct patterns of activations were found. First, regarding the episodic memory condition, bilateral activations of the middle and superior frontal gyri and precuneus (more prominent on the right side) were observed. Second, the semantic memory condition disclosed extensive activations in the medial and orbital frontal cortex bilaterally, the left angular gyrus, and predominantly the left anterior part of the middle temporal gyri. The findings from this study are discussed in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.

  20. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    Science.gov (United States)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  1. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  2. Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls.

    Science.gov (United States)

    Leininger, Elizabeth C; Kelley, Darcy B

    2013-04-07

    Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.

  3. Common and distinct neural mechanisms of attentional switching and response conflict.

    Science.gov (United States)

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    Science.gov (United States)

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  5. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  6. Passivation and control of partially known SISO nonlinear systems via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    Reyes-Reyes J.

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  7. Partial state feedback control of chaotic neural network and its application

    International Nuclear Information System (INIS)

    He Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2007-01-01

    The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition

  8. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.

    Science.gov (United States)

    Dupan, Sigrid S G; Stegeman, Dick F; Maas, Huub

    2018-06-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks. Twelve participants performed single finger flexion presses at 20% of maximum voluntary contraction, while simultaneously the electromyographic activity of several intrinsic and extrinsic muscles associated with all four fingers was recorded using 8 electrode pairs in the hand and two 30-electrode grids on the lower arm. The forces exerted by each of the fingers, in both flexion and extension direction, were recorded with individual force sensors. This study shows distinct activation patterns in intrinsic and extrinsic hand muscles. Intrinsic muscles exhibited individuation, where the agonistic and antagonistic muscles associated with the instructed fingers showed the highest activation. This activation in both agonistic and antagonistic muscles appears to facilitate finger stabilisation during the isometric force task. Extrinsic muscles show an activation independent from instructed finger in both agonistic and antagonistic muscles, which appears to be associated with stabilisation of the wrist, with an additional finger-dependent modulation only present in the agonistic extrinsic muscles. These results indicate distinct muscle patterns in intrinsic and extrinsic hand muscles during single finger isometric force pressing. We conclude that the finger specific activation of intrinsic muscles is not sufficient to fully counteract enslaving caused by the broad activation of the extrinsic muscles. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Distinct and Shared Endophenotypes of Neural Substrates in Bipolar and Major Depressive Disorders.

    Directory of Open Access Journals (Sweden)

    Toshio Matsubara

    Full Text Available Little is known about disorder-specific biomarkers of bipolar disorder (BD and major depressive disorder (MDD. Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs of individuals with BD, MDD group (17 patients with MDD, 17 FDRs of individuals with MDD, and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT, respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM volume of the anterior cingulate cortex (ACC; p = 0.01 and left insula (p < 0.01. FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01, and patients with BD showed significantly smaller ACC (p < 0.01 and left insular GM volume (p < 0.01 than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05. Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.

  10. Partial information decomposition as a unified approach to the specification of neural goal functions.

    Science.gov (United States)

    Wibral, Michael; Priesemann, Viola; Kay, Jim W; Lizier, Joseph T; Phillips, William A

    2017-03-01

    In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a 'goal function', of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. 'edge filtering', 'working memory'). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannon's mutual information), we argue that neural information processing crucially depends on the combination of multiple inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called 'coding with synergy', which builds on combining external input and prior knowledge in a synergistic manner. We suggest that

  11. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  12. Decision Making under Uncertainty: A Neural Model based on Partially Observable Markov Decision Processes

    Directory of Open Access Journals (Sweden)

    Rajesh P N Rao

    2010-11-01

    Full Text Available A fundamental problem faced by animals is learning to select actions based on noisy sensory information and incomplete knowledge of the world. It has been suggested that the brain engages in Bayesian inference during perception but how such probabilistic representations are used to select actions has remained unclear. Here we propose a neural model of action selection and decision making based on the theory of partially observable Markov decision processes (POMDPs. Actions are selected based not on a single optimal estimate of state but on the posterior distribution over states (the belief state. We show how such a model provides a unified framework for explaining experimental results in decision making that involve both information gathering and overt actions. The model utilizes temporal difference (TD learning for maximizing expected reward. The resulting neural architecture posits an active role for the neocortex in belief computation while ascribing a role to the basal ganglia in belief representation, value computation, and action selection. When applied to the random dots motion discrimination task, model neurons representing belief exhibit responses similar to those of LIP neurons in primate neocortex. The appropriate threshold for switching from information gathering to overt actions emerges naturally during reward maximization. Additionally, the time course of reward prediction error in the model shares similarities with dopaminergic responses in the basal ganglia during the random dots task. For tasks with a deadline, the model learns a decision making strategy that changes with elapsed time, predicting a collapsing decision threshold consistent with some experimental studies. The model provides a new framework for understanding neural decision making and suggests an important role for interactions between the neocortex and the basal ganglia in learning the mapping between probabilistic sensory representations and actions that maximize

  13. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  14. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  15. Calsyntenins Are Expressed in a Dynamic and Partially Overlapping Manner during Neural Development

    Directory of Open Access Journals (Sweden)

    Gemma de Ramon Francàs

    2017-08-01

    Full Text Available Calsyntenins form a family of linker proteins between distinct populations of vesicles and kinesin motors for axonal transport. They were implicated in synapse formation and synaptic plasticity by findings in worms, mice and humans. These findings were in accordance with the postsynaptic localization of the Calsyntenins in the adult brain. However, they also affect the formation of neural circuits, as loss of Calsyntenin-1 (Clstn1 was shown to interfere with axonal branching and axon guidance. Despite the fact that Calsyntenins were discovered originally in embryonic chicken motoneurons, their distribution in the developing nervous system has not been analyzed in detail so far. Here, we summarize our analysis of the temporal and spatial expression patterns of the cargo-docking proteins Clstn1, Clstn2 and Clstn3 during neural development by comparing the dynamic distribution of their mRNAs by in situ hybridization in the spinal cord, the cerebellum, the retina and the tectum, as well as in the dorsal root ganglia (DRG.

  16. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    Science.gov (United States)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  17. Visuospatial planning in unmedicated major depressive disorder and bipolar disorder : distinct and common neural correlates

    NARCIS (Netherlands)

    Rive, M. M.; Koeter, M. W. J.; Veltman, D. J.; Schene, A. H.; Ruhe, H. G.

    Background Cognitive impairments are an important feature of both remitted and depressed major depressive disorder (MDD) and bipolar disorder (BD). In particular, deficits in executive functioning may hamper everyday functioning. Identifying the neural substrates of impaired executive functioning

  18. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Neural bases of imitation and pantomime in acute stroke patients: distinct streams for praxis.

    Science.gov (United States)

    Hoeren, Markus; Kümmerer, Dorothee; Bormann, Tobias; Beume, Lena; Ludwig, Vera M; Vry, Magnus-Sebastian; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius

    2014-10-01

    Apraxia is a cognitive disorder of skilled movements that characteristically affects the ability to imitate meaningless gestures, or to pantomime the use of tools. Despite substantial research, the neural underpinnings of imitation and pantomime have remained debated. An influential model states that higher motor functions are supported by different processing streams. A dorso-dorsal stream may mediate movements based on physical object properties, like reaching or grasping, whereas skilled tool use or pantomime rely on action representations stored within a ventro-dorsal stream. However, given variable results of past studies, the role of the two streams for imitation of meaningless gestures has remained uncertain, and the importance of the ventro-dorsal stream for pantomime of tool use has been questioned. To clarify the involvement of ventral and dorsal streams in imitation and pantomime, we performed voxel-based lesion-symptom mapping in a sample of 96 consecutive left-hemisphere stroke patients (mean age ± SD, 63.4 ± 14.8 years, 56 male). Patients were examined in the acute phase after ischaemic stroke (after a mean of 5.3, maximum 10 days) to avoid interference of brain reorganization with a reliable lesion-symptom mapping as best as possible. Patients were asked to imitate 20 meaningless hand and finger postures, and to pantomime the use of 14 common tools depicted as line drawings. Following the distinction between movement engrams and action semantics, pantomime errors were characterized as either movement or content errors, respectively. Whereas movement errors referred to incorrect spatio-temporal features of overall recognizable movements, content errors reflected an inability to associate tools with their prototypical actions. Both imitation and pantomime deficits were associated with lesions within the lateral occipitotemporal cortex, posterior inferior parietal lobule, posterior intraparietal sulcus and superior parietal lobule. However, the areas

  20. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  1. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    Science.gov (United States)

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing

    NARCIS (Netherlands)

    Dupan, Sigrid S.G.; Stegeman, Dick F.; Maas, Huub

    2018-01-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and

  3. Neural Evidence for a Distinction between Short-Term Memory and the Focus of Attention

    Science.gov (United States)

    Lewis-Peacock, Jarrod A.; Drysdale, Andrew T.; Oberauer, Klaus; Postle, Bradley R.

    2012-01-01

    It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay period activity may, in fact, reflect the focus of attention, rather than STM. We…

  4. The common and distinct neural bases of affect labeling and reappraisal in healthy adults

    Directory of Open Access Journals (Sweden)

    Lisa Jane Burklund

    2014-03-01

    Full Text Available Emotion regulation is commonly characterized as involving conscious and intentional attempts to change felt emotions, such as, for example, through reappraisal whereby one intentionally decreases the intensity of one’s emotional response to a particular stimulus or situation by reinterpreting it in a less threatening way. However, there is growing evidence and appreciation that some types of emotion regulation are unintentional or incidental, meaning that affective modulation is a consequence but not an explicit goal. For example, affect labeling involves simply verbally labeling the emotional content of an external stimulus or one’s own affective responses without an intentional goal of altering emotional responses, yet has been associated with reduced affective responses at the neural and experiential levels. Although both intentional and incidental emotional regulation strategies have been associated with diminished limbic responses and self-reported distress, little previous research has directly compared their underlying neural mechanisms. In this study, we examined the extent to which incidental and intentional emotion regulation, namely, affect labeling and reappraisal, produced common and divergent neural and self-report responses to aversive images relative to an observe-only control condition in a sample of healthy older adults (N=39. Affect labeling and reappraisal produced common activations in several prefrontal regulatory regions, with affect labeling producing stronger responses in direct comparisons. Affect labeling and reappraisal were also associated with similar decreases in amygdala activity. Finally, affect labeling and reappraisal were associated with correlated reductions in self-reported distress. Together these results point to common neurocognitive mechanisms involved in affect labeling and reappraisal, supporting the idea that intentional and incidental emotion regulation may utilize overlapping neural processes.

  5. Neural evidence for a distinction between short-term memory and the focus of attention

    OpenAIRE

    Lewis-Peacock, Jarrod A; Drysdale, Andrew T; Oberauer, Klaus; Postle, Bradley R

    2012-01-01

    It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay-period activity may in fact reflect the focus of attention, rather than short-term memory. We unconfounded attention and memory by causing external and internal shifts of attention away from items that were being actively retained. Mult...

  6. Neural effects in copper defiient Menkes disease: ATP7A-a distinctive marker

    Directory of Open Access Journals (Sweden)

    S K Kanthlal

    2016-08-01

    Full Text Available Menkes disease, also termed as “Menkes’s syndrome”, is a disastrous infantile neurodegenerative disorder originated by diverse mutations in cupric cation-transport gene called ATP7A. This gene encodes a protein termed as copper transporting P-type ATPase, essential for copper ion transport from intestine to the other parts of our body along with other transporters like copper transporter receptor 1 and divalent metal transporter 1. The copper transportation is vital in the neuronal development and synthesis of various enzymes. It is found to be an appreciated trace element for normal biological functioning but toxic in excess. It is essential for the metallation of cuproenzymes which is responsible for the biosynthesis of neurotransmitters and other vital physiological mechanisms. Copper is also actively involved in the transmission pathway of N-methyl-D-aspartate receptors and its subsequent molecular changes in neural cells. The expression of ATP7A gene in regions of brain depicts the importance of copper in neural development and stabilization. Studies revealed that the mutation of ATP7A gene leads the pathophysiology of various neurodegenerative disorders. This review focused on the normal physiological function of the gene with respect to their harmful outcome of the mutated gene and its associated deficiency which detriments the neural mechanism in Menkes patients.

  7. Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven's Advanced Progressive Matrices.

    Science.gov (United States)

    Chen, Zhencai; De Beuckelaer, Alain; Wang, Xu; Liu, Jia

    2017-11-24

    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven's Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain connectivity (GBC) analysis which averages functional connectivity of a voxel in relation to all other voxels in the brain, distinct neural correlates of these two reasoning types were found. For visuospatial reasoning, negative correlations were observed in both the primary visual cortex (PVC) and the precuneus, and positive correlations were observed in the temporal lobe. For verbal-analytic reasoning, negative correlations were observed in the right inferior frontal gyrus (rIFG), dorsal anterior cingulate cortex and temporoparietal junction, and positive correlations were observed in the angular gyrus. Furthermore, an interaction between GBC value and type of reasoning was found in the PVC, rIFG and the temporal lobe. These findings suggest that visuospatial reasoning benefits more from elaborate perception to stimulus features, whereas verbal-analytic reasoning benefits more from feature integration and hypothesis testing. In sum, the present study offers, for different types of reasoning in gF, first empirical evidence of separate neural substrates in the resting brain.

  8. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  9. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  10. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  11. Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions

    Directory of Open Access Journals (Sweden)

    Abdullahi Abubakar Mas’ud

    2016-07-01

    Full Text Available In order to investigate how artificial neural networks (ANNs have been applied for partial discharge (PD pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1 determining the optimum weights in training the ANN; (2 using PD data captured over long stressing period in training the ANN; (3 ANN recognizing different PD degradation levels; (4 using the same resolution sizes of the PD patterns when training and testing the ANN with different PD dataset; (5 understanding the characteristics of multiple concurrent PD faults and effectively recognizing them; and (6 developing techniques in order to shorten the training time for the ANN as applied for PD recognition Finally, this paper critically assesses the suitability of ANNs for both online and offline PD detections outlining the advantages to the practitioners in the field. It is possible for the ANNs to determine the stage of degradation of the PD, thereby giving an indication of the seriousness of the fault.

  12. A direct comparison of appetitive and aversive anticipation: Overlapping and distinct neural activation.

    Science.gov (United States)

    Sege, Christopher T; Bradley, Margaret M; Weymar, Mathias; Lang, Peter J

    2017-05-30

    fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.

    Directory of Open Access Journals (Sweden)

    Daniela M Santos

    Full Text Available Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP. Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.

  14. The neural signature of self-concept development in adolescence: The role of domain and valence distinctions

    Directory of Open Access Journals (Sweden)

    R. van der Cruijsen

    2018-04-01

    Full Text Available Neuroimaging studies in adults showed that cortical midline regions including medial prefrontal cortex (mPFC and posterior parietal cortex (PPC are important in self-evaluations. The goals of this study were to investigate the contribution of these regions to self-evaluations in late childhood, adolescence, and early adulthood, and to examine whether these differed per domain (academic, physical and prosocial and valence (positive versus negative. Also, we tested whether this activation changes across adolescence. For this purpose, participants between ages 11–21-years (N = 150 evaluated themselves on trait sentences in an fMRI session. Behaviorally, adolescents rated their academic traits less positively than children and young adults. The neural analyses showed that evaluating self-traits versus a control condition was associated with increased activity in mPFC (domain-general effect, and positive traits were associated with increased activity in ventral mPFC (valence effect. Self-related mPFC activation increased linearly with age, but only for evaluating physical traits. Furthermore, an adolescent-specific decrease in striatum activation for positive self traits was found. Finally, we found domain-specific neural activity for evaluating traits in physical (dorsolateral PFC, dorsal mPFC and academic (PPC domains. Together, these results highlight the importance of domain distinctions when studying self-concept development in late childhood, adolescence, and early adulthood. Keywords: Self, fMRI, Adolescence, Development, Medial prefrontal cortex, Self-concept

  15. Distinct neural substrates of affective and cognitive theory of mind impairment in semantic dementia.

    Science.gov (United States)

    Bejanin, Alexandre; Chételat, Gaël; Laisney, Mickael; Pélerin, Alice; Landeau, Brigitte; Merck, Catherine; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Desgranges, Béatrice

    2017-06-01

    Using structural MRI, we investigated the brain substrates of both affective and cognitive theory of mind (ToM) in 19 patients with semantic dementia. We also ran intrinsic connectivity analyses to identify the networks to which the substrates belong and whether they are functionally disturbed in semantic dementia. In line with previous studies, we observed a ToM impairment in patients with semantic dementia even when semantic memory was regressed out. Our results also highlighted different neural bases according to the nature (affective or cognitive) of the representations being inferred. The affective ToM deficit was associated with atrophy in the amygdala, suggesting the involvement of emotion-processing deficits in this impairment. By contrast, cognitive ToM performances were correlated with the volume of medial prefrontal and parietal regions, as well as the right frontal operculum. Intrinsic connectivity analyses revealed decreased functional connectivity, mainly between midline cortical regions and temporal regions. They also showed that left medial temporal regions were functionally isolated, a further possible hindrance to normal social cognitive functioning in semantic dementia. Overall, this study addressed for the first time the neuroanatomical substrates of both cognitive and affective ToM disruption in semantic dementia, highlighting disturbed connectivity within the networks that sustain these abilities.

  16. Why Overlearned Sequences are Special: Distinct Neural Networks for Ordinal Sequences

    Directory of Open Access Journals (Sweden)

    Vani ePariyadath

    2012-12-01

    Full Text Available Several observations suggest that overlearned ordinal categories (e.g., letters, numbers, weekdays, months are processed differently than non-ordinal categories in the brain. In synesthesia, for example, anomalous perceptual experiences are most often triggered by members of ordinal categories (Rich et al., 2005; Eagleman, 2009. In semantic dementia, the processing of ordinal stimuli appears to be preserved relative to non-ordinal ones (Cappelletti et al., 2001. Moreover, ordinal stimuli often map onto unconscious spatial representations, as observed in the SNARC effect (Dehaene et al, 1993; Fias, 1996. At present, little is known about the neural representation of ordinal categories. Using functional neuroimaging, we show that words in ordinal categories are processed in a fronto-temporo-parietal network biased toward the right hemisphere. This differs from words in non-ordinal categories (such as names of furniture, animals, cars and fruit, which show an expected bias toward the left hemisphere. Further, we find that increased predictability of stimulus order correlates with smaller regions of BOLD activation, a phenomenon we term prediction suppression. Our results provide new insights into the processing of ordinal stimuli, and suggest a new anatomical framework for understanding the patterns seen in synesthesia, unconscious spatial representation, and semantic dementia.

  17. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2012-01-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans. (paper)

  18. Anticipation of high arousal aversive and positive movie clips engages common and distinct neural substrates.

    Science.gov (United States)

    Greenberg, Tsafrir; Carlson, Joshua M; Rubin, Denis; Cha, Jiook; Mujica-Parodi, Lilianne

    2015-04-01

    The neural correlates of anxious anticipation have been primarily studied with aversive and neutral stimuli. In this study, we examined the effect of valence on anticipation by using high arousal aversive and positive stimuli and a condition of uncertainty (i.e. either positive or aversive). The task consisted of predetermined cues warning participants of upcoming aversive, positive, 'uncertain' (either aversive or positive) and neutral movie clips. Anticipation of all affective clips engaged common regions including the anterior insula, dorsal anterior cingulate cortex, thalamus, caudate, inferior parietal and prefrontal cortex that are associated with emotional experience, sustained attention and appraisal. In contrast, the nucleus accumbens and medial prefrontal cortex, regions implicated in reward processing, were selectively engaged during anticipation of positive clips (depicting sexually explicit content) and the mid-insula, which has been linked to processing aversive stimuli, was selectively engaged during anticipation of aversive clips (depicting graphic medical procedures); these three areas were also activated during anticipation of 'uncertain' clips reflecting a broad preparatory response for both aversive and positive stimuli. These results suggest that a common circuitry is recruited in anticipation of affective clips regardless of valence, with additional areas preferentially engaged depending on whether expected stimuli are negative or positive. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Distinct neural correlates of emotional and cognitive empathy in older adults.

    Science.gov (United States)

    Moore, Raeanne C; Dev, Sheena I; Jeste, Dilip V; Dziobek, Isabel; Eyler, Lisa T

    2015-04-30

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of "cold" cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. Published by Elsevier Ireland Ltd.

  1. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  2. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat.

    Science.gov (United States)

    Gillette, Ross; Miller-Crews, Isaac; Skinner, Michael K; Crews, David

    2015-01-01

    Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides, and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area (mPOA), lateral hypothalamus (LH), and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the mPOA. Epigenetic related genes were affected by stress in the ventromedial nucleus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the LH showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  3. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    Science.gov (United States)

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Distinct Neural Signatures Detected for ADHD Subtypes After Controlling for Micro-Movements in Resting State Functional Connectivity MRI Data

    Directory of Open Access Journals (Sweden)

    Damien eFair

    2013-02-01

    Full Text Available In recent years, there has been growing enthusiasm that functional MRI could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to A examine the impact of emerging techniques for controlling for micro-movements, and B provide novel insights into the neural correlates of ADHD subtypes. Using SVM based MVPA we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C and Inattentive (ADHD-I subtypes demonstrated some overlapping (particularly sensorimotor systems, but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that rs-fcMRI data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical

  5. Object recognition using deep convolutional neural networks with complete transfer and partial frozen layers

    NARCIS (Netherlands)

    Kruithof, M.C.; Bouma, H.; Fischer, N.M.; Schutte, K.

    2016-01-01

    Object recognition is important to understand the content of video and allow flexible querying in a large number of cameras, especially for security applications. Recent benchmarks show that deep convolutional neural networks are excellent approaches for object recognition. This paper describes an

  6. A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning.

    Science.gov (United States)

    Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M

    2015-12-01

    With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

  7. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson's disease patient-derived induced pluripotent stem cells.

    Science.gov (United States)

    Son, M-Y; Sim, H; Son, Y S; Jung, K B; Lee, M-O; Oh, J-H; Chung, S-K; Jung, C-R; Kim, J

    2017-12-01

    The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic cause of Parkinson's disease (PD). There is compelling evidence that PD is not only a brain disease but also a gastrointestinal disorder; nonetheless, its pathogenesis remains unclear. We aimed to develop human neural and intestinal tissue models of PD patients harbouring an LRRK2 mutation to understand the link between LRRK2 and PD pathology by investigating the gene expression signature. We generated PD patient-specific induced pluripotent stem cells (iPSCs) carrying an LRRK2 G2019S mutation (LK2GS) and then differentiated into three-dimensional (3D) human neuroectodermal spheres (hNESs) and human intestinal organoids (hIOs). To unravel the gene and signalling networks associated with LK2GS, we analysed differentially expressed genes in the microarray data by functional clustering, gene ontology (GO) and pathway analyses. The expression profiles of LK2GS were distinct from those of wild-type controls in hNESs and hIOs. The most represented GO biological process in hNESs and hIOs was synaptic transmission, specifically synaptic vesicle trafficking, some defects of which are known to be related to PD. The results were further validated in four independent PD-specific hNESs and hIOs by microarray and qRT-PCR analysis. We provide the first evidence that LK2GS also causes significant changes in gene expression in the intestinal cells. These hNES and hIO models from the same genetic background of PD patients could be invaluable resources for understanding PD pathophysiology and for advancing the complexity of in vitro models with 3D expandable organoids. © 2017 British Neuropathological Society.

  8. Distinction between Neural and Vascular BOLD Oscillations and Intertwined Heart Rate Oscillations at 0.1 Hz in the Resting State and during Movement.

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    Full Text Available In the resting state, blood oxygen level-dependent (BOLD oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR. To address these two questions, we estimated phase-locking (PL values between precentral gyrus (PCG and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002 with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research.

