WorldWideScience

Sample records for partially coherent stationary

  1. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  2. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  3. Hilbert and Blaschke phases in the temporal coherence function of stationary broadband light.

    Science.gov (United States)

    Fernández-Pousa, Carlos R; Maestre, Haroldo; Torregrosa, Adrián J; Capmany, Juan

    2008-10-27

    We show that the minimal phase of the temporal coherence function gamma (tau) of stationary light having a partially-coherent symmetric spectral peak can be computed as a relative logarithmic Hilbert transform of its amplitude with respect to its asymptotic behavior. The procedure is applied to experimental data from amplified spontaneous emission broadband sources in the 1.55 microm band with subpicosecond coherence times, providing examples of degrees of coherence with both minimal and non-minimal phase. In the latter case, the Blaschke phase is retrieved and the position of the Blaschke zeros determined.

  4. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  5. Exergy of partially coherent thermal radiation

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2012-01-01

    Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.

  6. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  7. Partial coherence with application to the monotonicity problem of coherence involving skew information

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.

  8. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  9. On formation of a partially coherent beam in a stable-resonator laser

    International Nuclear Information System (INIS)

    Suvorov, A A

    2010-01-01

    A new method involving the expansion of the field coherence function in partially coherent modes - the eigensolutions of the problem for the second-order coherence function in a stable resonator - is proposed for the theoretical description of the process of multimode laser beam formation. The method for solving the problem for arbitrary partially coherent modes is formulated and the expressions for these modes are derived in the general form. The characteristics of the fundamental partially coherent mode, which coincides with the coherence function of a Gaussian partially coherent beam, are analysed in detail. The partially coherent modes are shown to possess two spatial scales - the effective radius and the coherence radius, which makes them a convenient tool for solving the problem of generation of a partially coherent beam. It is found that the unambiguous relation between the characteristics of partially coherent modes and the stable-resonator parameters is achieved by involving into consideration not only the process of the beam formation by the resonator mirrors but also the process of interaction of radiation with the active laser medium. (laser beams and resonators)

  10. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  11. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    Science.gov (United States)

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  12. Multiple-Symbol, Partially Coherent Detection of MPSK

    Science.gov (United States)

    Simon, Marvin K.; Divsalar, Dariush

    1994-01-01

    Proposed method of reception of multiple-phase-shift-keyed (MPSK) radio signals involves multiple-symbol, partially coherent detection. Instead of attempting to determine phase of transmitted signal during each symbol period as in coherent detection, receiver acquires signal data during multiple-symbol observation interval, then produces maximum-likelihood-sequence estimate of phases transmitted during interval. Combination of coherent-reception and incoherent-reception decision rules are used.

  13. Complete destructive interference of partially coherent fields

    NARCIS (Netherlands)

    Gbur, G.J.; Visser, T.D.; Wolf, E.

    2004-01-01

    A three-point source model is used to study the interference of wavefields which are mutually partially coherent. It is shown that complete destructive interference of the fields is possible in such a "three-pinhole interferometer" even if the sources are not fully coherent with respect to each

  14. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  15. Multiple symbol partially coherent detection of MPSK

    Science.gov (United States)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  16. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  17. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  18. Handbook of differential equations stationary partial differential equations

    CERN Document Server

    Chipot, Michel

    2006-01-01

    This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke

  19. Wigner distribution, partial coherence, and phase-space optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  20. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    Science.gov (United States)

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  1. The quantum potential and ''causal'' trajectories for stationary states and for coherent states

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1988-07-01

    We show for stationary states in a central potential that the quantum action S is only a part of the classical action W and derive an expression for the ''quantum potential'' U Q in terms of the other part. The association of momenta of some ''particles'' in the causal interpretation of quantum mechanics by p-vector=∇S and by dp-vector'/dt=-∇(V+U Q ) gives for stationary states very different orbits which have no relation to classical orbits but express some flow properties of the quantum mechanical current. For coherent states, on the other hand, p-vector and p-vector' as well as the quantum mechanical average p-vector and classical momenta, all four, lead to essentially the same trajectories except for different integration constants. The spinning particle is also considered. (author). 27 refs, 2 figs

  2. Simulation of partially coherent light propagation using parallel computing devices

    Science.gov (United States)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  3. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  4. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-12-15

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  5. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    International Nuclear Information System (INIS)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  6. Ghost imaging and its visibility with partially coherent elliptical Gaussian Schell-model beams

    International Nuclear Information System (INIS)

    Luo, Meilan; Zhu, Weiting; Zhao, Daomu

    2015-01-01

    The performances of the ghost image and the visibility with partially coherent elliptical Gaussian Schell-model beams have been studied. In that case we have derived the condition under which the goal ghost image is achievable. Furthermore, the visibility is assessed in terms of the parameters related to the source to find that the visibility reduces with the increase of the beam size, while it is a monotonic increasing function of the transverse coherence length. More specifically, it is found that the inequalities of the source sizes in x and y directions, as well as the transverse coherence lengths, play an important role in the ghost image and the visibility. - Highlights: • We studied the ghost image and visibility with partially coherent EGSM beams. • We derived the condition under which the goal ghost image is achievable. • The visibility is assessed in terms of the parameters related to the source. • The source sizes and coherence lengths play role in the ghost image and visibility.

  7. Characterization of network structure in stereoEEG data using consensus-based partial coherence.

    Science.gov (United States)

    Ter Wal, Marije; Cardellicchio, Pasquale; LoRusso, Giorgio; Pelliccia, Veronica; Avanzini, Pietro; Orban, Guy A; Tiesinga, Paul He

    2018-06-06

    Coherence is a widely used measure to determine the frequency-resolved functional connectivity between pairs of recording sites, but this measure is confounded by shared inputs to the pair. To remove shared inputs, the 'partial coherence' can be computed by conditioning the spectral matrices of the pair on all other recorded channels, which involves the calculation of a matrix (pseudo-) inverse. It has so far remained a challenge to use the time-resolved partial coherence to analyze intracranial recordings with a large number of recording sites. For instance, calculating the partial coherence using a pseudoinverse method produces a high number of false positives when it is applied to a large number of channels. To address this challenge, we developed a new method that randomly aggregated channels into a smaller number of effective channels on which the calculation of partial coherence was based. We obtained a 'consensus' partial coherence (cPCOH) by repeating this approach for several random aggregations of channels (permutations) and only accepting those activations in time and frequency with a high enough consensus. Using model data we show that the cPCOH method effectively filters out the effect of shared inputs and performs substantially better than the pseudo-inverse. We successfully applied the cPCOH procedure to human stereotactic EEG data and demonstrated three key advantages of this method relative to alternative procedures. First, it reduces the number of false positives relative to the pseudo-inverse method. Second, it allows for titration of the amount of false positives relative to the false negatives by adjusting the consensus threshold, thus allowing the data-analyst to prioritize one over the other to meet specific analysis demands. Third, it substantially reduced the number of identified interactions compared to coherence, providing a sparser network of connections from which clear spatial patterns emerged. These patterns can serve as a starting

  8. A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams

    DEFF Research Database (Denmark)

    Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2011-01-01

    Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...

  9. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  10. New class of uncertainty relations for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1984-01-01

    A class of uncertainty relations for partially coherent light is derived; the uncertainty relations in this class express the fact that the product of the effective widths of the space-domain intensity and the spatial-frequency-domain intensity of the light has a lower bound and that this lower

  11. Uncertainty principle and informational entropy for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1986-01-01

    It is shown that, among all partially coherent wave fields having the same informational entropy, the product of the effective widths of the intensity functions in the space and the spatial-frequency domains takes its minimum value for a wave field with a Gaussian-shaped cross-spectral density

  12. Goos-Hänchen shifts of partially coherent light beams from a cavity with a four-level Raman gain medium

    Science.gov (United States)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-09-01

    We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.

  13. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  14. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    International Nuclear Information System (INIS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-01-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.

  15. Experimental evidence for partial spatial coherence in imaging Mueller polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Arteaga, Oriol; Yoo, Sang Hyuk; Garcia-Caurel, Enric; Hingerl, Kurt

    2017-11-15

    We demonstrate experimentally the validity of the partial spatial coherence formalism in Mueller polarimetry and show that, in a finite spatial resolution experiment, the measured response is obtained through convolving the theoretical one with the instrument function. The reported results are of primary importance for Mueller imaging systems.

  16. Stochastic Modeling and Generation of Partially Polarized or Partially Coherent Electromagnetic Waves

    Science.gov (United States)

    Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.

  17. General formalism for partial spatial coherence in reflection Mueller matrix polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Hingerl, Kurt

    2016-09-01

    Starting from the first principles, we derive the expressions governing partially coherent Mueller matrix reflection polarimetry on spatially inhomogeneous samples. These are reported both in their general form and in the practically important specific form for two juxtaposed media.

  18. Generation, amplification and propagation of partially coherent light in a Nd:glass laser driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nakano, Hitoshi; Tsubakimoto, Kouji; Miyanaga, Noriaki; Nakatsuka, Masahiro; Kanabe, Tadashi.

    1992-01-01

    A partially coherent light source has been introduced into the high power twelve beam Nd:glass laser system, Gekko XII for obtaining the smooth intensity distribution of a focused beam pattern. An amplified spontaneous emission (ASE) from Nd:glass was used as a partially coherent source. We adopted the angularly dispersed spectrum not only for beam smoothing but for efficient harmonic conversion. The temporal evolution of the speckle smoothing was experimentally evaluated and compared with a statistical model of speckle pattern. In the amplification of a partially coherent light in Gekko XII, no reduction of the energy gain was found at high power operation 1kJ level. The ASE light can be propagated using image relaying spatial filters, with maintaining the beam divergence up to 32 times diffraction limited. Irradiation nonuniformities on a spherical target were estimated from the focused beam patterns measured at an equivalent target plane. A partially coherent light is quite effective for reducing the nonuniformity from 19.7% (the coherent laser with random phase plate) to 3.8%. Doubling efficiency was found to be reduced at high intensity region due to the phase mismatching with the beam divergence of the ASE light. We discuss possible approaches to obtain the sufficient harmonic conversion with keeping the incoherency of the ASE light. (author)

  19. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  20. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-12-15

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  1. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-01-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol

  2. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-12-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  3. Image-quality degradation in a turbid medium under partially coherent illumination

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; Tam, W.G.; Embury, J.F.

    1986-01-01

    The image-quality degradation as a result of propagation through a turbid medium is analyzed within the small-angle approximation to the equation of transfer. By using the well-known correspondence between the radiance distribution and the mutual-coherence function, we formulate a factorization assumption for the mutual coherence in order to restrict the class of radiance distributions in the object plane. Depending on the contrast factor, that is, in general, the class of partially coherent light beams. The general formula for the irradiance distribution in the image plane contains the classic result of Hufnagel and Stanley [J. Opt. Soc. Am. 54, 52 (1964)] as a special case. We study the limits of an infinite lens and a Gaussian aperture and investigate in detail the case of a Gaussian beam with a cosinusoidally superimposed signal. The solution in the form of a multiple-scattering series enables us to discuss the signficance of scattering events of higher order

  4. Imaging of Phase Objects using Partially Coherent Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F. L. [Univ. of Arizona, Tucson, AZ (United States)

    2013-01-01

    Screening high-power laser optics for light intensifying phase objects that cause laserinduced damage on downstream optics is critical to sustaining laser operation. Identifying such flaws on large-apertures is quite challenging since they are relatively small and invisible to conventional inspection methods. A Linescan Phase Differential Imaging (LPDI) system was developed to rapidly identify these flaws on large-aperture optics within a single full-aperture dark-field image. We describe a two-step production phase object screening process consisting of LPDI mapping and image analysis, followed by high-resolution interferometry and propagation based evaluation of the downstream damage potential of identified flaws. An image simulation code capable of modeling the LPDI partially coherent illumination was used to optimize its phase object sensitivity.

  5. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    Science.gov (United States)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  6. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  7. Consistency of the directionality of partially coherent beams in turbulence expressed in terms of the angular spread and the far-field average intensity

    International Nuclear Information System (INIS)

    Xiao-Wen, Chen; Xiao-Ling, Ji

    2010-01-01

    Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence. (classical areas of phenomenology)

  8. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Vos, J.E.; Mooibroek, J.; Rotterdam, A. van

    1980-01-01

    The thalamo-cortical relationships of alpha rhythms have been analysed in dogs using partial coherence function analysis. The objective was to clarify how far the large intracortical coherence commonly recorded between different cortical sites could depend on a common thalamic site. It was found

  9. Quantitative evaluation of temporal partial coherence using 3D Fourier transforms of through-focus TEM images

    International Nuclear Information System (INIS)

    Kimoto, Koji; Sawada, Hidetaka; Sasaki, Takeo; Sato, Yuta; Nagai, Takuro; Ohwada, Megumi; Suenaga, Kazu; Ishizuka, Kazuo

    2013-01-01

    We evaluate the temporal partial coherence of transmission electron microscopy (TEM) using the three-dimensional (3D) Fourier transform (FT) of through-focus images. Young's fringe method often indicates the unexpected high-frequency information due to non-linear imaging terms. We have already used the 3D FT of axial (non-tilted) through-focus images to reduce the effect of non-linear terms on the linear imaging term, and demonstrated the improvement of monochromated lower-voltage TEM performance [Kimoto et al., Ultramicroscopy 121 (2012) 31–39]. Here we apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. The temporal partial coherence of two microscopes operated at 30, 60 and 80 kV is evaluated. Our method is applicable to such cases where the non-linear terms become more significant in lower acceleration voltage or aberration-corrected high spatial resolution TEM. - Highlights: • We assess the temporal partial coherence of TEM using a 3-dimensional (3D) Fourier transform (FT) of through-focus images. • We apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. • The spatial frequency at which information transfer decreases to 1/e 2 (13.5%) is determined for two lower-voltage TEM systems

  10. Topology optimization for optical microlithography with partially coherent illumination

    DEFF Research Database (Denmark)

    Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole

    2017-01-01

    in microlithography/nanolithography. The key steps include (i) modeling the physical inputs of the fabrication process, including the ultraviolet light illumination source and the mask, as the design variables in optimization and (ii) applying physical filtering and heaviside projection for topology optimization......This article revisits a topology optimization design approach for micro-manufacturing and extends it to optical microlithography with partially coherent illumination. The solution is based on a combination of two technologies, the topology optimization and the proximity error correction....... Meanwhile, the performance of the device is optimized and robust with respect to process variations, such as dose/photo-resist variations and lens defocus. A compliant micro-gripper design example is considered to demonstrate the applicability of this approach....

  11. The use of the partial coherence function technique for the investigation of BWR noise dynamics

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1983-01-01

    The extensive experimental investigations, at the last time, indicate that the partial coherence function technique can be a powerful method of the investigation of BWR noise dynamics. Symple BWR noise dynamics model for the global noise study, based on different noise phenomena, is proposed in this paper. (author)

  12. Partially coherent twisted states in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  13. Partially coherent twisted states in arrays of coupled phase oscillators

    International Nuclear Information System (INIS)

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-01-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system

  14. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    Science.gov (United States)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  15. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  16. Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources

    Science.gov (United States)

    Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling

    2018-04-01

    The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.

  17. The spectral analysis of cyclo-non-stationary signals

    Science.gov (United States)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  18. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  19. Account of an optical beam spreading caused by turbulence for the problem of partially coherent wavefield propagation through inhomogeneous absorbing media

    Science.gov (United States)

    Dudorov, Vadim V.; Kolosov, Valerii V.

    2003-04-01

    The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.

  20. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    Science.gov (United States)

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  1. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei, E-mail: zhangpei@mail.ustc.edu.cn; Li, Fuli [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-02-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum.

  2. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    International Nuclear Information System (INIS)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei; Li, Fuli

    2016-01-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum

  3. Asymmetry in angular distributions of Drell-Yan dimuons produced by antiproton-tungsten interactions at 125 GeV/c and partial coherence

    International Nuclear Information System (INIS)

    Blazek, M.

    1991-01-01

    Recently published data on angular distributions of high mass dimuons produced in proton-tungsten interactions at 125 GeV/c are considered in the frame of the quantum statistical approach involving a mixture of coherent and stochastic production. The analysis leads to the conclusion that a portion of the lepton pairs is produced coherently. An accurate description of the data specifying the asymmetric angular distributions requires a non-vanishing cubic term in cosine of the polar angle and a term with treble the azimuthal angle. This can be achieved by an appropriate interplay of the parameters entering the approach which includes the partial coherency. (author). 1 tab., 19 refs

  4. Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation

    International Nuclear Information System (INIS)

    Caraballo, Tomas; Kloeden, Peter E.; Schmalfuss, Bjoern

    2004-01-01

    We consider the exponential stability of stochastic evolution equations with Lipschitz continuous non-linearities when zero is not a solution for these equations. We prove the existence of anon-trivial stationary solution which is exponentially stable, where the stationary solution is generated by the composition of a random variable and the Wiener shift. We also construct stationary solutions with the stronger property of attracting bounded sets uniformly. The existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. In addition, we prove some perturbation results and formulate conditions for the existence of stationary solutions for semilinear stochastic partial differential equations with Lipschitz continuous non-linearities

  5. On irreversible evolutions of two-level systems approaching coherent and squeezed states

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1988-01-01

    The concepts of completely positive quantum dynamical semigroups and SU(2)-related generalized coherence and squeezing are used to investigate conditions for Markovian evolutions leading to coherent, intelligent, minimum-uncertainty and squeezed asymptotic stationary states in a 2-level system. (author). 10 refs

  6. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  7. Nonlinear dynamics of a coherent polariton-biexciton system

    International Nuclear Information System (INIS)

    Nguyen Trung Dan; Vo Tinh

    1994-08-01

    The nonlinear dynamics of a coherent interacting polariton-biexciton system in optically excited semiconductors is investigated. We consider the case when two macroscopically coherent modes - a lower branch polariton and a biexciton existing simultaneously in a direct-gap semiconductor. The conditions for exhibiting optical bistability in stationary regime are obtained. Numerical simulation for the nonlinear dynamics equations of the system is also carried out. (author). 16 refs, 4 figs

  8. STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE

    Directory of Open Access Journals (Sweden)

    E. A. Nikulina

    2015-03-01

    Full Text Available Subject of study. A vector model for conversion of electromagnetic radiation in optical systems is considered, taking into account the influence of birefringence, as well as partially coherent illumination. Model. The proposed model is based on the representation of the complex amplitude of the monochromatic field through thesuperposition of basic plane waves. Transmitted light image with partially coherent illumination is performed by the sourceintegration method. Main results. The results of simulation for the point spread function are demonstrating the level of the birefringence influence on the image quality. In the presence of the wave aberration about 0.098 of the wavelength, the wave energy loss in the center of the Airy disk with an average birefringence of 4 nm/cm was 8%, and at 16 nm/cm it reached 30%. The calculation of the point spread function for a real sample of fluorite is given. The central peak of the PSF without birefringence was 0.722, with regard to birefringence it was equal to 0.701. Practical significance. The findings can be used in the development of photolithographic lenses, as well as for the manufacturing of any other optical systems that require consideration of the polarization properties of the materials.

  9. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  10. A single-image method of aberration retrieval for imaging systems under partially coherent illumination

    International Nuclear Information System (INIS)

    Xu, Shuang; Liu, Shiyuan; Zhang, Chuanwei; Wei, Haiqing

    2014-01-01

    We propose a method for retrieving small lens aberrations in optical imaging systems under partially coherent illumination, which only requires to measure one single defocused image of intensity. By deriving a linear theory of imaging systems, we obtain a generalized formulation of aberration sensitivity in a matrix form, which provides a set of analytic kernels that relate the measured intensity distribution directly to the unknown Zernike coefficients. Sensitivity analysis is performed and test patterns are optimized to ensure well-posedness of the inverse problem. Optical lithography simulations have validated the theoretical derivation and confirmed its simplicity and superior performance in retrieving small lens aberrations. (fast track communication)

  11. Coherence and correlation in doubly excited heliumlike atoms

    International Nuclear Information System (INIS)

    Burgdoerfer, J.; Morgenstern, R.

    1988-01-01

    We analyze properties of the density matrix of doubly excited two-electron systems formed in inelastic collisions. Formulas for the two-particle joint angular probability density, the angular correlation function, and the reduced single-particle density are derived. Of particular interest is the interplay between the intrinsic correlations of the stationary two-electron state and collisionally induced coherences. We focus on its effects on the correlated and single-particle motion of the electrons. If one chooses approximate stationary wave functions reflecting the approximate O(4) x O(4)contains(4) dynamical symmetry, a simple quasiclassical interpretation of coherence and correlation in terms of shapes and modes of the relative motion of Kepler orbits can be given. The present description is applied to recent experimental results by Van der Straten and Morgenstern [Comments At. Mol. Phys. 19, 243 (1986)

  12. Speed and the coherence of superimposed chromatic gratings.

    Science.gov (United States)

    Bosten, J M; Smith, L; Mollon, J D

    2016-05-01

    On the basis of measurements of the perceived coherence of superimposed drifting gratings, Krauskopf and Farell (1990) proposed that motion is analysed independently in different chromatic channels. They found that two gratings appeared to slip if each modulated one of the two 'cardinal' color mechanisms S/(L+M) and L/(L+M). If the gratings were defined along intermediate color directions, observers reported a plaid, moving coherently. We hypothesised that slippage might occur in chromatic gratings if the motion signal from the S/(L+M) channel is weak and equivalent to a lower speed. We asked observers to judge coherence in two conditions. In one, S/(L+M) and L/(L+M) gratings were physically the same speed. In the other, the two gratings had perceptually matched speeds. We found that the relative incoherence of cardinal gratings is the same whether gratings are physically or perceptually matched in speed. Thus our hypothesis was firmly contradicted. In a control condition, observers were asked to judge the coherence of stationary gratings. Interestingly, the difference in judged coherence between cardinal and intermediate gratings remained as strong as it was when the gratings moved. Our results suggest a possible alternative interpretation of Krauskopf and Farell's result: the processes of object segregation may precede the analysis of the motion of chromatic gratings, and the same grouping signals may prompt object segregation in the stationary and moving cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Vaccaro, John A.

