WorldWideScience

Sample records for partial toroidal-shaped hydrogen

  1. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  2. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  3. Electrical disruption in toroidal plasma of hydrogen

    International Nuclear Information System (INIS)

    Roberto, M.; Silva, C.A.B.; Goes, L.C.S.; Sudano, J.P.

    1991-01-01

    The initial phase of ionization of a toroidal plasma produced in hydrogen was investigated using zero-dimensional model. The model describes the temporal evolution of plasma by spatial medium of particle density and temperature, on whole plasma volume. The energy and particle (electrons and ions) balance equations are considered. The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss involves ionization, Coulomb interaction and diffusion. The ohmic heating converter gives the initial voltage necessary to disruption. (M.C.K.)

  4. Hydrogen transport in a toroidal plasma using multigroup discrete-ordinates methodology

    International Nuclear Information System (INIS)

    Wienke, B.R.; Miller, W.F. Jr.; Seed, T.J.

    1979-01-01

    Neutral hydrogen transport in a fully ionized two-dimensional tokamak plasma was examined using discrete ordinates and contrasted with earlier analyses. In particular, curvature effects induced by toroidal geometries and ray effects caused by possible source localization were investigated. From an overview of the multigroup discrete-ordinates approximation, methodology in two-dimensional cylindrical geometry is detailed, mesh and plasma zoning procedures are sketched, and the piecewise polynomial solution algorithm on a triangular domain is obtained. Toroidal effects and comparisons as related to reaction rates and perticle spectra are examined for various model and source configurations

  5. Resistive toroidal stability of internal kink modes in circular and shaped tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Luetjens, H.; Vlad, G.

    1991-12-01

    The linear resistive magnetohydrodynamical (MHD) stability of the n=1 internal kink mode in tokamaks is studied by toroidal computations. The stabilizing influence of small aspect ratio is confirmed, but it is found that shaping of the cross section influences the internal kink mode significantly. For finite pressure and small resistivity, curvature effects at the q=1 surface make the stability sensitively dependent on shape, and ellipticity (including JET shape) is destabilizing. Only a very restricted set of finite pressure equilibria is completely stable for q 0 <1. A typical result is that the resistive kink mode is slowed down by toroidal effects to a weak tearing/resistive interchange mode. It is suggested that weak resistive instabilities are stabilized during the ramp phase of the sawteeth by effects not included in the linear resistive MHD model. Possible mechanisms for triggering a sawtooth crash are discussed. (author) 18 figs., 34 refs

  6. Looped star polymers show conformational transition from spherical to flat toroidal shapes.

    Science.gov (United States)

    Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W

    2011-11-01

    Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.

  7. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  8. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  9. Critical β of a D-shaped toroidal plasma with sharp boundary

    International Nuclear Information System (INIS)

    Kito, M.

    1981-01-01

    Under the cap-cyclide coordinate system, the marginal stability of a sharp boundary toroidal plasma whose cross section is D shaped is examined using the energy principle. The analytical results are valid for arbitrary b, arbitrary aspect ratio, and arbitrary elongation of the plasma. There exists a maximum elongation for a given aspect ratio. The critical beta b/sub c/ is computed for several aspect ratios and elongations. For given aspect ratio, b/sub c/ increases as long as the elongation increases

  10. Grinding Inside A Toroidal Cavity

    Science.gov (United States)

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  11. Segmental liver resection assisted by HIFU: tissue precauterization using a toroidal-shaped HIFU transducer

    Science.gov (United States)

    N'Djin, W. A.; Melodelima, D.; Schenone, F.; Rivoire, M.; Chapelon, J. Y.

    2010-03-01

    The development of new cauterization techniques for hepatic resection is critical for improving the safety of the procedure. Previous studies showed the feasibility of using HIFU or radiofrequency precoagulation to limit blood loss during dissection of the organ. Here we report a new therapeutic modality using high intensity focused ultrasound (HIFU) to perform a bloodless hepatic resection that could represent a promising alternative. A comparative study was performed to evaluate the interest of using this complementary tool to improve surgical resection in the liver. This study used a 3 MHz HIFU toroidal-shaped phased array transducer which allows the generation of a single conical lesion of 7 cm3 in 40 seconds. In order to minimize blood loss and dissection time, a barrier of coagulative necrosis was generated with the HIFU device before hepatectomy, by juxtaposing single conical lesions on the line of dissection. Resection assisted by HIFU (RA-HIFU) was compared with classical dissections with clamping (RC) and without clamping (Control). For each technique 14 partial liver resections were performed in seven pigs. The parameters examined were vascular control and times of treatment. Precoagulation allowed the vascular isolation of small vessels and surgical clips were mainly used for the control of vessels>5 mm in diameter. The number of clips used per unit of liver surface dissected in RA-HIFU (0.8±0.3 cm-2) was significantly lower than in the other groups (RC: 1.6±0.4 cm-2, Control: 1.8±0.8 cm-2, p<0.01). In addition, blood loss was lower in RA-HIFU (7.4±6.5 ml.cm-2) than in RC (11.2±4.5 ml.cm-2) and Control (14.0±6.7 ml.cm-2). The time of dissection in RA-HIFU (13±5 min) was shorter than in RC (23±8 minutes) and Control (18±5 minutes). The feasibility and the efficiency of RA-HIFU using a toroidal-shaped HIFU transducer without additional devices were demonstrated. This technique enhances the resection procedure and will be able to be tested in

  12. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  13. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  14. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  15. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    Science.gov (United States)

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  16. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil

    Directory of Open Access Journals (Sweden)

    Ying-Ting Luo

    2016-10-01

    Full Text Available Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  17. Deformation energy of a toroidal nucleus and plane fragmentation barriers

    International Nuclear Information System (INIS)

    Fauchard, C.; Royer, G.

    1996-01-01

    The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension. (orig.)

  18. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Senda, Ikuo

    1999-01-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  19. Toroidal and rotating bubble nuclei and the nuclear fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.

    1997-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension

  20. Stress analysis of the conceptual design configurations of constant tension D-shaped superconducting toroidal field coils for TNS

    International Nuclear Information System (INIS)

    Fernades, R.; Smith, R.A.

    1977-01-01

    Conceptual design configurations of D-shaped toroidal field coils applicable to the TNS program are studied under the action of the toroidal field loading condition and the vertical field loading condition, but not the fault condition. Although the analysis is specific to an 8 Tesla design using a niobium titanium superconductor, the results can be extended to a coil with a different conductor material and subjected to a field of different magnitude provided the condition of linear elasticity is not violated. The analysis technique used is the finite element method, with three dimensional finite elements defined in the ANSYS computer code, and supplemented by closed form analytical solutions

  1. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    Science.gov (United States)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively

  2. Partial molar volumes of hydrogen and deuterium in niobium and vanadium

    International Nuclear Information System (INIS)

    Herro, H.M.