  9. Supramolecular Isomers of Metal-Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs

    KAUST Repository

    Abdul Halim, Racha Ghassan

    2016-01-04

    Three novel metal-organic frameworks (MOFs) were isolated upon reacting a heterofunctional ligand 4 (pyrimidin-5 yl)benzoic acid (4,5-pmbc) with mixed valence Cu(I,II) under solvothermal conditions. X-ray crystal structural analysis reveals that the first compound is a layered structure composed of one type of inorganic building block, dinuclear paddlewheel [Cu2(O2C–)4], which are linked through 4,5-pmbc ligands. The two other supramolecular isomers are composed of the same Cu(II) dinuclear paddlewheel and a dinuclear Cu2I2 cluster, which are linked via the 4,5-pmbc linkers to yield two different 3-periodic frameworks with underlying topologies related to lvt and nbo. The observed structural diversity in these structures is due to the distinct coordination modes of the two coordinating moieties (the carboxylate group on the phenyl ring and the N-donor atoms from the pyrimidine moiety).

  10. Supramolecular Isomers of Metal-Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs

    KAUST Repository

    AbdulHalim, Rasha; Shkurenko, Aleksander; Al Kordi, Mohamed; Eddaoudi, Mohamed

    2016-01-01

    Three novel metal-organic frameworks (MOFs) were isolated upon reacting a heterofunctional ligand 4 (pyrimidin-5 yl)benzoic acid (4,5-pmbc) with mixed valence Cu(I,II) under solvothermal conditions. X-ray crystal structural analysis reveals that the first compound is a layered structure composed of one type of inorganic building block, dinuclear paddlewheel [Cu2(O2C–)4], which are linked through 4,5-pmbc ligands. The two other supramolecular isomers are composed of the same Cu(II) dinuclear paddlewheel and a dinuclear Cu2I2 cluster, which are linked via the 4,5-pmbc linkers to yield two different 3-periodic frameworks with underlying topologies related to lvt and nbo. The observed structural diversity in these structures is due to the distinct coordination modes of the two coordinating moieties (the carboxylate group on the phenyl ring and the N-donor atoms from the pyrimidine moiety).

  11. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior.

    Science.gov (United States)

    Thompson, Barbara L; Levitt, Pat

    2015-01-01

    Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.

  12. Distinct steps of neural induction revealed by Asterix, Obelix and TrkC, genes induced by different signals from the organizer.

    Directory of Open Access Journals (Sweden)

    Sonia Pinho

    2011-04-01

    Full Text Available The amniote organizer (Hensen's node can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4-5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct "epochs", or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system.

  13. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    Science.gov (United States)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  14. Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven's Advanced Progressive Matrices

    NARCIS (Netherlands)

    Chen, Zhencai; De Beuckelaer, A.; Wang, Xu; Liu, Jia

    2017-01-01

    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven’s Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain

  15. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    Science.gov (United States)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  16. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    Science.gov (United States)

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  17. Common and distinct neural correlates of emotional processing in Bipolar Disorder and Major Depressive Disorder: A voxel-based meta-analysis of functional magnetic resonance imaging studies

    International Nuclear Information System (INIS)

    Delvecchio, Giuseppe; Frangou, Sophia; Fossati, Philippe; Boyer, Patrice; Brambilla, Paolo; Falkai, Peter; Gruber, Olivier; Hietala, Jarmo; Lawrie, Stephen M.; Martinot, Jean-Luc; McIntosh, Andrew M.; Meisenzahl, Eva

    2012-01-01

    Neuroimaging studies have consistently shown functional brain abnormalities in patients with Bipolar Disorder (BD) and Major Depressive Disorder (MDD). However, the extent to which these two disorders are associated with similar or distinct neural changes remains unclear. We conducted a systematic review of functional magnetic resonance imaging studies comparing BD and MDD patients to healthy participants using facial affect processing paradigms. Relevant spatial coordinates from twenty original studies were subjected to quantitative Activation Likelihood Estimation meta-analyses based on 168 BD and 189 MDD patients and 344 healthy controls. We identified common and distinct patterns of neural engagement for BD and MDD within the facial affect processing network. Both disorders were associated with increased engagement of limbic regions. Diagnosis-specific differences were observed in cortical, thalamic and striatal regions. Decreased ventro-lateral prefrontal cortical engagement was associated with BD while relative hypo-activation of the sensorimotor cortices was seen in MDD. Increased responsiveness in the thalamus and basal ganglia were associated with BD. These findings were modulated by stimulus valence. These data suggest that whereas limbic over-activation is reported consistently in patients with mood disorders, future research should consider the relevance of a wider network of regions in formulating conceptual models of BD and MDD. (authors)

  18. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration

    OpenAIRE

    Addis, Donna Rose; Wong, Alana T.; Schacter, Daniel L.

    2006-01-01

    People can consciously re-experience past events and pre-experience possible future events. This fMRI study examined the neural regions mediating the construction and elaboration of past and future events. Participants were cued with a noun for 20 seconds and instructed to construct a past or future event within a specified time period (week, year, 5–20 years). Once participants had the event in mind, they made a button press and for the remainder of the 20 seconds elaborated on the event. Im...

  19. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    Science.gov (United States)

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  20. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder.

    Science.gov (United States)

    Richey, John A; Rittenberg, Alison; Hughes, Lauren; Damiano, Cara R; Sabatino, Antoinette; Miller, Stephanie; Hanna, Eleanor; Bodfish, James W; Dichter, Gabriel S

    2014-03-01

    Autism spectrum disorders (ASDs) and social anxiety disorder (SAD) are both characterized by social dysfunction, but no study to date has compared neural responses to social rewards in ASDs and SAD. Neural responses during social and non-social reward anticipation and outcomes were examined in individuals with ASD (n = 16), SAD (n = 15) and a control group (n = 19) via functional magnetic resonance imaging. Analyses modeling all three groups revealed increased nucleus accumbens (NAc) activation in SAD relative to ASD during monetary reward anticipation, whereas both the SAD and ASD group demonstrated decreased bilateral NAc activation relative to the control group during social reward anticipation. During reward outcomes, the SAD group did not differ significantly from the other two groups in ventromedial prefrontal cortex activation to either reward type. Analyses comparing only the ASD and SAD groups revealed greater bilateral amygdala activation to social rewards in SAD relative to ASD during both anticipation and outcome phases, and the magnitude of left amygdala hyperactivation in the SAD group during social reward anticipation was significantly correlated with the severity of trait anxiety symptoms. Results suggest reward network dysfunction to both monetary and social rewards in SAD and ASD during reward anticipation and outcomes, but that NAc hypoactivation during monetary reward anticipation differentiates ASD from SAD.

  1. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    Jeon, Myounggun; Yoon, Eui-Sung; Cho, Il-Joo; Cho, Jeiwon; Jung, Dahee; Kim, Yun Kyung; Shin, Sehyun

    2014-01-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  2. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids.

    Science.gov (United States)

    Fragkaki, A G; Farmaki, E; Thomaidis, N; Tsantili-Kakoulidou, A; Angelis, Y S; Koupparis, M; Georgakopoulos, C

    2012-09-21

    The comparison among different modelling techniques, such as multiple linear regression, partial least squares and artificial neural networks, has been performed in order to construct and evaluate models for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids. The performance of the quantitative structure-retention relationship study, using the multiple linear regression and partial least squares techniques, has been previously conducted. In the present study, artificial neural networks models were constructed and used for the prediction of relative retention times of anabolic androgenic steroids, while their efficiency is compared with that of the models derived from the multiple linear regression and partial least squares techniques. For overall ranking of the models, a novel procedure [Trends Anal. Chem. 29 (2010) 101-109] based on sum of ranking differences was applied, which permits the best model to be selected. The suggested models are considered useful for the estimation of relative retention times of designer steroids for which no analytical data are available. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    Science.gov (United States)

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  4. Distinct effects of perceptual quality on auditory word recognition, memory formation and recall in a neural model of sequential memory

    Directory of Open Access Journals (Sweden)

    Paul Miller

    2010-06-01

    Full Text Available Adults with sensory impairment, such as reduced hearing acuity, have impaired ability to recall identifiable words, even when their memory is otherwise normal. We hypothesize that poorer stimulus quality causes weaker activity in neurons responsive to the stimulus and more time to elapse between stimulus onset and identification. The weaker activity and increased delay to stimulus identification reduce the necessary strengthening of connections between neurons active before stimulus presentation and neurons active at the time of stimulus identification. We test our hypothesis through a biologically motivated computational model, which performs item recognition, memory formation and memory retrieval. In our simulations, spiking neurons are distributed into pools representing either items or context, in two separate, but connected winner-takes-all (WTA networks. We include associative, Hebbian learning, by comparing multiple forms of spike-timing dependent plasticity (STDP, which strengthen synapses between coactive neurons during stimulus identification. Synaptic strengthening by STDP can be sufficient to reactivate neurons during recall if their activity during a prior stimulus rose strongly and rapidly. We find that a single poor quality stimulus impairs recall of neighboring stimuli as well as the weak stimulus itself. We demonstrate that within the WTA paradigm of word recognition, reactivation of separate, connected sets of non-word, context cells permits reverse recall. Also, only with such coactive context cells, does slowing the rate of stimulus presentation increase recall probability. We conclude that significant temporal overlap of neural activity patterns, absent from individual WTA networks, is necessary to match behavioral data for word recall.

  5. Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms.

    Science.gov (United States)

    Jeon, Hyeon-Ae; Lee, Kyoung-Min; Kim, Young-Bo; Cho, Zang-Hee

    2009-11-01

    Synonymous and antonymous relationships among words may reflect the organization and/or processing in the mental lexicon and its implementation in the brain. In this study, functional magnetic resonance imaging (fMRI) is employed to compare brain activities during generation of synonyms (SYN) and antonyms (ANT) prompted by the same words. Both SYN and ANT, when compared with reading nonwords (NW), activated a region in the left middle frontal gyrus (BA 46). Neighboring this region, there was a dissociation observed in that the ANT activation extended more anteriorly and laterally to the SYN activation. The activations in the left middle frontal gyrus may be related to mental processes that are shared in the SYN and ANT generations, such as engaging semantically related parts of mental lexicon for the word search, whereas the distinct activations unique for either SYN or ANT generation may reflect the additional component of antonym retrieval, namely, reversing the polarity of semantic relationship in one crucial dimension. These findings suggest that specific components in the semantic processing, such as the polarity reversal for antonym generation and the similarity assessment for synonyms, are separately and systematically laid out in the left-frontal cortex.

  6. Hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) and its application to predicting key process variables.

    Science.gov (United States)

    He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong

    2016-03-01

    In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Distinct Neural-Functional Effects of Treatments With Selective Serotonin Reuptake Inhibitors, Electroconvulsive Therapy, and Transcranial Magnetic Stimulation and Their Relations to Regional Brain Function in Major Depression: A Meta-analysis.

    Science.gov (United States)

    Chau, David T; Fogelman, Phoebe; Nordanskog, Pia; Drevets, Wayne C; Hamilton, J Paul

    2017-05-01

    Functional neuroimaging studies have examined the neural substrates of treatments for major depressive disorder (MDD). Low sample size and methodological heterogeneity, however, undermine the generalizability of findings from individual studies. We conducted a meta-analysis to identify reliable neural changes resulting from different modes of treatment for MDD and compared them with each other and with reliable neural functional abnormalities observed in depressed versus control samples. We conducted a meta-analysis of studies reporting changes in brain activity (e.g., as indexed by positron emission tomography) following treatments with selective serotonin reuptake inhibitors (SSRIs), electroconvulsive therapy (ECT), or transcranial magnetic stimulation. Additionally, we examined the statistical reliability of overlap among thresholded meta-analytic SSRI, ECT, and transcranial magnetic stimulation maps as well as a map of abnormal neural function in MDD. Our meta-analysis revealed that 1) SSRIs decrease activity in the anterior insula, 2) ECT decreases activity in central nodes of the default mode network, 3) transcranial magnetic stimulation does not result in reliable neural changes, and 4) regional effects of these modes of treatment do not significantly overlap with each other or with regions showing reliable functional abnormality in MDD. SSRIs and ECT produce neurally distinct effects relative to each other and to the functional abnormalities implicated in depression. These treatments therefore may exert antidepressant effects by diminishing neural functions not implicated in depression but that nonetheless impact mood. We discuss how the distinct neural changes resulting from SSRIs and ECT can account for both treatment effects and side effects from these therapies as well as how to individualize these treatments. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  9. Estimating the Acquisition Price of Enshi Yulu Young Tea Shoots Using Near-Infrared Spectroscopy by the Back Propagation Artificial Neural Network Model in Conjunction with Backward Interval Partial Least Squares Algorithm

    Science.gov (United States)

    Wang, Sh.-P.; Gong, Z.-M.; Su, X.-Zh.; Liao, J.-Zh.

    2017-09-01

    Near infrared spectroscopy and the back propagation artificial neural network model in conjunction with backward interval partial least squares algorithm were used to estimate the purchasing price of Enshi yulu young tea shoots. The near-infrared spectra regions most relevant to the tea shoots price model (5700.5-5935.8, 7613.6-7848.9, 8091.8-8327.1, 8331-8566.2, 9287.5-9522.5, and 9526.6-9761.9 cm-1) were selected using backward interval partial least squares algorithm. The first five principal components that explained 99.96% of the variability in those selected spectral data were then used to calibrate the back propagation artificial neural tea shoots purchasing price model. The performance of this model (coefficient of determination for prediction 0.9724; root-mean-square error of prediction 4.727) was superior to those of the back propagation artificial neural model (coefficient of determination for prediction 0.8653, root-mean-square error of prediction 5.125) and the backward interval partial least squares model (coefficient of determination for prediction 0.5932, root-mean-square error of prediction 25.125). The acquisition price model with the combined backward interval partial least squares-back propagation artificial neural network algorithms can evaluate the price of Enshi yulu tea shoots accurately, quickly and objectively.

  10. Species differences in the biotransformation of an alpha 4 beta 2 nicotinic acetylcholine receptor partial agonist: the effects of distinct glucuronide metabolites on overall compound disposition.

    Science.gov (United States)

    Shaffer, Christopher L; Gunduz, Mithat; Ryder, Tim F; O'Connell, Thomas N

    2010-02-01

    The metabolism and disposition of (1R,5S)-2,3,4,5-tetrahydro-7-(trifluoromethyl)-1,5-methano-1H-3-benzazepine (1), an alpha(4)beta(2) nicotinic acetylcholine receptor partial agonist, was investigated in Sprague-Dawley rats and cynomolgus monkeys receiving (1R,5S)-2,3,4,5-tetrahydro-7-(trifluoromethyl)-1,5-methano-1H-4[(14)C]-3- benzazepine hydrochloride ([(14)C]1) orally. Although both species chiefly (>or=62%) cleared 1 metabolically, species-specific dispositional profiles were observed for both 1 and total radioactivity. Radioactivity was excreted equally in the urine and feces of intact rats but largely (72%) in bile in bile duct-cannulated animals. In monkeys, radioactivity recoveries were 50-fold greater in urine than feces and minimal (<5%) in bile. Both species metabolized 1 similarly: four-electron oxidation to one of four amino acids or two lactams (minor) and glucuronide formation (major). In rats, the latter pathway predominantly formed an N-carbamoyl glucuronide (M6), exclusively present in bile (69% of dose), whereas in monkeys it afforded an N-O-glucuronide (M5), a minor biliary component (4%) but the major plasma (62%) and urinary (42%) entity. In rats, first-pass hepatic conversion of 1 to M6, which was confirmed in rat hepatocytes, and its biliary secretion resulted in the indirect enterohepatic cycling of 1 via M6 and manifested in double-humped plasma concentration-time curves and long t(1/2) for both 1 and total radioactivity. In monkeys, in which only M5 was formed, double-humped plasma concentration-time curves were absent, and moderate t(1/2) for both 1 and total radioactivity were observed. A seemingly subtle, yet critical, difference in the chemical structures of these two glucuronide metabolites considerably affected the overall disposition of 1 in rats versus monkeys.

  11. Neural correlates of face processing in etiologically-distinct 12-month-old infants at high-risk of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Maggie W. Guy

    2018-01-01

    Full Text Available Neural correlates of face processing were examined in 12-month-olds at high-risk for autism spectrum disorder (ASD, including 21 siblings of children with ASD (ASIBs and 15 infants with fragile X syndrome (FXS, as well as 21 low-risk (LR controls. Event-related potentials were recorded to familiar and novel face and toy stimuli. All infants demonstrated greater N290 amplitude to faces than toys. At the Nc component, LR infants showed greater amplitude to novel stimuli than to their mother’s face and own toy, whereas infants with FXS showed the opposite pattern of responses and ASIBs did not differentiate based on familiarity. These results reflect developing face specialization across high- and low-risk infants and reveal neural patterns that distinguish between groups at high-risk for ASD. Keywords: Event-related potentials, Infancy, Face processing, Autism spectrum disorders

  12. Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN)

    International Nuclear Information System (INIS)

    Hosseinpour, Soleiman; Aghbashlo, Mortaza; Tabatabaei, Meisam; Khalife, Esmail

    2016-01-01

    Highlights: • Estimating the biodiesel CN from its FAMEs profile using ANN-based PLS approach. • Comparing the capability of ANN-adapted PLS approach with the standard PLS model. • Exact prediction of biodiesel CN from it FAMEs profile using ANN-based PLS method. • Developing an easy-to-use software using ANN-PLS model for computing the biodiesel CN. - Abstract: Cetane number (CN) is among the most important properties of biodiesel because it quantifies combustion speed or in better words, ignition quality. Experimental measurement of biodiesel CN is rather laborious and expensive. However, the high proportionality of biodiesel fatty acid methyl esters (FAMEs) profile with its CN is very appealing to develop straightforward and inexpensive computerized tools for biodiesel CN estimation. Unfortunately, correlating the chemical structure of biodiesel to its CN using conventional statistical and mathematical approaches is very difficult. To solve this issue, partial least square (PLS) adapted by artificial neural network (ANN) was introduced and examined herein as an innovative approach for the exact estimation of biodiesel CN from its FAMEs profile. In the proposed approach, ANN paradigm was used for modeling the inner relation between the input and the output PLS score vectors. In addition, the capability of the developed method in predicting the biodiesel CN was compared with the basal PLS method. The accuracy of the developed approaches for computing the biodiesel CN was assessed using three statistical criteria, i.e., coefficient of determination (R"2), mean-squared error (MSE), and percentage error (PE). The ANN-adapted PLS method predicted the biodiesel CN with an R"2 value higher than 0.99 demonstrating the fidelity of the developed model over the classical PLS method with a markedly lower R"2 value of about 0.85. In order to facilitate the use of the proposed model, an easy-to-use computer program was also developed on the basis of ANN-adapted PLS

  13. Multiple roles for executive control in belief-desire reasoning: distinct neural networks are recruited for self perspective inhibition and complexity of reasoning.

    Science.gov (United States)

    Hartwright, Charlotte E; Apperly, Ian A; Hansen, Peter C

    2012-07-16

    Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. What and Where in auditory sensory processing: A high-density electrical mapping study of distinct neural processes underlying sound object recognition and sound localization

    Directory of Open Access Journals (Sweden)

    Victoria M Leavitt

    2011-06-01

    Full Text Available Functionally distinct dorsal and ventral auditory pathways for sound localization (where and sound object recognition (what have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts and speech sounds, with simulated left-right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated what and where task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls delivered from seven free-field spatial locations; with stimulus configuration identical across the where and what tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the where and what tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures.

  15. Common and distinct neural correlates of facial emotion processing in social anxiety disorder and Williams syndrome: A systematic review and voxel-based meta-analysis of functional resonance imaging studies.

    Science.gov (United States)

    Binelli, C; Subirà, S; Batalla, A; Muñiz, A; Sugranyés, G; Crippa, J A; Farré, M; Pérez-Jurado, L; Martín-Santos, R

    2014-11-01

    Social Anxiety Disorder (SAD) and Williams-Beuren Syndrome (WS) are two conditions which seem to be at opposite ends in the continuum of social fear but show compromised abilities in some overlapping areas, including some social interactions, gaze contact and processing of facial emotional cues. The increase in the number of neuroimaging studies has greatly expanded our knowledge of the neural bases of facial emotion processing in both conditions. However, to date, SAD and WS have not been compared. We conducted a systematic review of functional magnetic resonance imaging (fMRI) studies comparing SAD and WS cases to healthy control participants (HC) using facial emotion processing paradigms. Two researchers conducted comprehensive PubMed/Medline searches to identify all fMRI studies of facial emotion processing in SAD and WS. The following search key-words were used: "emotion processing"; "facial emotion"; "social anxiety"; "social phobia"; "Williams syndrome"; "neuroimaging"; "functional magnetic resonance"; "fMRI" and their combinations, as well as terms specifying individual facial emotions. We extracted spatial coordinates from each study and conducted two separate voxel-wise activation likelihood estimation meta-analyses, one for SAD and one for WS. Twenty-two studies met the inclusion criteria: 17 studies of SAD and five of WS. We found evidence for both common and distinct patterns of neural activation. Limbic engagement was common to SAD and WS during facial emotion processing, although we observed opposite patterns of activation for each disorder. Compared to HC, SAD cases showed hyperactivation of the amygdala, the parahippocampal gyrus and the globus pallidus. Compared to controls, participants with WS showed hypoactivation of these regions. Differential activation in a number of regions specific to either condition was also identified: SAD cases exhibited greater activation of the insula, putamen, the superior temporal gyrus, medial frontal regions and

  16. Neural Correlates of Processing Negative and Sexually Arousing Pictures

    Science.gov (United States)

    Bailey, Kira; West, Robert; Mullaney, Kellie M.

    2012-01-01

    Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071

  17. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri

    2011-08-01

    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  18. Distinctive Citizenship

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2009-01-01

    The refugee, in India's Partition history, appears as an enigmatic construct - part pitiful, part heroic, though mostly shorn of agency - representing the surface of the human tragedy of Partition. Yet this archetype masks the undercurrent of social distinctions that produced hierarchies of post...

  19. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    Science.gov (United States)

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  20. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    Science.gov (United States)

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effectiveness of Partition and Graph Theoretic Clustering Algorithms for Multiple Source Partial Discharge Pattern Classification Using Probabilistic Neural Network and Its Adaptive Version: A Critique Based on Experimental Studies

    Directory of Open Access Journals (Sweden)

    S. Venkatesh

    2012-01-01

    Full Text Available Partial discharge (PD is a major cause of failure of power apparatus and hence its measurement and analysis have emerged as a vital field in assessing the condition of the insulation system. Several efforts have been undertaken by researchers to classify PD pulses utilizing artificial intelligence techniques. Recently, the focus has shifted to the identification of multiple sources of PD since it is often encountered in real-time measurements. Studies have indicated that classification of multi-source PD becomes difficult with the degree of overlap and that several techniques such as mixed Weibull functions, neural networks, and wavelet transformation have been attempted with limited success. Since digital PD acquisition systems record data for a substantial period, the database becomes large, posing considerable difficulties during classification. This research work aims firstly at analyzing aspects concerning classification capability during the discrimination of multisource PD patterns. Secondly, it attempts at extending the previous work of the authors in utilizing the novel approach of probabilistic neural network versions for classifying moderate sets of PD sources to that of large sets. The third focus is on comparing the ability of partition-based algorithms, namely, the labelled (learning vector quantization and unlabelled (K-means versions, with that of a novel hypergraph-based clustering method in providing parsimonious sets of centers during classification.

  2. Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits?. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Fehr, Thorsten; Herrmann, Manfred

    2015-06-01

    The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of

  3. Distinct Roles of the C-terminal 11th Transmembrane Helix and Luminal Extension in the Partial Reactions Determining the High Ca2+ Affinity of Sarco(endo)plasmic Reticulum Ca2+-ATPase Isoform 2b (SERCA2b)

    DEFF Research Database (Denmark)

    Clausen, Johannes D; Vandecaetsbeek, Ilse; Wuytack, Frank

    2012-01-01

    of each of these parts and their interactions with the SERCA environment were examined by transient kinetic analysis of the partial reaction steps in the Ca2+ transport cycle in mutant and chimeric Ca2+-ATPase constructs. Manipulations to the LE of SERCA2b markedly increased the rate of Ca2+ dissociation...