    2002-01-01

    As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular

  14. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    Science.gov (United States)

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  15. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  16. Time-variant partial directed coherence in analysis of the cardiovascular system. A methodological study

    International Nuclear Information System (INIS)

    Milde, T; Schwab, K; Walther, M; Eiselt, M; Witte, H; Schelenz, C; Voss, A

    2011-01-01

    Time-variant partial directed coherence (tvPDC) is used for the first time in a multivariate analysis of heart rate variability (HRV), respiratory movements (RMs) and (systolic) arterial blood pressure. It is shown that respiration-related HRV components which also occur at other frequencies besides the RM frequency (= respiratory sinus arrhythmia, RSA) can be identified. These additional components are known to be an effect of the 'half-the-mean-heart-rate-dilemma' ('cardiac aliasing' CA). These CA components may contaminate the entire frequency range of HRV and can lead to misinterpretation of the RSA analysis. TvPDC analysis of simulated and clinical data (full-term neonates and sedated patients) reveals these contamination effects and, in addition, the respiration-related CA components can be separated from the RSA component and the Traube–Hering–Mayer wave. It can be concluded that tvPDC can be beneficially applied to avoid misinterpretations in HRV analyses as well as to quantify partial correlative interaction properties between RM and RSA

  17. Non-stationary dynamics of climate variability in synchronous influenza epidemics in Japan

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-09-01

    Seasonal variation in the incidence of influenza is widely assumed. However, few studies have examined non-stationary relationships between global climate factors and influenza epidemics. We examined the monthly incidence of influenza in Fukuoka, Japan, from 2000 to 2012 using cross-wavelet coherency analysis to assess the patterns of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). The monthly incidence of influenza showed cycles of 1 year with the IOD and 2 years with ENSO indices (Multivariate, Niño 4, and Niño 3.4). These associations were non-stationary and appeared to have major influences on the synchrony of influenza epidemics. Our study provides quantitative evidence that non-stationary associations have major influences on synchrony between the monthly incidence of influenza and the dynamics of the IOD and ENSO. Our results call for the consideration of non-stationary patterns of association between influenza cases and climatic factors in early warning systems.

  18. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  19. Frequency Analysis of Extreme Sub-Daily Precipitation under Stationary and Non-Stationary Conditions across Two Contrasting Hydroclimatic Environments

    Science.gov (United States)

    Demaria, E. M.; Goodrich, D. C.; Keefer, T.

    2017-12-01

    Observed sub-daily precipitation intensities from contrasting hydroclimatic environments in the USA are used to evaluate temporal trends and to develop Intensity-Duration Frequency (IDF) curves under stationary and nonstationary climatic conditions. Analyses are based on observations from two United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) experimental watersheds located in a semi-arid and a temperate environment. We use an Annual Maximum Series (AMS) and a Partial Duration Series (PDS) approach to identify temporal trends in maximum intensities for durations ranging from 5- to 1440-minutes. A Bayesian approach with Monte Carlo techniques is used to incorporate the effect of non-stationary climatic assumptions in the IDF curves. The results show increasing trends in observed AMS sub-daily intensities in both watersheds whereas trends in the PDS observations are mostly positive in the semi-arid site and a mix of positive and negative in the temperate site. Stationary climate assumptions lead to much lower estimated sub-daily intensities than those under non-stationary assumptions with larger absolute differences found for shorter durations and smaller return periods. The risk of failure (R) of a hydraulic structure is increased for non-stationary effects over those of stationary effects, with absolute differences of 25% for a 100-year return period (T) and a project life (n) of 100 years. The study highlights the importance of considering non-stationarity, due to natural variability or to climate change, in storm design.

  20. Investigation of optical currents in coherent and partially coherent vector fields

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Maksimyak, P. P.

    2011-01-01

    We present the computer simulation results of the spatial distri-bution of the Poynting vector and illustrate motion of micro and nanopar-ticles in spatially inhomogeneously polarized fields. The influence of phase relations and the degree of mutual coherence of superimposing waves...... by polarization characteristics of an optical field alone, using nanoscale me-tallic particles has been shown experimentally....

  1. Effect of non-stationary climate on infectious gastroenteritis transmission in Japan

    Science.gov (United States)

    Onozuka, Daisuke

    2014-06-01

    Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Infectious gastroenteritis cases were non-stationary and significantly associated with the IOD and ENSO (Multivariate ENSO Index [MEI], Niño 1 + 2, Niño 3, Niño 4, and Niño 3.4) for a period of approximately 1 to 2 years. This association was non-stationary and appeared to have a major influence on the synchrony of infectious gastroenteritis transmission. Our results suggest that non-stationary patterns of association between global climate factors and incidence of infectious gastroenteritis should be considered when developing early warning systems for epidemics of infectious gastroenteritis.

  2. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches

    Science.gov (United States)

    Ortiz-Villanueva, Elena; Tauler, Romà

    2017-01-01

    Metabolomics is a powerful and widely used approach that aims to screen endogenous small molecules (metabolites) of different families present in biological samples. The large variety of compounds to be determined and their wide diversity of physical and chemical properties have promoted the development of different types of hydrophilic interaction liquid chromatography (HILIC) stationary phases. However, the selection of the most suitable HILIC stationary phase is not straightforward. In this work, four different HILIC stationary phases have been compared to evaluate their potential application for the analysis of a complex mixture of metabolites, a situation similar to that found in non-targeted metabolomics studies. The obtained chromatographic data were analyzed by different chemometric methods to explore the behavior of the considered stationary phases. ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA) and partial least squares regression (PLS) were used to explore the experimental factors affecting the stationary phase performance, the main similarities and differences among chromatographic conditions used (stationary phase and pH) and the molecular descriptors most useful to understand the behavior of each stationary phase. PMID:29064436

  3. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  4. Coherence for vectorial waves and majorization

    OpenAIRE

    Luis, Alfredo

    2016-01-01

    We show that majorization provides a powerful approach to the coherence conveyed by partially polarized transversal electromagnetic waves. Here we present the formalism, provide some examples and compare with standard measures of polarization and coherence of vectorial waves.

  5. The Pathwise Numerical Approximation of Stationary Solutions of Semilinear Stochastic Evolution Equations

    International Nuclear Information System (INIS)

    Caraballo, T.; Kloeden, P.E.

    2006-01-01

    Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions

  6. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    Science.gov (United States)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  7. Comparison of anterior segment measurements using rotating Scheimpflug imaging and partial coherence interferometry

    Directory of Open Access Journals (Sweden)

    Akbar Fotouhi

    2013-08-01

    Full Text Available METHODS:As part of the first phase of Shahroud Eye Cohort Study with 5 190 subjects of 40 to 64 years of age, CCT and ACD were measured using Scheimpflug imaging with the Pentacam (Oculus, Inc., Lynnwood, WA, USA and partial coherence interferometry with the Allegro BioGraph (Wavelight, Erlangen, Germany.RESULTS:After applying exclusion criteria, we had data of 4 387 subjects with a mean age of 50.7±6.2 years. Mean CCT with Pentacam and BioGraph were 528.6±33.2μm and 525.6±32μm respectively; the difference was statistically significant (PPCONCLUSION:For both CCT and ACD, the BioGraph gave significantly lower values than the Pentacam (P<0.05. Despite the high inter-device correlation, the 95% limits of agreements were wide, and this may limit their interchangeability in measuring the CCT and ACD.

  8. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  9. Experimental continuous-variable cloning of partial quantum information

    DEFF Research Database (Denmark)

    Sabuncu, Metin; Leuchs, Gerd; Andersen, Ulrik Lund

    2008-01-01

    The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior partial information. More specifically, we propose...... two simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent cloning schemes relying on simple linear optics...

  10. Coherent response of a semiconductor microcavity in the strong coupling regime

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Ferreira, R.; Delalande, C.; Roussignol, Ph; Bogani, F.

    2000-05-01

    We have studied the coherent dynamics of a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond time resolution in a backscattering geometry. Evidence is brought of the resolution of a homogeneous polariton line in an inhomogeneously broadened exciton system. Surprisingly, photon-like polaritons exhibit an inhomogeneous dephasing. Moreover, we observe an unexpected stationary coherence up to 8 ps for the lower polariton branch close to resonance. All these experimental results are well reproduced within the framework of a linear dispersion theory assuming a coherent superposition of the reflectivity and resonant Rayleigh scattering signals with a well-defined relative phase.

  11. Coherent Structure Phenomena in Drift Wave-Zonal Flow Turbulence

    International Nuclear Information System (INIS)

    Smolyakov, A. I.; Diamond, P. H.; Malkov, M.

    2000-01-01

    Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence that manifests itself by the intermittent distribution of regions with a reduced level of anomalous transport. (c) 2000 The American Physical Society

  12. Creating von Laue patterns in crystal scattering with partially coherent sources

    NARCIS (Netherlands)

    Wang, Y.Y.D.; Kuebel, D.; Visser, T.D.; Wolf, E.

    2016-01-01

    When spatially coherent radiation is diffracted by a crystalline object, the field is scattered in specific directions, giving rise to so-called von Laue patterns. We examine the role of spatial coherence in this process. Using the first-order Born approximation, a general analytic expression for

  13. Influence of Stationary Crossflow Modulation on Secondary Instability

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  14. Simulating spontaneously generated coherence in a four-level atomic system

    International Nuclear Information System (INIS)

    Li Aijun; Gao Jinyue; Wu Jinhui; Wang Lei

    2005-01-01

    We study the spontaneous emission property of a four-level atomic system driven by two coherent fields. By numerical calculations in the bare state picture, we show that such interesting phenomena as extremely narrow peaks and spontaneous emission quenching can be realized, which are well understood by qualitative explanations in the partially and fully dressed state pictures. Especially, this coherently driven atomic system has two close-lying levels in the partially dressed state picture so that spontaneously generated coherence arises. Using our considered scheme it is feasible to carry out experiments based on spontaneously generated coherence because all rigorous requirements have been avoided in the bare state picture

  15. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  16. Effect of non-stationary climate on infectious gastroenteritis transmission in Japan

    OpenAIRE

    Onozuka, Daisuke

    2014-01-01

    Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Sou...

  17. Accuracy of a new partial coherence interferometry analyser for biometric measurements.

    Science.gov (United States)

    Holzer, M P; Mamusa, M; Auffarth, G U

    2009-06-01

    Precise biometry is an essential preoperative measurement for refractive surgery as well as cataract surgery. A new device based on partial coherence interferometry technology was tested and evaluated for accuracy of measurements. In a prospective study 200 eyes of 100 healthy phakic volunteers were examined with a functional prototype of the new ALLEGRO BioGraph (Wavelight AG)/LENSTAR LS 900 (Haag Streit AG) biometer and with the IOLMaster V.5 (Carl Zeiss Meditec AG). As recommended by the manufacturers, repeated measurements were performed with both devices and the results compared using Spearman correlation calculations (WinSTAT). Spearman correlation showed high correlations for axial length and keratometry measurements between the two devices tested. Anterior chamber depth, however, had a lower correlation between the two biometry devices. In addition, the mean values of the anterior chamber depth differed (IOLMaster 3.48 (SD 0.42) mm versus BioGraph/LENSTAR 3.64 (SD 0.26) mm); however, this difference was not statistically different (p>0.05, t test). The new biometer provided results that correlated very well with those of the IOLMaster. The ALLEGRO BioGraph/LENSTAR LS 900 is a precise device containing additional features that will be helpful tools for any cataract or refractive surgeon.

  18. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  19. Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection

    International Nuclear Information System (INIS)

    Suzuki, Shigenari; Takeoka, Masahiro; Sasaki, Masahide; Andersen, Ulrik L.; Kannari, Fumihiko

    2006-01-01

    We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude

  20. On the stationary Einstein-Maxwell-Klein-Gordon equations

    International Nuclear Information System (INIS)

    Gegenberg, J.D.

    1981-05-01

    The stationary Einstein-Maxwell-Klein-Gordon (EMKG) equations for interacting gravitational, electromagnetic and meson fields are examined. The theory is cast into the formalism of principal fiber bundles with a connection, wherein its relationship to current trends in theoretical physics is made manifest. The EMKG equations are shown to admit a Higgs-like mechanism for giving mass to the gauge field. A theorem specifying sufficient conditions for the stationarity of the spacetime metric to imply stationarity of the other fields is proved. By imposing additional constraints and symmetries, the EMKG equations are considerably simplified. An attempt is made to apply a solution-generation technique, and this meets with only partial success. Finally, a stationary but non-static solution is found, and the geometric and physical properties are discussed

  1. Observation and control of coherent torsional dynamics in a quinquethiophene molecule.

    Science.gov (United States)

    Cirmi, Giovanni; Brida, Daniele; Gambetta, Alessio; Piacenza, Manuel; Della Sala, Fabio; Favaretto, Laura; Cerullo, Giulio; Lanzani, Guglielmo

    2010-07-28

    By applying femtosecond pump-probe spectroscopy to a substituted quinquethiophene molecule in solution, we observe in the time domain the coherent torsional dynamics that drives planarization of the excited state. Our interpretation is based on numerical modeling of the ground and excited state potential energy surfaces and simulation of wavepacket dynamics, which reveals two symmetric excited state deactivation pathways per oscillation period. We use the acquired knowledge on torsional dynamics to coherently control the excited state population with a pump-dump scheme, exploiting the non-stationary Franck-Condon overlap between ground and excited states.

  2. Landau superfluids as nonequilibrium stationary states

    International Nuclear Information System (INIS)

    Wreszinski, Walter F.

    2015-01-01

    We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system

  3. Complex space source theory of partially coherent light wave.

    Science.gov (United States)

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  4. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  5. Symmetric discrete coherent states for n-qubits

    International Nuclear Information System (INIS)

    Muñoz, C; Klimov, A B; Sánchez-Soto, L L

    2012-01-01

    We put forward a method of constructing discrete coherent states for n qubits. After establishing appropriate displacement operators, the coherent states appear as displaced versions of a fiducial vector that is fixed by imposing a number of natural symmetry requirements on its Q-function. Using these coherent states, we establish a partial order in the discrete phase space, which allows us to picture some n-qubit states as apparent distributions. We also analyze correlations in terms of sums of squared Q-functions. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  6. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    Science.gov (United States)

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  7. Flow visualization via partial differential equations

    NARCIS (Netherlands)

    Preusser, T.; Rumpf, M.; Telea, A.C.; Möller, T.; Hamann, B.; Russell, R.D.

    2009-01-01

    The visualization of stationary and time-dependent flow is an important and chaltenging topic in scientific visualization. lts aim is 10 represent transport phenomena govemed by vector fjelds in an intuitively understandable way. In this paper. we review the use of methods based on partial

  8. Statistical study of the non-linear propagation of a partially coherent laser beam

    International Nuclear Information System (INIS)

    Ayanides, J.P.

    2001-01-01

    This research thesis is related to the LMJ project (Laser MegaJoule) and thus to the study and development of thermonuclear fusion. It reports the study of the propagation of a partially-coherent laser beam by using a statistical modelling in order to obtain mean values for the field, and thus bypassing a complex and costly calculation of deterministic quantities. Random fluctuations of the propagated field are supposed to comply with a Gaussian statistics; the laser central wavelength is supposed to be small with respect with fluctuation magnitude; a scale factor is introduced to clearly distinguish the scale of the random and fast variations of the field fluctuations, and the scale of the slow deterministic variations of the field envelopes. The author reports the study of propagation through a purely linear media and through a non-dispersive media, and then through slow non-dispersive and non-linear media (in which the reaction time is large with respect to grain correlation duration, but small with respect to the variation scale of the field macroscopic envelope), and thirdly through an instantaneous dispersive and non linear media (which instantaneously reacts to the field) [fr

  9. Estimation of Time-Varying Coherence and Its Application in Understanding Brain Functional Connectivity

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2010-01-01

    Full Text Available Time-varying coherence is a powerful tool for revealing functional dynamics between different regions in the brain. In this paper, we address ways of estimating evolutionary spectrum and coherence using the general Cohen's class distributions. We show that the intimate connection between the Cohen's class-based spectra and the evolutionary spectra defined on the locally stationary time series can be linked by the kernel functions of the Cohen's class distributions. The time-varying spectra and coherence are further generalized with the Stockwell transform, a multiscale time-frequency representation. The Stockwell measures can be studied in the framework of the Cohen's class distributions with a generalized frequency-dependent kernel function. A magnetoencephalography study using the Stockwell coherence reveals an interesting temporal interaction between contralateral and ipsilateral motor cortices under the multisource interference task.

  10. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  11. Coherent states, pseudodifferential analysis and arithmetic

    Science.gov (United States)

    Unterberger, André

    2012-06-01

    Basic questions regarding families of coherent states include describing some constructions of such and the way they can be applied to operator theory or partial differential equations. In both questions, pseudodifferential analysis is important. Recent developments indicate that they can contribute to methods in arithmetic, especially modular form theory. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  12. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  13. Is the Labour Force Participation Rate Non-Stationary in Romania?

    Directory of Open Access Journals (Sweden)

    Tiwari Aviral Kumar

    2015-01-01

    Full Text Available The purpose of this paper is to test hysteresis of the Romanian labour force participation rate, by using time series data, with quarterly frequency, covering the period 1999Q1-2013Q4. The main results reveal that the Romanian labour force participation rate is a nonlinear process and has a partial unit root (i.e. it is stationary in the first regime and non-stationary in the second one, the main breaking point being registered around year 2005. In this context, the value of using unemployment rate as an indicator for capturing joblessness in this country is debatable. Starting from 2005, the participation rate has not followed long-term changes in unemployment rate, the disturbances having permanent effects on labour force participation rate.

  14. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Science.gov (United States)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  15. Interpreting quantum coherence through a quantum measurement process

    Science.gov (United States)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  16. Directly assessing interpersonal RSA influences in the frequency domain: An illustration with generalized partial directed coherence.

    Science.gov (United States)

    Liu, Siwei; Gates, Kathleen M; Blandon, Alysia Y

    2018-06-01

    Despite recent research indicating that interpersonal linkage in physiology is a common phenomenon during social interactions, and the well-established role of respiratory sinus arrhythmia (RSA) in socially facilitative physiological regulation, little research has directly examined interpersonal influences in RSA, perhaps due to methodological challenges in analyzing multivariate RSA data. In this article, we aim to bridge this methodological gap by introducing a new method for quantifying interpersonal RSA influences. Specifically, we show that a frequency-domain statistic, generalized partial directed coherence (gPDC), can be used to capture lagged relations in RSA between social partners without first estimating RSA for each person. We illustrate its utility by examining the relation between gPDC and marital conflict in a sample of married couples. Finally, we discuss how gPDC complements existing methods in the time domain and provide guidelines for choosing among these different statistical techniques. © 2018 Society for Psychophysiological Research.

  17. Quantum Properties of the Superposition of Two Nearly Identical Coherent States

    Science.gov (United States)

    Othman, Anas; Yevick, David

    2018-04-01

    In this paper, we examine the properties of the state obtained when two nearly identical coherent states are superimposed. We found that this state exhibits many nonclassical properties such as sub-Poissonian statistics, squeezing and a partially negative Wigner function. These and other properties indicate that such states, here termed near coherent states, are significantly closer to coherent states more than the generalized Schrördinger cat states. We finally provide an experimental procedure for generating the near coherent states.

  18. Dichromatic light halting using double spin coherence gratings

    International Nuclear Information System (INIS)

    Ham, Byoung S; Hahn, Joonseong

    2011-01-01

    Light control by another light has drawn much attention in nonlinear quantum optics. Achieving all-optical control of the refractive index has been a key issue in all-optical information processing. Ultraslow light has been a good candidate for this purpose, where a giant phase shift can be achieved. The recent presentation of stationary light utilizing ultraslow light is an advanced example of such research. The stationary light functions as cavity quantum electrodynamics, where no high-Q-factor mirror pair is needed. In this paper, we report on two-color halted light pulses inside a solid medium, where the trapping time is comparable with that of ultraslow light but is much longer than quantum mapping storage time. The observed two-color halted light is achieved by means of double Raman optical field-excited spin coherence gratings, where slow light enhanced backward nondegenerate four-wave mixing processes play a major role.

  19. Dichromatic light halting using double spin coherence gratings

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Byoung S; Hahn, Joonseong, E-mail: bham@inha.ac.kr [Center for Photon Information Processing, School of Electrical Engineering, Inha University, 253 Yoghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-08-15

    Light control by another light has drawn much attention in nonlinear quantum optics. Achieving all-optical control of the refractive index has been a key issue in all-optical information processing. Ultraslow light has been a good candidate for this purpose, where a giant phase shift can be achieved. The recent presentation of stationary light utilizing ultraslow light is an advanced example of such research. The stationary light functions as cavity quantum electrodynamics, where no high-Q-factor mirror pair is needed. In this paper, we report on two-color halted light pulses inside a solid medium, where the trapping time is comparable with that of ultraslow light but is much longer than quantum mapping storage time. The observed two-color halted light is achieved by means of double Raman optical field-excited spin coherence gratings, where slow light enhanced backward nondegenerate four-wave mixing processes play a major role.

  20. Autofluorescence Imaging and Spectral-Domain Optical Coherence Tomography in Incomplete Congenital Stationary Night Blindness and Comparison with Retinitis Pigmentosa

    Science.gov (United States)

    CHEN, ROYCE W. S.; GREENBERG, JONATHAN P.; LAZOW, MARGOT A.; RAMACHANDRAN, RITHU; LIMA, LUIZ H.; HWANG, JOHN C.; SCHUBERT, CARL; BRAUNSTEIN, ALEXANDRA; ALLIKMETS, RANDO; TSANG, STEPHEN H.