    1979-01-01

    Lattice dilation studies and direct pressure experiments gave comparable values for the partial molar volumes of hydrogen and deuterium in niobium and vanadium. Small isotope effects in the partial molar volume of hydrogen were measured in both metals by the differential isotope method. Hydrogen had a larger partial molar volume than deuterium in niobium, but the reverse was true in vanadium. The isotope effect measured in niobium can be represented as being due to the larger amplitude of vibration of the hydrogen atom than the deuterium atom in the metal lattice. Since hydrogen has a larger mean displacement from the equilibrium position than does deuterium, the average force hydrogen exerts on the metal atoms is greater than the force deuterium exerts. The isotope effect in vanadium is likely a result of anharmonic effects in the lattice and local vibrational modes

  3. Toroidal Extrap Equilibria

    International Nuclear Information System (INIS)

    Scheffel, J.

    1982-04-01

    Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)

  4. Experiments on toroidal inductively coupled alternating-current gas discharges

    International Nuclear Information System (INIS)

    Lok, J.

    1976-01-01

    This report is on an experimental study of a toroidal, inductively coupled a.c. gas discharge sustained at pressures roughly between one tenth of a Torr and some tens of Torrs. After breakdown is obtained at low pressure, additional gas is let in. The energy is inductively coupled into the electrodeless discharge by means of an iron core transformer of which the toroidal plasma column is the secondary winding. The power dissipated in the plasma is between 80 and 260 kW and is delivered by a motor-generator system at a frequency of 8 kHz for times up to 2 seconds. A toroidal magnetic field of 0.5 T maximum can be supplied in a short pulse. Five different gases (hydrogen, deuterium, helium, argon, and nitrogen) are used. The pressure range in which the discharges are sustained is specified, and the dynamic current-voltage characteristics are given for different pressures. Some typical streak pictures with simultaneously obtained recordings of the time behaviour of the discharge current and of the loop voltage are presented for the initial phase - at low pressure - of the discharge. The shape and the position of fully developed discharges at various pressures are discussed on the basis of photographic observations. The temperature of hydrogen plasmas is derived both from the electrical conductivity and from the emission of line radiation. The values of the temperature obtained in these ways differ in magnitude and in time behaviour. A possible explanation of the discrepancy can be obtained in terms of expansion and contraction of electron density and temperature profiles during a period of the discharge current, if it is taken into account that the main part of the light emission always originates from the outer colder regions of the plasma. In a somewhat different pressure regime, this picture is confirmed by microwave measurements

  5. A gas puff experiment for partial simulation of compact toroid formation on MARAUDER

    International Nuclear Information System (INIS)

    Englert, S.E.; Englert, T.J.; Degnan, J.H.; Gahl, J.M.

    1994-01-01

    Preliminary results will be reported of a single valve gas puff experiment to determine spatial and spectral distribution of a gas during the early ionization stages. This experiment has been developed as a diagnostic test-bed for partial simulation of compact toroid formation on MARAUDER. The manner in which the experimental hardware has been designed allows for a wide range of diagnostic access to evaluate early time evolution of the ionization process. This evaluation will help contribute to a clearer understanding of the initial conditions for the formation stage of the compact toroid in the MARAUDER experiment, where 60 of the same puff valves are used. For the experiment, a small slice of the MARAUDER cylindrical gas injection and expansion region geometry have been re-created but in cartesian coordinates. All of the conditions in the experiment adhere as closely as possible to the MARAUDER experiment. The timing, current rise time, capacitance, resistance and inductance are appropriate to both the simulation of one of the 60 puff valves and current delivery to the load. Both time-resolved images and spectral data have been gathered for visible light emission of the plasma. Processed images reveal characteristics of spatial distribution of the current. Spectral data provide information with respect to electron temperature and density, and entrainment of contaminants

  6. Analysis of toroidal rotation data for the DIII-D tokamak

    International Nuclear Information System (INIS)

    St John, H.; Stroth, U.; Burrell, K.H.; Groebner, R.J.; DeBoo, J.C.; Gohil, P.

    1989-01-01

    Both poloidal and toroidal rotation are observed during routine neutral beam heating operation of the DIII-D tokamak. Poloidal rotation results and the empirical techniques used to measure toroidal and poloidal rotation speeds are described by Groebner. Here we concentrate on the analysis of recent measurements of toroidal rotation made during diverted, H-mode operation of the DIII-D tokamak during co- and counter-neutral beam injection of hydrogen into deuterium plasmas. Our results are based on numerical inversions using the transport code ONETWO, modified to account for the radial diffusion of toroidal angular momentum. 13 refs., 4 figs

  7. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  8. Current drive by asymmetrical heating in a toroidal plasma

    International Nuclear Information System (INIS)

    Gahl, J.M.

    1986-01-01

    This report describes the first experimental observation of current generation by asymmetrical heating of ions. A unidirectional fast Alfven wave launched by a slow-wave antenna inside the Texas Tech Tokamak, asymmetrically heated the ions. Measurements of the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column confirmed the current generation indirectly. Current generation, obtained in a one-species, hydrogen plasma, is a phenomenon which had not been predicted previously. Calculations of the dispersion relation for the fast Alfven wave near the fundamental cyclotron resonance in a one-species, hydrogen plasma, using warm plasma theory, support the experimental results

  9. Femtometer toroidal structures in nuclei

    International Nuclear Information System (INIS)

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  10. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  11. Analysis of toroidal rotation data for the DIII-D tokamak

    International Nuclear Information System (INIS)

    John, H.St.; Burrell, K.H.; Groebner, R.; DeBoo, J.; Gohil, P.

    1989-01-01

    Both poloidal and toroidal rotation are observed during routine neutral beam heating operation of the DIII-D tokamak. Poloidal rotation results and the empirical techniques used to measure toroidal and poloidal rotation speeds are described by Groebner et al. Here we concentrate on the analysis of recent measurements of toroidal rotation made during diverted, H-mode operation of the DIII-D tokamak during co- and counter-neutral beam injection of hydrogen into deuterium plasmas. Similar studies have been previously reported for Doublet III, ASDEX, TFTR, JET and other tokamaks. (author) 13 refs., 4 figs

  12. Dynamic conductivity and partial ionization in dense fluid hydrogen

    Science.gov (United States)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  13. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  14. Partial molar volumes of hydrogen and deuterium in niobium, vanadium, and tantalum

    International Nuclear Information System (INIS)

    Peterson, D.T.; Herro, H.M.