  4. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.

    Science.gov (United States)

    Yu, Peigen; Low, Mei Yin; Zhou, Weibiao

    2018-01-01

    In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Artificial intelligence: Deep neural reasoning

    Science.gov (United States)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  6. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.

    Science.gov (United States)

    Panagou, Efstathios Z; Mohareb, Fady R; Argyri, Anthoula A; Bessant, Conrad M; Nychas, George-John E

    2011-06-01

    A series of partial least squares (PLS) models were employed to correlate spectral data from FTIR analysis with beef fillet spoilage during aerobic storage at different temperatures (0, 5, 10, 15, and 20 °C) using the dataset presented by Argyri et al. (2010). The performance of the PLS models was compared with a three-layer feed-forward artificial neural network (ANN) developed using the same dataset. FTIR spectra were collected from the surface of meat samples in parallel with microbiological analyses to enumerate total viable counts. Sensory evaluation was based on a three-point hedonic scale classifying meat samples as fresh, semi-fresh, and spoiled. The purpose of the modelling approach employed in this work was to classify beef samples in the respective quality class as well as to predict their total viable counts directly from FTIR spectra. The results obtained demonstrated that both approaches showed good performance in discriminating meat samples in one of the three predefined sensory classes. The PLS classification models showed performances ranging from 72.0 to 98.2% using the training dataset, and from 63.1 to 94.7% using independent testing dataset. The ANN classification model performed equally well in discriminating meat samples, with correct classification rates from 98.2 to 100% and 63.1 to 73.7% in the train and test sessions, respectively. PLS and ANN approaches were also applied to create models for the prediction of microbial counts. The performance of these was based on graphical plots and statistical indices (bias factor, accuracy factor, root mean square error). Furthermore, results demonstrated reasonably good correlation of total viable counts on meat surface with FTIR spectral data with PLS models presenting better performance indices compared to ANN. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Acute and chronic gregarisation are associated with distinct DNA methylation fingerprints in desert locusts.

    Science.gov (United States)

    Mallon, Eamonn B; Amarasinghe, Harindra E; Ott, Swidbert R

    2016-10-18

    Desert locusts (Schistocerca gregaria) show a dramatic form of socially induced phenotypic plasticity known as phase polyphenism. In the absence of conspecifics, locusts occur in a shy and cryptic solitarious phase. Crowding with conspecifics drives a behavioural transformation towards gregariousness that occurs within hours and is followed by changes in physiology, colouration and morphology, resulting in the full gregarious phase syndrome. We analysed methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to compare the effect of acute and chronic crowding on DNA methylation in the central nervous system. We find that crowd-reared and solitary-reared locusts show markedly different neural MS-AFLP fingerprints. However, crowding for a day resulted in neural MS-AFLP fingerprints that were clearly distinct from both crowd-reared and uncrowded solitary-reared locusts. Our results indicate that changes in DNA methylation associated with behavioural gregarisation proceed through intermediate states that are not simply partial realisations of the endpoint states.

  8. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  9. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  10. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network.

    Science.gov (United States)

    Pralle, R S; Weigel, K W; White, H M

    2018-05-01

    Prediction of postpartum hyperketonemia (HYK) using Fourier transform infrared (FTIR) spectrometry analysis could be a practical diagnostic option for farms because these data are now available from routine milk analysis during Dairy Herd Improvement testing. The objectives of this study were to (1) develop and evaluate blood β-hydroxybutyrate (BHB) prediction models using multivariate linear regression (MLR), partial least squares regression (PLS), and artificial neural network (ANN) methods and (2) evaluate whether milk FTIR spectrum (mFTIR)-based models are improved with the inclusion of test-day variables (mTest; milk composition and producer-reported data). Paired blood and milk samples were collected from multiparous cows 5 to 18 d postpartum at 3 Wisconsin farms (3,629 observations from 1,013 cows). Blood BHB concentration was determined by a Precision Xtra meter (Abbot Diabetes Care, Alameda, CA), and milk samples were analyzed by a privately owned laboratory (AgSource, Menomonie, WI) for components and FTIR spectrum absorbance. Producer-recorded variables were extracted from farm management software. A blood BHB ≥1.2 mmol/L was considered HYK. The data set was divided into a training set (n = 3,020) and an external testing set (n = 609). Model fitting was implemented with JMP 12 (SAS Institute, Cary, NC). A 5-fold cross-validation was performed on the training data set for the MLR, PLS, and ANN prediction methods, with square root of blood BHB as the dependent variable. Each method was fitted using 3 combinations of variables: mFTIR, mTest, or mTest + mFTIR variables. Models were evaluated based on coefficient of determination, root mean squared error, and area under the receiver operating characteristic curve. Four models (PLS-mTest + mFTIR, ANN-mFTIR, ANN-mTest, and ANN-mTest + mFTIR) were chosen for further evaluation in the testing set after fitting to the full training set. In the cross-validation analysis, model fit was greatest for ANN, followed

  11. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  12. Partial gigantism

    Directory of Open Access Journals (Sweden)

    М.М. Karimova

    2017-05-01

    Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.

  13. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  14. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  15. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  16. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Learning from neural control.

    Science.gov (United States)

    Wang, Cong; Hill, David J

    2006-01-01

    One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an appropriately designed adaptive neural controller is capable of learning closed-loop system dynamics during tracking control to a periodic reference orbit. Among various neural network (NN) architectures, the localized radial basis function (RBF) network is employed. A property of persistence of excitation (PE) for RBF networks is established, and a partial PE condition of closed-loop signals, i.e., the PE condition of a regression subvector constructed out of the RBFs along a periodic state trajectory, is proven to be satisfied. Accurate NN approximation for closed-loop system dynamics is achieved in a local region along the periodic state trajectory, and a learning ability is implemented during a closed-loop feedback control process. Second, based on the deterministic learning mechanism, a neural learning control scheme is proposed which can effectively recall and reuse the learned knowledge to achieve closed-loop stability and improved control performance. The significance of this paper is that the presented deterministic learning mechanism and the neural learning control scheme provide elementary components toward the development of a biologically-plausible learning and control methodology. Simulation studies are included to demonstrate the effectiveness of the approach.

  19. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    Science.gov (United States)

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  20. A sleep state in Drosophila larvae required for neural stem cell proliferation

    Science.gov (United States)

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  1. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  2. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  3. Polarity-specific high-level information propagation in neural networks.

    Science.gov (United States)

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  4. Approaching the Distinction between Intuition and Insight.

    Science.gov (United States)

    Zhang, Zhonglu; Lei, Yi; Li, Hong

    2016-01-01

    Intuition and insight share similar cognitive and neural basis. Though, there are still some essential differences between the two. Here in this short review, we discriminated between intuition, and insight in two aspects. First, intuition, and insight are toward different aspects of information processing. Whereas intuition involves judgment about "yes or no," insight is related to "what" is the solution. Second, tacit knowledge play different roles in between intuition and insight. On the one hand, tacit knowledge is conducive to intuitive judgment. On the other hand, tacit knowledge may first impede but later facilitate insight occurrence. Furthermore, we share theoretical, and methodological views on how to access the distinction between intuition and insight.

  5. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  6. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    Science.gov (United States)

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  7. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  8. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  9. Essays on partial retirement

    NARCIS (Netherlands)

    Kantarci, T.

    2012-01-01

    The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial

  10. The ctenophore genome and the evolutionary origins of neural systems

    NARCIS (Netherlands)

    Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M.; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P.; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V.; Jurka, Jerzy; Bobkov, Yuri V.; Swore, Joshua J.; Girardo, David O.; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E.; Rast, Jonathan P.; Derelle, Romain; Solovyev, Victor V.; Kondrashov, Fyodor A.; Swalla, Billie J.; Sweedler, Jonathan V.; Rogaev, Evgeny I.; Halanych, Kenneth M.; Kohn, Andrea B.

    2014-01-01

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we

  11. Touch communicates distinct emotions.

    Science.gov (United States)

    Hertenstein, Matthew J; Keltner, Dacher; App, Betsy; Bulleit, Brittany A; Jaskolka, Ariane R

    2006-08-01

    The study of emotional signaling has focused almost exclusively on the face and voice. In 2 studies, the authors investigated whether people can identify emotions from the experience of being touched by a stranger on the arm (without seeing the touch). In the 3rd study, they investigated whether observers can identify emotions from watching someone being touched on the arm. Two kinds of evidence suggest that humans can communicate numerous emotions with touch. First, participants in the United States (Study 1) and Spain (Study 2) could decode anger, fear, disgust, love, gratitude, and sympathy via touch at much-better-than-chance levels. Second, fine-grained coding documented specific touch behaviors associated with different emotions. In Study 3, the authors provide evidence that participants can accurately decode distinct emotions by merely watching others communicate via touch. The findings are discussed in terms of their contributions to affective science and the evolution of altruism and cooperation. (c) 2006 APA, all rights reserved

  12. Empathy and Stress Related Neural Responses in Maternal Decision Making

    Directory of Open Access Journals (Sweden)

    S. Shaun Ho

    2014-06-01

    Full Text Available Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers’ emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child’s unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural correlates of child feedback to caregiving decisions. In Part 1 of the study, 33 female participants were recruited to undergo a lab-based mild stressor, the Social Evaluation Test (SET, and then in Part 2 of the study, a subset of the participants, fourteen mothers, performed a Parenting Decision Making Task (PDMT in an fMRI setting. Four dimensions of dispositional empathy based on the Interpersonal Reactivity Index were measured in all participants – Personal Distress, Empathic Concern, Perspective Taking, and Fantasy. Overall, we found that the Personal Distress and Perspective Taking were associated with greater and lesser cortisol reactivity, respectively. The four types of empathy were distinctly associated with the negative (versus positive child feedback activation in the brain. Personal Distress was associated with amygdala and hypothalamus activation, Empathic Concern with the left ventral striatum, ventrolateral prefrontal cortex (VLPFC, and supplemental motor area (SMA activation, and Fantasy with the septal area, right SMA and VLPFC activation. Interestingly, hypothalamus-septal coupling during the negative feedback condition was associated with less PDMT-related cortisol reactivity. The roles of distinct forms of dispositional empathy in neural and stress responses are discussed.

  13. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  14. cables1 Is Required for Embryonic Neural Development: Molecular, Cellular, and Behavioral Evidence From the Zebrafish

    Science.gov (United States)

    GROENEWEG, JOLIJN W.; WHITE, YVONNE A.R.; KOKEL, DAVID; PETERSON, RANDALL T.; ZUKERBERG, LAWRENCE R.; BERIN, INNA; RUEDA, BO R.; WOOD, ANTONY W.

    2014-01-01

    SUMMARY In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway. PMID:21268180

  15. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  16. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  17. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  18. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    Science.gov (United States)

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention

  19. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    Science.gov (United States)

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention

  20. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Adriana L. Ruiz-Rizzo

    2018-03-01

    Full Text Available Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity and selectivity functions (i.e., top-down control and spatial laterality. However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI. Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable

  1. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  2. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning.

    Science.gov (United States)

    Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming

    2012-01-31

    Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.

  3. Partial monosomy 8q and partial trisomy 9q due to the maternal translocation t(8;9(q24.3;q34.1)

    DEFF Research Database (Denmark)

    Tos, T; Alp, M Y; Eker, H K

    2014-01-01

    Partial trisomy 9q34-qter and partial monosomy 8q24.3-qter are very rare chromosomal abnormalities. Characteristic features of partial trisomy 9q34-qter are hypotonia, developmental delay, mild intellectual disability, dolichocephaly, distinct facial phenotype, long and thin fingers, and cardiac...

  4. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  5. Successful removable partial dentures.

    Science.gov (United States)

    Lynch, Christopher D

    2012-03-01

    Removable partial dentures (RPDs) remain a mainstay of prosthodontic care for partially dentate patients. Appropriately designed, they can restore masticatory efficiency, improve aesthetics and speech, and help secure overall oral health. However, challenges remain in providing such treatments, including maintaining adequate plaque control, achieving adequate retention, and facilitating patient tolerance. The aim of this paper is to review the successful provision of RPDs. Removable partial dentures are a successful form of treatment for replacing missing teeth, and can be successfully provided with appropriate design and fabrication concepts in mind.

  6. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  7. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  8. The partially filled viscous ring damper.

    Science.gov (United States)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  9. On the neural mechanisms subserving consciousness and attention

    Directory of Open Access Journals (Sweden)

    Catherine eTallon-Baudry

    2012-01-01

    Full Text Available Consciousness, as described in the experimental literature, is a multi-faceted phenomenon, that impinges on other well-studied concepts such as attention and control. Do consciousness and attention refer to different aspects of the same core phenomenon, or do they correspond to distinct functions? One possibility to address this question is to examine the neural mechanisms underlying consciousness and attention. If consciousness and attention pertain to the same concept, they should rely on shared neural mechanisms. Conversely, if their underlying mechanisms are distinct, then consciousness and attention should be considered as distinct entities. This paper therefore reviews neurophysiological facts arguing in favor or against a tight relationship between consciousness and attention. Three neural mechanisms that have been associated with both attention and consciousness are examined (neural amplification, involvement of the fronto-parietal network, and oscillatory synchrony, to conclude that the commonalities between attention and consciousness at the neural level may have been overestimated. Last but not least, experiments in which both attention and consciousness were probed at the neural level point toward a dissociation between the two concepts. It therefore appears from this review that consciousness and attention rely on distinct neural properties, although they can interact at the behavioral level. It is proposed that a "cumulative influence model", in which attention and consciousness correspond to distinct neural mechanisms feeding a single decisional process leading to behavior, fits best with available neural and behavioral data. In this view, consciousness should not be considered as a top-level executive function but should rather be defined by its experiential properties.

  10. Spreading paths in partially observed social networks

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  11. Spreading paths in partially observed social networks.

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  12. Partial knee replacement - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  13. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  14. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  15. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  16. Determining the confidence levels of sensor outputs using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Broten, G S; Wood, H C [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Electrical Engineering

    1996-12-31

    This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network`s ability to determine the confidence level is influenced by the complexity of the sensor`s response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in

  17. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  18. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  19. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  20. Optimization of partial search

    International Nuclear Information System (INIS)

    Korepin, Vladimir E

    2005-01-01

    A quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster; this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by the number of queries to the oracle. The author suggests a new version of the Grover-Radhakrishnan algorithm which uses a minimal number of such queries. The algorithm can run on the same hardware that is used for the usual Grover algorithm. (letter to the editor)

  1. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  2. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  3. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  4. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Directory of Open Access Journals (Sweden)

    Yoko Saito

    Full Text Available Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET. We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song, sung lyrics on a single pitch (lyrics, and the sung syllable 'la' on original pitches (melody. The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  5. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Science.gov (United States)

    Saito, Yoko; Ishii, Kenji; Sakuma, Naoko; Kawasaki, Keiichi; Oda, Keiichi; Mizusawa, Hidehiro

    2012-01-01

    Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET). We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song), sung lyrics on a single pitch (lyrics), and the sung syllable 'la' on original pitches (melody). The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control) that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control) showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  6. Agent-specific learning signals for self-other distinction during mentalising.

    Directory of Open Access Journals (Sweden)

    Sam Ereira

    2018-04-01

    Full Text Available Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG enabled us to track neural representations of prediction errors (PEs and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.

  7. Distinction

    OpenAIRE

    2010-01-01

    Pr Serge Haroche La Médaille d’or 2009 du CNRS est décernée au Pr Serge Haroche, titulaire de la chaire de Physique quantique depuis 2001. Serge Haroche est spécialiste de physique atomique et d’optique quantique. Il est l’un des fondateurs de l’électrodynamique quantique en cavité, domaine qui permet, par des expériences conceptuellement simples, d’éclairer les fondements de la théorie quantique et de réaliser des prototypes de systèmes de traitement quantique de l’information. Serge Haroche...

  8. Neural correlates of hate.

    Directory of Open Access Journals (Sweden)

    Semir Zeki

    Full Text Available In this work, we address an important but unexplored topic, namely the neural correlates of hate. In a block-design fMRI study, we scanned 17 normal human subjects while they viewed the face of a person they hated and also faces of acquaintances for whom they had neutral feelings. A hate score was obtained for the object of hate for each subject and this was used as a covariate in a between-subject random effects analysis. Viewing a hated face resulted in increased activity in the medial frontal gyrus, right putamen, bilaterally in premotor cortex, in the frontal pole and bilaterally in the medial insula. We also found three areas where activation correlated linearly with the declared level of hatred, the right insula, right premotor cortex and the right fronto-medial gyrus. One area of deactivation was found in the right superior frontal gyrus. The study thus shows that there is a unique pattern of activity in the brain in the context of hate. Though distinct from the pattern of activity that correlates with romantic love, this pattern nevertheless shares two areas with the latter, namely the putamen and the insula.

  9. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  10. Auxiliary partial liver transplantation

    NARCIS (Netherlands)

    C.B. Reuvers (Cornelis Bastiaan)

    1986-01-01

    textabstractIn this thesis studies on auxiliary partial liver transplantation in the dog and the pig are reported. The motive to perform this study was the fact that patients with acute hepatic failure or end-stage chronic liver disease are often considered to form too great a risk for successful

  11. Partial Remission Definition

    DEFF Research Database (Denmark)

    Andersen, Marie Louise Max; Hougaard, Philip; Pörksen, Sven

    2014-01-01

    OBJECTIVE: To validate the partial remission (PR) definition based on insulin dose-adjusted HbA1c (IDAA1c). SUBJECTS AND METHODS: The IDAA1c was developed using data in 251 children from the European Hvidoere cohort. For validation, 129 children from a Danish cohort were followed from the onset...

  12. Fundamental partial compositeness

    DEFF Research Database (Denmark)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Unde...

  13. Partially ordered models

    NARCIS (Netherlands)

    Fernandez, R.; Deveaux, V.

    2010-01-01

    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks).

  14. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  15. Honesty in partial logic

    NARCIS (Netherlands)

    W. van der Hoek (Wiebe); J.O.M. Jaspars; E. Thijsse

    1995-01-01

    textabstractWe propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the

  16. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  17. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The neural basis of financial risk taking.

    Science.gov (United States)

    Kuhnen, Camelia M; Knutson, Brian

    2005-09-01

    Investors systematically deviate from rationality when making financial decisions, yet the mechanisms responsible for these deviations have not been identified. Using event-related fMRI, we examined whether anticipatory neural activity would predict optimal and suboptimal choices in a financial decision-making task. We characterized two types of deviations from the optimal investment strategy of a rational risk-neutral agent as risk-seeking mistakes and risk-aversion mistakes. Nucleus accumbens activation preceded risky choices as well as risk-seeking mistakes, while anterior insula activation preceded riskless choices as well as risk-aversion mistakes. These findings suggest that distinct neural circuits linked to anticipatory affect promote different types of financial choices and indicate that excessive activation of these circuits may lead to investing mistakes. Thus, consideration of anticipatory neural mechanisms may add predictive power to the rational actor model of economic decision making.

  19. How are things adding up? Neural differences between arithmetic operations are due to general problem solving strategies.

    Science.gov (United States)

    Tschentscher, Nadja; Hauk, Olaf

    2014-05-15

    A number of previous studies have interpreted differences in brain activation between arithmetic operation types (e.g. addition and multiplication) as evidence in favor of distinct cortical representations, processes or neural systems. It is still not clear how differences in general task complexity contribute to these neural differences. Here, we used a mental arithmetic paradigm to disentangle brain areas related to general problem solving from those involved in operation type specific processes (addition versus multiplication). We orthogonally varied operation type and complexity. Importantly, complexity was defined not only based on surface criteria (for example number size), but also on the basis of individual participants' strategy ratings, which were validated in a detailed behavioral analysis. We replicated previously reported operation type effects in our analyses based on surface criteria. However, these effects vanished when controlling for individual strategies. Instead, procedural strategies contrasted with memory retrieval reliably activated fronto-parietal and motor regions, while retrieval strategies activated parietal cortices. This challenges views that operation types rely on partially different neural systems, and suggests that previously reported differences between operation types may have emerged due to invalid measures of complexity. We conclude that mental arithmetic is a powerful paradigm to study brain networks of abstract problem solving, as long as individual participants' strategies are taken into account. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects.

    Science.gov (United States)

    Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N

    2018-05-16

    Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.

  1. The neural bases for valuing social equality.

    Science.gov (United States)

    Aoki, Ryuta; Yomogida, Yukihito; Matsumoto, Kenji

    2015-01-01

    The neural basis of how humans value and pursue social equality has become a major topic in social neuroscience research. Although recent studies have identified a set of brain regions and possible mechanisms that are involved in the neural processing of equality of outcome between individuals, how the human brain processes equality of opportunity remains unknown. In this review article, first we describe the importance of the distinction between equality of outcome and equality of opportunity, which has been emphasized in philosophy and economics. Next, we discuss possible approaches for empirical characterization of human valuation of equality of opportunity vs. equality of outcome. Understanding how these two concepts are distinct and interact with each other may provide a better explanation of complex human behaviors concerning fairness and social equality. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  3. Photogenic partial seizures.

    Science.gov (United States)

    Hennessy, M J; Binnie, C D

    2000-01-01

    To establish the incidence and symptoms of partial seizures in a cohort of patients investigated on account of known sensitivity to intermittent photic stimulation and/or precipitation of seizures by environmental visual stimuli such as television (TV) screens or computer monitors. We report 43 consecutive patients with epilepsy, who had exhibited a significant EEG photoparoxysmal response or who had seizures precipitated by environmental visual stimuli and underwent detailed assessment of their photosensitivity in the EEG laboratory, during which all were questioned concerning their ictal symptoms. All patients were considered on clinical grounds to have an idiopathic epilepsy syndrome. Twenty-eight (65%) patients reported visually precipitated attacks occurring initially with maintained consciousness, in some instances evolving to a period of confusion or to a secondarily generalized seizure. Visual symptoms were most commonly reported and included positive symptoms such as coloured circles or spots, but also blindness and subjective symptoms such as "eyes going funny." Other symptoms described included nonspecific cephalic sensations, deja-vu, auditory hallucinations, nausea, and vomiting. No patient reported any clear spontaneous partial seizures, and there were no grounds for supposing that any had partial epilepsy excepting the ictal phenomenology of some or all of the visually induced attacks. These findings provide clinical support for the physiological studies that indicate that the trigger mechanism for human photosensitivity involves binocularly innervated cells located in the visual cortex. Thus the visual cortex is the seat of the primary epileptogenic process, and the photically triggered discharges and seizures may be regarded as partial with secondary generalization.

  4. Arthroscopic partial medial meniscectomy

    Directory of Open Access Journals (Sweden)

    Dašić Žarko

    2011-01-01

    Full Text Available Background/Aim. Meniscal injuries are common in professional or recreational sports as well as in daily activities. If meniscal lesions lead to physical impairment they usually require surgical treatment. Arthroscopic treatment of meniscal injuries is one of the most often performed orthopedic operative procedures. Methods. The study analyzed the results of arthroscopic partial medial meniscectomy in 213 patients in a 24-month period, from 2006, to 2008. Results. In our series of arthroscopically treated medial meniscus tears we noted 78 (36.62% vertical complete bucket handle lesions, 19 (8.92% vertical incomplete lesions, 18 (8.45% longitudinal tears, 35 (16.43% oblique tears, 18 (8.45% complex degenerative lesions, 17 (7.98% radial lesions and 28 (13.14% horisontal lesions. Mean preoperative International Knee Documentation Committee (IKDC score was 49.81%, 1 month after the arthroscopic partial medial meniscectomy the mean IKDC score was 84.08%, and 6 months after mean IKDC score was 90.36%. Six months after the procedure 197 (92.49% of patients had good or excellent subjective postoperative clinical outcomes, while 14 (6.57% patients subjectively did not notice a significant improvement after the intervention, and 2 (0.93% patients had no subjective improvement after the partial medial meniscectomy at all. Conclusion. Arthroscopic partial medial meniscetomy is minimally invasive diagnostic and therapeutic procedure and in well selected cases is a method of choice for treatment of medial meniscus injuries when repair techniques are not a viable option. It has small rate of complications, low morbidity and fast rehabilitation.