    2015-01-01

    PURPOSE To test the hypothesis that the evaluation of retinal structure can have diagnostic value in differentiating between incomplete congenital stationary night blindness (CSNB2) and retinitis pigmentosa (RP). To compare retinal thickness differences between patients with CSNB2 and myopic controls. DESIGN Prospective cross-sectional study. METHODS Ten eyes of 5 patients diagnosed with CSNB2 (4 X-linked recessive, 1 autosomal recessive) and 6 eyes of 3 patients with RP (2 autosomal dominant, 1 autosomal recessive) were evaluated with spectral-domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF). Diagnoses of CSNB2 and RP were confirmed by full-field electroretinography (ERG). Manual segmentation of retinal layers, aided by a computer program, was performed by 2 professional segmenters on SD OCT images of all CSNB2 patients and 4 age-similar, normal myopic controls. Seven patients were screened for mutations with congenital stationary night blindness and RP genotyping arrays. RESULTS Patients with CSNB2 had specific findings on SD OCT and FAF that were distinct from those found in RP. CSNB2 patients showed qualitatively normal SD OCT results with preserved photoreceptor inner segment/outer segment junction, whereas this junction was lost in RP patients. In addition, CSNB2 patients had normal FAF images, whereas patients with RP demonstrated a ring of increased autofluorescence around the macula. On SD OCT segmentation, the inner and outer retinal layers of both X-linked recessive and autosomal recessive CSNB2 patients were thinner compared with those of normal myopic controls, with means generally outside of normal 95% confidence intervals. The only layers that demonstrated similar thickness between CSNB2 patients and the controls were the retinal nerve fiber layer and, temporal to the fovea, the combined outer segment layer and retinal pigment epithelium. A proband and his 2 affected brothers from a family segregating X-linked recessive

  1. Stable multiple-layer stationary solutions of a semilinear parabolic equation in two-dimensional domains

    Directory of Open Access Journals (Sweden)

    Arnaldo Simal do Nascimento

    1997-12-01

    Full Text Available We use $Gamma$--convergence to prove existence of stable multiple--layer stationary solutions (stable patterns to the reaction--diffusion equation. $$ eqalign{ {partial v_varepsilon over partial t} =& varepsilon^2, hbox{div}, (k_1(xabla v_varepsilon + k_2(x(v_varepsilon -alpha(Beta-v_varepsilon (v_varepsilon -gamma_varepsilon(x,,hbox{ in }Omegaimes{Bbb R}^+ cr &v_varepsilon(x,0 = v_0 quad {partial v_varepsilon over partial widehat{n}} = 0,, quadhbox{ for } xin partialOmega,, t >0,.} $$ Given nested simple closed curves in ${Bbb R}^2$, we give sufficient conditions on their curvature so that the reaction--diffusion problem possesses a family of stable patterns. In particular, we extend to two-dimensional domains and to a spatially inhomogeneous source term, a previous result by Yanagida and Miyata.

  2. Diffraction from the perspective of the spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Carrasquilla-Alvarez, J.; Garcia-Sucerquia, J.

    2005-10-01

    The diffraction of spatially partially coherent optical fields is analysed by using two concepts recently introduced by the authors: the spatial coherence wavelets and the effective diffracting aperture. Within this framework, the intimate link between the spatial properties of the optical field and the aperture's edges in the diffraction phenomena is studied. New insight is proposed in regard to the diffraction in the Fresnel - Fraunhofer approximation. Our ideas are supported by numerical calculations and analysis of the diffraction patterns obtained when an optical field with adjustable spatial coherence impinges upon a circular aperture (author)

  3. Measurement of the spatial coherence of a soft x-ray laser

    International Nuclear Information System (INIS)

    Trebes, J.E.; Mrowka, S.; London, R.A.; Barbee, T.W.; Carter, M.R.; MacGowan, B.J.; Matthews, D.L.; Da Silva, L.B.; Stone, G.F.; Feit, M.D.; Nugent, K.A.

    1991-01-01

    The spatial coherence of a neon-like selenium x-ray laser operating at 206 and 210 Angstroems has been measured using a technique based on partially coherent x-ray diffraction. The time integrated spatial coherence of the selenium x-ray laser was determined to be equivalent to that of a quasi-monochromatic spatially incoherent disk source whose diameter is comparable to the line focus of the visible light laser pumping the x-ray laser. The spatial coherence was improved by narrowing the line focus width. 20 refs., 4 figs

  4. Optical coherence tomography of dental structures

    Science.gov (United States)

    Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.

    1998-04-01

    In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.

  5. Stationary two-variable gravitational vortex fields

    International Nuclear Information System (INIS)

    Koppel, A.

    1974-01-01

    Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru

  6. Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation

    International Nuclear Information System (INIS)

    Missiato, O.

    1986-01-01

    The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt

  7. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  8. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  9. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  10. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  11. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    Science.gov (United States)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  12. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    Science.gov (United States)

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  13. Shock modon: a new type of coherent structure in rotating shallow water.

    Science.gov (United States)

    Lahaye, Noé; Zeitlin, Vladimir

    2012-01-27

    We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.

  14. Change in spatial coherence of light on refraction and on reflection.

    Science.gov (United States)

    Lahiri, Mayukh; Wolf, Emil

    2013-06-01

    A theory of refraction and reflection of partially coherent electromagnetic beams has been recently developed. In this paper, we apply it to study the change in spatial coherence caused by refraction and by reflection more fully. By considering a Gaussian Schell-model beam, we show that the change is, in general, dependent on the angle of incidence.

  15. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    Science.gov (United States)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  16. Interactive Coherence-Based Façade Modeling

    KAUST Repository

    Musialski, Przemyslaw; Wimmer, Michael; Wonka, Peter

    2012-01-01

    We propose a novel interactive framework for modeling building facades from images. Our method is based on the notion of coherence-based editing which allows exploiting partial symmetries across the facade at any level of detail. The proposed

  17. Renormalization theory of stationary homogeneous strong turbulence in a collisionless plasma

    International Nuclear Information System (INIS)

    Zhang, Y.Z.

    1984-01-01

    A renormalization procedure for the perturbation expansion of the Vlasov-Poisson equation is presented to describe stationary homogeneous turbulence. By using the diagramatic scheme the theory is shown to be renormalizable to any order. The expressions for the renormalized propagator, the renormalized dielectric function, and the intrinsically incoherent source are given. The renormalization leads to a complete separation of the fluctuating distribution function f/sub k/ into two parts, the coherent part, which is proved to represent the dielectric effect of the medium, and the intrinsically incoherent part, which represents the effect of nonlinear source. The turbulent collisional operator in the transport equation is proved equal to GAMMA 0 , the frequency broadening when k = 0

  18. Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking

    Science.gov (United States)

    2015-03-26

    the number of speckle samples obtained, laser power and coherence length, spot size, target reflectance, speckle size, and pixels per speckle width...gated imaging systems,” Proc. SPIE, 6542: 654218, April 2007. 90 St. Pierre, Randall J. and others. “Active Tracker Laser (ATLAS),” IEEE J. Sel...numerical model developed here and existing theory developed by Hu. A 671 nm diode laser source with coherence length of 259 +/- 7 µm is reflected

  19. Impaired coherence of life narratives of patients with schizophrenia.

    Science.gov (United States)

    Allé, Mélissa C; Potheegadoo, Jevita; Köber, Christin; Schneider, Priscille; Coutelle, Romain; Habermas, Tilmann; Danion, Jean-Marie; Berna, Fabrice

    2015-08-10

    Self-narratives of patients have received increasing interest in schizophrenia since they offer unique material to study patients' subjective experience related to their illness, in particular the alteration of self that accompanies schizophrenia. In this study, we investigated the life narratives and the ability to integrate and bind memories of personal events into a coherent narrative in 27 patients with schizophrenia and 26 controls. Four aspects of life narratives were analyzed: coherence with cultural concept of biography, temporal coherence, causal-motivational coherence and thematic coherence. Results showed that in patients cultural biographical knowledge is preserved, whereas temporal coherence is partially impaired. Furthermore, causal-motivational and thematic coherence are significantly impaired: patients have difficulties explaining how events have modeled their identity, and integrating different events along thematic lines. Impairment of global causal-motivational and thematic coherence was significantly correlated with patients' executive dysfunction, suggesting that cognitive impairment observed in patients could affect their ability to construct a coherent narrative of their life by binding important events to their self. This study provides new understanding of the cognitive deficits underlying self-disorders in patients with schizophrenia. Our findings suggest the potential usefulness of developing new therapeutic interventions to improve autobiographical reasoning skills.

  20. Subroutine MLTGRD: a multigrid algorithm based on multiplicative correction and implicit non-stationary iteration

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-11-01

    A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels

  1. [Peripheral refraction and retinal contour in children with myopia by results of refractometry and partial coherence interferometry].

    Science.gov (United States)

    Tarutta, E P; Milash, S V; Tarasova, N A; Romanova, L I; Markosian, G A; Epishina, M V

    2014-01-01

    To determine the posterior pole contour of the eye based on the relative peripheral refractive error and relative eye length. A parallel study was performed, which enrolled 38 children (76 eyes) with myopia from -1.25 to -10.82 diopters. The patients underwent peripheral refraction assessment with WR-5100K Binocular Auto Refractometer ("Grand Seiko", Japan) and partial coherence tomography with IOLMaster ("Carl Zeiss", Germany) for the relative eye length in areas located 15 and 30 degrees nasal and temporal from the central fovea along the horizontal meridian. In general, refractometry and interferometry showed high coincidence of defocus signs and values for the areas located 15 and 30 degrees nasal as well as 15 degrees temporal from the fovea. However, in 41% of patients defocus signs determined by the two methods mismatched in one or more areas. Most of the mismatch cases were mild myopia. We suppose that such a mismatch is caused by optical peculiarities of the anterior eye segment that have an impact on refractometry results.

  2. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    Science.gov (United States)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  3. Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks.

    Science.gov (United States)

    Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V

    2017-02-06

    We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.

  4. A short Boolean derivation of mean failure frequency for any (also non-coherent) system

    International Nuclear Information System (INIS)

    Schneeweiss, Winfrid G.

    2009-01-01

    For stationary repairable systems it is shown that the probabilistic weights for the individual components' mean failure frequencies (MFFs) that can be added to yield the system's MFF are found easily from the first step of the Boolean fault tree function's Shannon decomposition. This way one finds a general theory of a system's MFF and the case of coherence covered in standard textbooks is shown to be a subcase. Unfortunately, elegant rules for calculating system MFF from any polynomial form of the fault tree's Boolean function are only known for the coherent case, but repeated here, because they are not yet found in many textbooks. An example known from literature is treated extensively with great care.

  5. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  6. Autocalibration method for non-stationary CT bias correction.

    Science.gov (United States)

    Vegas-Sánchez-Ferrero, Gonzalo; Ledesma-Carbayo, Maria J; Washko, George R; Estépar, Raúl San José

    2018-02-01

    Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. However, the deleterious effects of radiation exposure inherent in CT imaging require the development of image reconstruction methods which can reduce exposure levels. The development of iterative reconstruction techniques is now enabling the acquisition of low-dose CT images whose quality is comparable to that of CT images acquired with much higher radiation dosages. However, the characterization and calibration of the CT signal due to changes in dosage and reconstruction approaches is crucial to provide clinically relevant data. Although CT scanners are calibrated as part of the imaging workflow, the calibration is limited to select global reference values and does not consider other inherent factors of the acquisition that depend on the subject scanned (e.g. photon starvation, partial volume effect, beam hardening) and result in a non-stationary noise response. In this work, we analyze the effect of reconstruction biases caused by non-stationary noise and propose an autocalibration methodology to compensate it. Our contributions are: 1) the derivation of a functional relationship between observed bias and non-stationary noise, 2) a robust and accurate method to estimate the local variance, 3) an autocalibration methodology that does not necessarily rely on a calibration phantom, attenuates the bias caused by noise and removes the systematic bias observed in devices from different vendors. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed the suitability of the proposed methods for removing the intra-device and inter-device reconstruction biases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  8. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  9. Loss of coherence in double-slit diffraction experiments

    NARCIS (Netherlands)

    Sanz, A.S.; Borondo, F.; Bastiaans, M.J.

    2005-01-01

    By using optical models based on the theory of partially coherent light, and the quantum decoherence model proposed by Joos and Zeh [Z. Phys. B 59, 223 (1985)], we explore incoherence and decoherence in interference phenomena. The problem chosen to study is that of the double-slit diffraction

  10. Spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture objective

    International Nuclear Information System (INIS)

    Luo, Yamei; Lü, Baida

    2010-01-01

    The dynamic behavior of spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture (NA) objective is studied by using the vectorial Debye diffraction theory and complex spectral Stokes fields. It is shown that there exist s 12 , s 23 , and s 31 singularities, as well as P (completely polarized) and U (unpolarized) singularities. The motion, pair creation and annihilation, and changes in the degree of polarization of s 12 , s 23 , and s 31 singularities, and the handedness reversal of s 12 singularities (C-points) may appear by varying a controlling parameter, such as the truncation parameter, NA, or spatial correlation length. The creation and annihilation occur for a pair of s 12 singularities with opposite topological charge but the same handedness, and for a pair of oppositely charged s 23 or s 31 singularities. The critical value of the truncation parameter, at which the pair annihilation takes place, increases as the semi-angle of the aperture lens (or, equivalently, NA) or spatial correlation length increases. The collision of an s 12 singularity with an L-line (s 3 = 0 contour) leads to a V-point, which is located at the intersection of contours of s 12 = 0 and s 23 = 0 (or s 31 = 0) and is unstable

  11. A Liouville Problem for the Stationary Fractional Navier-Stokes-Poisson System

    Science.gov (United States)

    Wang, Y.; Xiao, J.

    2017-06-01

    This paper deals with a Liouville problem for the stationary fractional Navier-Stokes-Poisson system whose special case k=0 covers the compressible and incompressible time-independent fractional Navier-Stokes systems in R^{N≥2} . An essential difficulty raises from the fractional Laplacian, which is a non-local operator and thus makes the local analysis unsuitable. To overcome the difficulty, we utilize a recently-introduced extension-method in Wang and Xiao (Commun Contemp Math 18(6):1650019, 2016) which develops Caffarelli-Silvestre's technique in Caffarelli and Silvestre (Commun Partial Diff Equ 32:1245-1260, 2007).

  12. Can we identify non-stationary dynamics of trial-to-trial variability?

    Directory of Open Access Journals (Sweden)

    Emili Balaguer-Ballester

    Full Text Available Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation. This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies

  13. Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length

    Science.gov (United States)

    Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.

    2012-01-01

    Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.

  14. The role of phase coherence in seeded supercontinuum generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontinuum can be controlled by modulating the pump with a seed pulse. In this paper, we numerically investigate the influence of seeding with a partially phase coherent weak pulse or continuous wave. We demonstrate that the noise properties of the generated supercon...

  15. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  16. Stationary and Transient Response Statistics

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Krenk, Steen

    1982-01-01

    The covariance functions for the transient response of a linear MDOF-system due to stationary time limited excitation with an arbitrary frequency content are related directly to the covariance functions of the stationary response. For rational spectral density functions closed form expressions fo...

  17. Timeresolved Speckle Analysis: Probing the Coherence of Excitonic Secondary Emission

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Hvam, Jørn Märcher; Zimmermann, R.

    1998-01-01

    in semiconductor quantum wells is investigated. Here, a partial coherence results from an interplay between scattering due to static disorder and inelastic relaxation, without any influence of the radiative decay. The temperature dependence is well explained by dephasing due to phonon scattering....

  18. Time-Resolved Speckle Analysis: A New Approach to Coherence and Dephasing of Optical Excitations in Solids

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Zimmermann, R.

    1999-01-01

    ). This method determines the decays of intensity and coherence separately, thus distinguishing lifetime from pure dephasing. The secondary emission of excitons in semiconductor quantum wells is investigated. Here the combination of static disorder and inelastic scattering leads to a partially coherent emission....... The temperature dependence is well explained by phonon scattering....

  19. Ghost microscope imaging system from the perspective of coherent-mode representation

    Science.gov (United States)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  20. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  1. 30 CFR 57.14115 - Stationary grinding machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 57.14115 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods...

  2. Asymptotic Theory for the QMLE in GARCH-X Models with Stationary and Non-Stationary Covariates

    DEFF Research Database (Denmark)

    Han, Heejoon; Kristensen, Dennis

    as captured by its long-memory parameter dx; in particular, we allow for both stationary and non-stationary covariates. We show that the QMLE'’s of the regression coefficients entering the volatility equation are consistent and normally distributed in large samples independently of the degree of persistence....... This implies that standard inferential tools, such as t-statistics, do not have to be adjusted to the level of persistence. On the other hand, the intercept in the volatility equation is not identifi…ed when the covariate is non-stationary which is akin to the results of Jensen and Rahbek (2004, Econometric...

  3. 30 CFR 56.14115 - Stationary grinding machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 56.14115 Section... Equipment Safety Devices and Maintenance Requirements § 56.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods capable of...

  4. X-ray section topographs under various coherence properties of the primary beam

    International Nuclear Information System (INIS)

    Borowski, J.; Gronkowski, J.

    2001-01-01

    The aim of this work is to study to what extent a typical section-topography setup can supply information about the degree of coherence of the incident x-ray beam. In real experiments, the incident beam is partially coherent, with the degree of coherence described by the shape of the correlation function. In this paper the correlation functions for the outgoing beam are calculated by solving the Takagi-Taupin equations, assuming a truncated Gauss correlation function for the incident beam with the correlation length determined by the van Cittert-Zernike theorem. Its influence on the measured intensity of the diffracted beam in section topography is investigated. (author)

  5. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    Science.gov (United States)

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  6. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    Science.gov (United States)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  7. Virtual Stationary Automata for Mobile Networks

    National Research Council Canada - National Science Library

    Dolev, Shlomi; Gilbert, Seth; Lahiani, Limor; Lynch, Nancy; Nolte, Tina

    2005-01-01

    We define a programming abstraction for mobile networks called the Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual timed I/O automata called virtual stationary automata (VSAs...

  8. Coherent patterning of matter waves with subwavelength localization

    International Nuclear Information System (INIS)

    Mompart, J.; Ahufinger, V.; Birkl, G.

    2009-01-01

    We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.

  9. Strong Stationary Duality for Diffusion Processes

    OpenAIRE

    Fill, James Allen; Lyzinski, Vince

    2014-01-01

    We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...

  10. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  11. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  12. Stationary spiral flow in polytropic stellar models

    Science.gov (United States)

    Pekeris, C. L.

    1980-01-01

    It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models. PMID:16592825

  13. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-01-01

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  14. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  15. Influence of relaxation on emission and excitation of coherent states of electromagnetic field in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Verlan, E.M.

    2003-01-01

    A two-level atom interacting with a field mode is considered. The field frequency is assumed to be equal to the atom transition frequency. The relaxation equations of the atom - field system are written in the basis of dressed states of the Jaynes - Cummings model taking into account quasi-resonant pumping. Their solutions are derived for a stationary regime. The average amplitude of a coherent electromagnetic field is found

  16. High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure

    International Nuclear Information System (INIS)

    Lund, M.W.

    1989-01-01

    The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane

  17. Optimising electron holography in the presence of partial coherence and instrument instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shery L.Y., E-mail: shery.chang@fz-juelich.de; Dwyer, Christian, E-mail: c.dwyer@fz-juelich.de; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.

    2015-04-15

    Off-axis electron holography provides a direct means of retrieving the phase of the wavefield in a transmission electron microscope, enabling measurement of electric and magnetic fields at length scales from microns to nanometers. To maximise the accuracy of the technique, it is important to acquire holograms using experimental conditions that optimise the phase resolution for a given spatial resolution. These conditions are determined by a number of competing parameters, especially the spatial coherence and the instrument instabilities. Here, we describe a simple, yet accurate, model for predicting the dose rate and exposure time that give the best phase resolution in a single hologram. Experimental studies were undertaken to verify the model of spatial coherence and instrument instabilities that are required for the optimisation. The model is applicable to electron holography in both standard mode and Lorentz mode, and it is relatively simple to apply. - Highlights: • We describe a simple, yet accurate, model for predicting the best phase resolution in off-axis electron holography. • Calibration of the model requires only two series of blank holograms; an intensity sequence and a time sequence. • The model can predict the optimum dose rate and exposure time for any given combination of biprism voltage and magnification. • The model is applicable in both standard mode and Lorentz mode, using either round or elliptical illumination.

  18. Polarization sensitive optical coherence tomography in dentistry

    International Nuclear Information System (INIS)

    Dichtl, S.

    1998-01-01

    Optical coherence tomography (OCT) is a noninvasive and noncontact technique for obtaining cross-sectional images of biologic structure, which was initially introduced to depict the transparent tissue of the eye. It employs the partial coherence properties of a light source to image structures with high resolution (< 20 (m). Recently, this technique has also been applied in turbid media. This tomographic imaging is analogous to conventional ultrasound B mode imaging, except that OCT measures the intensity of backreflected infrared light rather than acoustical waves. First applications, of OCT in dentistry for diagnosing periodontal disease have been reported by Colston et al. presenting in vitro OCT images of the dental and periodontal tissues of porcine premolar teeth. In this work, the feasibility of polarisation sensitive OCT for dental material is suggested. In contrast with conventional OCT, where the magnitude of backscattered light as a function of depth is imaged, backscattered light is used to image the magnitude of the birefringence in the sample as a function of depth. Partial loss of birefringence is known to be an early indication of incipient caries or tissue thermal damage. Applying this technique for caries diagnosis or guidance regarding optimal dosimetry for thermally mediated laser therapeutic procedures, polarisation sensitive OCT would represent a promising new technology for dentistry. (author)

  19. Stationary infinitely divisible processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.

    Several recent strands of work has led to the consideration of various types of continuous time stationary and infinitely divisible processes. A review of these types, with some new results, is presented.......Several recent strands of work has led to the consideration of various types of continuous time stationary and infinitely divisible processes. A review of these types, with some new results, is presented....