    1983-01-01

    The partial molar volumes of hydrogen and deuterium were measured in vanadium, niobium, and tantalum by a differential pressure technique. One-half of an electrolytically charged sample plat was compressed between hardened steel blocks in a hydraulic press. The activity of hydrogen in the hig pressure region was raised and caused hydrogen to diffuse into the low pressure region. The partia molar volume was calculated from the ratio of the hydrogen concentrations in the high and low pressure regions of the sample. Small isotope effects were found in the partial molar volume. Hydrogen had the larger volume in niobium and tantalum, but the reverse was true in vanadium

  15. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  16. Motion of a compact toroid inside a cylindrical flux conserver

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1980-10-13

    Compact toroids have been generated in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they remain stationary and their magnetic fields decay with a time constant of about 100 ..mu..s. This is the first observation of the predicted tipping mode and its saturation when no external fields are present. The compact toroids contain toroidal fields and are initially prolate in shape.

  17. Motion of a compact toroid inside a cylindrical flux conserver

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    Compact toroids have been generated in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they remain stationary and their magnetic fields decay with a time constant of about 100 μs. This is the first observation of the predicted tipping mode and its saturation when no external fields are present. The compact toroids contain toroidal fields and are initially prolate in shape

  18. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  19. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  20. Quantitative separation of the influence of hydrogen bonding of ethanol/water mixture on the shape recovery behavior of polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Min Huang, Wei; Fu, Y Q

    2014-01-01

    A thermally responsive polyurethane shape memory polymer (SMP) can be actuated in water through a hydrogen bonding interaction between water and the SMP. In this work, we present a comprehensive approach to quantify the hydrogen bonding on the shape recovery behavior of a polyurethane SMP. The stimuli response to the hydrogen bonding of the polyurethane SMP was investigated in ethanol/water mixtures by varying the water content. It was found that depending on the water content, the SMP features a critical hydrogen bonding strength associated with its shape recovery behavior. The Hildebrand solubility parameter theory was employed to quantitatively identify and separate the hydrogen bonding effect of the ethanol/water mixture on the shape recovery ratio and the time. Furthermore, a phenomenological model was developed to predict the glass transition temperature and the shape recovery time of a polyurethane SMP and was verified by the available experimental results. (paper)

  1. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  2. Dynamics of toroidal spiral strings around five-dimensional black holes

    International Nuclear Information System (INIS)

    Igata, Takahisa; Ishihara, Hideki

    2010-01-01

    We examine the separability of the Nambu-Goto equation for test strings in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a 'Hopf loop' string which is a special class of the toroidal spiral strings, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.

  3. Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach

    International Nuclear Information System (INIS)

    Staszczak, A.; Wong, Cheuk-Yin

    2009-01-01

    Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum

  4. Heat characteristic analysis of a conduction cooling toroidal-type SMES magnet

    International Nuclear Information System (INIS)

    Kim, K.M.; Kim, A.R.; Kim, J.G.; Kim, D.W.; Park, M.; Yu, I.K.; Eom, B.Y.; Sim, K.; Kim, S.H.; Shon, M.H.; Kim, H.J.; Bae, H.J.; Seong, K.C.

    2010-01-01

    This paper analyzed the heat characteristics of a conduction cooling toroidal-type SMES magnet. The authors designed and manufactured a conduction cooling toroidal-type SMES magnet which consists of 30 double pancake coils. One (a single pancake coil) of a double pancake coil is arranged at an angle of 6 o from each other. The shape of the toroidal-type SMES magnet was designed by a 3D CAD program. The heat invasion was investigated under no-load condition and the thermal characteristic of the toroidal-type SMES magnet was analyzed using the Finite Elements Method program. Both the analyzed and the experiment results are compared and discussed in detail.

  5. Guiding Center Equations in Toroidal Equilibria

    International Nuclear Information System (INIS)

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  6. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  7. Neutron diffusion in spheroidal, bispherical, and toroidal systems

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1986-01-01

    The neutron flux has been studied around absorbing bodies of spheroidal, bispherical, and toroidal shapes in an infinite nonabsorbing medium. Exact solutions have been obtained by using effective boundary conditions at the surfaces of the absorbing bodies. The problems considered are as follows: 1. Neutron flux and current distributions around prolate and oblate spheroids. It is shown that an equivalent sphere approximation can lead to accurate values for the rate of absorption. 2. Neutron flux and current in a bispherical system of unequal spheres. Three separate situations arise here: (a) two absorbing spheres, (b) two spherical sources, and (c) one spherical source and one absorbing sphere. It is shown how the absorption rate in the two spheres depends on their separation. 3. Neutron flux and current in a toroidal system: (a) an absorbing toroid and (b) a toroidal source. The latter case simulates the flux distribution from a thermonuclear reactor vessel. Finally, a brief description of how these techniques can be extended to multiregion problems is given

  8. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  9. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  10. Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation

    International Nuclear Information System (INIS)

    Missiato, O.

    1986-01-01

    The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt

  11. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  12. Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Zakharov, L.E.; Gorelenkova, M.V.

    2001-01-01

    This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration

  13. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  14. Current control necessary for toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Nagao, S.

    1987-01-01

    It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt

  15. Device for supporting a toroidal coil in a toroidal type nuclear fusion device

    International Nuclear Information System (INIS)

    Kitazawa, Hakaru; Sato, Hiroshi.

    1975-01-01

    Object: To easily manufacture a center block having a strength sufficient to withstand an electromagnetic force exerted on the center of toroidal of a toroidal coil and to increase its reliability. Structure: In a device for supporting toroidal coils wherein the electromagnetic force exerted on the center of toroidal of a plurality of toroidal coils arranged in toroidal fashion, the contact surface between the toroidal coil and the center block is arranged parallel to the center axis of toroidal so as to receive the electromagnetic force exerted on the center of toroidal of the toroidal coil as the component of force in a radial direction. (Taniai, N.)

  16. Superconducting magnets for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  17. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  18. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  19. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  20. Tokamak configuration analysis with the method of toroidal multipoles

    International Nuclear Information System (INIS)

    Micozzi, P.; Alladio, F.; Crisanti, F.; Marinucci, M.; Tanga, A.

    1989-01-01

    In the study of tokamak machines able to sustain plasmas of thermonuclear interest (JIT, IGNITOR, NET, CIT, ET), there is a strong quest for engineering optimization of the circuital components close to the plasma. We have developed a semianalytical axisymmetric MHD equilibrium code based on the technique of the poloidal ψ flux function expansion in toroidal harmonic series. This code is able to optimize the necessary currents in the poloidal circuits in order to sustain a plasma of fixed shape (also x-point configuration), toroidal current and poloidal β. (author) 4 refs., 4 figs

  1. Investigation of the toroidal dependence of first wall conditions in the Large Helical Device

    International Nuclear Information System (INIS)

    Hino, T.; Ashikawa, N.; Masuzaki, S.; Sagara, A.; Komori, A.; Yamauchi, Y.; Nobuta, Y.; Matsunaga, Y.