  5. Foot Plantar Pressure Estimation Using Artificial Neural Networks

    OpenAIRE

    Xidias , Elias; Koutkalaki , Zoi; Papagiannis , Panagiotis; Papanikos , Paraskevas; Azariadis , Philip

    2015-01-01

    Part 1: Smart Products; International audience; In this paper, we present a novel approach to estimate the maximum pressure over the foot plantar surface exerted by a two-layer shoe sole for three distinct phases of the gait cycle. The proposed method is based on Artificial Neural Networks and can be utilized for the determination of the comfort that is related to the sole construction. Input parameters to the proposed neural network are the material properties and the thicknesses of the sole...

  6. The Neural Correlates of Moral Thinking: A Meta-Analysis

    OpenAIRE

    Douglas J. Bryant; Wang F; Kelley Deardeuff; Emily Zoccoli; Chang S. Nam

    2016-01-01

    We conducted a meta-analysis to evaluate current research that aims to map the neural correlates of two typical conditions of moral judgment: right-wrong moral judgments and decision-making in moral dilemmas. Utilizing the activation likelihood estimation (ALE) method, we conducted a meta-analysis using neuroimaging data obtained from twenty-one previous studies that measured responses in one or the other of these conditions. We found that across the studies (n = 400), distinct neural circuit...

  7. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  8. Requirement of mouse BCCIP for neural development and progenitor proliferation.

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Huang

    Full Text Available Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors.

  9. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  10. Defining poverty as distinctively human

    Directory of Open Access Journals (Sweden)

    H.P.P. Lötter

    2007-05-01

    Full Text Available While it is relatively easy for most people to identify human beings suffering from poverty, it is rather more difficult to come to a proper understanding of poverty. In this article the author wants to deepen our understanding of poverty by interpreting the conventional definitions of poverty in a new light. The article starts with a defence of a claim that poverty is a concept uniquely applicable to humans. It then present a critical discussion of the distinction between absolute and relative poverty and it is then argued that a revision of this distinction can provide general standards applicable to humans everywhere.

  11. Evaluation of the Legibility of Broken Lines for Partial Sight

    OpenAIRE

    小林, 秀之

    2000-01-01

    The present study was designed to investigate the legibility of broken lines for persons with partial sight. The subjects were 10 persons with simulated partial sight, and 4 persons with partial sight. The simulation was obtained using filters and convex lenses. The 30 kind of broken lines was evaluated by the original test that the subjects were read directions of the broken lines in distinction from solid lines. The thickness of lines varied from 0.1mm. to 0.7mm. in 4 steps. The results...

  12. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  13. Anisotropy of ongoing neural activity in the primate visual cortex

    Directory of Open Access Journals (Sweden)

    Maier A

    2014-09-01

    Full Text Available Alexander Maier,1 Michele A Cox,1 Kacie Dougherty,1 Brandon Moore,1 David A Leopold2 1Department of Psychology, College of Arts and Science, Vanderbilt University, Nashville, TN, USA; 2Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and radial extents. This review consolidates previously published findings from our group in order to compare and contrast the spatial profile of neural activity coherence across these distinct cortical dimensions. We focus on studies of ongoing local field potential (LFP data obtained simultaneously from multiple sites in the primary visual cortex in two types of experiments in which electrode contacts were spaced either along the cortical surface or at different laminar positions. These studies demonstrate that across both dimensions the coherence of ongoing LFP fluctuations diminishes as a function of interelectrode distance, although the nature and spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coherence declines gradually and continuously away from a given position. In contrast, across the cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern of ongoing LFP coherence is similar when animals are at rest and when they are engaged in a behavioral task. These results point to the existence of partially segregated laminar zones of cortical processing that extend tangentially within the laminar compartments and are thus oriented orthogonal to the cortical columns. We interpret these electrophysiological observations in light of the known anatomical organization of

  14. Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making

    Directory of Open Access Journals (Sweden)

    Bryan C. Daniels

    2017-06-01

    Full Text Available A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a “coding duality” in which there are accumulation and consensus formation processes distinguished by different timescales.

  15. Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making.

    Science.gov (United States)

    Daniels, Bryan C; Flack, Jessica C; Krakauer, David C

    2017-01-01

    A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a "coding duality" in which there are accumulation and consensus formation processes distinguished by different timescales.

  16. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  17. Infinite partial summations

    International Nuclear Information System (INIS)

    Sprung, D.W.L.

    1975-01-01

    This paper is a brief review of those aspects of the effective interaction problem that can be grouped under the heading of infinite partial summations of the perturbation series. After a brief mention of the classic examples of infinite summations, the author turns to the effective interaction problem for two extra core particles. Their direct interaction is summed to produce the G matrix, while their indirect interaction through the core is summed in a variety of ways under the heading of core polarization. (orig./WL) [de

  18. On universal partial words

    OpenAIRE

    Chen, Herman Z. Q.; Kitaev, Sergey; Mütze, Torsten; Sun, Brian Y.

    2016-01-01

    A universal word for a finite alphabet $A$ and some integer $n\\geq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A$ and $n$. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from $A$ may contain an arbitrary number of occurrences of a special `joker' symbol $\\Diamond\

  19. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  20. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  1. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  2. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  3. Generalized Partial Volume

    DEFF Research Database (Denmark)

    Darkner, Sune; Sporring, Jon

    2011-01-01

    Mutual Information (MI) and normalized mutual information (NMI) are popular choices as similarity measure for multimodal image registration. Presently, one of two approaches is often used for estimating these measures: The Parzen Window (PW) and the Generalized Partial Volume (GPV). Their theoret...... of view as well as w.r.t. computational complexity. Finally, we present algorithms for both approaches for NMI which is comparable in speed to Sum of Squared Differences (SSD), and we illustrate the differences between PW and GPV on a number of registration examples....

  4. Unilateral removable partial dentures.

    Science.gov (United States)

    Goodall, W A; Greer, A C; Martin, N

    2017-01-27

    Removable partial dentures (RPDs) are widely used to replace missing teeth in order to restore both function and aesthetics for the partially dentate patient. Conventional RPD design is frequently bilateral and consists of a major connector that bridges both sides of the arch. Some patients cannot and will not tolerate such an extensive appliance. For these patients, bridgework may not be a predictable option and it is not always possible to provide implant-retained restorations. This article presents unilateral RPDs as a potential treatment modality for such patients and explores indications and contraindications for their use, including factors relating to patient history, clinical presentation and patient wishes. Through case examples, design, material and fabrication considerations will be discussed. While their use is not widespread, there are a number of patients who benefit from the provision of unilateral RPDs. They are a useful treatment to have in the clinician's armamentarium, but a highly-skilled dental team and a specific patient presentation is required in order for them to be a reasonable and predictable prosthetic option.

  5. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...... is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V...

  6. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  7. Detecting Math Anxiety with a Mixture Partial Credit Model

    Science.gov (United States)

    Ölmez, Ibrahim Burak; Cohen, Allan S.

    2017-01-01

    The purpose of this study was to investigate a new methodology for detection of differences in middle grades students' math anxiety. A mixture partial credit model analysis revealed two distinct latent classes based on homogeneities in response patterns within each latent class. Students in Class 1 had less anxiety about apprehension of math…

  8. Tutorial on Online Partial Evaluation

    Directory of Open Access Journals (Sweden)

    William R. Cook

    2011-09-01

    Full Text Available This paper is a short tutorial introduction to online partial evaluation. We show how to write a simple online partial evaluator for a simple, pure, first-order, functional programming language. In particular, we show that the partial evaluator can be derived as a variation on a compositionally defined interpreter. We demonstrate the use of the resulting partial evaluator for program optimization in the context of model-driven development.

  9. Type-Directed Partial Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    Type-directed partial evaluation uses a normalization function to achieve partial evaluation. These lecture notes review its background, foundations, practice, and applications. Of specific interest is the modular technique of offline and online type-directed partial evaluation in Standard ML...

  10. Type-Directed Partial Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    Type-directed partial evaluation uses a normalization function to achieve partial evaluation. These lecture notes review its background, foundations, practice, and applications. Of specific interest is the modular technique of offline and online type-directed partial evaluation in Standard ML of ...

  11. Neural Correlates of Visual Aesthetics - Beauty as the Coalescence of Stimulus and Internal State

    NARCIS (Netherlands)

    Jacobs, Richard H. A. H.; Renken, Remco; Cornelissen, Frans W.

    2012-01-01

    How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of

  12. Neural Networks: Implementations and Applications

    OpenAIRE

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  13. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  14. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  15. Fundamental partial compositeness

    CERN Document Server

    Sannino, Francesco

    2016-11-07

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  16. Fundamental partial compositeness

    International Nuclear Information System (INIS)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2)_R-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  17. Partial oxidation process

    International Nuclear Information System (INIS)

    Najjar, M.S.

    1987-01-01

    A process is described for the production of gaseous mixtures comprising H/sub 2/+CO by the partial oxidation of a fuel feedstock comprising a heavy liquid hydrocarbonaceous fuel having a nickel, iron, and vanadium-containing ash or petroleum coke having a nickel, iron, and vanadium-containing ash, or mixtures thereof. The feedstock includes a minimum of 0.5 wt. % of sulfur and the ash includes a minimum of 5.0 wt. % vanadium, a minimum of 0.5 ppm nickel, and a minimum of 0.5 ppm iron. The process comprises: (1) mixing together a copper-containing additive with the fuel feedstock; wherein the weight ratio of copper-containing additive to ash in the fuel feedstock is in the range of about 1.0-10.0, and there is at least 10 parts by weight of copper for each part by weight of vanadium; (2) reacting the mixture from (1) at a temperature in the range of 2200 0 F to 2900 0 F and a pressure in the range of about 5 to 250 atmospheres in a free-flow refactory lined partial oxidation reaction zone with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO and entrained molten slag; and where in the reaction zone and the copper-containing additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a liquid phase washing agent that collects and transports at least a portion of the vanadium-containing oxide laths and spinels and other ash components and refractory out of the reaction zone; and (3) separating nongaseous materials from the hot raw effluent gas stream

  18. The neural bases of orthographic working memory

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2014-04-01

    First, these results reveal a neurotopography of OWM lesion sites that is well-aligned with results from neuroimaging of orthographic working memory in neurally intact participants (Rapp & Dufor, 2011. Second, the dorsal neurotopography of the OWM lesion overlap is clearly distinct from what has been reported for lesions associated with either lexical or sublexical deficits (e.g., Henry, Beeson, Stark, & Rapcsak, 2007; Rapcsak & Beeson, 2004; these have, respectively, been identified with the inferior occipital/temporal and superior temporal/inferior parietal regions. These neurotopographic distinctions support the claims of the computational distinctiveness of long-term vs. working memory operations. The specific lesion loci raise a number of questions to be discussed regarding: (a the selectivity of these regions and associated deficits to orthographic working memory vs. working memory more generally (b the possibility that different lesion sub-regions may correspond to different components of the OWM system.

  19. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  20. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  1. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  2. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is...

  3. neural network based load frequency control for restructuring power

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... the system in the back propagation chain used in controller training. For this application, .... The partial derivative of E with respect to ele- ments of Γ, for example W, ... Ki = any non-negative value. Figure 7: Neural Network ...

  4. Fractionating the Neural Substrates of Incidental Recognition Memory

    Science.gov (United States)

    Greene, Ciara M.; Vidaki, Kleio; Soto, David

    2015-01-01

    Familiar stimuli are typically accompanied by decreases in neural response relative to the presentation of novel items, but these studies often include explicit instructions to discriminate old and new items; this creates difficulties in partialling out the contribution of top-down intentional orientation to the items based on recognition goals.…

  5. Does friendship give us non-derivative partial reasons ?

    Directory of Open Access Journals (Sweden)

    Andrew Reisner

    2008-02-01

    Full Text Available One way to approach the question of whether there are non-derivative partial reasons of any kind is to give an account of what partial reasons are, and then to consider whether there are such reasons. If there are, then it is at least possible that there are partial reasons of friendship. It is this approach that will be taken here, and it produces several interesting results. The first is a point about the structure of partial reasons. It is at least a necessary condition of a reason’s being partial that it has an explicit relational component. This component, technically, is a relatum in the reason relation that itself is a relation between the person to whom the reason applies and the person whom the action for which there is a reason concerns. The second conclusion of the paper is that this relational component is also required for a number of types of putatively impartial reasons. In order to avoid trivialising the distinction between partial and impartial reasons, some further sufficient condition must be applied. Finally, there is some prospect for a way of distinguishing between impartial reasons that contain a relational component and partial reasons, but that this approach suggests that the question of whether ethics is partial or impartial will be settled at the level of normative ethical discourse, or at least not at the level of discourse about the nature of reasons for action.

  6. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    Science.gov (United States)

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  7. Presidential address: distinction or extinction.

    Science.gov (United States)

    Pressman, Barry D

    2008-10-01

    Despite its continuing scientific successes in imaging, radiology as a specialty is faced with a very difficult and competitive environment. Nonradiologists are more and more interested in vertically integrating imaging into their practices, while teleradiology and picture archiving and communication systems are resulting in the greater isolation of radiologists. Commoditization is a realistic and devastating threat to the survival and professionalism of the specialty. To remain viable as a specialty, radiologists must elevate their practice by subspecializing, becoming more involved with clinical care, and actively interacting with patients and referring clinicians. Distinction will prevent extinction.

  8. Neural complexity: A graph theoretic interpretation

    Science.gov (United States)

    Barnett, L.; Buckley, C. L.; Bullock, S.

    2011-04-01

    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end, Tononi [Proc. Natl. Acad. Sci. USA.PNASA60027-842410.1073/pnas.91.11.5033 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system’s dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns [Cereb. Cortex53OPAV1047-321110.1093/cercor/10.2.127 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.71.016114 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish a dependency of neural complexity on cyclic graph motifs.

  9. Is "Learning" episodic memory? Distinct cognitive and neuroanatomic correlates of immediate recall during learning trials in neurologically normal aging and neurodegenerative cohorts.

    Science.gov (United States)

    Casaletto, K B; Marx, G; Dutt, S; Neuhaus, J; Saloner, R; Kritikos, L; Miller, B; Kramer, J H

    2017-07-28

    Although commonly interpreted as a marker of episodic memory during neuropsychological exams, relatively little is known regarding the neurobehavior of "total learning" immediate recall scores. Medial temporal lobes are clearly associated with delayed recall performances, yet immediate recall may necessitate networks beyond traditional episodic memory. We aimed to operationalize cognitive and neuroanatomic correlates of total immediate recall in several aging syndromes. Demographically-matched neurologically normal adults (n=91), individuals with Alzheimer's disease (n=566), logopenic variant primary progressive aphasia (PPA) (n=34), behavioral variant frontotemporal dementia (n=97), semantic variant PPA (n=71), or nonfluent/agrammatic variant PPA (n=39) completed a neurocognitive battery, including the CVLT-Short Form trials 1-4 Total Immediate Recall; a majority subset also completed a brain MRI. Regressions covaried for age and sex, and MMSE in cognitive and total intracranial volume in neuroanatomic models. Neurologically normal adults demonstrated a heterogeneous pattern of cognitive associations with total immediate recall (executive, speed, delayed recall), such that no singular cognitive or neuroanatomic correlate uniquely predicted performance. Within the clinical cohorts, there were syndrome-specific cognitive and neural associations with total immediate recall; e.g., semantic processing was the strongest cognitive correlate in svPPA (partial r=0.41), while frontal volumes was the only meaningful neural correlate in bvFTD (partial r=0.20). Medial temporal lobes were not independently associated with total immediate recall in any group (ps>0.05). Multiple neurobehavioral systems are associated with "total learning" immediate recall scores that importantly differ across distinct clinical syndromes. Conventional memory networks may not be sufficient or even importantly contribute to total immediate recall in many syndromes. Interpreting learning scores as

  10. Experts' understanding of partial derivatives using the Partial Derivative Machine

    OpenAIRE

    Roundy, David; Dorko, Allison; Dray, Tevian; Manogue, Corinne A.; Weber, Eric

    2014-01-01

    Partial derivatives are used in a variety of different ways within physics. Most notably, thermodynamics uses partial derivatives in ways that students often find confusing. As part of a collaboration with mathematics faculty, we are at the beginning of a study of the teaching of partial derivatives, a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. As a part of this project, we have performed a pilot study of expert understanding...

  11. Neural networks in continuous optical media

    International Nuclear Information System (INIS)

    Anderson, D.Z.

    1987-01-01

    The authors' interest is to see to what extent neural models can be implemented using continuous optical elements. Thus these optical networks represent a continuous distribution of neuronlike processors rather than a discrete collection. Most neural models have three characteristic features: interconnections; adaptivity; and nonlinearity. In their optical representation the interconnections are implemented with linear one- and two-port optical elements such as lenses and holograms. Real-time holographic media allow these interconnections to become adaptive. The nonlinearity is achieved with gain, for example, from two-beam coupling in photorefractive media or a pumped dye medium. Using these basic optical elements one can in principle construct continuous representations of a number of neural network models. The authors demonstrated two devices based on continuous optical elements: an associative memory which recalls an entire object when addressed with a partial object and a tracking novelty filter which identifies time-dependent features in an optical scene. These devices demonstrate the potential of distributed optical elements to implement more formal models of neural networks

  12. Autoshaping and Automaintenance: A Neural-Network Approach

    Science.gov (United States)

    Burgos, Jose E.

    2007-01-01

    This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an "A-B-A" design…

  13. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  14. Commentary: Elucidating the Neural Correlates of Early Childhood Memory

    Science.gov (United States)

    Mullally, Sinead L.

    2015-01-01

    Both episodic memory and the key neural structure believed to support it, namely the hippocampus, are believed to undergo protracted periods of postnatal developmental. Critically however, the hippocampus is comprised of distinct subfields and circuits, and these circuits appear to mature at different rates (Lavenex and Banta Lavenex, 2013).…

  15. Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale

    Science.gov (United States)

    Bickart, Kevin C; Brickhouse, Michael; Negreira, Alyson; Sapolsky, Daisy

    2015-01-01

    Patients with frontotemporal dementia (FTD) often exhibit prominent, early and progressive impairments in social behaviour. We developed the Social Impairment Rating Scale (SIRS), rated by a clinician after a structured interview, which grades the types and severity of social behavioural symptoms in seven domains. In 20 FTD patients, we used the SIRS to study the anatomic basis of social impairments. In support of hypotheses generated from a prior study of healthy adults, we found that the relative magnitude of brain atrophy in three partially dissociable corticolimbic networks anchored in the amygdala predicted the severity of distinct social impairments measured using the SIRS. Patients with the greatest atrophy in a mesolimbic, reward-related (affiliation) network exhibited the most severe socioemotional detachment, whereas patients with the greatest atrophy in an interoceptive, pain-related (aversion) network exhibited the most severe lack of social apprehension. Patients with the greatest atrophy in a perceptual network exhibited the most severe lack of awareness or understanding of others’ social and emotional behaviour. Our findings underscore observations that FTD is associated with heterogeneous social symptoms that can be understood in a refined manner by measuring impairments in component processes subserved by dissociable neural networks. Furthermore, these findings support the validity of the SIRS as an instrument to measure the social symptoms of patients with FTD. Ultimately, we hope it will be useful as a longitudinal outcome measure in natural history studies and in clinical trials of putative interventions to improve social functioning. PMID:24133285

  16. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  17. Dynamics of neural cryptography

    International Nuclear Information System (INIS)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-01-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible

  18. Dynamics of neural cryptography

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  19. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  20. ANT Advanced Neural Tool

    International Nuclear Information System (INIS)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-01-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs

  1. Partial Actions and Power Sets

    Directory of Open Access Journals (Sweden)

    Jesús Ávila

    2013-01-01

    Full Text Available We consider a partial action (X,α with enveloping action (T,β. In this work we extend α to a partial action on the ring (P(X,Δ,∩ and find its enveloping action (E,β. Finally, we introduce the concept of partial action of finite type to investigate the relationship between (E,β and (P(T,β.

  2. Algorithms over partially ordered sets

    DEFF Research Database (Denmark)

    Baer, Robert M.; Østerby, Ole

    1969-01-01

    in partially ordered sets, answer the combinatorial question of how many maximal chains might exist in a partially ordered set withn elements, and we give an algorithm for enumerating all maximal chains. We give (in § 3) algorithms which decide whether a partially ordered set is a (lower or upper) semi......-lattice, and whether a lattice has distributive, modular, and Boolean properties. Finally (in § 4) we give Algol realizations of the various algorithms....

  3. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    Science.gov (United States)

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  4. Anatomic partial nephrectomy: technique evolution.

    Science.gov (United States)

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  5. Partial order infinitary term rewriting

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2014-01-01

    We study an alternative model of infinitary term rewriting. Instead of a metric on terms, a partial order on partial terms is employed to formalise convergence of reductions. We consider both a weak and a strong notion of convergence and show that the metric model of convergence coincides with th...... to the metric setting -- orthogonal systems are both infinitarily confluent and infinitarily normalising in the partial order setting. The unique infinitary normal forms that the partial order model admits are Böhm trees....

  6. Determining the confidence levels of sensor outputs using neural networks

    International Nuclear Information System (INIS)

    Broten, G.S.; Wood, H.C.

    1995-01-01

    This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network's ability to determine the confidence level is influenced by the complexity of the sensor's response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in

  7. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  8. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  9. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  10. Neural correlates of continuous causal word generation.

    Science.gov (United States)

    Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne

    2012-09-01

    Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Active Neural Localization

    OpenAIRE

    Chaplot, Devendra Singh; Parisotto, Emilio; Salakhutdinov, Ruslan

    2018-01-01

    Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of tradition...

  12. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  13. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  14. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  15. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  16. Partial twisting for scalar mesons

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki

    2014-01-01

    The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given

  17. Briefly Cuing Memories Leads to Suppression of Their Neural Representations

    Science.gov (United States)

    Norman, Kenneth A.

    2014-01-01

    Previous studies have linked partial memory activation with impaired subsequent memory retrieval (e.g., Detre et al., 2013) but have not provided an account of this phenomenon at the level of memory representations: How does partial activation change the neural pattern subsequently elicited when the memory is cued? To address this question, we conducted a functional magnetic resonance imaging (fMRI) experiment in which participants studied word-scene paired associates. Later, we weakly reactivated some memories by briefly presenting the cue word during a rapid serial visual presentation (RSVP) task; other memories were more strongly reactivated or not reactivated at all. We tested participants' memory for the paired associates before and after RSVP. Cues that were briefly presented during RSVP triggered reduced levels of scene activity on the post-RSVP memory test, relative to the other conditions. We used pattern similarity analysis to assess how representations changed as a function of the RSVP manipulation. For briefly cued pairs, we found that neural patterns elicited by the same cue on the pre- and post-RSVP tests (preA–postA; preB–postB) were less similar than neural patterns elicited by different cues (preA–postB; preB–postA). These similarity reductions were predicted by neural measures of memory activation during RSVP. Through simulation, we show that our pattern similarity results are consistent with a model in which partial memory activation triggers selective weakening of the strongest parts of the memory. PMID:24899722

  18. Cast Partial Denture versus Acrylic Partial Denture for Replacement of Missing Teeth in Partially Edentulous Patients

    Directory of Open Access Journals (Sweden)

    Pramita Suwal

    2017-03-01

    Full Text Available Aim: To compare the effects of cast partial denture with conventional all acrylic denture in respect to retention, stability, masticatory efficiency, comfort and periodontal health of abutments. Methods: 50 adult partially edentulous patient seeking for replacement of missing teeth having Kennedy class I and II arches with or without modification areas were selected for the study. Group-A was treated with cast partial denture and Group-B with acrylic partial denture. Data collected during follow-up visit of 3 months, 6 months, and 1 year by evaluating retention, stability, masticatory efficiency, comfort, periodontal health of abutment. Results: Chi-square test was applied to find out differences between the groups at 95% confidence interval where p = 0.05. One year comparison shows that cast partial denture maintained retention and stability better than acrylic partial denture (p< 0.05. The masticatory efficiency was significantly compromising from 3rd month to 1 year in all acrylic partial denture groups (p< 0.05. The comfort of patient with cast partial denture was maintained better during the observation period (p< 0.05. Periodontal health of abutment was gradually deteriorated in all acrylic denture group (p

  19. Two Distinct Moral Mechanisms for Ascribing and Denying Intentionality.

    Science.gov (United States)

    Ngo, Lawrence; Kelly, Meagan; Coutlee, Christopher G; Carter, R McKell; Sinnott-Armstrong, Walter; Huettel, Scott A

    2015-12-04

    Philosophers and legal scholars have long theorized about how intentionality serves as a critical input for morality and culpability, but the emerging field of experimental philosophy has revealed a puzzling asymmetry. People judge actions leading to negative consequences as being more intentional than those leading to positive ones. The implications of this asymmetry remain unclear because there is no consensus regarding the underlying mechanism. Based on converging behavioral and neural evidence, we demonstrate that there is no single underlying mechanism. Instead, two distinct mechanisms together generate the asymmetry. Emotion drives ascriptions of intentionality for negative consequences, while the consideration of statistical norms leads to the denial of intentionality for positive consequences. We employ this novel two-mechanism model to illustrate that morality can paradoxically shape judgments of intentionality. This is consequential for mens rea in legal practice and arguments in moral philosophy pertaining to terror bombing, abortion, and euthanasia among others.