  20. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  1. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  2. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions

    International Nuclear Information System (INIS)

    Gil, E; Orini, M; Bailón, R; Laguna, P; Vergara, J M; Mainardi, L

    2010-01-01

    In this paper we assessed the possibility of using the pulse rate variability (PRV) extracted from the photoplethysmography signal as an alternative measurement of the HRV signal in non-stationary conditions. The study is based on analysis of the changes observed during a tilt table test in the heart rate modulation of 17 young subjects. First, the classical indices of HRV analysis were compared to the indices from PRV in intervals where stationarity was assumed. Second, the time-varying spectral properties of both signals were compared by time-frequency (TF) and TF coherence analysis. Third, the effect of replacing PRV with HRV in the assessment of the changes of the autonomic modulation of the heart rate was considered. Time-invariant HRV and PRV indices showed no statistically significant differences (p > 0.05) and high correlation (>0.97). Time-frequency analysis revealed that the TF spectra of both signals were highly correlated (0.99 ± 0.01); the difference between the instantaneous power, in the LF and HF bands, obtained from HRV and PRV was small (<10 −3 s −2 ) and their temporal patterns were highly correlated (0.98 ± 0.04 and 0.95 ± 0.06 in the LF and HF bands, respectively) and TF coherence in the LF and HF bands was high (0.97 ± 0.04 and 0.89 ± 0.08, respectively). Finally, the instantaneous power in the LF band was observed to significantly increase during head-up tilt by both HRV and PRV analysis. These results suggest that although some differences in the time-varying spectral indices extracted from HRV and PRV exist, mainly in the HF band associated with respiration, PRV could be used as a surrogate of HRV during non-stationary conditions, at least during the tilt table test

  4. Stationary solutions and asymptotic flatness I

    International Nuclear Information System (INIS)

    Reiris, Martin

    2014-01-01

    In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)

  5. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  6. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  7. Analyzing Non Stationary Processes in Radiometers

    Science.gov (United States)

    Racette, Paul

    2010-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory for many scientific and engineering applications. Non linear effects of the observation methodology is one of the most perplexing aspects to modeling non stationary processes. This perplexing problem was encountered when modeling the effect of non stationary receiver fluctuations on the performance of radiometer calibration architectures. Existing modeling approaches were found not applicable; particularly problematic is modeling processes across scales over which they begin to exhibit non stationary behavior within the time interval of the calibration algorithm. Alternatively, the radiometer output is modeled as samples from a sequence random variables; the random variables are treated using a conditional probability distribution function conditioned on the use of the variable in the calibration algorithm. This approach of treating a process as a sequence of random variables with non stationary stochastic moments produce sensible predictions of temporal effects of calibration algorithms. To test these model predictions, an experiment using the Millimeter wave Imaging Radiometer (MIR) was conducted. The MIR with its two black body calibration references was configured in a laboratory setting to observe a third ultra-stable reference (CryoTarget). The MIR was programmed to sequentially sample each of the three references in approximately a 1 second cycle. Data were collected over a six-hour interval. The sequence of reference measurements form an ensemble sample set comprised of a series of three reference measurements. Two references are required to estimate the receiver response. A third reference is used to estimate the uncertainty in the estimate. Typically, calibration algorithms are designed to suppress the non stationary effects of receiver fluctuations. By treating the data sequence as an ensemble

  8. Truncated Painleve expansion: Tanh-traveling wave solutions and reduction of sine-Poisson equation to a quadrature for stationary and nonstationary three-dimensional collisionless cold plasma

    International Nuclear Information System (INIS)

    Ibrahim, R. S.; El-Kalaawy, O. H.

    2006-01-01

    The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painleve expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model

  9. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  10. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    Science.gov (United States)

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.

  11. Modulation of EMG-EMG Coherence in a Choice Stepping Task

    Directory of Open Access Journals (Sweden)

    Ippei Nojima

    2018-02-01

    Full Text Available The voluntary step execution task is a popular measure for identifying fall risks among elderly individuals in the community setting because most falls have been reported to occur during movement. However, the neurophysiological functions during this movement are not entirely understood. Here, we used electromyography (EMG to explore the relationship between EMG-EMG coherence, which reflects common oscillatory drive to motoneurons, and motor performance associated with stepping tasks: simple reaction time (SRT and choice reaction time (CRT tasks. Ten healthy elderly adults participated in the study. Participants took a single step forward in response to a visual imperative stimulus. EMG-EMG coherence was analyzed for 1000 ms before the presentation of the stimulus (stationary standing position from proximal and distal tibialis anterior (TA and soleus (SOL muscles. The main result showed that all paired EMG-EMG coherences in the alpha and beta frequency bands were greater in the SRT than the CRT task. This finding suggests that the common oscillatory drive to the motoneurons during the SRT task occurred prior to taking a step, whereas the lower value of corticospinal activity during the CRT task prior to taking a step may indicate an involvement of inhibitory activity, which is consistent with observations from our previous study (Watanabe et al., 2016. Furthermore, the beta band coherence in intramuscular TA tended to positively correlate with the number of performance errors that are associated with fall risks in the CRT task, suggesting that a reduction in the inhibitory activity may result in a decrease of stepping performance. These findings could advance the understanding of the neurophysiological features of postural adjustments in elderly individuals.

  12. Monogamy relations of quantum entanglement for partially coherently superposed states

    Science.gov (United States)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  13. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  14. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  15. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br [Associate Laboratory for Computing and Applied Mathematics - LAC, Brazilian National Institute for Space Research - INPE (Brazil); Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de [Department of Physics and Astronomy, University of Potsdam, Germany and Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.

  16. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    Science.gov (United States)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  17. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  18. Stationary closed strings in five-dimensional flat spacetime

    Science.gov (United States)

    Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke

    2012-11-01

    We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.

  19. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    Science.gov (United States)

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  20. Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions.

    Science.gov (United States)

    Petruccelli, Jonathan C; Alonso, Miguel A

    2007-09-01

    We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.

  1. Integrals of the motion, Green functions, and coherent states of dynamical systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Malkin, I.A.; Man'ko, V.I.

    1975-01-01

    The connection between the integrals of the motion of a quantum system and its Green function is established. The Green function is shown to be the eigenfunction of the integrals of the motion which describe initial points of the system trajectory in the phase space of average coordinates and moments. The explicit expressions for the Green functions of the N-dimensional system with the Hamiltonians which is the most general quadratic form of coordinates and momenta with time-dependent coefficients is obtained in coordinate, momentum, and coherent states representations. The Green functions of the nonstationary singular oscillator and of the stationary Schroedinger equation are also obtained. (author)

  2. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Science.gov (United States)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  3. Stationary shear flows in CGL anisotropic toroidal plasmas

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Ilgisonis, V.I.

    1996-01-01

    Recently a general structure of stationary shear flows in toroidal plasmas was obtained in the frame of ideal isotropic-pressure MHD model. The structure of the stationary plasma flows was shown to be determined by a hidden symmetry of MHD equations inherent in the toroidal systems with nested magnetic surfaces. However, the characteristic frequencies of the stationary plasma motion can considerably exceed the collisional frequencies in real plasma experiments. In this case the CGL collisionless MHD model seems to be more adequate than the simplified isotropic-pressure MHD model to describe the stationary plasma flows. In this paper we have generalized our approach to analyze the stationary plasma flows in the frame of the collisionless CGL model. We have found again that the hidden symmetry inherent in the toroidal topology results in two integral invariants which depend on two independent surface functions. The structure of stationary flows for CGL model is still the same as for isotropic MHD, however, the pressure tensor components satisfy a appreciably modifies the steady state force-balance equation. These results are applied to analyze the generalized equilibrium in axisymmetric (tokamak-like) magnetic confinement systems

  4. Coherent nonlinear quantum model for composite fermions

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-04-01

    Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.

  5. On-off intermittency and coherent bursting in stochastically-driven coupled maps

    International Nuclear Information System (INIS)

    Metta, Sabino; Provenzale, Antonello; Spiegel, Edward A.

    2010-01-01

    On-off intermittency is a phase space mechanism for bursting in dynamical systems. Here we recall how the simple example of a logistic map with a time-dependent control parameter, considered as a dynamical variable of the system, gives rise to bursting or on-off behavior. We show that, for a given realization of the driver, a stochastically driven logistic map in the on-off intermittent regime always converges to the same temporal dynamics, independently of initial conditions. In that sense, the map is not chaotic. We then explore the behavior of two coupled on-off logistic maps, each driven by a separate random process, and show that, for a wide range of coupling strengths, bursting becomes at least partially coherent. The bursting coherence has a smooth dependence on the coupling parameter and no sharp transition from coherence to incoherence is detected. In the system of two coupled on-off maps studied here, coherent bursting is rooted in the behavior during off phases when the mapped coordinates take on extremely small values.

  6. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan; Paredes, Pedro; Duan, Lian

    2016-09-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence angle can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite-amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7° half-angle circular cone in a Mach 6 free stream. The analysis is based on both quasiparallel stability theory in the form of a partial-differential-equation-based eigenvalue analysis and plane marching parabolized stability equations that account for the effects of the nonparallel basic state on the growth of secondary disturbances. Depending on the local amplitude of the stationary crossflow mode, the most unstable high-frequency disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of the dominant secondary disturbances of either type are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany. Including transverse surface curvature within the quasiparallel predictions does not alter the topology of the unstable modes; however, the resulting changes in both mode shape and disturbance growth rate are rather significant and curvature can be either stabilizing or destabilizing depending on the disturbance frequency and mode type. Nonparallel effects are shown to be strongly destabilizing for secondary instabilities originating from

  7. 30 CFR 75.1723 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than... the wheel. (3) Safety washers. (b) Grinding wheels shall be operated within the specifications of the...

  8. Amplitude chimeras and chimera death in dynamical networks

    International Nuclear Information System (INIS)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-01-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions. (paper)

  9. The application of unattended ground sensors to stationary targets

    International Nuclear Information System (INIS)

    Sleefe, G.E.; Peglow, S.; Hamrick, R.

    1997-01-01

    The unattended sensing of stationary (i.e. non-mobile) targets is important in applications ranging from counter-proliferation to law enforcement. With stationary targets, sources of seismic, acoustic, and electro-magnetic emissions can potentially be used to detect, identify, and locate the target. Stationary targets have considerably different sensing requirements than the traditional mobile-target unattended ground sensor applications. This paper presents the novel features and requirements of a system for sensing stationary targets. In particular, issues associated with long-listen time signal processing for signal detection, and array processing techniques for signal localization are presented. Example data and signal processing outputs from a stationary target will be used to illustrate these issues. The impact on sensor, electronic signal processing, battery subsystem, and communication requirements will also be discussed. The paper will conclude with a detailed comparison between mobile-target and stationary-target unattended ground sensor architectures

  10. Stability and instability of stationary solutions for sublinear parabolic equations

    Science.gov (United States)

    Kajikiya, Ryuji

    2018-01-01

    In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.

  11. Direct imaging of slow, stored and stationary EIT polaritons

    Science.gov (United States)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  12. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    Science.gov (United States)

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  13. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    Science.gov (United States)

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  14. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  15. Partial coherence in the core/halo picture of Bose-Einstein n-particle correlations

    OpenAIRE

    Csorgo, T.; Lorstad, B.; Schmidt-Sorensen, J.; Ster, A.

    1998-01-01

    We study the influence of a possible coherent component in the boson source on the two-, three- and $n$-particle correlation functions in a generalized core/halo type of boson-emitting source. In particular, a simple formula is presented for the strengh of the $n$-particle correlation functions for such systems. Graph rules are obtained to evaluate the correlation functions of arbitrary high order. The importance of experimental determination of the 4-th and 5-th order Bose-Einstein correlati...

  16. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.

    Science.gov (United States)

    Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo

    2003-06-01

    A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

  17. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  18. B1 gradient coherence selection using a tapered stripline.

    Science.gov (United States)

    van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M

    2018-01-01

    Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  20. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  1. Recovery and deformation substructures of zircaloy-4 in high temperature plasticity under stationary or non-stationary stress

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, I.

    1982-01-01

    It was the aim of the present investigation to examine how the recovery rate in creep is influenced by a non-stationary stress. For purposes of phenomenological analysis it is postulated that, irrespective of whether the applied stress is stationary or not, for large strains the mean internal stress sigmasub(i) approaches a stationary value sigmasub(i,s). The stationary recovery rate Rsub(s) for constant load creep turns out be governed by the applied stress indicating that the recovery mechanism is dynamic in nature. For sigma-ramp loading, Rsub(s) is dependent on the stress rate sigma. In tensional stress cycling, Rsub(s) is governed by the maximum stress sigmasub(M) and is also dependent on the ratio of sigmasub(M) to the minimum stress sigma 0 . TEM examination of Zircaloy-4 specimens crept at 800 0 C at constant and cycling load respectively could not reveal any differences in the deformation substructure for the two loading types. Subgrain formation did not appear, individual dislocations were observed only rarely. However, typical networks were formed as well as pileups which perhaps are responsible for the back stress in high temperature plasticity (HTP). (orig.)

  2. Stationary stochastic processes theory and applications

    CERN Document Server

    Lindgren, Georg

    2012-01-01

    Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

  3. Stationary radiation of objects with scattering media

    International Nuclear Information System (INIS)

    Vasil'eva, Inna A

    2001-01-01

    The radiation observed inside or outside a stationary radiator with a scattering medium is a sum of components, each being determined by, first, the primary radiation from some part of the radiator and, second, the probability of this radiation reaching the region where it is observed. In this review, general and rather simple relations between these components are discussed. These relations, unlike the components themselves, are independent of the specific optical characteristics of the object as well as of its geometry, inhomogeneity, etc. In deriving the relations, the situations in which geometrical optics is either applicable or inapplicable to radiation in a scattering medium are considered. For the case where geometrical optics does apply, stationary relations are derived from the probabilistic stationarity condition for radiation passing through the medium, i.e., from the fact that all radiation emitted in a stationary regime disappears with probability unity. Equilibrium relations are derived from the stationary relations in the particular case of a thermal radiator in an isothermal cavity. To derive the stationary relations in the geometrical optics approximation, we obtain general solutions of the linear equation of transfer using the Green function approach. If geometrical optics cannot be applied to a scattering and radiating medium, only relations for the components of outgoing thermal radiation are obtained, and the generalized Kirchhoff law, obtained by Levin and Rytov using statistical radio-physics methods, is employed. In this case, stationary relations are also derived from a probabilistic stationarity condition; the equilibrium relations follow from the stationary ones as well as from the equilibrium condition for radiation in the isothermal cavity. The quantities involved in all the relations obtained are a subject of experimental and computational spectroscopic studies. Examples of current and potential applications are given. The relations

  4. Chaotic Bohmian trajectories for stationary states

    International Nuclear Information System (INIS)

    Cesa, Alexandre; Martin, John; Struyve, Ward

    2016-01-01

    In Bohmian mechanics, the nodes of the wave function play an important role in the generation of chaos. However, so far, most of the attention has been on moving nodes; little is known about the possibility of chaos in the case of stationary nodes. We address this question by considering stationary states, which provide the simplest examples of wave functions with stationary nodes. We provide examples of stationary wave functions for which there is chaos, as demonstrated by numerical computations, for one particle moving in three spatial dimensions and for two and three entangled particles in two dimensions. Our conclusion is that the motion of the nodes is not necessary for the generation of chaos. What is important is the overall complexity of the wave function. That is, if the wave function, or rather its phase, has a complex spatial variation, it will lead to complex Bohmian trajectories and hence to chaos. Another aspect of our work concerns the average Lyapunov exponent, which quantifies the overall amount of chaos. Since it is very hard to evaluate the average Lyapunov exponent analytically, which is often computed numerically, it is useful to have simple quantities that agree well with the average Lyapunov exponent. We investigate possible correlations with quantities such as the participation ratio and different measures of entanglement, for different systems and different families of stationary wave functions. We find that these quantities often tend to correlate to the amount of chaos. However, the correlation is not perfect, because, in particular, these measures do not depend on the form of the basis states used to expand the wave function, while the amount of chaos does. (paper)

  5. The stationary neutron radiography system

    International Nuclear Information System (INIS)

    Weeks, A.A.; Newell, D.L.; Heidel, C.C.

    1990-01-01

    To provide the high intensity neutron beam and support systems necessary for radiography, the Stationary Neutron Radiography System was constructed at McClellan Air Force Base. The Stationary Neutron Radiography System utilizes a one megawatt TRIGA reactor contained in an Aluminium tank surrounded by eight foot thick concrete walls. There are four neutron beam tubes at inclined angles from the reactor core to separate radiography bays. In three of the bays, robotic systems manipulate aircraft components in the neutron beam, while real-time imaging systems provide images concurrent with the irradiation. Film radiography of smaller components is performed in the remaining bay

  6. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qifeng, E-mail: fuqifeng1990@163.com [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Zhang, Kailian; Gao, Die; Wang, Lujun [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Yang, Fengqing; Liu, Yao [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Xia, Zhining, E-mail: tcm_anal_cqu@163.com [Innovative Drug Research Centre and School of Pharmaceutical Sciences, Chongqing University, Chongqing 400030 (China); School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2017-05-29

    Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to

  7. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation

    International Nuclear Information System (INIS)

    Fu, Qifeng; Zhang, Kailian; Gao, Die; Wang, Lujun; Yang, Fengqing; Liu, Yao; Xia, Zhining

    2017-01-01

    Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to

  8. Significance tests for the wavelet cross spectrum and wavelet linear coherence

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2008-12-01

    Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As

  9. A comparison of central coherence skills between adolescents with an intellectual disability with and without comorbid autism spectrum disorder.

    Science.gov (United States)

    van Lang, Natasja D J; Bouma, Anke; Sytema, Sjoerd; Kraijer, Dirk W; Minderaa, Ruud B

    2006-01-01

    Central coherence theory hypothesizes individuals with autism process information in a detail-focused fashion. The present study examined whether adolescents with an intellectual disability and comorbid autism spectrum disorder showed a weaker central coherence than age- and IQ-matched controls. The central coherence skills of 43 adolescents from schools for students with severe learning problems were examined with two cognitive tasks. In these two tasks, detail-focused processing is beneficial to global processing to perform the tasks accurately and quickly. The group with autism spectrum disorder performed better than the control group. Adolescents with an intellectual disability and with comorbid autism spectrum disorder have a weaker central coherence than age- and IQ-matched controls. Partial support was also given for variability in weak central coherence within the autism spectrum.

  10. Non-stationary covariance function modelling in 2D least-squares collocation

    Science.gov (United States)

    Darbeheshti, N.; Featherstone, W. E.

    2009-06-01

    Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.

  11. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sun Yuan

    2006-02-01

    Full Text Available Abstract Background Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. Results In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 μM L-arginine, a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited, levels of expression were only one third of those observed in ΔargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ΔargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. Conclusion The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli.

  12. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...

  13. Evaluation of stationary and non-stationary geostatistical models for inferring hydraulic conductivity values at Aespoe

    International Nuclear Information System (INIS)

    La Pointe, P.R.

    1994-11-01

    This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs

  14. Secondary instabilities of hypersonic stationary crossflow waves

    Science.gov (United States)

    Edelman, Joshua B.

    A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel at 6° angle of attack. Using a variety of roughness configurations, measurements were made using temperature-sensitive paint (TSP) and fast pressure sensors. High-frequency secondary instabilities of the stationary crossflow waves were detected near the aft end of the cone, from 110° to 163° from the windward ray. At least two frequency bands of the secondary instabilities were measured. The secondary instabilities have high coherence between upstream and downstream sensor pairs. In addition, the amplitudes of the instabilities increase with the addition of roughness elements near the nose of the cone. Two of the measured instabilities were captured over a range of axial Reynolds numbers of about 1 - 2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities, the wave speed and amplitude growth can be calculated. The wave speeds were all near the edge velocity. Measured growth before breakdown for the two instabilities are between e3 and e4 from background noise levels. The initial linear growth rates for the instabilities are near 50 /m. Simultaneous measurement of two frequency bands of the secondary instabilities was made during a single run. It was found that each mode was spatially confined within a small azimuthal region, and that the regions of peak amplitude for one mode correspond to regions of minimal amplitude for the other.

  15. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  16. The effect of an accretion disk on coherent pulsed emission from weakly magnetized neutron stars

    International Nuclear Information System (INIS)

    Asaoka, Ikuko; Hoshi, Reiun.

    1989-01-01

    Using a simple model for hot spots formed on the magnetic polar regions we calculate the X-ray pulse profiles expected from bright low-mass X-ray binaries. We assume that neutron stars in close binary systems are surrounded by accretion disks extending down in the vicinity of their surfaces. Even partial eclipses of a hot spot by the accretion disk change the coherent pulsed fraction and, in some cases, the phase of pulsations by almost 180deg. Coherent pulsations are clearly seen even for sufficiently compact model neutron stars, if the hot spots emit isotropic or fan-beam radiation. In the case of pencil-beam radiation, coherent pulsations are also seen if the cap-opening angle is less than ∼60deg, while the inclination angle is larger than 68deg. Gravitational lensing alone does not smear coherent pulsations in moderately weak magnetized neutron stars in the presence of an absorbing accretion disk. (author)

  17. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  18. Combining Coherent Hard X-Ray Tomographies with Phase Retrieval to Generate Three-Dimensional Models of Forming Bone

    Directory of Open Access Journals (Sweden)

    Emely L. Bortel

    2017-11-01

    Full Text Available Holotomography, a phase-sensitive synchrotron-based (µCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here, we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10, and 14 days old (postpartum. Our results make use of partially coherent synchrotron radiation employing inline Fresnel propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the European Synchrotron Radiation Facility. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high-resolution 3D data can be used to create detailed computational models to study the dynamic processes involved in bone tissue formation and adaptation. Such data can enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  19. Combining coherent hard X-ray tomographies with phase retrieval to generate three-dimensional models of forming bone

    Science.gov (United States)

    Bortel, Emely L.; Langer, Max; Rack, Alexander; Forien, Jean-Baptiste; Duda, Georg N.; Fratzl, Peter; Zaslansky, Paul

    2017-11-01

    Holotomography, a phase sensitive synchrotron-based μCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly-changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10 and 14 days old (postpartum). Our results make use of partially-coherent synchrotron radiation employing inline Fresnel-propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the ESRF. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high resolution 3D data is a step towards creating realistic computational models that may be used to study the dynamic processes involved in bone tissue formation and adaptation. Such data will enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  20. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A

    2017-10-01

    We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.