    2010-11-01

    The non-uniform wall conditions such as the fuel hydrogen retention and the erosion/deposition have been investigated in the Large Helical Device (LHD) by using toroidally and poloidally distributed material probes. They were installed in every experimental campaign from 2003 to 2010, and the evolutions of the wall conditions were clearly obtained. The wall conditions significantly depended on the operational procedures and the positions of in-vessel devices such as anodes for glow discharge and the ICRF antennas. The toroidal profiles for the amounts of retained hydrogen and helium, and the depth of wall erosion, were systematically measured. The hydrogen, helium and neon glow discharges have been conducted by using two anodes before and after the hydrogen or helium main discharges. The amount of retained hydrogen was large in the vicinity of the anodes, and drastically decreased as increase of the campaign number. This reduction well corresponds to the time period used for the hydrogen glow discharge conditioning. The erosion depth was large at the walls relatively close to the anodes, which is owing to the sputtering during the helium and neon glow discharges. The depositions of carbon and boron also depended on the positions of NBI and diborane gas inlet used for boronization, respectively. The amount of the retained helium was large at the walls close to the anodes owing to the helium glow discharge. The amount of retained helium became large at the walls close to the ICRF antennas owing to the implantation of high energy helium during the helium main discharge with the ICRF heating. In the present study, the toroidal dependences of the gas retention and the erosion/deposition in LHD were obtained, and the effects of the in-vessel devices on these plasma wall interactions were clarified. (author)

  2. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  3. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-07-23

    Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.

  4. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    Science.gov (United States)

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  5. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  6. Quantum effects on the formation of negative hydrogen ion by polarization electron capture in partially ionized dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-05-01

    The quantum effects on the formation of the negative hydrogen ion (H - ) by the polarization electron capture process are investigated in partially ionized dense hydrogen plasmas. It is shown that the quantum effect strongly suppresses the electron capture radius as well as the cross section for the formation of the negative hydrogen ion. In addition, it has been found that the electron capture position is receded from the center of the projectile with decreasing the quantum effect of the plasma. (author)

  7. KINEMATICAL FEATURES OF FORMATION OF A FLANGE WITH MINIMUM TENSION OF A TRANSIENT TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    M. I. Sidorenko

    2018-01-01

    Full Text Available The technology of plastic forming of wide flanges in tube billets with the predicted length of the transitional toroidal section between the outer plane of the flange and the internal cavity of the pipe is proposed. The procedure for calculating the length of this section is given. In order to eliminate the toroidal portion in the flange formed during the flanging of the pipe, it is proposed to perform its plastic shaping by depositing the cylindrical part of the workpiece. Equations for calculating the extent of the free surface on the toroidal part of the workpiece when it is shaped, depending on the coefficient of contact friction and the presence of a radial support of the flange are obtained. The variant of forming in the flange the toroidal section in the stamp with the compensation cavity is proposed. Equations for calculating the deformation force and the extent of the free surface are given.

  8. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  9. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  10. Free-boundary toroidal Alfvén eigenmodes

    Science.gov (United States)

    Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.

    2011-05-01

    A numerical study is presented for the n = 1 free-boundary toroidal Alfvén eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.

  11. Quasistatic evolution of compact toroids

    International Nuclear Information System (INIS)

    Sgro, A.G.; Spencer, R.L.; Lilliequist, C.

    1981-01-01

    Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations

  12. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    Science.gov (United States)

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  13. Moving toroidal limiter

    International Nuclear Information System (INIS)

    Ikuta, Kazunari; Miyahara, Akira.

    1983-06-01

    The concept of the limiter-divertor proposed by Mirnov is extended to a toroidal limiter-divertor (which we call moving toroidal limiter) using the stream of ferromagnetic balls coated with a low Z materials such as plastics, graphite and ceramics. An important advantage of the use of the ferromagnetic materials would be possible soft landing of the balls on a catcher, provided that the temperature of the balls is below Curie point. Moreover, moving toroidal limiter would work as a protector of the first wall not only against the vertical movement of plasma ring but also against the violent inward motion driven by major disruption because the orbit of the ball in the case of moving toroidal limiter distributes over the small major radius side of the toroidal plasma. (author)

  14. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  15. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  16. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  17. Improved plasma confinement by modulated toroidal current on HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Zhao Junyu; Shen Biao; Luo Jiarong

    2004-01-01

    The improved confinement phase was observed during modulating toroidal current on the Hefei superconducting Tokamak-7 (HT-7). This improved plasma confinement phase is characterized by suppressing magnetohydrodynamic (MHD) instabilities effectively, thus increased the central line averaged electron density and the central electron temperature about 33%, out-put steeper density profiles, and reduced hydrogen radiation from the edge as well. The global energy confinement time was increased by 27%-45%; The impurity radiation was reduced by modulation of plasma toroidal current; particle confinement time was increased about two times; a stronger radial negative electric field formed inside the limiter. The radial electric field during modulating current was calculated and disscused. (authors)

  18. Hydrogen Production via Synthetic Gas by Biomass/Oil Partial Oxidation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Tukač, V.; Veselý, Václav; Kováč, D.

    176-177, - (2011), s. 286-290 ISSN 1385-8947. [International Conference on Chemical Reactors CHEMREACTOR-19 /19./. Vienna, 05.09.2010-09.09.2010] R&D Projects: GA MPO 2A-2TP1/024 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen * biomass * partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.461, year: 2011

  19. Heat deposition on the partial limiter

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae-I; Nagasaki, Kazunobu.

    1990-01-01

    The effect of the partial limiter in the outermost magnetic surface of toroidal plasmas is studied. The power deposition on the partial limiter and its effect on the temperature profile are analysed. Interpretation in terms of the perpendicular heat conductivity is also discussed. (author)

  20. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  1. Linear wave propagation in a hot axisymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  2. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  3. Effect of eddy currents in the toroidal field coils of a tokamak with an air-core transformer

    International Nuclear Information System (INIS)

    Tani, Keiji; Kobayashi, Tomofumi; Tamura, Sanae

    1975-02-01

    The effect of eddy currents in the copper parts of the toroidal field coils is evaluated for a tokamak with the air-core transformer windings located inside the bore of the toroidal field coils. By introducing appropriate weights to the solutions obtained for a simplified cylindrical model, calculation is made of the induction toroidal electric field on the plasma axis in the presence of the eddy currents. The result shows that, to reduce the influence of the eddy currents on the induction one-turn voltage to the permissible level, it is necessary to choose the optimal number of turns and shape of the single conductor of the toroidal field coil. (auth.)