  20. Two Distinct Moral Mechanisms for Ascribing and Denying Intentionality

    Science.gov (United States)

    Ngo, Lawrence; Kelly, Meagan; Coutlee, Christopher G.; Carter, R. McKell; Sinnott-Armstrong, Walter; Huettel, Scott A.

    2015-01-01

    Philosophers and legal scholars have long theorized about how intentionality serves as a critical input for morality and culpability, but the emerging field of experimental philosophy has revealed a puzzling asymmetry. People judge actions leading to negative consequences as being more intentional than those leading to positive ones. The implications of this asymmetry remain unclear because there is no consensus regarding the underlying mechanism. Based on converging behavioral and neural evidence, we demonstrate that there is no single underlying mechanism. Instead, two distinct mechanisms together generate the asymmetry. Emotion drives ascriptions of intentionality for negative consequences, while the consideration of statistical norms leads to the denial of intentionality for positive consequences. We employ this novel two-mechanism model to illustrate that morality can paradoxically shape judgments of intentionality. This is consequential for mens rea in legal practice and arguments in moral philosophy pertaining to terror bombing, abortion, and euthanasia among others. PMID:26634909

  1. 应用计算机人工神经网络系统结合CT与PET鉴别良、恶性肺结节%Computerized distinction of benign and malignant pulmonary nodules on PET and CT with an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    聂永康; 赵绍宏; 王瑞民; 吴坚; 蔡祖龙; 杨立

    2011-01-01

    目的 利用肺结节CT、PET特征,开发计算机人工神经网络(ANN)辅助诊断系统,评价其对肺结节良恶性的鉴别能力.方法 连续收集112例肺内单发小结节(<3.0 cm)患者,均接受PET/CT及胸部CT检查,二者间隔小于1个月.112例患者中恶性肺结节52例,良性60例,均经组织学或临床随诊证实.利用结节的CT特征及PET特征开发计算机ANN辅助诊断系统.计算机ANN的训练及测试采用Round-Robin方法.采用ROC方法评价计算机ANN输出结果并进行统计学分析.结果 CT计算机ANN程序采用20个输入单元,包括4个临床特征及16个CT特征,ROC曲线下面积(Az)为0.83;PET计算机ANN程序采用4个临床特征及1个PET特征作为5个输入单元,Az值为0.91;CT+PET计算机ANN程序采用临床特征CT及PET所有21个输入单元.Az值为0.95.与CT计算机ANN程序、PET计算机ANN程序相比,CT+PET计算机ANN程序输出结果明显提高(p=0.015、0.037).结论 CT+PET ANN计算机辅助诊断程序输出结果优于单纯PET或CT计算机ANN结果.当PET对肺结节诊断有困难时,结节的CT特征有助于鉴别诊断.%Objective To develop computer-aided diagnostic system using artificial neural network (ANN) method which integrates pulmonary nodule features on CT image with that on PET image for differentiating malignancy from benign pulmonary nodules.Methods Totally 112 consecutive patients with pulmonary nodules (<3.0 cm) underwent both thoracic CT and whole-body PET/CT.The interval between CT and PET examinations was less than 1 month.There were 52 malignant and 60 benign lesions confirmed with pathology or clinical follow-up.ANN was used for differentiating benign from malignant nodules based on clinical information together with CT and PET features.Round-Robin method was applied for training and testing the ANN.The output from the computerized schemes were evaluated with receiver operating characteristic (ROC) analysis.Results When 20 input units including 4

  2. Partial duplication of head--a rare congenital anomaly.

    Science.gov (United States)

    Hemachandran, Manikkapurath; Radotra, Bishan Dass

    2004-10-01

    Duplication of notochord results in rare congenital anomalies like double headed monsters, with or without trunk/limb duplication, depending upon the extent of notochordal abnormality. Here we describe the morphological abnormalities in a case of partial duplication of cranial structures with fusion of the two. Autopsy findings suggest that the bifurcation of the neural tube took place around 4th to 6th week of gestation. There are only few reports in English literature describing the autopsy findings of such an anomaly, which is termed as Diprosopus triophthalmus in the modern literature.

  3. Parallel consensual neural networks.

    Science.gov (United States)

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  4. Neural basis of social status hierarchy across species.

    Science.gov (United States)

    Chiao, Joan Y

    2010-12-01

    Social status hierarchy is a ubiquitous principle of social organization across the animal kingdom. Recent findings in social neuroscience reveal distinct neural networks associated with the recognition and experience of social hierarchy in humans, as well as modulation of these networks by personality and culture. Additionally, allelic variation in the serotonin transporter gene is associated with prevalence of social hierarchy across species and cultures, suggesting the importance of the study of genetic factors underlying social hierarchy. Future studies are needed to determine how genetic and environmental factors shape neural systems involved in the production and maintenance of social hierarchy across ontogeny and phylogeny. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  6. Partially massless fields during inflation

    Science.gov (United States)

    Baumann, Daniel; Goon, Garrett; Lee, Hayden; Pimentel, Guilherme L.

    2018-04-01

    The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.

  7. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  8. Neural network application to diesel generator diagnostics

    International Nuclear Information System (INIS)

    Logan, K.P.

    1990-01-01

    Diagnostic problems typically begin with the observation of some system behavior which is recognized as a deviation from the expected. The fundamental underlying process is one involving pattern matching cf observed symptoms to a set of compiled symptoms belonging to a fault-symptom mapping. Pattern recognition is often relied upon for initial fault detection and diagnosis. Parallel distributed processing (PDP) models employing neural network paradigms are known to be good pattern recognition devices. This paper describes the application of neural network processing techniques to the malfunction diagnosis of subsystems within a typical diesel generator configuration. Neural network models employing backpropagation learning were developed to correctly recognize fault conditions from the input diagnostic symptom patterns pertaining to various engine subsystems. The resulting network models proved to be excellent pattern recognizers for malfunction examples within the training set. The motivation for employing network models in lieu of a rule-based expert system, however, is related to the network's potential for generalizing malfunctions outside of the training set, as in the case of noisy or partial symptom patterns

  9. [Acrylic resin removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  10. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  11. Neural Architectures for Control

    Science.gov (United States)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  12. Sacred or Neural?

    DEFF Research Database (Denmark)

    Runehov, Anne Leona Cesarine

    Are religious spiritual experiences merely the product of the human nervous system? Anne L.C. Runehov investigates the potential of contemporary neuroscience to explain religious experiences. Following the footsteps of Michael Persinger, Andrew Newberg and Eugene d'Aquili she defines...... the terminological bounderies of "religious experiences" and explores the relevant criteria for the proper evaluation of scientific research, with a particular focus on the validity of reductionist models. Runehov's theis is that the perspectives looked at do not necessarily exclude each other but can be merged....... The question "sacred or neural?" becomes a statement "sacred and neural". The synergies thus produced provide manifold opportunities for interdisciplinary dialogue and research....

  13. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  14. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  15. Discrete Neural Signatures of Basic Emotions.

    Science.gov (United States)

    Saarimäki, Heini; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P; Lampinen, Jouko; Vuilleumier, Patrik; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2016-06-01

    Categorical models of emotions posit neurally and physiologically distinct human basic emotions. We tested this assumption by using multivariate pattern analysis (MVPA) to classify brain activity patterns of 6 basic emotions (disgust, fear, happiness, sadness, anger, and surprise) in 3 experiments. Emotions were induced with short movies or mental imagery during functional magnetic resonance imaging. MVPA accurately classified emotions induced by both methods, and the classification generalized from one induction condition to another and across individuals. Brain regions contributing most to the classification accuracy included medial and inferior lateral prefrontal cortices, frontal pole, precentral and postcentral gyri, precuneus, and posterior cingulate cortex. Thus, specific neural signatures across these regions hold representations of different emotional states in multimodal fashion, independently of how the emotions are induced. Similarity of subjective experiences between emotions was associated with similarity of neural patterns for the same emotions, suggesting a direct link between activity in these brain regions and the subjective emotional experience. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Neural correlates of affective influence on choice.

    Science.gov (United States)

    Piech, Richard M; Lewis, Jade; Parkinson, Caroline H; Owen, Adrian M; Roberts, Angela C; Downing, Paul E; Parkinson, John A

    2010-03-01

    Making the right choice depends crucially on the accurate valuation of the available options in the light of current needs and goals of an individual. Thus, the valuation of identical options can vary considerably with motivational context. The present study investigated the neural structures underlying context dependent evaluation. We instructed participants to choose from food menu items based on different criteria: on their anticipated taste or on ease of preparation. The aim of the manipulation was to assess which neural sites were activated during choice guided by incentive value, and which during choice based on a value-irrelevant criterion. To assess the impact of increased motivation, affect-guided choice and cognition-guided choice was compared during the sated and hungry states. During affective choice, we identified increased activity in structures representing primarily valuation and taste (medial prefrontal cortex, insula). During cognitive choice, structures showing increased activity included those implicated in suppression and conflict monitoring (lateral orbitofrontal cortex, anterior cingulate). Hunger influenced choice-related activity in the ventrolateral prefrontal cortex. Our results show that choice is associated with the use of distinct neural structures for the pursuit of different goals. Published by Elsevier Inc.

  17. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.

    Science.gov (United States)

    Blankenstein, Neeltje E; Peper, Jiska S; Crone, Eveline A; van Duijvenvoorde, Anna C K

    2017-11-01

    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.

  18. Solving of some Problems with On-Line Mode Measurement of Partial Discharges

    Directory of Open Access Journals (Sweden)

    Karel Zalis

    2004-01-01

    Full Text Available This paper deals with the problems discussing the transition from off-line diagnostic methods to on-line ones. Based on the experience with commercial partial discharge measuring equipment a new digital system for the evaluation of partial discharge measurement including software and hardware facilities has been developed at the Czech Technical University in Prague. Two expert systems work in this complex evaluating system: a rule-based expert system performing an amplitude analysis of partial discharge impulses for determining the damage of the insulation system, and a neural network which is used for a phase analysis of partial discharge impulses to determine the kind of partial discharge activity. Problem of the elimination of disturbances is also discussed.

  19. Two Distinct Scene-Processing Networks Connecting Vision and Memory.

    Science.gov (United States)

    Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M

    2016-01-01

    A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.

  20. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  1. Neural correlates of consciousness

    African Journals Online (AJOL)

    neural cells.1 Under this approach, consciousness is believed to be a product of the ... possible only when the 40 Hz electrical hum is sustained among the brain circuits, ... expect the brain stem ascending reticular activating system. (ARAS) and the ... related synchrony of cortical neurons.11 Indeed, stimulation of brainstem ...

  2. Neural Networks and Micromechanics

    Science.gov (United States)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  3. Introduction to neural networks

    International Nuclear Information System (INIS)

    Pavlopoulos, P.

    1996-01-01

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  4. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  5. Neural underpinnings of music

    DEFF Research Database (Denmark)

    Vuust, Peter; Gebauer, Line K; Witek, Maria A G

    2014-01-01

    . According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we...

  6. Parachute technique for partial penectomy

    Directory of Open Access Journals (Sweden)

    Fernando Korkes

    2010-04-01

    Full Text Available PURPOSE: Penile carcinoma is a rare but mutilating malignancy. In this context, partial penectomy is the most commonly applied approach for best oncological results. We herein propose a simple modification of the classic technique of partial penectomy, for better cosmetic and functional results. TECHNIQUE: If partial penectomy is indicated, the present technique can bring additional benefits. Different from classical technique, the urethra is spatulated only ventrally. An inverted "V" skin flap with 0.5 cm of extension is sectioned ventrally. The suture is performed with vicryl 4-0 in a "parachute" fashion, beginning from the ventral portion of the urethra and the "V" flap, followed by the "V" flap angles and than by the dorsal portion of the penis. After completion of the suture, a Foley catheter and light dressing are placed for 24 hours. CONCLUSIONS: Several complex reconstructive techniques have been previously proposed, but normally require specific surgical abilities, adequate patient selection and staged procedures. We believe that these reconstructive techniques are very useful in some specific subsets of patients. However, the technique herein proposed is a simple alternative that can be applied to all men after a partial penectomy, and takes the same amount of time as that in the classic technique. In conclusion, the "parachute" technique for penile reconstruction after partial amputation not only improves the appearance of the penis, but also maintains an adequate function.

  7. Terrain Mapping and Classification in Outdoor Environments Using Neural Networks

    OpenAIRE

    Alberto Yukinobu Hata; Denis Fernando Wolf; Gustavo Pessin; Fernando Osório

    2009-01-01

    This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, and local obstacle avoidance. Experimental tests using an outdoor robot and a laser sensor demonstra...

  8. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    Science.gov (United States)

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Partial Transposition on Bipartite System

    International Nuclear Information System (INIS)

    Xi-Jun, Ren; Yong-Jian, Han; Yu-Chun, Wu; Guang-Can, Guo

    2008-01-01

    Many properties of partial transposition are unclear as yet. Here we carefully consider the number of the negative eigenvalues of ρ T (ρ's partial transposition) when ρ is a two-partite state. There is strong evidence to show that the number of negative eigenvalues of ρ T is N(N − 1)/2 at most when ρ is a state in Hilbert space C N C N . For the special case, the 2 × 2 system, we use this result to give a partial proof of the conjecture |ρ T | T ≥ 0. We find that this conjecture is strongly connected with the entanglement of the state corresponding to the negative eigenvalue of ρ T or the negative entropy of ρ

  10. Partial volume effect in MRI

    International Nuclear Information System (INIS)

    Maeda, Munehiro; Yoshiya, Kazuhiko; Suzuki, Eiji

    1989-01-01

    According to the direction and the thickness of the imaging slice in tomography, the border between the tissues becomes unclear (partial volume effect). In the present MRI experiment, we examined border area between fat and water components using phantom in order to investigate the partial volume effect in MRI. In spin echo sequences, the intensity of the border area showed a linear relationship with composition of fat and water. Whereas, in inversion recovery and field echo sequences, we found the parameters to produce an extremely low intensity area at the border region between fat and water. This low intensity area was explained by cancellation of NMR signals from fat and water due to the difference in the direction of magnetic vectors. Clinically, partial volume effect can cause of mis-evaluation of walls, small nodules, tumor capsules and the tumor invasion in the use of inversion recovery and field echo sequences. (author)

  11. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  12. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  13. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics

    Science.gov (United States)

    Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni

    2015-01-01

    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645

  14. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  15. Neural evidence that human emotions share core affective properties.

    Science.gov (United States)

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2013-06-01

    Research on the "emotional brain" remains centered around the idea that emotions like fear, happiness, and sadness result from specialized and distinct neural circuitry. Accumulating behavioral and physiological evidence suggests, instead, that emotions are grounded in core affect--a person's fluctuating level of pleasant or unpleasant arousal. A neuroimaging study revealed that participants' subjective ratings of valence (i.e., pleasure/displeasure) and of arousal evoked by various fear, happiness, and sadness experiences correlated with neural activity in specific brain regions (orbitofrontal cortex and amygdala, respectively). We observed these correlations across diverse instances within each emotion category, as well as across instances from all three categories. Consistent with a psychological construction approach to emotion, the results suggest that neural circuitry realizes more basic processes across discrete emotions. The implicated brain regions regulate the body to deal with the world, producing the affective changes at the core of emotions and many other psychological phenomena.

  16. The neural basis of body form and body action agnosia.

    Science.gov (United States)

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  17. Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wan, Can; Song, Yonghua; Xu, Zhao

    2016-01-01

    probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....

  18. Basic linear partial differential equations

    CERN Document Server

    Treves, Francois

    1975-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  19. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  20. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    connectivity was strongest between central and cerebellar regions. Our results show that neural coupling within motor networks is modulated in distinct frequency bands depending on the motor task. They provide evidence that dynamic causal modeling in combination with EEG source analysis is a valuable tool......Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the task......-dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  2. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    Science.gov (United States)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  3. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  4. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  5. Autoshaping and Automaintenance: A Neural-Network Approach

    OpenAIRE

    Burgos, José E

    2007-01-01

    This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an A-B-A design and four instances of feedfoward architectures. In A, networks received a positive contingency between inputs that simulated a conditioned stimulus (C...

  6. Application of artificial neural network for heat transfer in porous cone

    Science.gov (United States)

    Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.

  7. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays.

    Science.gov (United States)

    Sheng, Yin; Zhang, Hao; Zeng, Zhigang

    2017-10-01

    This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.

  8. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    -renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  9. Neural Elements for Predictive Coding

    Directory of Open Access Journals (Sweden)

    Stewart SHIPP

    2016-11-01

    Full Text Available Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backwards in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forwards and backwards pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a updates in the microcircuitry of primate visual cortex, and (b rapid technical advances made

  10. Neural Elements for Predictive Coding.

    Science.gov (United States)

    Shipp, Stewart

    2016-01-01

    Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural

  11. Timed Testing under Partial Observability

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao

    2009-01-01

    observability of SUT using a set of predicates over the TGA state space, and specify the test purposes in Computation Tree Logic (CTL) formulas. A recently developed partially observable timed game solver is used to generate winning strategies, which are used as test cases. We propose a conformance testing...

  12. Variable Selection via Partial Correlation.

    Science.gov (United States)

    Li, Runze; Liu, Jingyuan; Lou, Lejia

    2017-07-01

    Partial correlation based variable selection method was proposed for normal linear regression models by Bühlmann, Kalisch and Maathuis (2010) as a comparable alternative method to regularization methods for variable selection. This paper addresses two important issues related to partial correlation based variable selection method: (a) whether this method is sensitive to normality assumption, and (b) whether this method is valid when the dimension of predictor increases in an exponential rate of the sample size. To address issue (a), we systematically study this method for elliptical linear regression models. Our finding indicates that the original proposal may lead to inferior performance when the marginal kurtosis of predictor is not close to that of normal distribution. Our simulation results further confirm this finding. To ensure the superior performance of partial correlation based variable selection procedure, we propose a thresholded partial correlation (TPC) approach to select significant variables in linear regression models. We establish the selection consistency of the TPC in the presence of ultrahigh dimensional predictors. Since the TPC procedure includes the original proposal as a special case, our theoretical results address the issue (b) directly. As a by-product, the sure screening property of the first step of TPC was obtained. The numerical examples also illustrate that the TPC is competitively comparable to the commonly-used regularization methods for variable selection.

  13. Adaptive Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rasmussen, Tage

    1996-01-01

    Partially Hidden Markov Models (PHMM) have recently been introduced. The transition and emission probabilities are conditioned on the past. In this report, the PHMM is extended with a multiple token version. The different versions of the PHMM are applied to bi-level image coding....

  14. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  15. [Posterior ceramic bonded partial restorations].

    Science.gov (United States)

    Mainjot, Amélie; Vanheusden, Alain

    2006-01-01

    Posterior ceramic bonded partial restorations are conservative and esthetic approaches for compromised teeth. Overlays constitute a less invasive alternative for tooth tissues than crown preparations. With inlays and onlays they are also indicated in case of full arch or quadrant rehabilitations including several teeth. This article screens indications and realization of this type of restorations.

  16. Implementing circularity using partial evaluation

    DEFF Research Database (Denmark)

    Lawall, Julia Laetitia

    2001-01-01

    of an imperative C-like language, by extending the language with a new construct, persistent variables. We show that an extension of partial evaluation can eliminate persistent variables, producing a staged C program. This approach has been implemented in the Tempo specializer for C programs, and has proven useful...

  17. Degree of handedness and priming: Further evidence for a distinction between production and identification priming mechanisms.

    Directory of Open Access Journals (Sweden)

    Donna J. LaVoie

    2015-02-01

    Full Text Available The distinction between implicit and explicit forms of memory retrieval is long-standing, and important to the extent it reveals how different neural architecture supports different aspects of memory function. Similarly, distinctions have been made between kinds of repetition priming, a form of implicit memory retrieval. This study focuses on the production-identification priming distinction, which delineates priming tasks involving verification of stimulus features as compared to priming tasks that require use of a cue to guide response retrieval. Studies investigating this dissociation in dementia or similar patient populations indicate that these forms of priming may differ in their neural bases. The current study looks at degree of handedness as a way of investigating inferred neural architecture supporting these two forms of priming. A growing body of research indicates that degree of handedness (consistent, or CH, versus inconsistent, or ICH is associated with greater interhemispheric interaction and functional access to right hemisphere processing in ICH, with superior performance seen in ICH on memory tasks reliant on this processing. Arguments about the theoretical mechanisms underlying identification and production forms of perceptual priming tasks suggest that performance on these tasks will differ as a function of degree of handedness. We tested this question in a group of CH and ICH young adults, who were asked to study lists of words prior to performing a production priming task (word stem completion, a perceptual word identification task, and a word stem cued recall task. While both handedness groups exhibited reliable priming across tasks, word stem completion priming was greater in ICH than CH participants, with identification priming not differing between groups. This dissociation supports the argument that production and identification forms of priming have different underlying neural bases.

  18. Analysis of neural data

    CERN Document Server

    Kass, Robert E; Brown, Emery N

    2014-01-01

    Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

  19. The partial-birth stratagem.

    Science.gov (United States)

    1998-06-01

    In Wisconsin, physicians stopped performing abortions when a Federal District Court Judge refused to issue a temporary restraining order against the state's newly enacted "partial birth" abortion ban that was couched in such vague language it actually covered all abortions. While ostensibly attempting to ban late-term "intact dilation and extraction," the language of the law did not refer to that procedure or to late terms. Instead, it prohibited all abortions in which a physician "partially vaginally delivers a living child, causes the death of the partially delivered child with the intent to kill the child and then completes the delivery of the child." The law also defined "child" as "a human being from the time of fertilization" until birth. It is clear that this abortion ban is unconstitutional under Row v. Wade, and this unconstitutionality is compounded by the fact that the law allowed no exception to protect a woman's health, which is required by Roe for abortion bans after fetal viability. Wisconsin is only one of about 28 states that have enacted similar laws, and only two have restricted the ban to postviability abortions. Many of these laws have been struck down in court, and President Clinton has continued to veto the Federal partial-birth bill. The Wisconsin Judge acknowledged that opponents of the ban will likely prevail when the case is heard, but his action in denying the temporary injunction means that many women in Wisconsin will not receive timely medical care. The partial birth strategy is really only another anti-abortion strategy.

  20. Deep Neural Yodelling

    OpenAIRE

    Pfäffli, Daniel (Autor/in)

    2018-01-01

    Yodel music differs from most other genres by exercising the transition from chest voice to falsetto with an audible glottal stop which is recognised even by laymen. Yodel often consists of a yodeller with a choir accompaniment. In Switzerland, it is differentiated between the natural yodel and yodel songs. Today's approaches to music generation with machine learning algorithms are based on neural networks, which are best described by stacked layers of neurons which are connected with neurons...