  1. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaël

    2016-03-03

    Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.

  2. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  3. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    Science.gov (United States)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit

  4. Cosmological red shift in the Seeliger-Einstein stationary Universe

    International Nuclear Information System (INIS)

    Kropotkin, P.N.

    1988-01-01

    A problem of Seeliger-Einstein stationary Universe is considered. Simple empirical relations between cosmological and physical constants to which attention was paid by Stanukovich K., Dikke R., Dirac P. testify to the supposition on stationary Universe. The Universe expansion being absent, a hypothesis of ''photon aging'' suggested in 1929 by Belopolskij A. and Zwicky F. must be accepted for explanation of Hubble effect. It is stated that abandon the Seeliger-Einstein stationary cosmological model would be premature. Study and comparison of different mechanisms suggested for validation of photon aging hypothesis is necessary

  5. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using energy-gated wave packets with an application to neutron reflection from ruled gratings

    Science.gov (United States)

    Berk, N. F.

    2014-03-01

    We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.

  6. Stationary states of two-level open quantum systems

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej; Puchala, Zbigniew

    2011-01-01

    A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.

  7. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  8. 8th International Conference on Partial Least Squares and Related Methods

    CERN Document Server

    Vinzi, Vincenzo; Russolillo, Giorgio; Saporta, Gilbert; Trinchera, Laura

    2016-01-01

    This volume presents state of the art theories, new developments, and important applications of Partial Least Square (PLS) methods. The text begins with the invited communications of current leaders in the field who cover the history of PLS, an overview of methodological issues, and recent advances in regression and multi-block approaches. The rest of the volume comprises selected, reviewed contributions from the 8th International Conference on Partial Least Squares and Related Methods held in Paris, France, on 26-28 May, 2014. They are organized in four coherent sections: 1) new developments in genomics and brain imaging, 2) new and alternative methods for multi-table and path analysis, 3) advances in partial least square regression (PLSR), and 4) partial least square path modeling (PLS-PM) breakthroughs and applications. PLS methods are very versatile methods that are now used in areas as diverse as engineering, life science, sociology, psychology, brain imaging, genomics, and business among both academics ...

  9. X-ray imaging by partially coherent synchrotron light. Application to metallic alloys, tooth dentin and natural rock

    Energy Technology Data Exchange (ETDEWEB)

    Zabler, Simon Andreas

    2007-10-09

    The hard spectrum which is available on the BAMline at Berlin's synchrotron BESSY offers the rare opportunity to perform high-resolution X-ray imaging experiments with a partially coherent beam. This thesis work reports on the development of a new tomography system, including Fresnel-propagated imaging, and its application to three specific materials science problems from the fields of engineering materials, biology and earth science. Static and dynamic 2D and 3D images were recorded from a variety of aluminum-based alloys. Coarsening of particle agglomerates (at high solid volume fraction) in liquid solution, as well as rheological properties of semi-solid alloys are thus characterized. Dentin is characterized by a quasi-parallel arrangement of micrometer-sized tubules. This work shows how high-resolution 3D images of water-immersed tooth dentin are recorded, and detailed simulations of the optical wave propagation reveal that Fresnel-images contain additional information about the dense cuff of peritubular dentin surrounding the tubules. The cuff thickness can be extrapolated from the interference fringes that form the propagated images of tubules. Absorption and Fresnel-propagated X-ray tomography are applied to measure samples of different rocks before and after mechanical compression nondestructively. In a first approach, limestone and greywacke are investigated, representing two sedimentary rocks of different grain size. Basalt and granite are tested in a second approach to compare different rock types. Development of cracks is observed in all materials, leading to fracture when increasing mechanical load is applied. In this work, relatively small mm-sized samples are used in order to test a classical fracture model wherein micro-flaws initiate the formation of larger cracks. For the first time, Fresnel-propagated imaging is applied to rock samples, highlighting micrometer-sized intergranular porosity as well as different material phases. The latter is

  10. X-ray imaging by partially coherent synchrotron light. Application to metallic alloys, tooth dentin and natural rock

    International Nuclear Information System (INIS)

    Zabler, Simon Andreas

    2007-01-01

    The hard spectrum which is available on the BAMline at Berlin's synchrotron BESSY offers the rare opportunity to perform high-resolution X-ray imaging experiments with a partially coherent beam. This thesis work reports on the development of a new tomography system, including Fresnel-propagated imaging, and its application to three specific materials science problems from the fields of engineering materials, biology and earth science. Static and dynamic 2D and 3D images were recorded from a variety of aluminum-based alloys. Coarsening of particle agglomerates (at high solid volume fraction) in liquid solution, as well as rheological properties of semi-solid alloys are thus characterized. Dentin is characterized by a quasi-parallel arrangement of micrometer-sized tubules. This work shows how high-resolution 3D images of water-immersed tooth dentin are recorded, and detailed simulations of the optical wave propagation reveal that Fresnel-images contain additional information about the dense cuff of peritubular dentin surrounding the tubules. The cuff thickness can be extrapolated from the interference fringes that form the propagated images of tubules. Absorption and Fresnel-propagated X-ray tomography are applied to measure samples of different rocks before and after mechanical compression nondestructively. In a first approach, limestone and greywacke are investigated, representing two sedimentary rocks of different grain size. Basalt and granite are tested in a second approach to compare different rock types. Development of cracks is observed in all materials, leading to fracture when increasing mechanical load is applied. In this work, relatively small mm-sized samples are used in order to test a classical fracture model wherein micro-flaws initiate the formation of larger cracks. For the first time, Fresnel-propagated imaging is applied to rock samples, highlighting micrometer-sized intergranular porosity as well as different material phases. The latter is shown

  11. Towards Gravitating Discs around Stationary Black Holes

    Science.gov (United States)

    Semerák, Oldřich

    This article outlines the search for an exact general relativistic description of the exterior(vacuum) gravitational field of a rotating spheroidal black hole surrounded by a realistic axially symmetric disc of matter. The problem of multi-body stationary spacetimes is first exposed from the perspective of the relativity theory (section 1) and astrophysics (section 2), listing the basic methods employed and results obtained. Then (in section 3) basic formulas for stationary axisymmetric solutions are summarized. Sections 4 and 5 review what we have learnt with Miroslav Žáček and Tomáš Zellerin about certain static and stationary situations recently. Concluding remarks are given in section 6. Although the survey part is quite general, the list of references cannot be complete.Our main desideratum was the informative value rather than originality — novelties have been preferred, mainly reviews and those with detailed introductions.

  12. Quantum manipulation of two-color stationary light: Quantum wavelength conversion

    International Nuclear Information System (INIS)

    Moiseev, S. A.; Ham, B. S.

    2006-01-01

    We present a quantum manipulation of a traveling light pulse using electromagnetically induced transparency-based slow light phenomenon for the generation of two-color stationary light. We theoretically discuss the two-color stationary light for the quantum wavelength conversion process in terms of pulse area, energy transfer, and propagation directions. The condition of the two-color stationary light pulse generation has been found and the quantum light dynamics has been studied analytically in the adiabatic limit. The quantum frequency conversion rate of the traveling light is dependent on the spatial spreading of the two-color stationary light pulse and can be near unity in an optically dense medium for the optimal frequencies of the control laser fields

  13. Stationary black holes: large D analysis

    International Nuclear Information System (INIS)

    Suzuki, Ryotaku; Tanabe, Kentaro

    2015-01-01

    We consider the effective theory of large D stationary black holes. By solving the Einstein equations with a cosmological constant using the 1/D expansion in near zone of the black hole we obtain the effective equation for the stationary black hole. The effective equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black ring solution as its solutions. In this effective theory the black hole is represented as an embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its mean curvature is given by the surface gravity redshifted by the background gravitational field and the local Lorentz boost. The local Lorentz boost property of the effective equation is observed also in the metric itself. In fact we show that the leading order metric of the Einstein equation in the 1/D expansion is generically regarded as a Lorentz boosted Schwarzschild black hole. We apply this Lorentz boost property of the stationary black hole solution to solve perturbation equations. As a result we obtain an analytic formula for quasinormal modes of the singly rotating Myers-Perry black hole in the 1/D expansion.

  14. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  15. The Stationary SQUID

    Science.gov (United States)

    Berger, Jorge

    2018-06-01

    In the customary mode of operation of a SQUID, the electromagnetic field in the SQUID is an oscillatory function of time. In this situation, electromagnetic radiation is emitted and couples to the sample. This is a back action that can alter the state that we intend to measure. A circuit that could perform as a stationary SQUID consists of a loop of superconducting material that encloses the magnetic flux, connected to a superconducting and to a normal electrode. This circuit does not contain Josephson junctions, or any other miniature feature. We study the evolution of the order parameter and of the electrochemical potential in this circuit; they converge to a stationary regime, and the voltage between the electrodes depends on the enclosed flux. We obtain expressions for the power dissipation and for the heat transported by the electric current; the validity of these expressions does not rely on a particular evolution model for the order parameter. We evaluate the influence of fluctuations. For a SQUID perimeter of the order of 1μ m and temperature 0.9T_c, we obtain a flux resolution of the order of 10^{-5}Φ _0/Hz^{1/2}; the resolution is expected to improve as the temperature is lowered.

  16. Investigation of the stationary-thermonuclear-reaction realization possibility in a tokamak device

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Reznik, S.N.; Fursa, A.D.

    1976-01-01

    The stationary (quasistationary) selfsustaining thermonuclear D-T reaction is shown to be possible in a toroidal device such as 'Tokamak' with large enough plasma radius. The stationary temperature of the plasma can be quite high. Thus when the transport processes are assumed to be neoclassical the temperature of the central part of a plasma colomn of radius approximately 10-200 cm in the stationary state is 70 keV.The stationary temperature distribution is reached spontaneously as a result of the thermal instability development if plasma is preheated to 10 keV. The stationary thermonuclear burning is also possible at lower temperatures if plasma energy balance is controlled

  17. Interactive Coherence-Based Façade Modeling

    KAUST Repository

    Musialski, Przemyslaw

    2012-05-01

    We propose a novel interactive framework for modeling building facades from images. Our method is based on the notion of coherence-based editing which allows exploiting partial symmetries across the facade at any level of detail. The proposed workflow mixes manual interaction with automatic splitting and grouping operations based on unsupervised cluster analysis. In contrast to previous work, our approach leads to detailed 3d geometric models with up to several thousand regions per facade. We compare our modeling scheme to others and evaluate our approach in a user study with an experienced user and several novice users.

  18. Analysis of stress and deformation in non-stationary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Guerreiro, J.N.C.

    1980-12-01

    A variational method and its algorithm are presented; they permit the analysis of stress and deformation in non-stationary creep. This algorithm is applied to an infinite cylinder submitted to an internal pressure. The solution obtained is compared with the solution of non-stationary creep problems [pt

  19. Stability of Bifurcating Stationary Solutions of the Artificial Compressible System

    Science.gov (United States)

    Teramoto, Yuka

    2018-02-01

    The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.

  20. Non-Stationary Internal Tides Observed with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  1. Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow

    Science.gov (United States)

    Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.

    2011-01-01

    Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to

  2. Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow

    International Nuclear Information System (INIS)

    Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D

    2011-01-01

    Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h -1 . The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h -1 . After the maximum flow rate of 500 ml h -1 , the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar

  3. Evaluation of the Methods for Response Analysis under Non-Stationary Excitation

    Directory of Open Access Journals (Sweden)

    R.S. Jangid

    1999-01-01

    Full Text Available Response of structures to non-stationary ground motion can be obtained either by the evolutionary spectral analysis or by the Markov approach. In certain conditions, a quasi-stationary analysis can also be performed. The first two methods of analysis are difficult to apply for complex situations such as problems involving soil-structure interaction, non-classical damping and primary-secondary structure interaction. The quasi-stationary analysis, on the other hand, provides an easier solution procedure for such cases. Here-in, the effectiveness of the quasi-stationary analysis is examined with the help of the analysis of a single degree-of-freedom (SDOF system under a set of parametric variations. For this purpose, responses of the SDOF system to uniformly modulated non-stationary random ground excitation are obtained by the three methods and they are compared. In addition, the relative computational efforts for different methods are also investigated.

  4. Large-Deviation Results for Discriminant Statistics of Gaussian Locally Stationary Processes

    Directory of Open Access Journals (Sweden)

    Junichi Hirukawa

    2012-01-01

    Full Text Available This paper discusses the large-deviation principle of discriminant statistics for Gaussian locally stationary processes. First, large-deviation theorems for quadratic forms and the log-likelihood ratio for a Gaussian locally stationary process with a mean function are proved. Their asymptotics are described by the large deviation rate functions. Second, we consider the situations where processes are misspecified to be stationary. In these misspecified cases, we formally make the log-likelihood ratio discriminant statistics and derive the large deviation theorems of them. Since they are complicated, they are evaluated and illustrated by numerical examples. We realize the misspecification of the process to be stationary seriously affecting our discrimination.

  5. Stationary Double Layers in a Collisionless Magnetoplasma

    DEFF Research Database (Denmark)

    Noriyoshi, Sato; Mieno, Tetsu; Hatakeyama, Rikizo

    1983-01-01

    of the plate on the low-potential side, being accompanied with current limitation. This localized potential drop moves along the plasma column, but finally stops and results in the formation of the stationary double layer in the presence of sufficient plasma supply from the plate on the high-potential side.......Stationary double layers are generated in a magnetoplasma by applying potential differences between two heated plates on which the plasma is produced by surface ionization. By measuring the double-layer formation process, a localized potential drop is found to be formed initially in front...

  6. Relativistic elasticity of stationary fluid branes

    Science.gov (United States)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  7. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  8. Modifications of the laser beam coherence inertial confinement fusion plasmas; Modifications des proprietes de coherence des faisceaux laser dans les plasmas de fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Grech, M

    2007-06-15

    Inertial confinement fusion by laser requires smoothed laser beam with well-controlled coherence properties. Such beams are made of many randomly distributed intensity maxima: the so-called speckles. As the laser beam propagates through plasma its temporal and spatial coherence can be reduced. This phenomenon is called plasma induced smoothing. For high laser intensities, instabilities developing independently inside the speckles are responsible for the coherence loss. At lower intensities, only collective effects, involving many speckles, can lead to induced smoothing. This thesis is a theoretical, numerical and experimental study of these mechanisms. Accounting for the partially incoherent behavior of the laser beams requires the use of statistical description of the laser-plasma interaction. A model is developed for the multiple scattering of the laser light on the self-induced density perturbations that is responsible for a spreading of the temporal and spatial spectra of the transmitted light. It also serves as a strong seed for the instability of forward stimulated Brillouin scattering that induces both, angular spreading and red-shift of the transmitted light. A statistical model is developed for this instability. A criterion is obtained that gives a laser power (below the critical power for filamentation) above which the instability growth is important. Numerical simulations with the interaction code PARAX and an experiment performed on the ALISE laser facility confirm the importance of these forward scattering mechanisms in the modification of the laser coherence properties. (author)

  9. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  10. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  11. Inference for local autocorrelations in locally stationary models.

    Science.gov (United States)

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  12. Generating a stationary infinite range tractor force via a multimode optical fibre

    Science.gov (United States)

    Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.

    2017-06-01

    Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.

  13. A Generalized Framework for Non-Stationary Extreme Value Analysis

    Science.gov (United States)

    Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.

    2017-12-01

    Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA

  14. Membrane oscillations in the channel of a stationary plasma motor

    International Nuclear Information System (INIS)

    Bugrova, A.I.; Lipatov, A.S.; Morozov, A.I.; Kharchevnikov, V.K.

    1999-01-01

    Results of measuring the ion flux density in the channel of the stationary plasma drive are presented. Two plane easters move both along and transverse to the plasma flux. During the experiment, the strong low-frequency oscillations (∼ 35 kHz) are observed in the channel of the stationary plasma drive. It is found that membrane oscillations are accompanied by oscillations of the electron temperature. These membrane oscillations affect the divergence of the output plasma jet and the erosion of the output part of the channel of the stationary plasma drive [ru

  15. The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase

    OpenAIRE

    Gagen, Emma J.; Yoshinaga, Marcos Y.; Garcia Prado, Franka; Hinrichs, Kai-Uwe; Thomm, Michael

    2016-01-01

    The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the...

  16. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  17. Propagation of Boundary-Induced Discontinuity in Stationary Radiative Transfer

    Science.gov (United States)

    Kawagoe, Daisuke; Chen, I.-Kun

    2018-01-01

    We consider the boundary value problem of the stationary transport equation in the slab domain of general dimensions. In this paper, we discuss the relation between discontinuity of the incoming boundary data and that of the solution to the stationary transport equation. We introduce two conditions posed on the boundary data so that discontinuity of the boundary data propagates along positive characteristic lines as that of the solution to the stationary transport equation. Our analysis does not depend on the celebrated velocity averaging lemma, which is different from previous works. We also introduce an example in two dimensional case which shows that piecewise continuity of the boundary data is not a sufficient condition for the main result.

  18. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  19. Influence of stationary and non-stationary conditions on drying time and mechanical properties of a porcelain slab

    Science.gov (United States)

    Hammouda, Imen; Mihoubi, Daoued

    2017-12-01

    This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.

  20. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  1. A Novel Vehicle Stationary Detection Utilizing Map Matching and IMU Sensors

    Directory of Open Access Journals (Sweden)

    Md. Syedul Amin

    2014-01-01

    Full Text Available Precise navigation is a vital need for many modern vehicular applications. The global positioning system (GPS cannot provide continuous navigation information in urban areas. The widely used inertial navigation system (INS can provide full vehicle state at high rates. However, the accuracy diverges quickly in low cost microelectromechanical systems (MEMS based INS due to bias, drift, noise, and other errors. These errors can be corrected in a stationary state. But detecting stationary state is a challenging task. A novel stationary state detection technique from the variation of acceleration, heading, and pitch and roll of an attitude heading reference system (AHRS built from the inertial measurement unit (IMU sensors is proposed. Besides, the map matching (MM algorithm detects the intersections where the vehicle is likely to stop. Combining these two results, the stationary state is detected with a smaller timing window of 3 s. A longer timing window of 5 s is used when the stationary state is detected only from the AHRS. The experimental results show that the stationary state is correctly identified and the position error is reduced to 90% and outperforms previously reported work. The proposed algorithm would help to reduce INS errors and enhance the performance of the navigation system.

  2. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  3. Vacillations induced by interference of stationary and traveling planetary waves

    Science.gov (United States)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  4. Costationarity of Locally Stationary Time Series Using costat

    OpenAIRE

    Cardinali, Alessandro; Nason, Guy P.

    2013-01-01

    This article describes the R package costat. This package enables a user to (i) perform a test for time series stationarity; (ii) compute and plot time-localized autocovariances, and (iii) to determine and explore any costationary relationship between two locally stationary time series. Two locally stationary time series are said to be costationary if there exists two time-varying combination functions such that the linear combination of the two series with the functions produces another time...

  5. Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity

    Science.gov (United States)

    Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou

    2006-06-01

    In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.

  6. Cross coherence independent component analysis in resting and action states EEG discrimination

    International Nuclear Information System (INIS)

    Almurshedi, A; Ismail, A K

    2014-01-01

    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes condition

  7. Non-stationary pre-envelope covariances of non-classically damped systems

    Science.gov (United States)

    Muscolino, G.

    1991-08-01

    A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.

  8. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  9. Nonlinear acoustic waves in partially ionized collisional plasmas

    International Nuclear Information System (INIS)

    Rao, N.N.; Kaup, D.J.; Shukla, P.K.

    1991-01-01

    Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)

  10. The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum.

    Science.gov (United States)

    South, Mikle; Ozonoff, Sally; McMahon, William M

    2007-09-01

    This study examined the relationship between everyday repetitive behavior (primary symptoms of autism) and performance on neuropsychological tests of executive function and central coherence (secondary symptoms). It was hypothesized that the frequency and intensity of repetitive behavior would be positively correlated with laboratory measures of cognitive rigidity and weak central coherence. Participants included 19 individuals (ages 10-19) with high-functioning autism spectrum disorders (ASD group) and 18 age- and IQ-matched typically developing controls (TD group). There was partial support in the ASD group for the link between repetitive behavior and executive performance (the Wisconsin Card Sorting Task). There was no support for a link between repetitive behavior and measures of central coherence (a Gestalt Closure test and the Embedded Figures Test). Further research on repetitive behaviors in autism may benefit from a focus on narrow behavioral and cognitive constructs rather than general categories.

  11. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  12. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  13. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  14. Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion

    International Nuclear Information System (INIS)

    Glownia, J. M.; Natan, A.; Cryan, J. P.; Hartsock, R.; Kozina, M.

    2016-01-01

    Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.

  15. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.

    Science.gov (United States)

    Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad

    2017-12-01

    In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.

  16. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  17. STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    LUCE, TC; WADE, MR; FERRON, JR; HYATT, AW; KELLMAN, AG; KINSEY, JE; LAHAYE, RJ; LASNIER, CJ; MURAKAMI, M; POLITZER, PA; SCOVILLE, JT

    2002-01-01

    A271 STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DII-D TOKAMAK. Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak under stationary conditions at relatively low plasma current (q 95 > 4). A figure of merit for fusion gain (β N H 89 /q 95 2 ) has been maintained at values corresponding to | = 10 operation in a burning plasma for > 6 s or 36τ E and 2τ R . The key element is the relaxation of the current profile to a stationary state with q min > 1. In the absence of sawteeth and fishbones, stable operation has been achieved up to the estimated no-wall β limit. Feedback control of the energy content and particle inventory allow reproducible, stationary operation. The particle inventory is controlled by gas fueling and active pumping; the wall plays only a small role in the particle balance. The reduced current lessens significantly the potential for structural damage in the event of a major disruption. In addition, the pulse length capability is greatly increased, which is essential for a technology testing phase of a burning plasma experiment where fluence (duty cycle) is important

  18. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  19. Quantum field theory in stationary coordinate systems

    International Nuclear Information System (INIS)

    Pfautsch, J.D.