  4. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi

    2015-01-01

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  5. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  6. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  7. BPX toroidal field coil design

    International Nuclear Information System (INIS)

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  8. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  9. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure

    International Nuclear Information System (INIS)

    Xiong, X.L.; Zhou, Q.J.; Li, J.X.; Volinsky, Alex A.; Su, Y.J.

    2017-01-01

    Highlights: •Hydrostatic pressure increases the Volmer and the Heyrovsky reactions rates. •Hydrostatic pressure decreases the Tafel reaction rate. •Hydrogen adsorption conditions change with pressure under −1.2 and −1.3 V SSE . •Under −1.2 and −1.3 V SSE , the Heyrovsky reaction dominates the hydrogen recombination. •Under −1.0 and −1.1 V SSE , the Tafel reaction dominates the hydrogen recombination. -- Abstract: A new electrochemical impedance spectroscopy (EIS) model, which considers both the Tafel recombination and the Heyrovsky reaction under permeable boundary conditions, was developed to characterize the kinetic parameters of the hydrogen evolution reaction (HER) under hydrostatic pressure. The effect of the hydrostatic pressure on the kinetic parameters of the HER and the permeation of A514 steel in alkaline solution were measured using potentiodynamic polarization, the Devanathan cell hydrogen permeation, and EIS. The hydrostatic pressure accelerates the Volmer reaction and inhibits the Tafel recombination, which increases the number of adsorbed hydrogen atoms. On the other hand, the pressure accelerates the Heyrovsky reaction, which decreases the amount of adsorbed hydrogen atoms. At 10 to 40 MPa hydrostatic pressure within the −1.0 to −1.1 V SSE cathodic potential region, the HER is controlled by hydrogen partial pressure, and hydrogen adsorption is the Langmuir type. Within the −1.2 to −1.3 V SSE cathodic potential region, the HER is controlled by the potential, and hydrogen adsorption gradually transfers from the Langmuir type to the Temkin type with increasing hydrostatic pressure.

  10. Are the toroidal shapes of heavy-ion reactions seen in macroscopic drop collisions?

    International Nuclear Information System (INIS)

    Menchaca R, A.; Borunda, M.; Hidalgo, S.S.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V.

    1996-01-01

    Experiments involving the collisions of water, and mineral oil, drops are reported. The aim is to search for toroidal configurations predicted by, both, macroscopic fluid dynamic and nuclear models. Instead, we find the formation of thin liquid sheets surrounded by a somewhat thicker rim presenting a fingering instability. (Author)

  11. Finite toroidal flow generated by unstable tearing mode in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, Y. H.; He, H. D.; Xu, M.; Qu, H. P.; Peng, X. D.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sun, Y. [Institute of Plasma Physics, Chinese Academic of Sciences, P.O. Box 1126, Hefei 230031 (China); Cui, S. Y. [School of Mathematics and Statistics Science, Ludong University, Yantai 264025 (China)

    2014-12-15

    The neoclassical toroidal plasma viscosity torque and electromagnetic torque, generated by tearing mode (TM) in a toroidal plasma, are numerically investigated using the MARS-Q code [Liu et al., Phys. Plasmas 20, 042503 (2013)]. It is found that an initially unstable tearing mode can intrinsically drive a toroidal plasma flow resulting in a steady state solution, in the absence of the external momentum input and external magnetic field perturbation. The saturated flow is in the order of 0.5%ω{sub A} at the q=2 rational surface in the considered case, with q and ω{sub A} being the safety factor and the Alfven frequency at the magnetic axis, respectively. The generation of the toroidal flow is robust, being insensitive to the given amplitude of the perturbation at initial state. On the other hand, the flow amplitude increases with increasing the plasma resistivity. Furthermore, the initially unstable tearing mode is fully stabilized by non-linear interaction with the self-generated toroidal flow.

  12. Shape of the Hα emission line in non resonant charge exchange in hydrogen plasmas

    International Nuclear Information System (INIS)

    Susino Bueno, A.; Zurro Hernandez, B.

    1977-01-01

    The Hα line shape emitted from a maxwellian hydrogen plasma and produced by non resonant change exchange has been calculated. Its explicit shape depends on the ion temperature, on background neutral energy and on the relative shape of the collision cross section. A comparison between theoretical and experimental shapes of the Hα line is carried out to check the model and to deduce the ion plasma temperature. (author) [es

  13. Superconducting endcap toroid design report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, C.R.; Baynham, D.E.; Holtom, E.; Coombs, R.C.

    1992-10-01

    The Atlas Experiment proposed for the LHC machine will use toroidal magnet systems to achieve high muon momentum resolutions. One of the options under consideration is an air cored superconducting toroidal magnet system consisting of a long barrel toroid with small and cap toroids inserted in it to provide high resolution at high pseudorapidity. The design of the barrel toroid has been studied over the past two years and the design outline is given in a Saclay Report. More recently consideration has been given to an end cap toroid system which is based on air cored superconducting coils. This report presents the basic engineering design of such a system, the proposals for fabrication, assembly and installation, and an outline cost estimate for one end cap is presented in Appendix 1.

  14. Alfven continuum with toroidicity

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.M.

    1985-06-01

    The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum

  15. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  16. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  17. Development of toroid-type HTS DC reactor series for HVDC system

    International Nuclear Information System (INIS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-01-01

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  18. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey , Angel; Ballenegger , Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  19. On the evaluation of the capacitance of toroidal capacitors with a moon-shape meridian cross section

    International Nuclear Information System (INIS)

    Gongora T, A.; Ley-Koo, E.

    1997-01-01

    The toroidal capacitors studied in this paper consist of electrodes with meridian cross sections that are circular arcs meeting at the axis, and separated from each other by two small insulating spheres at their meeting points. The description and analysis of such capacitors is carried out by using bi spherical coordinates. The R-separability of the Laplace equation in these coordinates requires the use of the Green function technique, just like in the related problems of toroidal, spherical-cap-electrode, and bi spherical capacitors (1-3). An overall comparison of the solutions of the four problems is specially instructive. (Author)

  20. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  1. Toroidal current asymmetry in tokamak disruptions

    Science.gov (United States)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  2. Tokamak with liquid metal toroidal field coil

    International Nuclear Information System (INIS)

    Ohkawa, T.; Schaffer, M.J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof

  3. TOROID II

    Science.gov (United States)

    2009-01-01

    three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude

  4. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  5. Equivelar toroids with few flag-orbits

    OpenAIRE

    Collins, José; Montero, Antonio

    2018-01-01

    An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.

  6. Neoclassical transport in toroidal systems

    International Nuclear Information System (INIS)

    Wobig, H.