  1. Neural networks for triggering

    International Nuclear Information System (INIS)

    Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab

  2. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  3. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  4. Neural Mechanisms of Foraging

    OpenAIRE

    Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS

    2012-01-01

    Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...

  5. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  6. Distinct neural systems underlying reduced emotional enhancement for positive and negative stimuli in early Alzheimer's disease.

    Science.gov (United States)

    Mistridis, Panagiota; Taylor, Kirsten I; Kissler, Johanna M; Monsch, Andreas U; Kressig, Reto W; Kivisaari, Sasa L

    2013-01-01

    Emotional information is typically better remembered than neutral content, and previous studies suggest that this effect is subserved particularly by the amygdala together with its interactions with the hippocampus. However, it is not known whether amygdala damage affects emotional memory performance at immediate and delayed recall, and whether its involvement is modulated by stimulus valence. Moreover, it is unclear to what extent more distributed neocortical regions involved in e.g., autobiographical memory, also contribute to emotional processing. We investigated these questions in a group of patients with Alzheimer's disease (AD), which affects the amygdala, hippocampus and neocortical regions. Healthy controls (n = 14), patients with AD (n = 15) and its putative prodrome amnestic mild cognitive impairment (n = 11) completed a memory task consisting of immediate and delayed free recall of a list of positive, negative and neutral words. Memory performance was related to brain integrity in region of interest and whole-brain voxel-based morphometry analyses. In the brain-behavioral analyses, the left amygdala volume predicted the immediate recall of both positive and negative material, whereas at delay, left and right amygdala volumes were associated with performance with positive and negative words, respectively. Whole-brain analyses revealed additional associations between left angular gyrus integrity and the immediate recall of positive words as well as between the orbitofrontal cortex and the delayed recall of negative words. These results indicate that emotional memory impairments in AD may be underpinned by damage to regions implicated in emotional processing as well as frontoparietal regions, which may exert their influence via autobiographical memories and organizational strategies.

  7. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis

    Science.gov (United States)

    Morelli, Sylvia A.; Sacchet, Matthew D.; Zaki, Jamil

    2015-01-01

    Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. PMID:25554428

  8. The common and distinct neural bases of affect labeling and reappraisal in healthy adults

    OpenAIRE

    Burklund, Lisa J.; Creswell, J. David; Irwin, Michael R.; Lieberman, Matthew D.

    2014-01-01

    Emotion regulation is commonly characterized as involving conscious and intentional attempts to change felt emotions, such as, for example, through reappraisal whereby one intentionally decreases the intensity of one's emotional response to a particular stimulus or situation by reinterpreting it in a less threatening way. However, there is growing evidence and appreciation that some types of emotion regulation are unintentional or incidental, meaning that affective modulation is a consequence...

  9. Distinct neural signatures of cognitive subtypes of dyslexia: effects of lexicality during phonological processing.

    Science.gov (United States)

    van Ermingen-Marbach, Muna; Pape-Neumann, Julia; Grande, Marion; Grabowska, Anna; Heim, Stefan

    2013-01-01

    The present study investigates the neurobiological basis of two subtypes of dyslexia with either a double deficit (concerning phonological awareness and rapid naming) or a single rapid naming deficit. We compared such groups of German dyslexic primary school children to each other and with good reading children in a phoneme deletion task performed during fMRI scanning. Children heard German words or pseudowords and repeated the remainder of the stimulus while deleting the initial phoneme (e.g. tear - _ear). In four conditions, the input stimulus (word or pseudoword) could either become another word or pseudoword as output. The word-word condition stuck out against all other conditions involving pseudowords: Dyslexics with a double deficit showed a strong response in left areas 44 and 45 in Boca's region, whereas dyslexics with rapid naming difficulties revealed a contralateral effect in right areas 44 and 45. These findings, which were obtained without presenting written or pictorial stimuli, reveal that a double deficit in dyslexia is not the sum of single deficits, but rather involves the interaction of lexical and phonological processing, making strong demands on the left inferior frontal cortex. In general, the results stress the importance of considering subtypes of dyslexia differentially in order to obtain better insights in the neurocognitive mechanisms of impaired and successful reading.

  10. Neural Mechanisms Underlying Visual Short-Term Memory Gain for Temporally Distinct Objects.

    Science.gov (United States)

    Ihssen, Niklas; Linden, David E J; Miller, Claire E; Shapiro, Kimron L

    2015-08-01

    Recent research has shown that visual short-term memory (VSTM) can substantially be improved when the to-be-remembered objects are split in 2 half-arrays (i.e., sequenced) or the entire array is shown twice (i.e., repeated), rather than presented simultaneously. Here we investigate the hypothesis that sequencing and repeating displays overcomes attentional "bottlenecks" during simultaneous encoding. Using functional magnetic resonance imaging, we show that sequencing and repeating displays increased brain activation in extrastriate and primary visual areas, relative to simultaneous displays (Study 1). Passively viewing identical stimuli did not increase visual activation (Study 2), ruling out a physical confound. Importantly, areas of the frontoparietal attention network showed increased activation in repetition but not in sequential trials. This dissociation suggests that repeating a display increases attentional control by allowing attention to be reallocated in a second encoding episode. In contrast, sequencing the array poses fewer demands on control, with competition from nonattended objects being reduced by the half-arrays. This idea was corroborated by a third study in which we found optimal VSTM for sequential displays minimizing attentional demands. Importantly these results provide support within the same experimental paradigm for the role of stimulus-driven and top-down attentional control aspects of biased competition theory in setting constraints on VSTM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Neural coding in graphs of bidirectional associative memories.

    Science.gov (United States)

    Bouchain, A David; Palm, Günther

    2012-01-24

    In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Two cognitive and neural systems for endogenous and exogenous spatial attention.

    Science.gov (United States)

    Chica, Ana B; Bartolomeo, Paolo; Lupiáñez, Juan

    2013-01-15

    different behavioral effects, and partially distinct neural substrates. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The strategic value of partial vertical integration

    OpenAIRE

    Fiocco, Raffaele

    2014-01-01

    We investigate the strategic incentives for partial vertical integration, namely, partial ownership agreements between manufacturers and retailers, when retailers privately know their costs and engage in differentiated good price competition. The partial misalignment between the profit objectives within a partially integrated manufacturer-retailer hierarchy entails a higher retail price than under full integration. This `information vertical effect' translates into an opposite ...

  14. 32 CFR 751.13 - Partial payments.

    Science.gov (United States)

    2010-07-01

    ... voucher and all other information related to the partial payment shall be placed in the claim file. Action... 32 National Defense 5 2010-07-01 2010-07-01 false Partial payments. 751.13 Section 751.13 National... Claims Against the United States § 751.13 Partial payments. (a) Partial payments when hardship exists...

  15. Neural Based Orthogonal Data Fitting The EXIN Neural Networks

    CERN Document Server

    Cirrincione, Giansalvo

    2008-01-01

    Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh

  16. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  17. Comparative Analysis of Maximum Power Point Tracking Controllers under Partial Shaded Conditions in a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    R. Ramaprabha

    2015-06-01

    Full Text Available Mismatching effects due to partial shaded conditions are the major drawbacks existing in today’s photovoltaic (PV systems. These mismatch effects are greatly reduced in distributed PV system architecture where each panel is effectively decoupled from its neighboring panel. To obtain the optimal operation of the PV panels, maximum power point tracking (MPPT techniques are used. In partial shaded conditions, detecting the maximum operating point is difficult as the characteristic curves are complex with multiple peaks. In this paper, a neural network control technique is employed for MPPT. Detailed analyses were carried out on MPPT controllers in centralized and distributed architecture under partial shaded environments. The efficiency of the MPPT controllers and the effectiveness of the proposed control technique under partial shaded environments was examined using MATLAB software. The results were validated through experimentation.

  18. Validity of Sensory Systems as Distinct Constructs

    OpenAIRE

    Su, Chia-Ting; Parham, L. Diane

    2014-01-01

    Confirmatory factor analysis testing whether sensory questionnaire items represented distinct sensory system constructs found, using data from two age groups, that such constructs can be measured validly using questionnaire data.

  19. Visual distinctiveness can enhance recency effects.

    Science.gov (United States)

    Bornstein, B H; Neely, C B; LeCompte, D C

    1995-05-01

    Experimental efforts to meliorate the modality effect have included attempts to make the visual stimulus more distinctive. McDowd and Madigan (1991) failed to find an enhanced recency effect in serial recall when the last item was made more distinct in terms of its color. In an attempt to extend this finding, three experiments were conducted in which visual distinctiveness was manipulated in a different manner, by combining the dimensions of physical size and coloration (i.e., whether the stimuli were solid or outlined in relief). Contrary to previous findings, recency was enhanced when the size and coloration of the last item differed from the other items in the list, regardless of whether the "distinctive" item was larger or smaller than the remaining items. The findings are considered in light of other research that has failed to obtain a similar enhanced recency effect, and their implications for current theories of the modality effect are discussed.

  20. Removable partial dentures: clinical concepts.

    Science.gov (United States)

    Bohnenkamp, David M

    2014-01-01

    This article provides a review of the traditional clinical concepts for the design and fabrication of removable partial dentures (RPDs). Although classic theories and rules for RPD designs have been presented and should be followed, excellent clinical care for partially edentulous patients may also be achieved with computer-aided design/computer-aided manufacturing technology and unique blended designs. These nontraditional RPD designs and fabrication methods provide for improved fit, function, and esthetics by using computer-aided design software, composite resin for contours and morphology of abutment teeth, metal support structures for long edentulous spans and collapsed occlusal vertical dimensions, and flexible, nylon thermoplastic material for metal-supported clasp assemblies. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Partial scram incident in FBTR

    International Nuclear Information System (INIS)

    Usha, S.; Pillai, C.P.; Muralikrishna, G.

    1989-01-01

    Evaluation of a partial scram incident occurred at the Fast Breeder Test Reactor at Kalpakkam was carried out. Based on the observations of the experiments it was ascertained that the nonpersistant order was due to superimposed noise component on the channel that was close to the threshold and had resulted in intermittent supply to electro-magnetic (EM) coils. Owing to a larger discharge time and a smaller charge time, the EM coils got progressively discharged. It was confirmed that during the incident, partial scram took place since the charging and discharging patterns of the EM coils are dissimilar and EM coils of rods A, E and F had discharged faster than others for noise component of a particular duty cycle. However, nonlatching of scram order was because of the fact that noise pulse duration was less than latching time. (author)

  2. The marketing of partial hospitalization.

    Science.gov (United States)

    Millsap, P; Brown, E; Kiser, L; Pruitt, D

    1987-09-01

    Health-care professionals are currently operating in the context of a rapidly changing health-care delivery system, including the move away from inpatient services to outpatient services in order to control costs. Those who practice in partial-hospital settings are in a position to offer effective, cost-efficient services; however, there continue to be obstacles which hinder appropriate utilization of the modality. The development and use of a well-designed marketing plan is one strategy for removing these obstacles. This paper presents a brief overview of the marketing process, ideas for developing a marketing plan, and several examples of specific marketing strategies as well as ways to monitor their effectiveness. Partial-hospital providers must take an active role in answering the calls for alternative sources of psychiatric care. A comprehensive, education-oriented marketing approach will increase the public's awareness of such alternatives and enable programs to survive in a competitive environment.

  3. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  4. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  5. Partial Cooperative Equilibria: Existence and Characterization

    Directory of Open Access Journals (Sweden)

    Amandine Ghintran

    2010-09-01

    Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.

  6. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  7. Partial dependency parsing for Irish

    OpenAIRE

    Uí Dhonnchadha, Elaine; van Genabith, Josef

    2010-01-01

    In this paper we present a partial dependency parser for Irish, in which Constraint Grammar (CG) rules are used to annotate dependency relations and grammatical functions in unrestricted Irish text. Chunking is performed using a regular-expression grammar which operates on the dependency tagged sentences. As this is the first implementation of a parser for unrestricted Irish text (to our knowledge), there were no guidelines or precedents available. Therefore deciding what constitutes a syntac...

  8. Matching games with partial information

    Science.gov (United States)

    Laureti, Paolo; Zhang, Yi-Cheng

    2003-06-01

    We analyze different ways of pairing agents in a bipartite matching problem, with regard to its scaling properties and to the distribution of individual “satisfactions”. Then we explore the role of partial information and bounded rationality in a generalized Marriage Problem, comparing the benefits obtained by self-searching and by a matchmaker. Finally we propose a modified matching game intended to mimic the way consumers’ information makes firms to enhance the quality of their products in a competitive market.

  9. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control

  10. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  11. Neural systems for preparatory control of imitation.

    Science.gov (United States)

    Cross, Katy A; Iacoboni, Marco

    2014-01-01

    Humans have an automatic tendency to imitate others. Previous studies on how we control these tendencies have focused on reactive mechanisms, where inhibition of imitation is implemented after seeing an action. This work suggests that reactive control of imitation draws on at least partially specialized mechanisms. Here, we examine preparatory imitation control, where advance information allows control processes to be employed before an action is observed. Drawing on dual route models from the spatial compatibility literature, we compare control processes using biological and non-biological stimuli to determine whether preparatory imitation control recruits specialized neural systems that are similar to those observed in reactive imitation control. Results indicate that preparatory control involves anterior prefrontal, dorsolateral prefrontal, posterior parietal and early visual cortices regardless of whether automatic responses are evoked by biological (imitative) or non-biological stimuli. These results indicate both that preparatory control of imitation uses general mechanisms, and that preparatory control of imitation draws on different neural systems from reactive imitation control. Based on the regions involved, we hypothesize that preparatory control is implemented through top-down attentional biasing of visual processing.

  12. Global Asymptotic Stability of Impulsive CNNs with Proportional Delays and Partially Lipschitz Activation Functions

    Directory of Open Access Journals (Sweden)

    Xueli Song

    2014-01-01

    Full Text Available This paper researches global asymptotic stability of impulsive cellular neural networks with proportional delays and partially Lipschitz activation functions. Firstly, by means of the transformation vi(t=ui(et, the impulsive cellular neural networks with proportional delays are transformed into impulsive cellular neural networks with the variable coefficients and constant delays. Secondly, we provide novel criteria for the uniqueness and exponential stability of the equilibrium point of the latter by relative nonlinear measure and prove that the exponential stability of equilibrium point of the latter implies the asymptotic stability of one of the former. We furthermore obtain a sufficient condition to the uniqueness and global asymptotic stability of the equilibrium point of the former. Our method does not require conventional assumptions on global Lipschitz continuity, boundedness, and monotonicity of activation functions. Our results are generalizations and improvements of some existing ones. Finally, an example and its simulations are provided to illustrate the correctness of our analysis.

  13. Genetically distinct isolates of Spirocerca sp. from a naturally infected red fox (Vulpes vulpes) from Denmark

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Hansen, Mette Sif; Chriél, Mariann

    2014-01-01

    sugar-salt solu-tion, and sieving failed to detect eggs of Spirocerca sp. in feces collected from the colon.This is the first report of spirocercosis in Denmark, and may have been caused by a recentintroduction by migrating paratenic or definitive host. Analysis of two overlapping par-tial sequences...... of the cox1 gene, from individual worms, revealed distinct genetic variation(7–9%) between the Danish worms and isolates of S. lupi from Europe, Asia and Africa.This was confirmed by phylogenetic analysis that clearly separated the Danish worms fromother isolates of S. lupi. The distinct genetic differences...

  14. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  15. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  16. Review of the Neural Oscillations Underlying Meditation

    Directory of Open Access Journals (Sweden)

    Darrin J. Lee

    2018-03-01

    Full Text Available Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA, open-monitoring (OM, as well as transcendental meditation (TM, and loving-kindness (LK meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation.Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults.Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions.Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their

  17. Individual Movement Variability Magnitudes Are Explained by Cortical Neural Variability.

    Science.gov (United States)

    Haar, Shlomi; Donchin, Opher; Dinstein, Ilan

    2017-09-13

    Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior-parietal cortex of individual subjects explained their movement-extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities. SIGNIFICANCE STATEMENT Neural activity and movement kinematics are remarkably variable. Although intertrial variability is rarely studied, here, we demonstrate that individual human subjects exhibit distinct magnitudes of neural and kinematic variability that are reproducible across movements to different targets and when performing these movements with either arm. Furthermore, when examining the relationship between cortical variability and movement variability, we find that cortical fMRI variability in parietal cortex of individual subjects explained their movement extent variability. This enabled us to explain why some subjects

  18. Criterion for testing multiparticle negative-partial-transpose entanglement

    International Nuclear Information System (INIS)

    Zeng, B.; Zhou, D.L.; Zhang, P.; Xu, Z.; You, L.

    2003-01-01

    We revisit the criterion of multiparticle entanglement based on the overlaps of a given quantum state ρ with maximally entangled states. For a system of m particles, each with N distinct states, we prove that ρ is m-particle negative partial transpose entangled, if there exists a maximally entangled state vertical bar MES>, such that >1/N. While this sufficiency condition is weaker than the Peres-Horodecki criterion in all cases, it applies to multi-particle systems, and becomes especially useful when the number of particles (m) is large. We also consider the converse of this criterion and illustrate its invalidity with counter examples

  19. Probabilistic Teleportation via Quantum Channel with Partial Information

    Directory of Open Access Journals (Sweden)

    Desheng Liu

    2015-06-01

    Full Text Available Two novel schemes are proposed to teleport an unknown two-level quantum state probabilistically when the sender and the receiver only have partial information about the quantum channel, respectively. This is distinct from the fact that either the sender or the receiver has entire information about the quantum channel in previous schemes for probabilistic teleportation. Theoretical analysis proves that these schemes are straightforward, efficient and cost-saving. The concrete realization procedures of our schemes are presented in detail, and the result shows that our proposals could extend the application range of probabilistic teleportation.

  20. Coding of level of ambiguity within neural systems mediating choice.

    Science.gov (United States)

    Lopez-Paniagua, Dan; Seger, Carol A

    2013-01-01

    Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).

  1. The neural basis of unconditional love.

    Science.gov (United States)

    Beauregard, Mario; Courtemanche, Jérôme; Paquette, Vincent; St-Pierre, Evelyne Landry

    2009-05-15

    Functional neuroimaging studies have shown that romantic love and maternal love are mediated by regions specific to each, as well as overlapping regions in the brain's reward system. Nothing is known yet regarding the neural underpinnings of unconditional love. The main goal of this functional magnetic resonance imaging study was to identify the brain regions supporting this form of love. Participants were scanned during a control condition and an experimental condition. In the control condition, participants were instructed to simply look at a series of pictures depicting individuals with intellectual disabilities. In the experimental condition, participants were instructed to feel unconditional love towards the individuals depicted in a series of similar pictures. Significant loci of activation were found, in the experimental condition compared with the control condition, in the middle insula, superior parietal lobule, right periaqueductal gray, right globus pallidus (medial), right caudate nucleus (dorsal head), left ventral tegmental area and left rostro-dorsal anterior cingulate cortex. These results suggest that unconditional love is mediated by a distinct neural network relative to that mediating other emotions. This network contains cerebral structures known to be involved in romantic love or maternal love. Some of these structures represent key components of the brain's reward system.

  2. Two social brains: neural mechanisms of intersubjectivity.

    Science.gov (United States)

    Vogeley, Kai

    2017-08-19

    It is the aim of this article to present an empirically justified hypothesis about the functional roles of the two social neural systems, namely the so-called 'mirror neuron system' (MNS) and the 'mentalizing system' (MENT, also 'theory of mind network' or 'social neural network'). Both systems are recruited during cognitive processes that are either related to interaction or communication with other conspecifics, thereby constituting intersubjectivity. The hypothesis is developed in the following steps: first, the fundamental distinction that we make between persons and things is introduced; second, communication is presented as the key process that allows us to interact with others; third, the capacity to 'mentalize' or to understand the inner experience of others is emphasized as the fundamental cognitive capacity required to establish successful communication. On this background, it is proposed that MNS serves comparably early stages of social information processing related to the 'detection' of spatial or bodily signals, whereas MENT is recruited during comparably late stages of social information processing related to the 'evaluation' of emotional and psychological states of others. This hypothesis of MNS as a social detection system and MENT as a social evaluation system is illustrated by findings in the field of psychopathology. Finally, new research questions that can be derived from this hypothesis are discussed.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  3. Intrinsic gain modulation and adaptive neural coding.

    Directory of Open Access Journals (Sweden)

    Sungho Hong

    2008-07-01

    Full Text Available In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate versus current (f-I curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.

  4. Common and distinct brain networks underlying panic and social anxiety disorders.

    Science.gov (United States)

    Kim, Yong-Ku; Yoon, Ho-Kyoung

    2018-01-03

    Although panic disorder (PD) and phobic disorders are independent anxiety disorders with distinct sets of diagnostic criteria, there is a high level of overlap between them in terms of pathogenesis and neural underpinnings. Functional connectivity research using resting-state functional magnetic resonance imaging (rsfMRI) shows great potential in identifying the similarities and differences between PD and phobias. Understanding common and distinct networks between PD and phobic disorders is critical for identifying both specific and general neural characteristics of these disorders. We review recent rsfMRI studies and explore the clinical relevance of resting-state functional connectivity (rsFC) in PD and phobias. Although findings differ between studies, there are some meaningful, consistent findings. Social anxiety disorder (SAD) and PD share common default mode network alterations. Alterations within the sensorimotor network are observed primarily in PD. Increased connectivity in the salience network is consistently reported in SAD. This review supports hypotheses that PD and phobic disorders share common rsFC abnormalities and that the different clinical phenotypes between the disorders come from distinct brain functional network alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    Science.gov (United States)

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-02

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

  6. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    Science.gov (United States)

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  7. Neural mechanisms underlying human consensus decision-making.

    Science.gov (United States)

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Distinctiveness of Saudi Arabian EFL Learners

    Directory of Open Access Journals (Sweden)

    Manssour Habbash

    2016-04-01

    Full Text Available In view of the increasing concern among English language teachers dealing with students from Saudi Arabia, as it manifests in TESOL community discussions, about the uniqueness of Saudi Arabian EFL learners, this paper attempts to document the outcome of a study of their distinctiveness from the perspective of expatriate teachers working for PYPs (Preparatory Year Programs in Saudi Arabia. This study examines the distinctiveness with regard to the learning attitudes of Saudi students that are often cultivated by the culture and academic environment in their homeland. Employing an emic approach for collecting the required data an analysis was carried out in light of the other studies on ‘education’ in Saudi Arabia that have particular reference to the factors that can positively influence student motivation, student success and the academic environment. The findings were used in constructing the rationale behind such distinctiveness. Assuming that the outcome of the discussion on the findings of this exploration can be helpful for teachers in adapting their teaching methodology and improving their teacher efficacy in dealing with students both from the kingdom and in the kingdom, some recommendations are made. Keywords: China Distinctiveness, Saudi Arabian University context, Expatriate teachers’ perspective, Distinctiveness Theory

  9. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  10. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  11. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  12. Partial differential equations an introduction

    CERN Document Server

    Colton, David

    2004-01-01

    Intended for a college senior or first-year graduate-level course in partial differential equations, this text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. This complete and accessible treatment includes a variety of examples of inverse problems arising from improperly posed applications. Exercises at the ends of chapters, many with answers, offer a clear progression in developing an understanding of

  13. Laparoscopic Partial Hepatectomy: Animal Experiments

    Directory of Open Access Journals (Sweden)

    Haruhiro Inoue

    1995-01-01

    Full Text Available As a first step in firmly establishing laparoscopic hepatectomy, we introduce a porcine model of laparoscopic partial hepatectomy. This procedure has been successfully performed under the normal-pressure or low-pressure pneumoperitoneum condition supported by the full-thickness abdominal wall lifting technique. An ultrasonic dissector combined with electrocautery, newly developed by Olympus Optical Corporation (Japan was effectively utilized in facilitating safe and smooth incisions into the liver parenchyma. Although indications for this procedure seem to be limited only to peripheral lesions and not to central lesions, clinical application of this method may be useful for some patients in the near future.