    1981-01-01

    Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge

  20. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  1. Expansions of general stationary stochastic optical fields: general formalism

    International Nuclear Information System (INIS)

    Martinez-Herrero, R.; Mejias, P.M.

    1985-01-01

    A new expansion of a general stationary stochastic optical field is derived. Each term of the series is seen to represent a recently defined new class of optical fields, the so-called spectrally quasi-factorizable fields. Alternative expansion in terms of nonstationary fields that obey the wave equation is also shown. A relationship between temporal and spatial features of stationary free optical fields is discussed

  2. Geophysics-based method of locating a stationary earth object

    Science.gov (United States)

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  3. The solids-flux theory--confirmation and extension by using partial differential equations.

    Science.gov (United States)

    Diehl, Stefan

    2008-12-01

    The solids-flux theory has been used for half a century as a tool for estimating concentration and fluxes in the design and operation of secondary settling tanks during stationary conditions. The flux theory means that the conservation of mass is used in one dimension together with the batch-settling flux function according to the Kynch assumption. The flux theory results correspond to stationary solutions of a partial differential equation, a conservation law, with discontinuous coefficients modelling the continuous-sedimentation process in one dimension. The mathematical analysis of such an equation is intricate, partly since it cannot be interpreted in the classical sense. Recent results, however, make it possible to partly confirm and extend the previous flux theory statements, partly draw new conclusions also on the dynamic behaviour and the possibilities and limitations for control. We use here a single example of an ideal settling tank and a given batch-settling flux in a whole series of calculations. The mathematical results are adapted towards the application and many of them are conveniently presented in terms of operating charts.

  4. Stationary nonimaging lenses for solar concentration.

    Science.gov (United States)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-09-20

    A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.

  5. The interaction between a relativistic electron beam and a slow electromagnetic wave in a waveguide that is partially filled with a dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.T.; Nikolov, N.A.

    1979-01-01

    The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.

  6. Inverse problems for partial differential equations

    CERN Document Server

    Isakov, Victor

    2017-01-01

    This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...

  7. Modeling stationary and dynamic pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2011-01-01

    This paper presents a numerical study of the stationary and dynamic pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). At first, the packing structure of stationary pebbles is simulated by filling process until the settling of pebbles into PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of PBR is open during the operational maintenance of PBR, the stationary pebbles start to flow downward and are removed at the bottom of PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment. (author)

  8. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬

  9. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  10. Stationary theory of scattering

    International Nuclear Information System (INIS)

    Kato, T.

    1977-01-01

    A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)

  11. Radio-Oxidation in Polyolefins: Non-Stationary Kinetic Conditions

    International Nuclear Information System (INIS)

    Dely, N.

    2006-01-01

    In the last fifty years, many authors have been interested in the radio-oxidation processes occurring in polymers. The polymer degradation under ionising radiations in presence of dioxygen is well described by a radical chemistry. The radio-oxidation process occurs in three steps: the first one is the production of radicals P degree by interaction between the polymer and the ionising radiations; then radicals P degree react spontaneously with O 2 solved in the polymer giving a peroxy radical POO degree which attacks the polymer forming a hydroperoxide POOH and a new radical P degree (propagation). The third step corresponds to the termination step, that is bimolecular reactions between radicals. It is generally assumed that the stationary state is rapidly reached and consequently that the oxidation induced during the built-up period of the radical concentration can be neglected. However, to our best knowledge, the temporal evolution of radical concentrations before reaching the steady state regime has never been studied in details. We recently performed a complete study of oxygen consumption under electron irradiation for an EPDM elastomer. An analysis, as function of dose rate and oxygen pressure, and assuming steady state conditions, allowed extracting all the kinetic constants. Starting for these experimental data, we calculated the build-up of the radical concentration by solving numerically the differential equations with help of the Minichem code. We conclude that, in fact, the oxidation induced during the built-up period is negligible. In this paper we show that [P degree] could present a quasi-stationary plateau before reaching its stationary level. Consequently, the full radical time evolution is essentially determined by two characteristic times for reaching the quasi and stationary levels and three concentrations: [P degree] and [POO degree] at the stationary level and [P degree] at the quasi-stationary plateau. We show that realistic approximations can

  12. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  13. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery.

    Science.gov (United States)

    Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N

    2017-02-14

    The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.

  14. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  15. Stationary neoclassical profiles of plasma parameters in stellarators

    International Nuclear Information System (INIS)

    Danilkin, I.S.; Mineev, A.B.

    1991-01-01

    Peculiarities of neoclassical model of heat and particle transfer, occuring by calculations of plasma stationary profile parameters in stellarators are considered. The main peculiarity out of all consists in ineadequate compatibility with real physical conditions on the boundary, requiring application of supplementary 'anomalous' transfer or special (but technically possible) adjustment of particle and heat sources to achieve solution in form of 'correct' monotonically sloping profile. It is stated, that neoclassical theory does not provide for well-known ambiguity of solutions for ambipolar electrical field by search of monotonous stationary profiles supported by outside sources

  16. Spin in stationary gravitational fields and rotating frames

    International Nuclear Information System (INIS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-01-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  17. Prediction uncertainty in seasonal partial duration series

    DEFF Research Database (Denmark)

    Rasmussen, Peter Funder; Rosbjerg, Dan

    1991-01-01

    In order to obtain a good description of the exceedances in a partial duration series it is often necessary to divide the year into a number (2-4) of seasons. Hereby a stationary exceedance distribution can be maintained within each season. This type of seasonal models may, however, not be suitable...... for prediction purposes due to the large number of parameters required. In the particular case with exponentially distributed exceedances and Poissonian occurrence times the precision of the T year event estimator has been thoroughly examined considering both seasonal and nonseasonal models. The two......-seasonal probability density function of the T year event estimator has been deduced and used in the assessment of the precision of approximate moments. The nonseasonal approach covered both a total omission of seasonality by pooling data from different flood seasons and a discarding of nonsignificant season(s) before...

  18. Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

    International Nuclear Information System (INIS)

    Chatterji, Shourov; Lazzarini, Albert; Stein, Leo; Sutton, Patrick J.; Searle, Antony; Tinto, Massimo

    2006-01-01

    The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonstationary noise transients which are common in real detectors. Existing techniques for detecting gravitational-wave bursts assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts. Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to general networks of detectors with different orientations and noise spectra. In order to address this problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and allows one to distinguish between gravitational-wave bursts and noise transients in general detector networks. This technique does not require any a priori knowledge of the putative burst waveform

  19. Backset-stationary and during car driving.

    Science.gov (United States)

    Jonsson, Bertil; Stenlund, Hans; Björnstig, Ulf

    2008-12-01

    The aim of the study was to measure and analyze backset, defined as the horizontal distance between the back of the occupant's head and a point located on the ventral/top aspect of the sewn rim of the head restraint, with the car stationary and during driving, in the driver's position in a modern car. A population of 65 subjects, 35 males and 30 females, was studied in a Volvo V70 car, model year 2007. The subjects were studied in the driver's position, in a self-selected posture. Stationary backset was measured with the technique described by Jonsson et al. (2007) and backset during driving with video analysis. Descriptive data were calculated, and variability and correlation analyses were performed. A t-test was used to test differences of means. Significance level was set to 0.05. In comparison to stationary backset, mean backset during driving was 43 mm greater in males and 41 mm greater in females. Driving backset was 44 mm larger in males than in females. Driving backset was moderately correlated (0.37-0.43) to stature, seated height, and seat back angle in males and moderately correlated (0.44-0.52) to hip width, waist circumference, and weight in females. The overall intraclass correlation coefficient for backset during driving was 0.81 (CI: 0.75-0.86). These results may be of use in designing future updates of test protocols/routines for geometric backset, such as RCAR and RCAR-IIWPG.

  20. Stationary flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gilhaus, A; Hau, E; Gassner, G; Huss, G; Schauberger, H

    1981-01-01

    The aim of this system study is to find out industrial applications of stationary flywheel energy accumulators. The economic value for the consumer and the effects on the power supply grid are investigated. Up to now, stationary flywheel energy accumulators have only been used in a small range. The main reason for thinking of the application in a wider range was the hope that those could be used economically for lowering the maximum output demand of the power supply grid. The possible savings in energy costs, however, proved to be too small for paying back the investment costs. Further benefits are necessary for advantageous application. As to overall economy, compensation of short time maximum power output seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combustion with wind energy converters need further investigation.

  1. Distinguishing Stationary/Nonstationary Scaling Processes Using Wavelet Tsallis q-Entropies

    Directory of Open Access Journals (Sweden)

    Julio Ramirez Pacheco

    2012-01-01

    Full Text Available Classification of processes as stationary or nonstationary has been recognized as an important and unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines not only the form of autocorrelations and moments but also the selection of estimators. In this paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed. The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these entropies for scaling signals. It is demonstrated that the observed wavelet Tsallis q-entropies of 1/f signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The proposed methodology, therefore, differentiates stationary signals from non-stationary ones based on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized signals confirm that the proposed method not only achieves satisfactorily classifications but also outperforms current methods proposed in the literature.

  2. Learning Markov models for stationary system behaviors

    DEFF Research Database (Denmark)

    Chen, Yingke; Mao, Hua; Jaeger, Manfred

    2012-01-01

    to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using......Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate...... the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model....

  3. Stationary Density Variation Produced by a Standing Plasma Wave

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....

  4. Pushing concentration of stationary solar concentrators to the limit.

    Science.gov (United States)

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun- earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.

  5. Tightly localized stationary pulses in a multilevel atomic system

    International Nuclear Information System (INIS)

    Liu, Xiong-Jun; Oh, C. H.; Liu, Xin; Liu, Zheng-Xin; Kwek, L. C.

    2007-01-01

    We show that the pulse matching phenomenon can be obtained in the general multilevel system with electromagnetically induced transparency. For this we find a different way to create tightly localized stationary pulses by using counterpropagating pump fields. The present process is a spatial compression of excitation so that it allows us to shape and further intensify the localized stationary pulses, without using standing waves of pump fields or spatially modulated pump fields

  6. Non-stationary Markov chains

    OpenAIRE

    Mallak, Saed

    1996-01-01

    Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...

  7. A comparison of the radiosensitivity of stationary, exponential and G1 phase wild type and repair deficient yeast cultures: supporting evidence for stationary phase yeast cells being in G0

    International Nuclear Information System (INIS)

    Tippins, R.S.; Parry, J.M.

    1982-01-01

    The main points to emerge from this comparison of the radiosensitivity of stationary, exponential and G 1 phase yeast cultures were: (1) In wild type yeast cultures, G 1 cells were the most sensitive to the lethal effects of X-rays, exponential phase cells were the most resistant and stationary phase cells were intermediate in sensitivity. (2) With the excision-repair-defective strain D61-3 (rad 3) stationary phase cells were more resistant than exponential cells with G 1 cells again being most sensitive. (3) The rad 50 gene present in JD50 had a marked effect on the X-ray inactivation response of this strain. In the presence of the defective rad 50 allele, exponential phase cells were as sensitive as G 1 phase cells, with stationary phase cells being more resistant than either. (4) There were marked differences in sensitivity between stationary phase and G 1 phase cells. These differences, along with other physiological differences reported by other workers, lead the authors to suggest that stationary phase cells can be better described as being in G 0 phase, i.e. a stage which is outside the normal mitotic cell cycle of an exponential culture. (author)

  8. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  9. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  10. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-09-12

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  11. A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise

    CERN Document Server

    Bose, S

    2002-01-01

    The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev. D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500) for the detection of stationary non-Gaussian noise is briefly reviewed. We compute the robust statistic for generic weak gravitational-wave signals in the mixture-Gaussian noise model to an accuracy higher than in those analyses, and reinterpret its role. Specifically, we obtain the coherent statistic for detecting gravitational-wave signals from inspiralling compact binaries with an arbitrary network of earth-based interferometers. Finally, we show that excess computational costs incurred owing to non-Gaussianity is negligible compared to the cost of detection in Gaussian noise.

  12. Drift wave coherent vortex structures in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Su, X.N.

    1992-01-01

    Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations

  13. Nonparametric estimation of the stationary M/G/1 workload distribution function

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted

    2005-01-01

    In this paper it is demonstrated how a nonparametric estimator of the stationary workload distribution function of the M/G/1-queue can be obtained by systematic sampling the workload process. Weak convergence results and bootstrap methods for empirical distribution functions for stationary associ...

  14. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity.

    Science.gov (United States)

    Lebrón-Aguilar, Rosa; Quintanilla-López, Jesús Eduardo; Santiuste, José María

    2010-12-03

    A comparison of the most usual gas chromatographic methods for the calculation of partial molar enthalpies of solvation (Δ(sol)H(o)) has been carried out. Those methods based on the fitting of lnV(g) or ln(k/T) vs. 1/T and ln(k/T) vs. (1/T and the temperature arrangement, T(a)) are the most adequate ones for obtaining Δ(sol)H(o) values. However, the latter is the only reliable option for Δ(sol)H(o) estimation when commercial WCOT capillary columns are used, since in this case the estimation of some variables involved in the V(g) determination is less accurate or even impossible. Consequently, in this paper, Δ(sol)H(o) obtained from ln(k/T) vs. (1/T+T(a)) fitting at 373.15 and 298.15K for n-alkanes and n-alkylbenzenes on 12 commercial capillary columns coated with stationary phases covering the 203-3608 McReynolds polarity range are reported. Moreover, molar heat capacities of solvation at constant pressure (Δ(sol)C(p)(o)) have also been calculated using this method. A clear influence on Δ(sol)H(o) of the type and content of the substitution group in the stationary phase was observed. In addition, a linear relationship of Δ(sol)C(p)(o) with the van der Waals volume of the n-alkanes and the temperature gradient of density of the stationary phase was found. The effect of the size of the hydrocarbon on both thermodynamic variables was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase.

    Science.gov (United States)

    Gagen, Emma J; Yoshinaga, Marcos Y; Garcia Prado, Franka; Hinrichs, Kai-Uwe; Thomm, Michael

    2016-01-01

    The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.

  16. The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase

    Directory of Open Access Journals (Sweden)

    Emma J. Gagen

    2016-01-01

    Full Text Available The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others, and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.

  17. Similarity flows between a rotating and a stationary disk

    International Nuclear Information System (INIS)

    Buchmann, J.H.; Qassim, R.Y.

    1981-07-01

    The radial distribution of fluid pressure on a stationary disk coaxial with a rotating disk is determined experimentally for various inter-disc spacings. The results show that similarity flows are only possible for both small and large values of this distance. In the former case, the flow faraway from the stationary disk appears to be that suggested by Batchelor, while in the latter case, the flow turns out to be in accordance with the assumption of Stewartson. (Author) [pt

  18. On Maximal Hard-Core Thinnings of Stationary Particle Processes

    Science.gov (United States)

    Hirsch, Christian; Last, Günter

    2018-02-01

    The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.

  19. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  20. Only adding stationary storage to vaccine supply chains may create and worsen transport bottlenecks.

    Science.gov (United States)

    Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Claypool, Erin G; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y

    2013-01-01

    Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints.

  1. Power variation for Gaussian processes with stationary increments

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Corcuera, J.M.; Podolskij, Mark

    2009-01-01

    We develop the asymptotic theory for the realised power variation of the processes X=•G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path of the pr......We develop the asymptotic theory for the realised power variation of the processes X=•G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path...... a chaos representation....

  2. Income dynamics with a stationary double Pareto distribution.

    Science.gov (United States)

    Toda, Alexis Akira

    2011-04-01

    Once controlled for the trend, the distribution of personal income appears to be double Pareto, a distribution that obeys the power law exactly in both the upper and the lower tails. I propose a model of income dynamics with a stationary distribution that is consistent with this fact. Using US male wage data for 1970-1993, I estimate the power law exponent in two ways--(i) from each cross section, assuming that the distribution has converged to the stationary distribution, and (ii) from a panel directly estimating the parameters of the income dynamics model--and obtain the same value of 8.4.

  3. [Sampling methods for PM2.5 from stationary sources: a review].

    Science.gov (United States)

    Jiang, Jing-Kun; Deng, Jian-Guo; Li, Zhen; Li, Xing-Hua; Duan, Lei; Hao, Ji-Ming

    2014-05-01

    The new China national ambient air quality standard has been published in 2012 and will be implemented in 2016. To meet the requirements in this new standard, monitoring and controlling PM2,,5 emission from stationary sources are very important. However, so far there is no national standard method on sampling PM2.5 from stationary sources. Different sampling methods for PM2.5 from stationary sources and relevant international standards were reviewed in this study. It includes the methods for PM2.5 sampling in flue gas and the methods for PM2.5 sampling after dilution. Both advantages and disadvantages of these sampling methods were discussed. For environmental management, the method for PM2.5 sampling in flue gas such as impactor and virtual impactor was suggested as a standard to determine filterable PM2.5. To evaluate environmental and health effects of PM2.5 from stationary sources, standard dilution method for sampling of total PM2.5 should be established.

  4. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-09-01

    This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. The gate Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant

  5. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Yu, Zhicong [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Zeng, Gengsheng L. [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Engineering, Weber State University, Ogden, Utah 84408 (United States)

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac

  6. Detection of Multiple Stationary Humans Using UWB MIMO Radar

    Directory of Open Access Journals (Sweden)

    Fulai Liang

    2016-11-01

    Full Text Available Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect, detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB multiple-input and multiple-output (MIMO radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR, morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.

  7. Propagation of coherent light pulses with PHASE

    Science.gov (United States)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  8. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  9. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  10. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  11. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  12. Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps

    Science.gov (United States)

    Yu, Jingyi; Liu, Meng

    2017-09-01

    In this paper, a three-species stochastic food-chain model with Lévy jumps is proposed and analyzed. Sharp sufficient criteria for the existence and uniqueness of an ergodic stationary distribution are established. The effects of Lévy jumps on the existence of the stationary distribution are revealed: in some cases, the Lévy jumps could make the stationary distribution appear, while in some cases, the Lévy jumps could make the stationary distribution disappear. Some numerical simulations are introduced to illustrate the theoretical results.

  13. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  14. Stone Stability under Stationary Nonuniform Flows

    NARCIS (Netherlands)

    Steenstra, Remco; Hofland, B.; Paarlberg, Andries; Smale, Alfons; Huthoff, Fredrik; Uijttewaal, W.S.J.

    2016-01-01

    A stability parameter for rock in bed protections under nonuniform stationary flow is derived. The influence of the mean flow velocity, turbulence, and mean acceleration of the flow are included explicitly in the parameter. The relatively new notion of explicitly incorporating the mean acceleration

  15. Relativistic elasticity of stationary fluid branes

    DEFF Research Database (Denmark)

    Armas, J.; Obers, N.A.

    2013-01-01

    under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...

  16. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  17. Stationary measure in the multiverse

    International Nuclear Information System (INIS)

    Linde, Andrei; Vanchurin, Vitaly; Winitzki, Sergei

    2009-01-01

    We study the recently proposed ''stationary measure'' in the context of the string landscape scenario. We show that it suffers neither from the ''Boltzmann brain'' problem nor from the ''youngness'' paradox that makes some other measures predict a high CMB temperature at present. We also demonstrate a good performance of this measure in predicting the results of local experiments, such as proton decay

  18. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  19. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    International Nuclear Information System (INIS)

    Singer, Andrej

    2013-06-01

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  20. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  1. High-frequency stock linkage and multi-dimensional stationary processes

    Science.gov (United States)

    Wang, Xi; Bao, Si; Chen, Jingchao

    2017-02-01

    In recent years, China's stock market has experienced dramatic fluctuations; in particular, in the second half of 2014 and 2015, the market rose sharply and fell quickly. Many classical financial phenomena, such as stock plate linkage, appeared repeatedly during this period. In general, these phenomena have usually been studied using daily-level data or minute-level data. Our paper focuses on the linkage phenomenon in Chinese stock 5-second-level data during this extremely volatile period. The method used to select the linkage points and the arbitrage strategy are both based on multi-dimensional stationary processes. A new program method for testing the multi-dimensional stationary process is proposed in our paper, and the detailed program is presented in the paper's appendix. Because of the existence of the stationary process, the strategy's logarithmic cumulative average return will converge under the condition of the strong ergodic theorem, and this ensures the effectiveness of the stocks' linkage points and the more stable statistical arbitrage strategy.

  2. On the non-stationary generalized Langevin equation

    Science.gov (United States)

    Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja

    2017-12-01

    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.

  3. Recent development of ionic liquid stationary phases for liquid chromatography.

    Science.gov (United States)

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  5. The stationary states of interacting fields

    NARCIS (Netherlands)

    Frazer, W.R.; Hove, Léon van

    1958-01-01

    As an application of a time-independent perturbation formalism developed earlier for systems with many degrees of freedom, we give in terms of diagrams the general perturbation expressions for the exact stationary states of interacting fields. The physical vacuum is obtained by applying to the bare

  6. Collaborative Area Monitoring Using Wireless Sensor Networks with Stationary and Mobile Nodes

    Directory of Open Access Journals (Sweden)

    Theofanis P. Lambrou

    2009-01-01

    Full Text Available Monitoring a large area with stationary sensor networks requires a very large number of nodes which with current technology implies a prohibitive cost. The motivation of this work is to develop an architecture where a set of mobile sensors will collaborate with the stationary sensors in order to reliably detect and locate an event. The main idea of this collaborative architecture is that the mobile sensors should sample the areas that are least covered (monitored by the stationary sensors. Furthermore, when stationary sensors have a “suspicion” that an event may have occurred, they report it to a mobile sensor that can move closer to the suspected area and can confirm whether the event has occurred or not. An important component of the proposed architecture is that the mobile nodes autonomously decide their path based on local information (their own beliefs and measurements as well as information collected from the stationary sensors in a neighborhood around them. We believe that this approach is appropriate in the context of wireless sensor networks since it is not feasible to have an accurate global view of the state of the environment.