    1992-01-01

    The neoclassical theory of general toroidal equilibria is reformulated. The toroidal equilibrium of tokamaks and stellarators are described in Hamada coordinates. The relevant geometrical parameters are identified and it is shown how the reduction of Pfirsch-Schluter currents affects neoclassical transport and bootstrap effects. General flux-friction relations between thermodynamic forces and fluxes are derived. In drift-kinetic approximation the neoclassical transport coefficients are Onsager symmetric. Since a toroidal loop voltage is included, the theory is valid for all toroidal systems. (Author)

  7. Comparison of edge plasma perturbation during ELM control using one vs. two toroidal rows of RMP coils in ITER similar shaped plasmas on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E., E-mail: fenstermacher@fusion.gat.co [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Evans, T.E.; Osborne, T.H.; Schaffer, M.J.; DeGrassie, J.S.; Gohil, P.; Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Moyer, R.A. [University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States)

    2009-06-15

    Large Type-I edge localized modes (ELMs) were suppressed by n = 3 resonant magnetic perturbations (RMPs) from a set of internal coils in plasmas with an ITER similar shape at the ITER pedestal collisionality, nu{sub e}*approx0.1 and low edge safety factor (q{sub 95} approx 3.6), with either a single toroidal row of the internal RMP coils or two poloidally separated rows of coils. ELM suppression with a single row of internal coils was achieved at approximately the same q{sub 95} surface-averaged perturbation field as with two rows of coils, but required higher current per coil. Maintaining complete suppression of ELMs using n = 3 RMPs from a single toroidal row of internal coils was less robust to variations in input neutral beam injection torque than previous ELM suppression cases using both rows of internal coils. With either configuration of RMP coils, maximum ELM size is correlated with the width of the edge region having good overlap of the magnetic islands from vacuum field calculations.

  8. Evidence of quantum correlations in the H/D-transfer dynamics in the hydrogen bonds in partially deuterated benzoic acid crystals

    Science.gov (United States)

    Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.

    1992-10-01

    A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.

  9. Fast Dump of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  10. Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1.

    Science.gov (United States)

    Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R

    2015-04-01

    In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.

  11. D{sup -} energy spectrum in toroidal quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, C A; Gutierrez, W; Garcia, L F [Universidad Industrial de Santander, Bucaramanga (Colombia); Marin, J H, E-mail: jhmarin@unal.edu.c [Universidad Nacional-Colombia, Medellin-Colombia, AA3840 (Colombia)

    2009-05-01

    The structure of energy spectrum of the negative donor centre in a toroidal-shaped quantum ring with two different morphologies of the cross-section is analyzed. By using the adiabatic procedure we have deduced a one-dimensional wave equation with periodic conditions which describes the low-lying energy levels related to the electrons rotation around the symmetry axis. Our results are in good agreement with those previously obtained as the size of the ring cross-section tends to zero.

  12. A model for the neoclassical toroidal viscosity effect on Edge plasma toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Miron, I.G. [National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania)

    2013-11-15

    A semianalytic expression for the edge plasma angular toroidal rotation frequency that includes the neoclassical toroidal viscosity braking influence is obtained. Based on the model presented in a previous paper [I.G. Miron, Contrib. Plasma Phys. 53, 214 (2013)], the less destabilizing error field spectrum is found in order to minimize the nonlinear effect of the NTV on the toroidal rotation of the edge of the plasma. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Eigenvalues of relaxed toroidal plasmas of arbitrary sharp edged cross sections. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Sh M [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Relaxed (force-free) toroidal plasmas described by the equations cur 1 B={mu}B, and grad {mu}=O (B is the magnetic field) induces interest in nuclear fusion. Its solution is perceived to describe the gross of the reversed field pinch (RFP), spheromak configuration, current limitation in toroidal plasmas, and others. The parameter {mu} plays an important roll in relaxed states. It cannot exceed the smallest eigenvalue {mu} (min), and that for a toroidal discharge there is a maximum toroidal current which is connected to this value. The values of{mu} were calculated numerically, using the methods of collocation points, for toroids of arbitrary aspect ratio {alpha} ({alpha} = R/a, ratio of major/minor radii of tokamak) and arbitrary curved cross-sections (circle, ellipse, cassini, and D-shaped). The aim of present work is to prove the applicability of the numerical methods for calculating the eigenvalues for toroidal plasmas having sharp edged cross sections and arbitrary aspect ratio. The lowest eigenvalue {mu} (min), satisfy the boundary condition {beta} .n = O (or RB. = O) for which the toroidal flux are calculated. These are the zero field eigenvalues of the equation cur 1 b={mu}B. The poloidal magnetic field lines corresponding to different cross sections are shown by plotting the boundary condition B.n=O. The plots showed good fulfillment of the boundary condition along the whole boundaries of different cross sections. Dependence of eigenvalues {mu}a on aspect ratio {alpha} is also obtained. Several runs of the programme with various wave numbers K showed that {mu}a is very insensitive to the choice of K. 8 figs.

  14. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  15. Poisson-Spot Intensity Reduction with a Partially-Transparent Petal-Shaped Optical Mask

    Science.gov (United States)

    Shiri, Shahram; Wasylkiwskyj, Wasyl

    2013-01-01

    The presence of Poisson's spot, also known as the spot of Arago, formed along the optical axis in the geometrical shadow behind an obstruction, has been known since the 18th century. The presence of this spot can best be described as the consequence of constructive interference of light waves diffracted on the edge of the obstruction where its central position can··be determined by the symmetry of the object More recently, the elimination of this spot has received attention in the fields of particle physics, high-energy lasers, astronomy and lithography. In this paper, we introduce a novel, partially transparent petaled mask shape that suppresses the bright spot by up to 10 orders of magnitude in intensity, with powerful applications to many of the above fields. The optimization technique formulated in this design can identify mask shapes having partial transparency only near the petal tips.

  16. Tunable plasmonic toroidal terahertz metamodulator

    Science.gov (United States)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  17. Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma

    International Nuclear Information System (INIS)

    Sato, K.N.; Sakakita, H.; Fujita, H.

    2003-01-01

    Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, 'the injection-angle controllable system'. A long 'helical tail' of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroidal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the 'tail' structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation

  18. Expansion of parameter space for Toroidal Alfven Eigenmode experiments in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Wilson, J.R.; Chang, Z.Y.; Fredrickson, E.; Hammett, G.W.; Bush, C.; Nazikian, R.; Phillips, C.K.; Snipes, J.; Taylor, G.