  14. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  15. Neural networks at the Tevatron

    International Nuclear Information System (INIS)

    Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.

    1992-10-01

    This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF

  16. Neural Networks for the Beginner.

    Science.gov (United States)

    Snyder, Robin M.

    Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…

  17. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    Science.gov (United States)

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts

  18. A Neural Network Model of the Visual Short-Term Memory

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Hansen, Lars Kai

    2009-01-01

    In this paper a neural network model of Visual Short-Term Memory (VSTM) is presented. The model links closely with Bundesen’s (1990) well-established mathematical theory of visual attention. We evaluate the model’s ability to fit experimental data from a classical whole and partial report study...

  19. Speaking in Multiple Languages: Neural Correlates of Language Proficiency in Multilingual Word Production

    Science.gov (United States)

    Videsott, Gerda; Herrnberger, Barbel; Hoenig, Klaus; Schilly, Edgar; Grothe, Jo; Wiater, Werner; Spitzer, Manfred; Kiefer, Markus

    2010-01-01

    The human brain has the fascinating ability to represent and to process several languages. Although the first and further languages activate partially different brain networks, the linguistic factors underlying these differences in language processing have to be further specified. We investigated the neural correlates of language proficiency in a…

  20. Distinct timing mechanisms produce discrete and continuous movements.

    Directory of Open Access Journals (Sweden)

    Raoul Huys

    2008-04-01

    Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.

  1. Classification of conductance traces with recurrent neural networks

    Science.gov (United States)

    Lauritzen, Kasper P.; Magyarkuti, András; Balogh, Zoltán; Halbritter, András; Solomon, Gemma C.

    2018-02-01

    We present a new automated method for structural classification of the traces obtained in break junction experiments. Using recurrent neural networks trained on the traces of minimal cross-sectional area in molecular dynamics simulations, we successfully separate the traces into two classes: point contact or nanowire. This is done without any assumptions about the expected features of each class. The trained neural network is applied to experimental break junction conductance traces, and it separates the classes as well as the previously used experimental methods. The effect of using partial conductance traces is explored, and we show that the method performs equally well using full or partial traces (as long as the trace just prior to breaking is included). When only the initial part of the trace is included, the results are still better than random chance. Finally, we show that the neural network classification method can be used to classify experimental conductance traces without using simulated results for training, but instead training the network on a few representative experimental traces. This offers a tool to recognize some characteristic motifs of the traces, which can be hard to find by simple data selection algorithms.

  2. On Hobbes’s distinction of accidents

    Directory of Open Access Journals (Sweden)

    Lupoli Agostino

    2012-06-01

    Full Text Available An interpolation introduced by K. Schuhmann in his critical edition of "De corpore" (chap. VI, § 13 diametrically overturns the meaning of Hobbes’s doctrine of distinction of accidents in comparison with all previous editions. The article focuses on the complexity of this crucial juncture in "De corpore" argument on which depends the interpretation of Hobbes’s whole conception of science. It discusses the reasons pro and contra Schuhmann’s interpolation and concludes against it, because it is not compatible with the rationale underlying the complex architecture of "De corpore", which involves a symmetry between the ‘logical’ distinction of accidents and the ‘metaphysical’ distinction of phantasms.

  3. What makes health promotion research distinct?

    Science.gov (United States)

    Woodall, James; Warwick-Booth, Louise; South, Jane; Cross, Ruth

    2018-02-01

    There have been concerns about the decline of health promotion as a practice and discipline and, alongside this, calls for a clearer articulation of health promotion research and what, if anything, makes it distinct. This discussion paper, based on a review of the literature, the authors' own experiences in the field, and a workshop delivered by two of the authors at the 8th Nordic Health Promotion Conference, seeks to state the reasons why health promotion research is distinctive. While by no means exhaustive, the paper suggests four distinctive features. The paper hopes to be a catalyst to enable health promotion researchers to be explicit in their practice and to begin the process of developing an agreed set of research principles.

  4. Intergroup Leadership Across Distinct Subgroups and Identities.

    Science.gov (United States)

    Rast, David E; Hogg, Michael A; van Knippenberg, Daan

    2018-03-01

    Resolving intergroup conflict is a significant and often arduous leadership challenge, yet existing theory and research rarely, if ever, discuss or examine this situation. Leaders confront a significant challenge when they provide leadership across deep divisions between distinct subgroups defined by self-contained identities-The challenge is to avoid provoking subgroup identity distinctiveness threat. Drawing on intergroup leadership theory, three studies were conducted to test the core hypothesis that, where identity threat exists, leaders promoting an intergroup relational identity will be better evaluated and are more effective than leaders promoting a collective identity; in the absence of threat, leaders promoting a collective identity will prevail. Studies 1 and 2 ( N = 170; N = 120) supported this general proposition. Study 3 ( N = 136) extended these findings, showing that leaders promoting an intergroup relational identity, but not a collective identity, improved intergroup attitudes when participants experienced an identity distinctiveness threat.

  5. Distinctive Dynamic Capabilities for New Business Creation

    DEFF Research Database (Denmark)

    Rosenø, Axel; Enkel, Ellen; Mezger, Florian

    2013-01-01

    This study examines the distinctive dynamic capabilities for new business creation in established companies. We argue that these are very different from those for managing incremental innovation within a company's core business. We also propose that such capabilities are needed in both slow...... and fast-paced industries, and that similarities exist across industries. Hence, the study contributes to dynamic capabilities literature by: 1) identifying the distinctive dynamic capabilities for new business creation; 2) shifting focus away from dynamic capabilities in environments characterised by high...... clock-speed and uncertainty towards considering dynamic capabilities for the purpose of developing new businesses, which also implies a high degree of uncertainty. Based on interviews with 33 companies, we identify distinctive dynamic capabilities for new business creation, find that dynamic...

  6. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  7. Abstract and Effector-Selective Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Perceptual Reports.

    Science.gov (United States)

    Twomey, Deirdre M; Kelly, Simon P; O'Connell, Redmond G

    2016-07-13

    Electrophysiological research has isolated neural signatures of decision formation in a variety of brain regions. Studies in rodents and monkeys have focused primarily on effector-selective signals that translate the emerging decision into a specific motor plan, but, more recently, research on the human brain has identified an abstract signature of evidence accumulation that does not appear to play any direct role in action preparation. The functional dissociations between these distinct signal types have only begun to be characterized, and their dynamics during decisions with deferred actions with or without foreknowledge of stimulus-effector mapping, a commonly studied task scenario in single-unit and functional imaging investigations, have not been established. Here we traced the dynamics of distinct abstract and effector-selective decision signals in the form of the broad-band centro-parietal positivity (CPP) and limb-selective β-band (8-16 and 18-30 Hz) EEG activity, respectively, during delayed-reported motion direction decisions with and without foreknowledge of direction-response mapping. With foreknowledge, the CPP and β-band signals exhibited a similar gradual build-up following evidence onset, but whereas choice-predictive β-band activity persisted up until the delayed response, the CPP dropped toward baseline after peaking. Without foreknowledge, the CPP exhibited identical dynamics, whereas choice-selective β-band activity was eliminated. These findings highlight qualitative functional distinctions between effector-selective and abstract decision signals and are of relevance to the assumptions founding functional neuroimaging investigations of decision-making. Neural signatures of evidence accumulation have been isolated in numerous brain regions. Although animal neurophysiology has largely concentrated on effector-selective decision signals that translate the emerging decision into a specific motor plan, recent research on the human brain has

  8. First report of partial albinism in genus Thrichomys (Rodentia: Echimyidae

    Directory of Open Access Journals (Sweden)

    Antonio Carlos da S.A. Neves

    2014-01-01

    Full Text Available Reports about albinism in rodents are common. In the family Echimyidae, however, albinism is very rare. This is the second case of coat color variation reported within Echimyidae and the first for the genus Thrichomys. The pelages of Thrichomys pachyurus individuals with normal and variant coat color were observed under a fluorescent artificial light and were examined with a stereoscopic microscope. The descriptions of pelage color were based on the book "Color Standards and Color Nomenclature". The predominantly white pattern of coat color in individuals of T. pachyurus suggests a partial albinism caused by delay in migration time of melanoblasts from neural crest to epidermis. The habitat of T. pachyurus has a heavy vegetative cover, which offers natural protection against predators and high-quality nutrition.

  9. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  10. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  11. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Discrete Neural Correlates for the Recognition of Negative Emotions: Insights from Frontotemporal Dementia

    Science.gov (United States)

    Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier

    2013-01-01

    Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing. PMID:23805313

  13. [Removable partial dentures. Oral functions and types].

    Science.gov (United States)

    Creugers, N H J; de Baat, C

    2009-11-01

    A removable partial denture enables the restoration or improvement of 4 oral functions: aesthetics, mandibular stability, mastication, and speech. However, wearing a removable partial denture should not cause oral comfort to deteriorate. There are 3 types of removable partial dentures: acrylic tissue-supported dentures, dentures with cast metal frameworks en dentures with cast metal frameworks and (semi)precision attachments. Interrupted tooth arches,free-ending tooth arches, and a combination of interrupted as well as free-ending tooth arches can be restored using these dentures. Well-known disadvantages of removable partial dentures are problematic oral hygiene, negative influence on the remaining dentition and limited oral comfort. Due to the advanced possibilities of fixed tooth- or implant-supported partial dentures, whether or not free-ending, or tooth- as well as implant-supported partial dentures, the indication of removable partial dentures is restricted. Nevertheless, for the time being the demand for removable partial dentures is expected to continue.

  14. Abstract methods in partial differential equations

    CERN Document Server

    Carroll, Robert W

    2012-01-01

    Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.

  15. Male patients with partial androgen insensitivity syndrome

    DEFF Research Database (Denmark)

    Hellmann, Philip; Christiansen, Peter; Johannsen, Trine Holm

    2012-01-01

    To describe the natural history of phenotype, growth and gonadal function in patients with partial androgen insensitivity syndrome.......To describe the natural history of phenotype, growth and gonadal function in patients with partial androgen insensitivity syndrome....

  16. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    Science.gov (United States)

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  17. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  18. Regional neural tube closure defined by the Grainy head-like transcription factors.

    Science.gov (United States)

    Rifat, Yeliz; Parekh, Vishwas; Wilanowski, Tomasz; Hislop, Nikki R; Auden, Alana; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2010-09-15

    Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure. (c) 2010 Elsevier Inc. All rights reserved.

  19. PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Korhan KARABULUT

    1998-03-01

    Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.

  20. The neural basis of intuitive and counterintuitive moral judgment

    Science.gov (United States)

    Wiech, Katja; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2012-01-01

    Neuroimaging studies on moral decision-making have thus far largely focused on differences between moral judgments with opposing utilitarian (well-being maximizing) and deontological (duty-based) content. However, these studies have investigated moral dilemmas involving extreme situations, and did not control for two distinct dimensions of moral judgment: whether or not it is intuitive (immediately compelling to most people) and whether it is utilitarian or deontological in content. By contrasting dilemmas where utilitarian judgments are counterintuitive with dilemmas in which they are intuitive, we were able to use functional magnetic resonance imaging to identify the neural correlates of intuitive and counterintuitive judgments across a range of moral situations. Irrespective of content (utilitarian/deontological), counterintuitive moral judgments were associated with greater difficulty and with activation in the rostral anterior cingulate cortex, suggesting that such judgments may involve emotional conflict; intuitive judgments were linked to activation in the visual and premotor cortex. In addition, we obtained evidence that neural differences in moral judgment in such dilemmas are largely due to whether they are intuitive and not, as previously assumed, to differences between utilitarian and deontological judgments. Our findings therefore do not support theories that have generally associated utilitarian and deontological judgments with distinct neural systems. PMID:21421730

  1. Neural representations of emotion are organized around abstract event features.

    Science.gov (United States)

    Skerry, Amy E; Saxe, Rebecca

    2015-08-03

    Research on emotion attribution has tended to focus on the perception of overt expressions of at most five or six basic emotions. However, our ability to identify others' emotional states is not limited to perception of these canonical expressions. Instead, we make fine-grained inferences about what others feel based on the situations they encounter, relying on knowledge of the eliciting conditions for different emotions. In the present research, we provide convergent behavioral and neural evidence concerning the representations underlying these concepts. First, we find that patterns of activity in mentalizing regions contain information about subtle emotional distinctions conveyed through verbal descriptions of eliciting situations. Second, we identify a space of abstract situation features that well captures the emotion discriminations subjects make behaviorally and show that this feature space outperforms competing models in capturing the similarity space of neural patterns in these regions. Together, the data suggest that our knowledge of others' emotions is abstract and high dimensional, that brain regions selective for mental state reasoning support relatively subtle distinctions between emotion concepts, and that the neural representations in these regions are not reducible to more primitive affective dimensions such as valence and arousal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Face recognition: a convolutional neural-network approach.

    Science.gov (United States)

    Lawrence, S; Giles, C L; Tsoi, A C; Back, A D

    1997-01-01

    We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.

  3. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    Science.gov (United States)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  4. [Removable partial dentures. Oral functions and types

    NARCIS (Netherlands)

    Creugers, N.H.J.; Baat, C. de

    2009-01-01

    A removable partial denture enables the restoration or improvement of 4 oral functions: aesthetics, mandibular stability, mastication, and speech. However, wearing a removable partial denture should not cause oral comfort to deteriorate. There are 3 types of removable partial dentures: acrylic

  5. [Conventional retaining of removable partial dentures

    NARCIS (Netherlands)

    Keltjens, H.M.A.M.; Witter, D.J.; Creugers, N.H.J.

    2009-01-01

    Mechanical and biological criteria have to be met in retaining the metal frame of a removable partial denture. Additionally, a removable partial denture is part of the occlusal interface by the clasps and the denture teeth. With respect to mechanical aspects, all rigid parts of the removable partial

  6. Identification and integration of sensory modalities: Neural basis and relation to consciousness

    NARCIS (Netherlands)

    Pennartz, C.M.A.

    2009-01-01

    A key question in studying consciousness is how neural operations in the brain can identify streams of sensory input as belonging to distinct modalities, which contributes to the representation of qualitatively different experiences. The basis for identification of modalities is proposed to be

  7. Modulation of neural activity during object naming: Effects of time and practice

    NARCIS (Netherlands)

    Turennout, M.I. van; Bielamowicz, L.; Martin, A.

    2003-01-01

    Repeated exposure to objects improves our ability to identify and name them, even after a long delay. Previous brain imaging studies have demonstrated that this experience-related facilitation of object naming is associated with neural changes in distinct brain regions. We used event-related

  8. Paediatric frontal chest radiograph screening with fine-tuned convolutional neural networks

    CSIR Research Space (South Africa)

    Gerrand, Jonathan D

    2017-07-01

    Full Text Available of fine-tuned convolutional neural networks (CNN). We use two popular CNN models that are pre-trained on a large natural image dataset and two distinct datasets containing paediatric and adult radiographs respectively. Evaluation is performed using a 5...

  9. Neural basis of limb ownership in individuals with body integrity identity disorder

    NARCIS (Netherlands)

    van Dijk, Milenna T.; van Wingen, Guido A.; van Lammeren, Anouk; Blom, Rianne M.; de Kwaasteniet, Bart P.; Scholte, H. Steven; Denys, Damiaan

    2013-01-01

    Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis

  10. Neural markers of individual and age differences in TVA attention capacity parameters

    DEFF Research Database (Denmark)

    Wiegand, Iris

    2013-01-01

    The ‘Theory of Visual Attention’ quantifies an interindividual’s capacity of attentional resources in parameters visual processing speed C and vSTM storage capacity K. Distinct neural markers of interindividual differences in these functions were identified by combining TVA-based assessment...

  11. Common and distinct components in data fusion

    DEFF Research Database (Denmark)

    Smilde, Age Klaas; Mage, Ingrid; Næs, Tormod

    2016-01-01

    and understanding their relative merits. This paper provides a unifying framework for this subfield of data fusion by using rigorous arguments from linear algebra. The most frequently used methods for distinguishing common and distinct components are explained in this framework and some practical examples are given...

  12. Knowledge Affords Distinctive Processing in Memory

    Science.gov (United States)

    Hunt, R. Reed; Rawson, Katherine A.

    2011-01-01

    The effect of knowledge on memory generally is processing. However, both conceptual and empirical reasons exist to suspect that the organizational account is incomplete. Recently a revised version of that account has been proposed under the rubric of distinctiveness theory (Rawson & Van Overschelde, 2008). The goal of the experiments reported…

  13. Distinctiveness of Saudi Arabian EFL Learners

    Science.gov (United States)

    Habbash, Manssour; Idapalapati, Srinivasa Rao

    2016-01-01

    In view of the increasing concern among English language teachers dealing with students from Saudi Arabia, as it manifests in TESOL community discussions, about the uniqueness of Saudi Arabian EFL learners, this paper attempts to document the outcome of a study of their distinctiveness from the perspective of expatriate teachers working for PYPs…

  14. Interacting neural networks

    Science.gov (United States)

    Metzler, R.; Kinzel, W.; Kanter, I.

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.

  15. Neural circuitry and immunity

    Science.gov (United States)

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  16. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  17. Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2012-01-01

    Full Text Available A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system, the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller. The feedback controller is designed based on Lyapunov's direct method. The feedback control of the vibration of the flexible system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over the conventional methods in the respect that it allows one to deal directly with the system's partial differential equations without resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed. It verifies that the proposed control system is effective at controlling flexible dynamical systems.

  18. Solving differential equations with unknown constitutive relations as recurrent neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.; Tartakovsky, Alexandre M.

    2017-12-08

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.

  19. Optimization of operation cycles in BWRs using neural networks

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo, A.; Alejandro P, D.

    2011-11-01

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  20. Precipitation in partially stabilized zirconia

    International Nuclear Information System (INIS)

    Bansal, G.K.

    1975-01-01

    Transmission electron microscopy was used to study the substructure of partially stabilized ZrO 2 (PSZ) samples, i.e., 2-phase systems containing both cubic and monoclinic modifications of zirconia, after various heat treatments. Monoclinic ZrO 2 exists as (1) isolated grains within the polycrystalline aggregate (a grain- boundary phase) and (2) small plate-like particles within cubic grains. These intragranular precipitates are believed to contribute to the useful properties of PSZ via a form of precipitation hardening. These precipitates initially form as tetragonal ZrO 2 , with a habit plane parallel to the brace 100 brace matrix planes. The orientation relations between the tetragonal precipitates and the cubic matrix are brace 100 brace/sub matrix/ 2 parallel brace 100 brace /sub precipitate/ or (001)/sub precipitate/ and broken bracket 100 broken bracket/sub matrix/ 2 parallel broken bracket 100 broken bracket/sub precipitate/ or [001]/sub precipitate/. (U.S.)

  1. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  2. Differentiating neural reward responsiveness in autism versus ADHD

    Directory of Open Access Journals (Sweden)

    Gregor Kohls

    2014-10-01

    Full Text Available Although attention deficit hyperactivity disorders (ADHD and autism spectrum disorders (ASD share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC. A significant group by reward type interaction effect emerged in the ventral striatum with greater activation to monetary versus social reward only in TDC, whereas subjects with ADHD responded equally strong to both reward types, and subjects with ASD showed low striatal reactivity across both reward conditions. Moreover, disorder-specific neural abnormalities were revealed, including medial prefrontal hyperactivation in response to social reward in ADHD versus ventral striatal hypoactivation in response to monetary reward in ASD. Shared dysfunction was characterized by fronto-striato-parietal hypoactivation in both clinical groups when money was at stake. Interestingly, lower neural activation within parietal circuitry was associated with higher autistic traits across the entire study sample. In sum, the present findings concur with the assumption that both ASD and ADHD display distinct and shared neural dysfunction in response to reward.

  3. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  4. Context-Dependent Neural Modulations in the Perception of Duration.

    Science.gov (United States)

    Murai, Yuki; Yotsumoto, Yuko

    2016-01-01

    Recent neuroimaging studies have revealed that distinct brain networks are recruited in the perception of sub- and supra-second timescales, whereas psychophysical studies have suggested that there are common or continuous mechanisms for perceiving these two durations. The present study aimed to elucidate the neural implementation of such continuity by examining the neural correlates of peri-second timing. We measured neural activity during a duration reproduction task using functional magnetic resonance imaging. Our results replicate the findings of previous studies in showing that separate neural networks are recruited for sub-versus supra-second time perception: motor systems including the motor cortex and the supplementary motor area for sub-second perception, and the frontal, parietal, and auditory cortical areas for supra-second perception. We further found that the peri-second perception activated both the sub- and supra-second networks, and that the timing system that processed duration perception in previous trials was more involved in subsequent peri-second processing. These results indicate that the sub- and supra-second timing systems overlap at around 1 s, and cooperate to optimally encode duration based on the hysteresis of previous trials.

  5. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  6. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  7. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  8. Cooperating attackers in neural cryptography.

    Science.gov (United States)

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  9. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone

    DEFF Research Database (Denmark)

    Ribeiro Xavier, Anna L.; Kress, Benjamin T.; Goldman, Steven A.

    2015-01-01

    found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low...... STATEMENT: Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural...... toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal progenitor survival and migration in the mammalian brain....

  10. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  11. Creative-Dynamics Approach To Neural Intelligence

    Science.gov (United States)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  12. Partial dynamical systems, fell bundles and applications

    CERN Document Server

    Exel, Ruy

    2017-01-01

    Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of "partiality". One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamica...

  13. Shindigs, brunches, and rodeos: the neural basis of event words.

    Science.gov (United States)

    Bedny, Marina; Dravida, Swethasri; Saxe, Rebecca

    2014-09-01

    Events (e.g., "running" or "eating") constitute a basic type within human cognition and human language. We asked whether thinking about events, as compared to other conceptual categories, depends on partially independent neural circuits. Indirect evidence for this hypothesis comes from previous studies showing elevated posterior temporal responses to verbs, which typically label events. Neural responses to verbs could, however, be driven either by their grammatical or by their semantic properties. In the present experiment, we separated the effects of grammatical class (verb vs. noun) and semantic category (event vs. object) by measuring neural responses to event nouns (e.g., "the hurricane"). Participants rated the semantic relatedness of event nouns, as well as of two categories of object nouns-animals (e.g., "the alligator") and plants (e.g., "the acorn")-and three categories of verbs-manner of motion (e.g., "to roll"), emission (e.g., "to sparkle"), and perception (e.g., "to gaze"). As has previously been observed, we found larger responses to verbs than to object nouns in the left posterior middle (LMTG) and superior (LSTG) temporal gyri. Crucially, we also found that the LMTG responds more to event than to object nouns. These data suggest that part of the posterior lateral temporal response to verbs is driven by their semantic properties. By contrast, a more superior region, at the junction of the temporal and parietal cortices, responded more to verbs than to all nouns, irrespective of their semantic category. We concluded that the neural mechanisms engaged when thinking about event and object categories are partially dissociable.

  14. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory.

    Science.gov (United States)

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-12-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β'1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.

  15. Three Pillars for the Neural Control of Appetite.

    Science.gov (United States)

    Sternson, Scott M; Eiselt, Anne-Kathrin

    2017-02-10

    The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.

  16. SORN: a self-organizing recurrent neural network

    Directory of Open Access Journals (Sweden)

    Andreea Lazar

    2009-10-01

    Full Text Available Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artificial neural network models. Here we introduce SORN, a self-organizing recurrent network. It combines three distinct forms of local plasticity to learn spatio-temporal patterns in its input while maintaining its dynamics in a healthy regime suitable for learning. The SORN learns to encode information in the form of trajectories through its high-dimensional state space reminiscent of recent biological findings on cortical coding. All three forms of plasticity are shown to be essential for the network's success.