  7. Selectivity of some basic solutes on a poly(methyltetradecylsiloxane)-silica stationary phase.

    Science.gov (United States)

    Borges, Endler M; Collins, Carol H

    2011-11-01

    Complex analyses of polar compounds, especially basic ones, require more selective stationary phases. The present paper describes a stationary phase prepared by thermal immobilization of poly(methyltetradecylsiloxane) onto chromatographic silica (PMTDS-SiO(2)). This stationary phase presents hydrophobic and ion-exchange interactions that confer both high retention and unique selectivities for basic solutes. The influence of ion-exchange interactions is confirmed by the increase in retention factors of basic solutes when the mobile-phase pH changes from acidic to neutral and by the decrease in retention factors when the mobile-phase pH changes from neutral to alkaline. The ion-exchange properties of the stationary phase are enriched in neutral mobile phase (pH 7-7.5) using soft Lewis bases such as tricine and tris as buffers but are suppressed in both acidic (pH 2.5-6) and highly alkaline mobile phases (pH≤10). Increasing both temperature and flow rate permits more rapid separations while maintaining the selectivity. The stability of the stationary phase is evaluated with acid, neutral and alkaline mobile phases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  9. Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions

    Science.gov (United States)

    Gavish, Nir

    2018-04-01

    We study the existence and stability of stationary solutions of Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) with two counter-charged species. We show that within a range of parameters, steric effects give rise to multiple solutions of the corresponding stationary equation that are smooth. The PNP-steric equation, however, is found to be ill-posed at the parameter regime where multiple solutions arise. Following these findings, we introduce a novel PNP-Cahn-Hilliard model, show that it is well-posed and that it admits multiple stationary solutions that are smooth and stable. The various branches of stationary solutions and their stability are mapped utilizing bifurcation analysis and numerical continuation methods.

  10. Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion

    International Nuclear Information System (INIS)

    Garrido-Atienza, Maria J.; Kloeden, Peter E.; Neuenkirch, Andreas

    2009-01-01

    In this article we study the behavior of dissipative systems with additive fractional noise of any Hurst parameter. Under a one-sided dissipative Lipschitz condition on the drift the continuous stochastic system is shown to have a unique stationary solution, which pathwise attracts all other solutions. The same holds for the discretized stochastic system, if the drift-implicit Euler method is used for the discretization. Moreover, the unique stationary solution of the drift-implicit Euler scheme converges to the unique stationary solution of the original system as the stepsize of the discretization decreases

  11. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  12. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    Science.gov (United States)

    Willocq, S.; Aderholz, M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Yost, G. P.

    1993-04-01

    The coherent production of π and ρ mesons in νμ(ν¯μ)-neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (ν¯μ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53+/-9) μ+/-π-/+ coherent events and (19+/-7) μ+/-π-/+π0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2+/-0.7)×10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1+/-0.8)×10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at ||t||<0.1 GeV2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions.

  13. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Institute of Scientific and Technical Information of China (English)

    W. B. Cardosol; N. G. de Almeida

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  14. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  15. Volitional Control of Neuromagnetic Coherence

    Directory of Open Access Journals (Sweden)

    Matthew D Sacchet

    2012-12-01

    Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.

  16. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  17. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  18. Stationary analysis of signals and ratio decay determination in BWR type reactors by neuronal network

    International Nuclear Information System (INIS)

    Sanchis, R.; Palomo, M. J.; Munoz-Cobo, J. L.

    1998-01-01

    The signals registered in the nuclear plants have non stationary characteristics, in numerous times. This made difficult the application of the methods of analysis. There are determinate temporal intervals in that the signal is stationary with determinate mean, value together of zones with corrupt registers, and other zones with mean value distinct, but stationary during a temporal interval. The methodology consist in a stationary analysis to the signal received of the nuclear plant. With the Gabor Transformation are determined the temporal intervals of the stationary signals, synthesised it, as previous phase to the application of the methods of the analysis of stability parameters with methods ARMA, SVD, Neural Net,... to the reconstructed signal. 4 refs. (Author)

  19. The computation of stationary distributions of Markov chains through perturbations

    Directory of Open Access Journals (Sweden)

    Jeffery J. Hunter

    1991-01-01

    Full Text Available An algorithmic procedure for the determination of the stationary distribution of a finite, m-state, irreducible Markov chain, that does not require the use of methods for solving systems of linear equations, is presented. The technique is based upon a succession of m, rank one, perturbations of the trivial doubly stochastic matrix whose known steady state vector is updated at each stage to yield the required stationary probability vector.

  20. Evaluation of hydrophilic interaction liquid chromatography stationary phases for analysis of opium alkaloids.

    Science.gov (United States)

    Bagheri, Mohsen; Taheri, Mohammadreza; Farhadpour, Mohsen; Rezadoost, Hassan; Ghassempour, Alireza; Aboul-Enein, Hassan Y

    2017-08-18

    The separation of a mixture containing five major opium alkaloids, namely morphine, codeine, thebaine, noscapine and papaverine has been investigated in hydrophilic interaction liquid chromatography (HILIC) mode using five different stationary phases: bare silica, zwitterion, aminopropyl, diol and cyanopropyl. In order to propose the appropriate column for separation and purification, retention behaviors of the five natural opioids have been studied on mentioned HILIC stationary phases. The mechanism of separation in diverse HILIC media, based on the formation of water-rich layer on surface of the HILIC stationary phases and the physicochemical properties of opium alkaloids, such as pKa (acidic pK) and the octanol-water distribution coefficient (log Do/w) are discussed. Chromatographic responses including modified limit of detection LOD m , signal to noise ratio (S/N) m , and defined modified R Sm have considered for suggestion of the suitable column for quantitative/qualitative and preparative purposes. According to the obtained results, diol stationary phase is best suited for analytical chromatography, whereas bare silica and zwitterionic stationary phases are appropriate for preparative applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A new derivation of the conformally flat stationary cyclic non-circular spacetimes

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Campuzano, Cuauhtemoc; GarcIa, Alberto

    2007-01-01

    We present an alternative way to derive the conformally flat stationary cyclic non-circular spacetimes. We show that there is no room for stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce the well know results for this sort of spacetimes recently reported in [1

  2. A new derivation of the conformally flat stationary cyclic non-circular spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Ayon-Beato, Eloy [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Campuzano, Cuauhtemoc [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); GarcIa, Alberto [Department of Physics, University of California, Davis, CA 95616 (United States)

    2007-11-15

    We present an alternative way to derive the conformally flat stationary cyclic non-circular spacetimes. We show that there is no room for stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce the well know results for this sort of spacetimes recently reported in [1].

  3. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  4. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  5. Coherent x-rays from PEP

    International Nuclear Information System (INIS)

    Baird, S.; Nuhn, H.-D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C.

    1991-01-01

    This paper explores the use of a large-circumference, high-energy, electron-positron collider such as PEP to drive a free-electron laser (FEL), producing high levels of coherent power at short wavelengths. The author consider Self-Amplified Spontaneous Emission (SASE), in which electron bunches with low emittance, high peak current and small energy spread radiate coherently in a single passthrough a long undulator. As the electron beam passes down the undulator, its interaction with the increasingly intense spontaneous radiation causes a bunch density modulation at the optical wavelength, resulting in stimulated emissional growth of coherent power in a single pass. The need for optical-cavity mirrors, which place a lower limit on the wavelength of a conventional FEL oscillator, is avoided. The authors explore various combinations of electron-beam and undulator parameters, as well as special undulator designs and optical klystrons (OK), to reach high average or peak coherent power at wavelengths around 40 angstrom by achieving significant exponential gain or full saturation. Examples are presented for devices that achieve high peak coherent power (up to about 400 MW) with lower average coherent power (about 20 mW) and other devices which produce a few watts of average coherent power

  6. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaë l; Genton, Marc G.

    2016-01-01

    been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference

  7. Stationary neoclassical profiles of plasma parameters in stellarators

    International Nuclear Information System (INIS)

    Danilkin, I.S.; Mineev, A.B.

    1991-01-01

    The properties of the neoclassical model of heat and particle transport are considered in connection with calculations of stationary profiles of the plasma parameters in stellarators. The most important feature is the poor agreement with real physical conditions of the boundary, which imposes the necessity of invoking either an additional anomalous transport or a special (although technically possible) consistency between the particle and heat sources in order to obtain a solution in the form of a correct monotonically decreasing profile. In search for monotonic stationary profiles maintained by external sources, it is ascertained that the neoclassical theory does not give rise to the well-known multivalued solutions for the ambipolar electric field

  8. HIGH PERFORMANCE STATIONARY DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Ferron, J.R.; Politzer, P.A.; Hyatt, A.W.; Sips, A.C.C.; Murakami, M.

    2003-01-01

    Recent experiments in the DIII-D tokamak [J.L. Luxon, Nucl. Fusion 42,614 (2002)] have demonstrated high β with good confinement quality under stationary conditions. Two classes of stationary discharges are observed--low q 95 discharges with sawteeth and higher q 95 without sawteeth. The discharges are deemed stationary when the plasma conditions are maintained for times greater than the current profile relaxation time. In both cases the normalized fusion performance (β N H 89P /q 95 2 ) reaches or exceeds the value of this parameter projected for Q fus = 10 in the International Thermonuclear Experimental Reactor (ITER) design [R. Aymar, et al., Plasma Phys. Control. Fusion 44, 519 (2002)]. The presence of sawteeth reduces the maximum achievable normalized β, while confinement quality (confinement time relative to scalings) is largely independent of q 95 . Even with the reduced β limit, the normalized fusion performance maximizes at the lowest q 95 . Projections to burning plasma conditions are discussed, including the methodology of the projection and the key physics issues which still require investigation

  9. A simple stationary semi-analytical wake model

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    We present an idealized simple, but fast, semi-analytical algorithm for computation of stationary wind farm wind fields with a possible potential within a multi-fidelity strategy for wind farm topology optimization. Basically, the model considers wakes as linear perturbations on the ambient non......-linear. With each of these approached, a parabolic system are described, which is initiated by first considering the most upwind located turbines and subsequently successively solved in the downstream direction. Algorithms for the resulting wind farm flow fields are proposed, and it is shown that in the limit......-uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...

  10. Plasma oscillations in a stationary external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ciulli, S [Joint Institute for Nuclear Research, Dubna, Moscow (USSR); Micu, M [Institute of Atomic Physics, Bucharest (Romania)

    1958-07-01

    The stationary distribution function as well as the small deviations from the stationary state of a gas discharge using the Boltzmann equation is studied as a basis for the calculations. The stationary problem which is discussed corresponds to plasma with cylindrical symmetry. It leads to a Maxwell velocity distribution and to a spatial distribution function which has the asymptotic form 1/r{sup 4}. The plasma perturbations are estimated by the deviations of the first order moments from their Maxwell values. A homogeneous system of differential equations is derived for the Fourier amplitudes of the magnetic field and their asymptotic form is studied. The dispersion relation is obtained by joining smoothly a solution regular at the origin with the regular asymptotic one.A number of idealizations and approximations have been made in the present analysis which limit the utility of the formulae obtained. For example, if the collision term is included in the Boltzmann equation additional quantities appear in the final results, i.e., viscosity, thermal and electrical conductivity, etc. Furthermore, the finite dimensions of linear discharge tubes or the toroidal form of some discharges strongly modify the present results. Taking into account these additional effects, exact solutions are to be obtained numerically for different values of the experimental parameters.

  11. Condensation in models with factorized and pair-factorized stationary states

    International Nuclear Information System (INIS)

    Evans, M R; Waclaw, B

    2015-01-01

    Non-equilibrium real-space condensation is a phenomenon in which a finite fraction of some conserved quantity (mass, particles, etc) becomes spatially localized. We review two popular stochastic models of hopping particles that lead to condensation and whose stationary states assume a factorized form: the zero-range process and the misanthrope process, and their various generalizations. We also introduce a new model—a misanthrope process with parallel dynamics—that exhibits condensation and has a pair-factorized stationary state

  12. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...

  13. A dissipative model of solar system and stability of stationary rotations

    Science.gov (United States)

    Vilke, V. G.

    2009-04-01

    receives the equations describing movements of the centers of mass of planets and their own rotations. In the offered model takes place a dissipation of the energy which source are internally viscous forces of each planet. The system supposes the first integral - the law of preservation of the kinetic moment concerning the centre of mass of system. As a result of deformations of planets in the law of the universal gravitation which has been written down for material points, there are small conservative amendments. The equations of motion describe motions of the centers of mass of planets and their rotation around of the centers of mass in view of the tidal phenomena and the dissipative forces. The connected system of the equations consists of 3 the vector equations of the second order representing the theorems of motion of the center of mass of planets, and the vector equations of the first order determining changes of the own kinetic moments of each planet. Stationary values of full mechanical energy on the variety set in integral of the kinetic moment, correspond to stationary motions - to rotations of system as rigid body with constant angular velocity around of the centre of mass of all system. Angular velocity of stationary rotation is directed along a constant vector of the kinetic moment, and the axis of rotation is the principal central axis of inertia of system. We shall notice, that deformations of planets in stationary motion are constant, as in system of coordinates rotating with constant angular velocity centrifugal forces and forces of gravitational interaction of planets are constant. Stationary configurations of system are determined according to Routh`s technique as stationary points of the changed potential energy submitted by the sum potential energies of centrifugal and gravitational forces. The first variation of the changed potential energy addresses in zero on a stationary configuration. The judgment about stability stationary configurations is based

  14. Coherent states and rational surfaces

    International Nuclear Information System (INIS)

    Brody, Dorje C; Graefe, Eva-Maria

    2010-01-01

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  15. Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.

    Science.gov (United States)

    Djordjevic, N M; Fitzpatrick, F; Houdiere, F

    2001-04-01

    The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.

  16. Uniqueness of solution to a stationary boundary kinetic problem

    International Nuclear Information System (INIS)

    Zhykharsky, A.V.

    1992-01-01

    The paper treats the question of uniqueness of solution to the boundary kinetic problem. This analysis is based on the accurate solutions to the stationary one-dimensional boundary kinetic problem for the limited plasma system. In the paper a simplified problem statement is used (no account is taken of the external magnetic field, a simplest form of boundary conditions is accepted) which, however, covers all features of the problem considered. Omitting the details of the conclusion we will write a set of Vlasov stationary kinetic equations for the cases of plane, cylindrical and spherical geometry of the problem. (author) 1 ref

  17. Stationary striations due to interaction of two ionization waves in xenon glow discharge

    International Nuclear Information System (INIS)

    Maruyama, T.; Nishina, S.; Kitamura, H.; Itagaki, K.; Mizuochi, H.

    1990-01-01

    Experimental observations on stationary striations in the positive column of xenon discharge are reported. Stationary striations are observed when two ionization waves exist simultaneously in the positive column at low pressure and high current region. These stationary striations are caused by nonlinear interference of two backward ionization waves of which frequencies are either equal or are in the ratio 1:2. The spatial intervals for the striated pattern are equal to the reciprocal of the difference between the wave-numbers of two ionization waves. (orig.)

  18. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  19. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  20. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  1. On the Existence of Solutions for Stationary Mean-Field Games with Congestion

    KAUST Repository

    Evangelista, David; Gomes, Diogo A.

    2017-01-01

    Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

  2. An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians

    International Nuclear Information System (INIS)

    Hughes, Ciaran; Mehta, Dhagash; Wales, David J.

    2014-01-01

    Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems

  3. On the Existence of Solutions for Stationary Mean-Field Games with Congestion

    KAUST Repository

    Evangelista, David

    2017-09-11

    Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

  4. Stationary measure in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Andrei [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Vanchurin, Vitaly; Winitzki, Sergei, E-mail: alinde@stanford.edu, E-mail: vitaly@cosmos2.phy.tufts.edu, E-mail: winitzki@physik.uni-muenchen.de [Department of Physics, Ludwig-Maximilians University, Munich (Germany)

    2009-01-15

    We study the recently proposed ''stationary measure'' in the context of the string landscape scenario. We show that it suffers neither from the ''Boltzmann brain'' problem nor from the ''youngness'' paradox that makes some other measures predict a high CMB temperature at present. We also demonstrate a good performance of this measure in predicting the results of local experiments, such as proton decay.

  5. Hacking on decoy-state quantum key distribution system with partial phase randomization

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  6. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  7. Bridging the gap between a stationary point process and its Palm distribution

    NARCIS (Netherlands)

    Nieuwenhuis, G.

    1994-01-01

    In the context of stationary point processes measurements are usually made from a time point chosen at random or from an occurrence chosen at random. That is, either the stationary distribution P or its Palm distribution P° is the ruling probability measure. In this paper an approach is presented to

  8. Gain with and without population inversion via vacuum-induced coherence in a V-type atom without external coherent driving

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Jinhui; Gao Jinyue

    2006-01-01

    In a three-level V-type atomic system without any external coherent driving, owing to the coherence that results from the vacuum of the radiation field, both the probe gain with and without population inversion can be achieved with very weak incoherent pumping. The gain is achieved in the absence of any external coherent driving field, so it is different from the gain without inversion in ordinary laser-driven schemes where a coherent driving field is necessary to create the coherence. The gain is also different from the conventional lasing gain because the population inversion is achieved via vacuum-induced coherence, which is dependent on the atomic coherence

  9. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other

  10. VCSEL Based Coherent PONs

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio

    2014-01-01

    We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly modula...

  11. Characterization of Stationary Distributions of Reflected Diffusions

    Science.gov (United States)

    2014-01-01

    operations research to finance and mathemat- ical physics , and their stationary distributions often serve to characterize or approximate important...REFERENCES [1] Atar , R., Budhiraja, A. and Dupuis, P. (2001). On positive recurrence of constrained diffusion processes. Ann. Probab., 29 No. 2, 979-1000

  12. Robust Forecasting of Non-Stationary Time Series

    NARCIS (Netherlands)

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable

  13. Prediction of retention indices for frequently reported compounds of plant essential oils using multiple linear regression, partial least squares, and support vector machine.

    Science.gov (United States)

    Yan, Jun; Huang, Jian-Hua; He, Min; Lu, Hong-Bing; Yang, Rui; Kong, Bo; Xu, Qing-Song; Liang, Yi-Zeng

    2013-08-01

    Retention indices for frequently reported compounds of plant essential oils on three different stationary phases were investigated. Multivariate linear regression, partial least squares, and support vector machine combined with a new variable selection approach called random-frog recently proposed by our group, were employed to model quantitative structure-retention relationships. Internal and external validations were performed to ensure the stability and predictive ability. All the three methods could obtain an acceptable model, and the optimal results by support vector machine based on a small number of informative descriptors with the square of correlation coefficient for cross validation, values of 0.9726, 0.9759, and 0.9331 on the dimethylsilicone stationary phase, the dimethylsilicone phase with 5% phenyl groups, and the PEG stationary phase, respectively. The performances of two variable selection approaches, random-frog and genetic algorithm, are compared. The importance of the variables was found to be consistent when estimated from correlation coefficients in multivariate linear regression equations and selection probability in model spaces. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations

  15. Retention of Halogenated Solutes on Stationary Phases Containing Heavy Atoms

    Directory of Open Access Journals (Sweden)

    Toshio Miwa

    2013-05-01

    Full Text Available To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the p-p interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

  16. Impact of the updating scheme on stationary states of networks

    International Nuclear Information System (INIS)

    Radicchi, F; Ahn, Y Y; Meyer-Ortmanns, H

    2008-01-01

    From Boolean networks it is well known that the number of attractors as a function of the system size depends on the updating scheme which is chosen either synchronously or asynchronously. In this contribution, we report on a systematic interpolation between synchronous and asynchronous updating in a one-dimensional chain of Ising spins. The stationary state for fully synchronous updating is antiferromagnetic. The interpolation allows us to locate a phase transition between phases with an absorbing and a fluctuating stationary state. The associated universality class is that of parity conservation. We also report on a more recent study of asynchronous updates applied to the yeast cell-cycle network. Compared to the synchronous update, the basin of attraction of the largest attractor considerably shrinks and the convergence to the biological pathway slows down and is less dominant. Both examples illustrate how sensitively the stationary states and the properties of attractors can depend on the updating mode of the algorithm

  17. Pool boiling from rotating and stationary spheres in liquid nitrogen

    Science.gov (United States)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  18. Spatial coherence of electron beams from field emitters and its effect on the resolution of imaged objects

    Energy Technology Data Exchange (ETDEWEB)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch

    2017-04-15

    Sub-nanometer and nanometer-sized tips provide high coherence electron sources. Conventionally, the effective source size is estimated from the extent of the experimental biprism interference pattern created on the detector by applying the van Cittert Zernike theorem. Previously reported experimental intensity distributions on the detector exhibit Gaussian distribution and our simulations show that this is an indication that such electron sources must be at least partially coherent. This, in turn means that strictly speaking the Van Cittert Zernike theorem cannot be applied, since it assumes an incoherent source. The approach of applying the van Cittert Zernike theorem is examined in more detail by performing simulations of interference patterns for the electron sources of different size and different coherence length, evaluating the effective source size from the extent of the simulated interference pattern and comparing the obtained result with the pre-defined value. The intensity distribution of the source is assumed to be Gaussian distributed, as it is observed in experiments. The visibility or the contrast in the simulated holograms is found to be always less than 1 which agrees well with previously reported experimental results and thus can be explained solely by the Gaussian intensity distribution of the source. The effective source size estimated from the extent of the interference pattern turns out to be of about 2–3 times larger than the pre-defined size, but it is approximately equal to the intrinsic resolution of the imaging system. A simple formula for estimating the intrinsic resolution, which could be useful when employing nano-tips in in-line Gabor holography or point-projection microscopy, is provided. - Highlights: • van Cittert Zernike theorem for nano- and sub-nano electron emitting tips is revised. • Simulations show that nano- and sub-nano electron emitting tips are at least partially coherent. • A simple formula for evaluating

  19. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  20. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  1. Coherent Multistatic ISAR Imaging

    NARCIS (Netherlands)

    Dorp, Ph. van; Otten, M.P.G.; Verzeilberg, J.M.M.