    1993-05-01

    Several techniques were used to excite toroidal Alfven Eigenmodes in the Tokamak Fusion Test Reactor (TFTR) at magnetic fields above 10 kG. These involve pellet injection to raise the plasma density, variation of plasma current to change the energetic ion orbit and the q-profile, and ICRF heating to produce energetic hydrogen ions at velocities comparable to 3.5 MeV alpha particles. These experimental results are presented and relevance to fusion reactors are discussed

  19. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  20. X-ray imaging with toroidal mirror

    International Nuclear Information System (INIS)

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  1. Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism

    International Nuclear Information System (INIS)

    Zheng Jie; Zhang Yaohua; Song Xubo; Li Xingguo

    2011-01-01

    Ceria nanoparticles with well defined facets are prepared in argon–hydrogen thermal plasma followed by controlled oxidation. With increasing hydrogen fraction in the plasma, a clear sphere-to-polyhedron shape transition is observed. The heat released during the hydrogenation of cerium, which significantly enhances the species mobility on the surface, favors the growth of well defined facets. The polyhedron ceria nanoparticles, though lower in specific surface area, exhibit superior catalytic performance for CO oxidation over the round particles, which is attributed to the higher density of the reactive {200} and {220} facets on the surface. The hydrogen mediated shape control mechanism provides new insights into the shape control of nanoparticles during thermal plasma processing.

  2. Closed expressions for the magnetic field of toroidal multipole configurations

    International Nuclear Information System (INIS)

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration

  3. Supplementation with partially hydrogenated oil in grazing dairy cows in early lactation.

    Science.gov (United States)

    Schroeder, G F; Gagliostro, G A; Becu-Villalobos, D; Lacau-Mengido, I

    2002-03-01

    Effects of partially hydrogenated oil on performance, loss of body weight and body condition score, and blood metabolite and hormone concentrations were evaluated in 37 multiparous Holstein cows in grazing conditions during the first 100 d of lactation. Six additional Holstein cows, each fitted with a ruminal cannula, were allocated to a replicated 3 x 3 Latin square to evaluate effects of supplemental fat on rumen environment and pasture digestion. All cows grazed mixed pastures based on alfalfa (Medicago sativa) and orchardgrass (Dactylis glomerata L.) and received 5.4 kg/d of a basal concentrate to which 0, 0.5, or 1 kg/cow per day of partially hydrogenated oil (melting point 58 to 60 degrees C) containing 30.3, 34.9, 21.8, and 3.3% of C16:0, C18:0, C18:1, and C182, respectively, was added. Feeding 1 kg/d of supplemental fat increased fat-corrected milk from 23.4 to 26.3 kg/d, milk fat content from 3.44 to 3.78%, and milk fat yield from 0.87 to 1.03 kg/d compared to control. Milk protein percentage and yield were not affected. Cows fed 1 kg/d of fat increased the content and yield of C16:0 and C18:0 in milk compared with cows fed no added oil. Dry matter intake (DMI) from pasture decreased from 17.8 kg/d for control cows to 13.6 kg/d for cows fed 1 kg of oil, whereas DMI from concentrate was higher for cows fed 1 kg/d of fat (6.0 kg/d) than for controls (5.2 kg/d). Supplemental fat did not affect total dry matter or estimated energy intake and did not change losses of body weight or body condition scores. Plasma concentrations of nonesterified fatty acids, insulin, somatotrophin, and insulin-like growth factor-I did not differ among treatments. Concentration of plasma triglycerides was lowered from 318.5 to 271.2 mg/dl, whereas plasma cholesterol was elevated from 185.0 to 235.8 mg/dl in cows receiving 1 kg/d of supplemental fat compared with controls. Responses to lipolytic or insulin challenges were not affected by feeding oil. Supplemental fat did not affect

  4. Association between hepatic cholesterol and oleic acid in the liver of rats treated with partially hydrogenated vegetable oil

    Directory of Open Access Journals (Sweden)

    Gabriela Salim Ferreira de Castro

    2012-02-01

    Full Text Available OBJECTIVE: The aim of the present study was to investigate the lipid profiles of the hepatic and adipose tissues of Wistar rats treated for 21 days with a diet high in saturated fat (high saturated fat, n=6 or high in hydrogenated fat, that is, having 50% partially hydrogenated vegetable oil in its composition (high hydrogenated fat, n=6, and compare them to those of a control group (control group, n=6. METHODS: Adipose tissue and total hepatic fat were higher in the saturated fat group than in the hydrogenated fat group. Hepatic lipid peroxidation was greatest in the saturated fat group, with consequent lower hepatic vitamin E and A levels. In contrast, serum vitamin A was highest in the saturated fat group. Analysis of hepatic lipid fractions found more cholesterol and less high density lipoprotein-cholesterol in the hydrogenated fat group. The hydrogenated fat group had the highest levels of triacylglycerols, followed by the saturated fat group. RESULTS: Significant amounts of trans fatty acids were detected in the hepatic and adipose tissues of the hydrogenated fat group. Among the identified fatty acids, 18:1n9 had a higher positive association with hepatic cholesterol and triacylglycerols, and a higher negative association with high density lipoprotein-cholesterol. Partially hydrogenated vegetable oil promotes greater accumulation of cholesterol and triacylglycerols in the liver than saturated fats. CONCLUSION: Trans fatty acids were incorporated into hepatocytes and adipocytes in a highly efficient manner.

  5. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  6. Changing the world with hydrogen and nuclear: From past successes to shaping the future

    International Nuclear Information System (INIS)

    Carre, F.

    2010-01-01

    This presentation reviews the past history of hydrogen and nuclear energy, while considering how they had been important forever, how they have been used to change the world when they were discovered and understood, and how they will likely shape our future to face specific challenges of the 21. century. Content: 1 - hydrogen and nuclear reactions at the origin of the universe: the universe and supernovae, the sun, the blue planet, the evolution of man; 2 - understanding and first uses of hydrogen: the discovery of hydrogen, hydrogen balloons, airships or dirigibles, the discovery of the electrolysis and the fuel cell, Jules Vernes; 3 - development of nuclear over the 20. century: pioneers of nuclear energy, Fermi reactor, EBR-1; 4 - development of hydrogen over the 20. century, expanding uses of hydrogen over the second half of the 20. century; 5 - four major endeavours gathering hydrogen and nuclear: light water reactors, naval reactors, nuclear rockets, controlled fusion, the PNP-500 project; 6 - stakes in hydrogen and nuclear production in the 21. century: energy challenge for the 21. century, peaking of fossil fuel production, renaissance of nuclear energy, changes in transportation model, hydrogen market, technologies for nuclear hydrogen production, carbon taxes, the path forward: international demonstrations towards industrialisation, a new generation of scientists for our dreams come true

  7. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  8. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  9. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  10. Optimizing dc-resistance of a foil wounded toroidal inductor combining matlab and comsol

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    An optimization routine is presented to optimize the shape of a foil winding of a toroid inductor in terms of the DC resistance. MATLAB was used to define the geometry of the foil winding and COMSOL was used to import the geometry and create a 3D finite element model. The initial parameters...

  11. Magnetic field profiles during turbulent heating in a toroidal hydrogen plasma

    International Nuclear Information System (INIS)

    Kalfsbeek, H.W.