  17. Embarrassment: its distinct form and appeasement functions.

    Science.gov (United States)

    Keltner, D; Buswell, B N

    1997-11-01

    The authors address 2 questions about embarrassment. First, Is embarrassment a distinct emotion? The evidence indicates that the antecedents, experience, and display of embarrassment, and to a limited extent its autonomic physiology, are distinct from shame, guilt, and amusement and share the dynamic, temporal characteristics of emotion. Second, What are the theoretical accounts of embarrassment? Three accounts focus on the causes of embarrassment, positioning that it follows the loss of self-esteem, concern for others' evaluations, or absence of scripts to guide interactions. A fourth account focuses on the effects of the remedial actions of embarrassment, which correct preceding transgressions. A fifth account focuses on the functional parallels between embarrassment and nonhuman appeasement. The discussion focuses on unanswered questions about embarrassment.

  18. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

    Science.gov (United States)

    Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang

    2015-02-01

    Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.

  19. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.

    Science.gov (United States)

    Huang, Yongzhi; Green, Alexander L; Hyam, Jonathan; Fitzgerald, James; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neural components of altruistic punishment

    Directory of Open Access Journals (Sweden)

    Emily eDu

    2015-02-01

    Full Text Available Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  1. Neural complexity, dissociation, and schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Bob, P.; Šusta, M.; Chládek, Jan; Glaslová, K.; Fedor-Ferybergh, P.

    2007-01-01

    Roč. 13, č. 10 (2007), HY1-5 ISSN 1234-1010 Institutional research plan: CEZ:AV0Z20650511 Keywords : neural complexity * dissociation * schizophrenia Subject RIV: FH - Neurology Impact factor: 1.607, year: 2007

  2. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  3. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  4. Optical Neural Network Classifier Architectures

    National Research Council Canada - National Science Library

    Getbehead, Mark

    1998-01-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...

  5. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  6. Distinctive skeletal dysplasia in Cockayne syndrome

    International Nuclear Information System (INIS)

    Silengo, M.C.; Franceschini, P.; Bianco, R.; Biagioli, M.; Pastorin, L.; Vista, N.; Baldassar, A.; Benso, L.

    1986-01-01

    Cockayne syndrom is a well-known autosomal recessive form of dwarfism with senile-like appearance. Skeletal changes such as flattening of vertebral bodies, ivory epiphyses and thickening of cranial vault, have been observed in some patients with this condition. We describe here a 5.5-year-old girl with the typical clinical signs of Cockayne syndrome and a distinctive form of bone dysplasia with major involvment of the spine. (orig.)

  7. Distinctive skeletal dysplasia in Cockayne syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Silengo, M.C.; Franceschini, P.; Bianco, R.; Biagioli, M.; Pastorin, L.; Vista, N.; Baldassar, A.; Benso, L.

    1986-03-01

    Cockayne syndrome is a well-known autosomal recessive form of dwarfism with senile-like appearance. Skeletal changes such as flattening of vertebral bodies, ivory epiphyses and thickening of cranial vault, have been observed in some patients with this condition. We describe here a 5.5-year-old girl with the typical clinical signs of Cockayne syndrome and a distinctive form of bone dysplasia with major involvement of the spine.

  8. Army nurses in wartime: distinction and pride.

    Science.gov (United States)

    Higgins, L P

    1996-08-01

    Nurses have served with distinction in wartime since Florence Nightingale went to the Crimea. Women often accompanied their husbands to battle during the Revolutionary and Civil Wars, caring for the sick and wounded. Although not officially given officer status until 1920, Army nurses served in the Spanish-American War and World War I. As officers, thousands of nurses served in subsequent wars, distinguishing themselves by their heroism, devotion to duty, and sheer tenacity of spirit.

  9. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  10. A universal multilingual weightless neural network tagger via quantitative linguistics.

    Science.gov (United States)

    Carneiro, Hugo C C; Pedreira, Carlos E; França, Felipe M G; Lima, Priscila M V

    2017-07-01

    In the last decade, given the availability of corpora in several distinct languages, research on multilingual part-of-speech tagging started to grow. Amongst the novelties there is mWANN-Tagger (multilingual weightless artificial neural network tagger), a weightless neural part-of-speech tagger capable of being used for mostly-suffix-oriented languages. The tagger was subjected to corpora in eight languages of quite distinct natures and had a remarkable accuracy with very low sample deviation in every one of them, indicating the robustness of weightless neural systems for part-of-speech tagging tasks. However, mWANN-Tagger needed to be tuned for every new corpus, since each one required a different parameter configuration. For mWANN-Tagger to be truly multilingual, it should be usable for any new language with no need of parameter tuning. This article proposes a study that aims to find a relation between the lexical diversity of a language and the parameter configuration that would produce the best performing mWANN-Tagger instance. Preliminary analyses suggested that a single parameter configuration may be applied to the eight aforementioned languages. The mWANN-Tagger instance produced by this configuration was as accurate as the language-dependent ones obtained through tuning. Afterwards, the weightless neural tagger was further subjected to new corpora in languages that range from very isolating to polysynthetic ones. The best performing instances of mWANN-Tagger are again the ones produced by the universal parameter configuration. Hence, mWANN-Tagger can be applied to new corpora with no need of parameter tuning, making it a universal multilingual part-of-speech tagger. Further experiments with Universal Dependencies treebanks reveal that mWANN-Tagger may be extended and that it has potential to outperform most state-of-the-art part-of-speech taggers if better word representations are provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Implantable Neural Interfaces for Sharks

    Science.gov (United States)

    2007-05-01

    technology for recording and stimulating from the auditory and olfactory sensory nervous systems of the awake, swimming nurse shark , G. cirratum (Figures...overlay of the central nervous system of the nurse shark on a horizontal MR image. Implantable Neural Interfaces for Sharks ...Neural Interfaces for Characterizing Population Responses to Odorants and Electrical Stimuli in the Nurse Shark , Ginglymostoma cirratum.” AChemS Abs

  12. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  13. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  14. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  15. Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network

    International Nuclear Information System (INIS)

    Konoz, Elahe; Golmohammadi, Hassan

    2008-01-01

    An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) features selection techniques. These descriptors are: R maximal autocorrelation of lag 1 weighted by atomic Sanderson electronegativities (R1E+), electron density on the most negative atom in molecule (EDNA), maximum partial charge for C atom (MXPCC), surface weighted charge partial surface area (WNSA1), fractional charge partial surface area (FNSA2) and atomic charge weighted partial positive surface area (PPSA3). The standard errors of training, test and validation sets for the ANN model are 0.095, 0.148 and 0.120, respectively. Result obtained showed that nonlinear model can simulate the relationship between structural descriptors and the partition coefficients of the molecules in data set accurately

  16. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  17. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    Science.gov (United States)

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  18. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    Science.gov (United States)

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Learning language with the wrong neural scaffolding: The cost of neural commitment to sounds.

    Directory of Open Access Journals (Sweden)

    Amy Sue Finn

    2013-11-01

    Full Text Available Does tuning to one’s native language explain the sensitive period for language learning? We explore the idea that tuning to (or becoming more selective for the properties of one’s native-language could result in being less open (or plastic for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure has an impact on the neural representation of a later-learned aspect (grammar. English-speaking adults learned one of two miniature artificial languages over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG. Across learners, recruitment of IFG (but not STG predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults’ difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

  20. Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds

    Science.gov (United States)

    Finn, Amy S.; Hudson Kam, Carla L.; Ettlinger, Marc; Vytlacil, Jason; D'Esposito, Mark

    2013-01-01

    Does tuning to one's native language explain the “sensitive period” for language learning? We explore the idea that tuning to (or becoming more selective for) the properties of one's native-language could result in being less open (or plastic) for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure) has an impact on the neural representation of a later-learned aspect (grammar). English-speaking adults learned one of two miniature artificial languages (MALs) over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG). Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language. PMID:24273497

  1. Neural processing of amplitude and formant rise time in dyslexia.

    Science.gov (United States)

    Peter, Varghese; Kalashnikova, Marina; Burnham, Denis

    2016-06-01

    This study aimed to investigate how children with dyslexia weight amplitude rise time (ART) and formant rise time (FRT) cues in phonetic discrimination. Passive mismatch responses (MMR) were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Neural-network-based system for recognition of partially occluded shapes and patterns

    Science.gov (United States)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Amarasinghe, S. K.; Suganthan, P. N.

    1996-10-01

    The purpose of this paper is to demonstrate how a structural matching approach can be used to perfonn effective rotational invariant fingerprint identification. In this approach, each of the exiracted features is correlated with Live of its nearest neighbouring features to form a local feature gmup for a first-stage matching. After that, the feature with the highest match is used as a central feature whereby all the other features are correlated to form a global feature group for a second.stage matching. The correlation between the features is in terms of distance and relative angle. This approach actually make the matching method rotational invariant A substantial amount of testing was carried out and it shows that this matching technique is capable of matching the four basic fingerprint patterns with an average matching time of4 seconds on a 66Mhz, 486 DX personal computer.

  3. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    Science.gov (United States)

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  4. Fast analysis of spectral data using neural networks

    International Nuclear Information System (INIS)

    Roach, C.M.

    1992-01-01

    Fast analysis techniques are highly desirable in experiments where measurements are recorded at high rates. In fusion experiments the processing required to obtain plasma parameters is usually orders of magnitude slower than the data acquisition. Spectroscopic diagnostics suffer greatly from this problem. The extraction of plasma parameters from a measured spectrum typically corresponds to a nonlinear mapping between distinct multi-dimensional spaces. Where no analytic expression for the mapping exists, conventional analysis methods (e.g. least squares) are usually iterative and therefore slow. With this concern in mind a fast spectral analysis method involving neural networks has been investigated. (author) 6 refs., 3 figs

  5. Neural correlates of sad feelings in healthy girls.

    Science.gov (United States)

    Lévesque, J; Joanette, Y; Mensour, B; Beaudoin, G; Leroux, J-M; Bourgouin, P; Beauregard, M

    2003-01-01

    Emotional development is indisputably one of the cornerstones of personality development during infancy. According to the differential emotions theory (DET), primary emotions are constituted of three distinct components: the neural-evaluative, the expressive, and the experiential. The DET further assumes that these three components are biologically based and functional nearly from birth. Such a view entails that the neural substrate of primary emotions must be similar in children and adults. Guided by this assumption of the DET, the present functional magnetic resonance imaging study was conducted to identify the neural correlates of sad feelings in healthy children. Fourteen healthy girls (aged 8-10) were scanned while they watched sad film excerpts aimed at externally inducing a transient state of sadness (activation task). Emotionally neutral film excerpts were also presented to the subjects (reference task). The subtraction of the brain activity measured during the viewing of the emotionally neutral film excerpts from that noted during the viewing of the sad film excerpts revealed that sad feelings were associated with significant bilateral activations of the midbrain, the medial prefrontal cortex (Brodmann area [BA] 10), and the anterior temporal pole (BA 21). A significant locus of activation was also noted in the right ventrolateral prefrontal cortex (BA 47). These results are compatible with those of previous functional neuroimaging studies of sadness in adults. They suggest that the neural substrate underlying the subjective experience of sadness is comparable in children and adults. Such a similitude provides empirical support to the DET assumption that the neural substrate of primary emotions is biologically based.

  6. Partial differential equations of mathematical physics

    CERN Document Server

    Sobolev, S L

    1964-01-01

    Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math

  7. [Removable partial dentures. Oral functions and types

    OpenAIRE

    Creugers, N.H.J.; Baat, C. de

    2009-01-01

    A removable partial denture enables the restoration or improvement of 4 oral functions: aesthetics, mandibular stability, mastication, and speech. However, wearing a removable partial denture should not cause oral comfort to deteriorate. There are 3 types of removable partial dentures: acrylic tissue-supported dentures, dentures with cast metal frameworks en dentures with cast metal frameworks and (semi)precision attachments. Interrupted tooth arches,free-ending tooth arches, and a combinatio...

  8. Partial vaginismus : definition, symptoms and treatment

    OpenAIRE

    Engman, Maria

    2007-01-01

    Vaginismus is a sexual pain disorder, where spasm of musculature of the outer third of the vagina interferes with intercourse. Vaginismus exists in two forms: total vaginismus, where intercourse is impossible, and the more seldom described partial vaginismus, in which intercourse is possible but painful. The aim of the thesis was to develop a useful definition of partial vaginismus for both clinical and scientific purposes; to describe the prevalence of partial vaginismus among women with sup...

  9. Partial Evaluation of the Euclidian Algorithm

    DEFF Research Database (Denmark)

    Danvy, Olivier; Goldberg, Mayer

    1997-01-01

    -like behavior. Each of them presents a challenge for partial evaluation. The Euclidian algorithm is one of them, and in this article, we make it amenable to partial evaluation. We observe that the number of iterations in the Euclidian algorithm is bounded by a number that can be computed given either of the two...... arguments. We thus rephrase this algorithm using bounded recursion. The resulting program is better suited for automatic unfolding and thus for partial evaluation. Its specialization is efficient....

  10. Partial distance correlation with methods for dissimilarities

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2014-01-01

    Distance covariance and distance correlation are scalar coefficients that characterize independence of random vectors in arbitrary dimension. Properties, extensions, and applications of distance correlation have been discussed in the recent literature, but the problem of defining the partial distance correlation has remained an open question of considerable interest. The problem of partial distance correlation is more complex than partial correlation partly because the squared distance covari...

  11. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  12. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.

    Science.gov (United States)

    Crago, Patrick E; Makowski, Nathaniel S

    2014-10-01

    Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  13. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    Science.gov (United States)

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  14. The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

    Science.gov (United States)

    Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude

    2016-04-01

    The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module

    Directory of Open Access Journals (Sweden)

    Rogers Crystal D

    2011-12-01

    Full Text Available Abstract Background The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. Results To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. Conclusions We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.

  16. A distinction of two discourses concerning wellbeing

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    2017-01-01

    and behavioral mental health interventions, while the latter defines wellbeing in positive terms with a focus on wellbeing as the result of learning and with pedagogical interventions that only indirectly can support the individual’s learning activity. The former sees wellbeing as the result of a “wellbeing cure......The article concerns the current discourses concerning well-being with the point that it is important to make a distinction between a healthcare oriented discourse and a learning oriented discourse. The former defines wellbeing in negative terms and looks at causally oriented aspects of wellbeing......”, while the latter sees wellbeing as the result of wellbeing learning processes....

  17. Application of a neural network to control a pressurized water reactor

    International Nuclear Information System (INIS)

    Lin, C.; Ku, C.C.; Lee, C.S.

    1993-01-01

    A neural network has been trained to control a pressurized water reactor. The inputs of the training pattern are the plant signals, and the outputs are the control rod actions. The training patterns are some kind of lookup table of control action. The table is designed by the heuristic method, which is based on the designer's knowledge of the controlled system and the operation experience. This method has two advantages: The controller's performance does not depend on the mathematical model of the plant, and the controller could be a nonlinear one. The advantages of using neural networks to implement the controller are to save computing time and overcome partial hardware failure

  18. Neural signal processing for identifying failed fuel rods in nuclear reactors

    International Nuclear Information System (INIS)

    Seixas, Jose M. de; Soares Filho, William; Pereira, Wagner C.A.; Teles, Claudio C.B.

    2002-01-01

    Ultrasonic pulses were used for automatic detection of failed nuclear fuel rods. For experimental tests of the proposed method, an assembly prototype of 16 x 16 rods was built by using genuine rods but without fuel inside (just air). Some rods were partially filled with water to simulate cracked rods. Using neural signal processing on the received echoes of the emitted ultrasonic pulses, a detection efficiency of 97% was obtained. Neural detection is shown to outperform other classical discriminating methods and can also reveal important features of the signal structure of the received echoes. (author)

  19. Criticality and avalanches in neural networks

    International Nuclear Information System (INIS)

    Zare, Marzieh; Grigolini, Paolo

    2013-01-01

    Highlights: • Temporal criticality is used as criticality indicator. • The Mittag–Leffler function is proposed as a proper form of temporal complexity. • The distribution of avalanche size becomes scale free in the supercritical state. • The scale-free distribution of avalanche sizes is an epileptic manifestation. -- Abstract: Experimental work, both in vitro and in vivo, reveals the occurrence of neural avalanches with an inverse power law distribution in size and time duration. These properties are interpreted as an evident manifestation of criticality, thereby suggesting that the brain is an operating near criticality complex system: an attractive theoretical perspective that according to Gerhard Werner may help to shed light on the origin of consciousness. However, a recent experimental observation shows no clear evidence for power-law scaling in awake and sleeping brain of mammals, casting doubts on the assumption that the brain works at criticality. This article rests on a model proposed by our group in earlier publications to generate neural avalanches with the time duration and size distribution matching the experimental results on neural networks. We now refine the analysis of the time distance between consecutive firing bursts and observe the deviation of the corresponding distribution from the Poisson statistics, as the system moves from the non-cooperative to the cooperative regime. In other words, we make the assumption that the genuine signature of criticality may emerge from temporal complexity rather than from the size and time duration of avalanches. We argue that the Mittag–Leffler (ML) exponential function is a satisfactory indicator of temporal complexity, namely of the occurrence of non-Poisson and renewal events. The assumption that the onset of criticality corresponds to the birth of renewal non-Poisson events establishes a neat distinction between the ML function and the power law avalanches generating regime. We find that

  20. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  1. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  2. Neural network regulation driven by autonomous neural firings

    Science.gov (United States)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  3. The Distinction Between Curative and Assistive Technology.

    Science.gov (United States)

    Stramondo, Joseph A

    2018-05-01

    Disability activists have sometimes claimed their disability has actually increased their well-being. Some even say they would reject a cure to keep these gains. Yet, these same activists often simultaneously propose improvements to the quality and accessibility of assistive technology. However, for any argument favoring assistive over curative technology (or vice versa) to work, there must be a coherent distinction between the two. This line is already vague and will become even less clear with the emergence of novel technologies. This paper asks and tries to answer the question: what is it about the paradigmatic examples of curative and assistive technologies that make them paradigmatic and how can these defining features help us clarify the hard cases? This analysis will begin with an argument that, while the common views of this distinction adequately explain the paradigmatic cases, they fail to accurately pick out the relevant features of those technologies that make them paradigmatic and to provide adequate guidance for parsing the hard cases. Instead, it will be claimed that these categories of curative or assistive technologies are defined by the role the technologies play in establishing a person's relational narrative identity as a member of one of two social groups: disabled people or non-disabled people.

  4. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  5. Distinct types of eigenvector localization in networks

    Science.gov (United States)

    Pastor-Satorras, Romualdo; Castellano, Claudio

    2016-01-01

    The spectral properties of the adjacency matrix provide a trove of information about the structure and function of complex networks. In particular, the largest eigenvalue and its associated principal eigenvector are crucial in the understanding of nodes’ centrality and the unfolding of dynamical processes. Here we show that two distinct types of localization of the principal eigenvector may occur in heterogeneous networks. For synthetic networks with degree distribution P(q) ~ q-γ, localization occurs on the largest hub if γ > 5/2 for γ < 5/2 a new type of localization arises on a mesoscopic subgraph associated with the shell with the largest index in the K-core decomposition. Similar evidence for the existence of distinct localization modes is found in the analysis of real-world networks. Our results open a new perspective on dynamical processes on networks and on a recently proposed alternative measure of node centrality based on the non-backtracking matrix.

  6. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.

    Science.gov (United States)

    Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex

    2018-02-27

    "Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.

  7. Partial discharges and bulk dielectric field enhancement

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Johansson, Torben

    2000-01-01

    A consequence of partial discharge activity within a gaseous void is the production of a field enhancement in the solid dielectric in the proximity of the void. This situation arises due to the charge created by the partial discharges accumulating at the void wall. The influence of the spatial...

  8. Laparoscopic partial nephrectomy for endophytic hilar tumors

    DEFF Research Database (Denmark)

    Di Pierro, G B; Tartaglia, N; Aresu, L

    2014-01-01

    To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients.......To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients....

  9. Removable partial overdentures for the irradiated patient

    International Nuclear Information System (INIS)

    Rosenberg, S.W.

    1990-01-01

    Patients who have received radiotherapy to the head and neck area must avoid dental extractions and seek simplicity in treatment and home care follow-up. For partially edentulous patients, removable partial overdenture therapy can fulfill these goals while maintaining the high level of function and aesthetics desired by patients.11 references

  10. Coordinating choice in partial cooperative equilibrium

    NARCIS (Netherlands)

    Mallozzi, L.; Tijs, S.H.

    2009-01-01

    In this paper we consider symmetric aggregative games and investigate partial cooperation between a portion of the players that sign a cooperative agreement and the rest of the players. Existence results of partial cooperative equilibria are obtained when the players who do not sign the agreement

  11. Memoization in Type-Directed Partial Evaluation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    2002-01-01

    the functions and type-directed partial evaluation provides a convenient setting to obtain the normal form of their composition. However, off-the-shelf type-directed partial evaluation turns out to yield gigantic normal forms. We identify that this gigantism is due to redundancies, and that these redundancies...

  12. Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...

    African Journals Online (AJOL)

    Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...

  13. Zero ischemia laparoscopic partial thulium laser nephrectomy.

    LENUS (Irish Health Repository)

    Thomas, Arun Z

    2013-11-01

    Laser technology presents a promising alternative to achieve tumor excision and renal hemostasis with or without hilar occlusion, yet its use in partial nephrectomy has not been significantly evaluated. We prospectively evaluated the thulium:yttrium-aluminum-garnet laser in laparoscopic partial nephrectomy (LPN) in our institution over a 1-year period.

  14. Esthetic Rehabilitation with a Cast Partial Denture

    Directory of Open Access Journals (Sweden)

    Suraksha Shrestha

    2017-01-01

    Full Text Available Removable partial denture is a treatment option where fixed prosthesis is not indicated. Due to its esthetic problems in the anterior region various modifications have been designed for its fabrication. This article describes an esthetic alternative using a round rest distal depression clasp for maxillary anterior teeth abutment while restoring the missing teeth with a cast partial denture.

  15. Heat deposition on the partial limiter

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae-I; Nagasaki, Kazunobu.

    1990-01-01

    The effect of the partial limiter in the outermost magnetic surface of toroidal plasmas is studied. The power deposition on the partial limiter and its effect on the temperature profile are analysed. Interpretation in terms of the perpendicular heat conductivity is also discussed. (author)

  16. Partial purification and biochemical characterization of acid ...

    African Journals Online (AJOL)

    Mung bean (Vigna radiata) is one of the important crops of the North Eastern Region of India. In the present study, acid phosphatase enzyme was isolated and partially purified from germinated local mung bean seeds. The sequential partial purification process was performed using ammonium sulphate precipitation method.

  17. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    Science.gov (United States)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  18. Outbreak tracking of Aleutian mink disease virus (AMDV) using partial NS1 gene sequencing

    DEFF Research Database (Denmark)

    Ryt-Hansen, Pia; Hjulsager, Charlotte Kristiane; Hagberg, E. E.

    2017-01-01

    . However, in 2015, several outbreaks of AMDV occurred at mink farms throughout Denmark, and the sources of these outbreaks were not known. Partial NS1 gene sequencing, phylogenetic analyses data were utilized along with epidemiological to determine the origin of the outbreaks. The phylogenetic analyses...... not be excluded. This study confirmed that partial NS1 sequencing can be used in outbreak tracking to determine major viral clusters of AMDV. Using this method, two new distinct AMDV clusters with low intra-cluster sequence diversity were identified, and epidemiological data helped to reveal possible ways...

  19. Partial Safety Factors for Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.; Christiani, E.

    1995-01-01

    On the basis of the failure modes formulated in the various subtasks calibration of partial safety factors are described in this paper. The partial safety factors can be used to design breakwaters under quite different design conditions, namely probabilities of failure from 0.01 to 0.4, design...... lifetimes from 20 to 100 years and different qualities of wave data. A code of practice where safety is taken into account using partial safety factors is called a level I code. The partial safety factors are calibrated using First Order Reliability Methods (FORM, see Madsen et al. [1]) where...... in section 3. First Order Reliability Methods are described in section 4, and in section 5 it is shown how partial safety factors can be introduced and calibrated. The format of a code for design and analysis of rubble mound breakwaters is discussed in section 6. The mathematical formulation of the limit...

  20. Development of Partial Discharging Simulation Test Equipment

    Science.gov (United States)

    Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu

    2017-12-01

    In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.