    2012-01-01

    This paper presents methods for Coherent Multistatic Radar Imaging for Non Cooperative Target Recognition (NCTR) with a network of radar sensors. Coherent Multistatic Radar Imaging is based on an extension of existing monostatic ISAR algorithms to the multistatic environment. The paper describes the

  2. Acoustic Characterization of a Stationary Field Synchronous Motor

    National Research Council Canada - National Science Library

    Woodward, E

    2001-01-01

    .... We investigate the gross acoustic signature of a notional stationary field synchronous motor utilized as a marine propulsion motor in a naval combatant using the following methodology: (1) model the forces...

  3. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  4. Negative refractions by triangular lattice sonic crystals in partial band gaps

    International Nuclear Information System (INIS)

    Alagoz, S.; Sahin, A.; Alagoz, B. B.; Nur, S.

    2015-01-01

    This study numerically demonstrates the effects of partial band gaps on the negative refraction properties of sonic crystal. The partial band gap appearing at the second band edge leads to the efficient transmissions of scattered wave envelopes in the transverse directions inside triangular lattice sonic crystal, and therefore enhances the refraction property of sonic crystal. Numerical simulation results indicate a diagonal guidance of coupled scattered wave envelopes inside crystal structure at the partial band gap frequencies and then output waves are restored in the vicinity of the output interface of sonic crystal by combining phase coherent scattered waves according to Huygens’ principles. This mechanism leads to two operations for wavefront engineering: one is spatial wavefront shifting operation and the other is convex–concave wavefront inversion operation. The effects of this mechanism on the negative refraction and wave focalization are investigated by using the finite difference time domain (FDTD) simulations. This study contributes to a better understanding of negative refraction and wave focusing mechanisms at the band edge frequencies, and shows the applications of the slab corner beam splitting and SC-air multilayer acoustic system. (paper)

  5. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Almeida, N. G. de

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states. (fundamental areas of phenomenology (including applications))

  6. On the Oracle Property of the Adaptive LASSO in Stationary and Nonstationary Autoregressions

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl

    We show that the Adaptive LASSO is oracle efficient in stationary and non-stationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...

  7. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  8. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  9. Isostable reduction with applications to time-dependent partial differential equations.

    Science.gov (United States)

    Wilson, Dan; Moehlis, Jeff

    2016-07-01

    Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory systems, are useful in the study of nonlinear equations which asymptotically approach a stationary solution. In this work, we present a general method for isostable reduction of partial differential equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity to 1. We illustrate the utility of this reduction by applying it to two different models with biological relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the necessary framework to design a simple control strategy to desynchronize a population of pathologically synchronized oscillatory neurons, as might be relevant to Parkinson's disease. Another example analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a cardiac system.

  10. Stationary flow near fronts

    Directory of Open Access Journals (Sweden)

    Reinhold Steinacker

    2016-12-01

    Full Text Available In 1906, the Austrian scientist Max Margules published a paper on temperature stratification in resting and non-accelerated moving air. The paper derives conditions for stationary slopes of air mass boundaries and was an important forerunner of frontal theories. Its formulation of relations between changes in density and geostrophic wind across the front is basically a discrete version of the thermal wind balance equation. The paper was highly influential and is still being cited to the present day. This paper accompanies an English translation of Margules’ seminal paper. We conclude here our “Classic Papers” series of the Meteorologische Zeitschrift.

  11. Equilibrium initial data for moving puncture simulations: the stationary 1 + log slicing

    International Nuclear Information System (INIS)

    Baumgarte, T W; Matera, K; Etienne, Z B; Liu, Y T; Shapiro, S L; Taniguchi, K; Murchadha, N O

    2009-01-01

    We discuss a 'stationary 1 + log' slicing condition for the construction of solutions to Einstein's constraint equations. For stationary spacetimes, these initial data give a stationary foliation when evolved with 'moving puncture' gauge conditions that are often used in black hole evolutions. The resulting slicing is time independent and agrees with the slicing generated by being dragged along a timelike Killing vector of the spacetime. When these initial data are evolved with moving puncture gauge conditions, numerical errors arising from coordinate evolution should be minimized. While these properties appear very promising, suggesting that this slicing condition should be an attractive alternative to, for example, maximal slicing, we demonstrate in this paper that solutions can be constructed only for a small class of problems. For binary black hole initial data, in particular, it is often assumed that there exists an approximate helical Killing vector that generates the binary's orbit. We show that 1 + log slices that are stationary with respect to such a helical Killing vector cannot be asymptotically flat, unless the spacetime possesses an additional axial Killing vector.

  12. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    Science.gov (United States)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  13. Coherent states on Hilbert modules

    International Nuclear Information System (INIS)

    Ali, S Twareque; Bhattacharyya, T; Roy, S S

    2011-01-01

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  14. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  15. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  16. Coherent emission mechanisms in astrophysical plasmas

    Science.gov (United States)

    Melrose, D. B.

    2017-12-01

    Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient ({d}f(v_allel )/{d}v_allel >0) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying {d}f(v)/{d}v>0) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent

  17. Stationary density profiles in the Alcator C-mod tokamak

    International Nuclear Information System (INIS)

    Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Shiraiwa, S.; Whyte, D.; Scott, S.

    2012-01-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.

  18. Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary night blindness (cCSNB).

    Science.gov (United States)

    Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2014-01-01

    Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.

  19. Lrit3 deficient mouse (nob6: a novel model of complete congenital stationary night blindness (cCSNB.

    Directory of Open Access Journals (Sweden)

    Marion Neuillé

    Full Text Available Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB. The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG, respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.

  20. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  1. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  2. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  3. Coherent systems with multistate components

    International Nuclear Information System (INIS)

    Caldarola, L.

    1980-01-01

    The basic rules of the Boolean algebra with restrictions on variables are briefly recalled. This special type of Boolean algebra allows one to handle fault trees of systems made of multistate (two or more than two states) components. Coherent systems are defined in the case of multistate components. This definition is consistent with that originally suggested by Barlow in the case of binary (two states) components. The basic properties of coherence are described and discussed. Coherent Boolean functions are also defined. It is shown that these functions are irredundant, that is they have only one base which is at the same time complete and irredundant. However, irredundant functions are not necessarily coherent. Finally a simplified algorithm for the calculation of the base of a coherent function is described. In the case that the function is not coherent, the algorithm can be used to reduce the size of the normal disjunctive form of the function. This in turn eases the application of the Nelson algorithm to calculate the complete base of the function. The simplified algorithm has been built in the computer program MUSTAFA-1. In a sample case the use of this algorithm caused a reduction of the CPU time by a factor of about 20. (orig.)

  4. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  6. Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase.

    Science.gov (United States)

    Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M; Katz, Barry P; Brautigam, Chad A; Munson, Robert S; Hansen, Eric J; Spinola, Stanley M

    2014-02-11

    To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma

  7. Cyclic and Coherent States in Flocks with Topological Distance

    Science.gov (United States)

    Bhattacherjee, Biplab; Bhattacharya, Kunal; Manna, Subhrangshu

    2014-01-01

    A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first n neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise η and diverges as η → 0. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its n = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with n = 2 and 3; but it is completely frozen when the interaction is isotropic with n=4$. These spin configu

  8. Cyclic and Coherent States in Flocks with Topological Distance

    Directory of Open Access Journals (Sweden)

    Biplab eBhattacherjee

    2014-01-01

    Full Text Available A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first $n$ neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise $eta$ and diverges as $eta to 0$. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its $n$ = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with $n$ = 2 and 3; but it is completely frozen when the interaction is isotropic with $n=4$. These spin configu

  9. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  10. COHERENT Experiment: current status

    International Nuclear Information System (INIS)

    Akimov, D; Belov, V; Bolozdynya, A; Burenkov, A; Albert, J B; Del Valle Coello, M; D’Onofrio, M; Awe, C; Barbeau, P S; Cervantes, M; Becker, B; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Detwiler, J; Eberhardt, A; Dean, D; Dolgolenko, A G

    2017-01-01

    The COHERENT Collaboration is realizing a long term neutrino physics research program. The main goals of the program are to detect and study elastic neutrino-nucleus scattering (CEνNS). This process is predicted by Standard Model but it has never been observed experimentally because of the very low energy of the recoil nucleus. COHERENT is using different detector technologies: CsI[Na] and NaI scintillator crystals, a single-phase liquid Ar and a Ge detectors. The placement of all the detector setups is in the basement of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The current status of the COHERENT experimental program is presented. (paper)

  11. Quantum cosmology and stationary states

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1983-01-01

    A model for quantum gravity, in which the conformal part of the metric is quantized using the path integral formalism, is presented. Einstein's equations can be suitably modified to take into account the effects of quantum conformal fluctuations. A closed Friedman model can be described in terms of well-defined stationary states. The ''ground state'' sets a lower bound (at Planck length) to the scale factor preventing the collapse. A possible explanation for matter creation and quantum nature of matter is suggested. (author)

  12. Coherence-driven argumentation to norm consensus

    NARCIS (Netherlands)

    Joseph, S.; Prakken, H.

    2009-01-01

    In this paper coherence-based models are proposed as an alternative to logic-based BDI and argumentation models for the reasoning of normative agents. A model is provided for how two coherence-based agents can deliberate on how to regulate a domain of interest. First a deductive coherence model

  13. Neural networks prediction and fault diagnosis applied to stationary and non stationary ARMA (Autoregressive moving average) modeled time series

    International Nuclear Information System (INIS)

    Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.

    1992-01-01

    The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)

  14. The simulation of stationary and non-stationary regime operation of heavy water production facilities

    International Nuclear Information System (INIS)

    Peculea, M.; Beca, T.; Constantinescu, D.M.; Dumitrescu, M.; Dimulescu, A.; Isbasescu, G.; Stefanescu, I.; Mihai, M.; Dogaru, C.; Marinescu, M.; Olariu, S.; Constantin, T.; Necula, A.

    1995-01-01

    This paper refers to testing procedures of the production capacity of heavy water production pilot, industrial scale plants and of heavy water reconcentration facilities. Simulation codes taking into account the mass and heat transfers inside the exchange columns were developed. These codes provided valuable insight about the isotope build-up of the installation which allowed estimating the time of reaching the stationary regime. Also transient regimes following perturbations in the operating parameters (i.e. temperature, pressure, fluid rates) of the installation were simulated and an optimal rate of routine inspections and adjustments was thus established

  15. On the generation of magnetostatic solutions from gravitational two-soliton solutions of a stationary mass

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, A. [B.K.C. College, Department of Physics, Kolkata (India); Chaudhuri, S. [University of Burdwan, Department of Physics, Burdwan (India)

    2017-11-15

    In the paper, magnetostatic solutions of the Einstein-Maxwell field equations are generated from the gravitational two-soliton solutions of a stationary mass. Using the soliton technique of Belinskii and Zakharov (Sov Phys JETP 48:985, 1978, Sov Phys JETP 50:1, 1979), we construct diagonal two-soliton solutions of Einstein's gravitational field equations for an axially symmetric stationary space-time and investigate some properties of the generated stationary gravitational metric. Magnetostatic solutions corresponding to the generated stationary gravitational solutions are then constructed using the transformation technique of Das and Chaudhuri (Pramana J Phys 40:277, 1993). The mass and the dipole moment of the source are evaluated. In our analysis we make use of a second transformation (Chaudhuri in Pramana J Phys 58:449, 2002), probably for the first time in the literature, to generate magnetostatic solutions from the stationary gravitational two-soliton solutions which give us simple and straightforward expressions for the mass and the magnetic dipole moment. (orig.)

  16. Concentration field in traveling-wave and stationary convection in fluid mixtures

    International Nuclear Information System (INIS)

    Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.

    1991-01-01

    By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern

  17. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  18. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  19. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  20. New interval forecast for stationary autoregressive models ...

    African Journals Online (AJOL)

    In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...

  1. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  2. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  3. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  4. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    Science.gov (United States)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  5. Sense of Coherence and Gambling: Exploring the Relationship Between Sense of Coherence, Gambling Behaviour and Gambling-Related Harm.

    Science.gov (United States)

    Langham, Erika; Russell, Alex M T; Hing, Nerilee; Gainsbury, Sally M

    2017-06-01

    Understanding why some people experience problems with gambling whilst others are able to restrict gambling to recreational levels is still largely unexplained. One potential explanation is through salutogenesis, which is a health promotion approach of understanding factors which move people towards health rather than disease. An important aspect of salutogenesis is sense of coherence. Individuals with stronger sense of coherence perceive their environment as comprehensible, manageable and meaningful. The present study examined the relationship of individuals' sense of coherence on their gambling behaviour and experience of gambling related harm. This exploratory study utilised an archival dataset (n = 1236) from an online, cross sectional survey of people who had experienced negative consequences from gambling. In general, a stronger sense of coherence was related to lower problem gambling severity. When gambling behaviour was controlled for, sense of coherence was significantly related to the experience of individual gambling harms. A strong sense of coherence can be seen as a protective factor against problematic gambling behaviour, and subsequent gambling related harms. These findings support the value of both primary and tertiary prevention strategies that strengthen sense of coherence as a harm minimisation strategy. The present study demonstrates the potential value of, and provides clear direction for, considering sense of coherence in order to understand gambling-related issues.

  6. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site

    Directory of Open Access Journals (Sweden)

    Xuhui He

    2017-09-01

    Full Text Available The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.

  7. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site.

    Science.gov (United States)

    He, Xuhui; Qin, Hongxi; Tao, Tianyou; Liu, Wenshuo; Wang, Hao

    2017-09-22

    The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.

  8. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  9. Ionic diffusion through confined geometries: from Langevin equations to partial differential equations

    International Nuclear Information System (INIS)

    Nadler, Boaz; Schuss, Zeev; Singer, Amit; Eisenberg, R S

    2004-01-01

    Ionic diffusion through and near small domains is of considerable importance in molecular biophysics in applications such as permeation through protein channels and diffusion near the charged active sites of macromolecules. The motion of the ions in these settings depends on the specific nanoscale geometry and charge distribution in and near the domain, so standard continuum type approaches have obvious limitations. The standard machinery of equilibrium statistical mechanics includes microscopic details, but is also not applicable, because these systems are usually not in equilibrium due to concentration gradients and to the presence of an external applied potential, which drive a non-vanishing stationary current through the system. We present a stochastic molecular model for the diffusive motion of interacting particles in an external field of force and a derivation of effective partial differential equations and their boundary conditions that describe the stationary non-equilibrium system. The interactions can include electrostatic, Lennard-Jones and other pairwise forces. The analysis yields a new type of Poisson-Nernst-Planck equations, that involves conditional and unconditional charge densities and potentials. The conditional charge densities are the non-equilibrium analogues of the well studied pair correlation functions of equilibrium statistical physics. Our proposed theory is an extension of equilibrium statistical mechanics of simple fluids to stationary non-equilibrium problems. The proposed system of equations differs from the standard Poisson-Nernst-Planck system in two important aspects. First, the force term depends on conditional densities and thus on the finite size of ions, and second, it contains the dielectric boundary force on a discrete ion near dielectric interfaces. Recently, various authors have shown that both of these terms are important for diffusion through confined geometries in the context of ion channels

  10. Dynamics of relaxation to a stationary state for interacting molecular motors

    Science.gov (United States)

    Gomes, Luiza V. F.; Kolomeisky, Anatoly B.

    2018-01-01

    Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.

  11. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases.

    Science.gov (United States)

    Dąbrowska, Monika; Starek, Małgorzata; Komsta, Łukasz; Szafrański, Przemysław; Stasiewicz-Urban, Anna; Opoka, Włodzimierz

    2017-04-01

    The retention behaviors were investigated for a series of eight cephalosporins in thin-layer chromatography (TLC) using stationary phases of RP-2, RP-8, RP-18, NH 2 , DIOL, and CN chemically bonded silica gel. Additionally, various binary mobile phases (water/methanol and water/acetone) were used in different volume proportions. The retention behavior of the analyzed molecules was defined by R M0 constant. In addition, reversed phase high performance liquid chromatography (RP-HPLC) was performed in lipophilicity studies by using immobilized artificial membrane (IAM) stationary phase. Obtained chromatographic data (R M0 and logk' IAM ) were correlated with the lipophilicity, expressed as values of the log calculated (logP calc ) and experimental (logP exp(shake-flask) ) partition coefficient. Principal component analysis (PCA) was applied in order to obtain an overview of similarity or dissimilarity among the analyzed compounds. Hierarchical cluster analysis (HCA) was performed to compare the separation characteristics of the applied stationary phases. This study was undertaken to identify the best chromatographic system and chromatographic data processing method to enable the prediction of logP values. A comprehensive chromatographic investigation into the retention of the analyzed cephalosporins revealed a similar behavior on RP-18, RP-8 and CN stationary phases. The weak correlations obtained between experimental and certain computed lipophilicity indices revealed that R M0 and PC1/RM are relevant lipophilicity parameters and the RP-8, CN and RP-18 plates are appropriate stationary phases for lipophilicity investigation, whereas computational approaches still cannot fully replace experimentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  13. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  14. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  15. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  16. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  17. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  18. Conserved quantities for stationary Einstein-Maxwell space-times

    International Nuclear Information System (INIS)

    Esposito, F.P.; Witten, L.

    1978-01-01

    It is shown that every stationary Einstein-Maxwell space-time has eight divergence-free vector fields and these are isolated in general form. The vector fields and associated conserved quantities are calculated for several families of space-times. (Auth.)

  19. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  20. Entropy production and thermodynamics of nonequilibrium stationary states: a point of view.

    Science.gov (United States)

    Gallavotti, Giovanni

    2004-09-01

    Entropy might be a not well defined concept if the system can undergo transformations involving stationary nonequilibria. It might be analogous to the heat content (once called "caloric") in transformations that are not isochoric (i.e., which involve mechanical work): it could be just a quantity that can be transferred or created, like heat in equilibrium. The text first reviews the philosophy behind a recently proposed definition of entropy production in nonequilibrium stationary systems. A detailed technical attempt at defining the entropy of a stationary states via their variational properties follows: the unsatisfactory aspects of the results add arguments in favor of the nonexistence of a function of state to be identified with entropy; at the same time new aspects and properties of the phase space contraction emerge. Copyright 2004 American Institute of Physics

  1. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  2. Characterisation of dispersive systems using a coherer

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2002-01-01

    Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.

  3. International Conference on Coherence and Quantum Optics

    CERN Document Server

    RECENT DEVELOPMENTS IN QUANTUM OPTICS

    1993-01-01

    This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder­ abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...

  4. Sigma-convergence of stationary Navier-Stokes type equations

    Directory of Open Access Journals (Sweden)

    Gabriel Nguetseng

    2009-06-01

    Full Text Available In the framework of homogenization theory, the Sigma-convergence method is carried out on stationary Navier-Stokes type equations on a fixed domain. Our main tools are the two-scale convergence concept and the so-called homogenization algebras.

  5. Evaluation of gamma radiation effects on stationary phases using gas chromatografy

    International Nuclear Information System (INIS)

    Basso, M.A.; Collins, K.E.; Collins, C.H.

    1988-01-01

    The overall objetive of this project is a thorough study of the effect of gamma radiation on supported stationary phases used in packed-column gas chromatography. The phases studied were SP-2100 on Supelcoport and SE-30 on Chromsorb W. The fases were irradiated with cobalt-60 gamma rays to various doses and subsequently subjected to tests of extractability, termal stability and efficiency as a chromatographic column packing. Extraction tests indicate that low doses of radiation are sufficient to produce significant immobilization of these polymethylsilicones; that is, to produce chemical bonds between different polymer chains or between the stationary phase and the support. Thermal stability is also increased. The values calculated for the number of theoretical plates (n) and resolution (Rsub (s)) after analysis of four synthetic mixtures of organic compounds also increase, in most cases, indicating that the gamma irradiation has positively altered the behavior of these stationary phases. (author) [pt

  6. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    Science.gov (United States)

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Science.gov (United States)

    2010-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  8. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  9. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    Science.gov (United States)

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Calendar Year 2016 Stationary Source Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.

  11. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  12. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  13. Coherence of light. 2. ed.

    International Nuclear Information System (INIS)

    Perina, J.

    1985-01-01

    This book puts the theory of coherence of light on a rigorous mathematical footing. It deals with the classical and quantum theories and with their inter-relationships, including many results from the author's own research. Particular attention is paid to the detection of optical fields, using the correlation functions, photocount statistics and coherent state. Radiometry with light fields of arbitrary states of coherence is discussed and the coherent state methods are demonstrated by photon statistics of radiation in random and nonlinear media, using the Heisenberg-Langevin and Fokker-Planck approaches to the interaction of radiation with matter. Many experimental and theoretical results are compared. A full list of references to theoretical and experimental literature is provided. The book is intended for researchers and postgraduate students in the fields of quantum optics, quantum electronics, statistical optics, nonlinear optics, optical communication and optoelectronics. (Auth.)

  14. Inferential framework for non-stationary dynamics: theory and applications

    International Nuclear Information System (INIS)

    Duggento, Andrea; Luchinsky, Dmitri G; McClintock, Peter V E; Smelyanskiy, Vadim N

    2009-01-01

    An extended Bayesian inference framework is presented, aiming to infer time-varying parameters in non-stationary nonlinear stochastic dynamical systems. The convergence of the method is discussed. The performance of the technique is studied using, as an example, signal reconstruction for a system of neurons modeled by FitzHugh–Nagumo oscillators: it is applied to reconstruction of the model parameters and elements of the measurement matrix, as well as to inference of the time-varying parameters of the non-stationary system. It is shown that the proposed approach is able to reconstruct unmeasured (hidden) variables of the system, to determine the model parameters, to detect stepwise changes of control parameters for each oscillator and to track the continuous evolution of the control parameters in the adiabatic limit

  15. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    Science.gov (United States)

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  16. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  17. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers

  18. Models of coherent exciton condensation

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2004-09-08

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.

  19. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  20. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    particle is, its interaction with the beam splitter does not reveal this information .... If one shines a strong linearly polarised monochromatic laser beam, or a quasi .... to be a hindrance to coherence, can be suitably designed to create coherence.