    1978-12-01

    A description is given of the measurements of both poloidal and toroidal magnetic field components as functions of radius and time in a small turbulently heated tokamak. These measurements have been carried out with an array of miniature pick-up coils, enclosed in a quartz tube which is inserted into the plasma. The electric fields inside the plasma, as well as the parallel resistivity profiles are deduced from the measured magnetic fields. The ohmically dissipated energy is determined from the field distributions and compared with the total input energy. The experimental results are compared with the outcome of a numerical model. The consistency with information obtained from other diagnostic measurements is checked. (Auth.)

  12. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  13. Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Avinash, K.

    1992-01-01

    Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)

  14. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  15. Toroidal Trivelpiece-Gould modes

    International Nuclear Information System (INIS)

    Stoessel, F.P.

    1979-01-01

    Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)

  16. Review of the Advanced Toroidal Facility program

    International Nuclear Information System (INIS)

    Lyon, J.F.; Murakami, M.

    1987-01-01

    This report summarizes the history and design goals of the Advanced Toroidal Facility (ATF). The ATF is nearing completion at ORNL with device completion expected in May 1987 and first useful plasma operation in June/July 1987. ATF is a moderate-aspect-ratio torsatron, the world's largest stellarator facility with R = 2.1 m, α bar = 0.3 m and B = 2 T (5-s pulse) or 1 T (steady-state capability). It has been specifically designed to support the US tokamak program by studying important toroidal confinement issues in a similar magnetic geometry that allows external control of the magnetic configuration properties and their radial profiles: transform, shear, well depth, shaping, axis topology, etc. ATF will operate in a current-free model which allows separation of current-driven and pressure-driven plasma behavior. It also complements the world stellarator program in its magnetic configuration (between Heliotron-E and W VII-AS) and its capabilities (large size, good access, steady state capability, second stability access, etc.). For both roles ATF will require high-power long-pulse heating to carry out its physics goals since the high power NBI pulse is limited to 0.3 s. The ATF program focuses on demonstrating the principles of high-beta, steady-state operation in toroidal geometry through its study of: (1) scaling of beta limits with magnetic configuration properties and the plasma behavior in the second stability regime; (2) transport scaling at low collisionality and the role/control of electric field; (3) control of plasma density and impurities using divertors; (4) plasma heating with NBI, ECH, ICH, and plasma fueling with gas puffing and pellet injection; and (5) optimization of the magnetic configuration

  17. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  18. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  19. Toroidal effects on drift wave turbulence

    International Nuclear Information System (INIS)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-01-01

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling

  20. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  1. Some analytical results for toroidal magnetic field coils with elongated minor cross-sections

    International Nuclear Information System (INIS)

    Raeder, J.

    1976-09-01

    The problem of determining the shape of a flexible current filament forming part of an ideal toroidal magnetic field coil is solved in a virtually analytical form. Analytical formulae for characteristic coil dimensions, stored magnetic energies, inductances and forces are derived for the so-called D-coils. The analytically calculated inductances of ideal D-coils are compared with numerically calculated ones for the case of finite numbers of D-shaped current filaments. Finally, the magnetic energies stored in ideal rectangular, elliptic and D-coils are compared. (orig.) [de

  2. High-fidelity in vivo replication of DNA base shape mimics without Watson–Crick hydrogen bonds

    Science.gov (United States)

    Delaney, James C.; Henderson, Paul T.; Helquist, Sandra A.; Morales, Juan C.; Essigmann, John M.; Kool, Eric T.

    2003-01-01

    We report studies testing the importance of Watson–Crick hydrogen bonding, base-pair geometry, and steric effects during DNA replication in living bacterial cells. Nonpolar DNA base shape mimics of thymine and adenine (abbreviated F and Q, respectively) were introduced into Escherichia coli by insertion into a phage genome followed by transfection of the vector into bacteria. Genetic assays showed that these two base mimics were bypassed with moderate to high efficiency in the cells and with very high efficiency under damage-response (SOS induction) conditions. Under both sets of conditions, the T-shape mimic (F) encoded genetic information in the bacteria as if it were thymine, directing incorporation of adenine opposite it with high fidelity. Similarly, the A mimic (Q) directed incorporation of thymine opposite itself with high fidelity. The data establish that Watson–Crick hydrogen bonding is not necessary for high-fidelity replication of a base pair in vivo. The results suggest that recognition of DNA base shape alone serves as the most powerful determinant of fidelity during transfer of genetic information in a living organism. PMID:12676985

  3. High current density toroidal pinch discharges with weak toroidal fields

    International Nuclear Information System (INIS)

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  4. Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views.

    Science.gov (United States)

    Orlov, Tanya; Zohary, Ehud

    2018-01-17

    We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on

  5. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Science.gov (United States)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  6. Analytical solution of the toroidal constant tension solenoid

    International Nuclear Information System (INIS)

    Gralnick, S.L.; Tenney, F.H.

    1975-01-01

    The coil shape is determined by requiring that the curvature of the flexible conductor be proportional to the distance from the toroidal axis. The resulting second order differential equation for the coil coordinates can be integrated once but for the second and final integration no closed form has been found and the integration has been done numerically. This solution of this differential equation is analytical in terms of an absolutely and uniformly convergent infinite series. The series converges quite rapidly and in practice ignoring all but the first five terms of the series introduces an error of less than 2 percent

  7. New material equations for electromagnetism with toroid polarizations

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Martsenyuk, M.A.; Saha, B.

    1999-09-01

    With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)

  8. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  9. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  10. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    CERN Document Server

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  11. Quantum mechanics of toroidal anions

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  12. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  13. Unified kinetic theory in toroidal systems

    International Nuclear Information System (INIS)

    Hitchcock, D.A.; Hazeltine, R.D.

    1980-12-01

    The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator

  14. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  15. Total, partial and differential ionization cross sections in proton-hydrogen collisions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shiyang [Graduate University for Advanced Studies, School of Mathematical and Physical Science, Toki, Gifu (Japan); Pichl, Lukas [University of Aizu, Foundation of Computer Science Laboratory, Aizuwakamatsu, Fukushima (Japan); Kimura, Mineo [Yamaguchi Univ., Graduate School of Science and Engineering, Ube, Yamaguchi (Japan); Kato, Takako [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-01-01

    Single-differential, partial and total ionization cross sections for the proton-hydrogen collision system at low energy range (0.1-10 keV/amu) are determined by using the electron translation factor corrected molecular-orbital close-coupling method. Full convergence of ionization cross sections as a function of H{sub 2}{sup +} molecular basis size is achieved by including up to 10 bound states, and 11 continuum partial waves. The present cross sections are in an excellent agreement with the recent experiments of Shah et al., but decrease more rapidly than the cross sections measured by Pieksma et al. with decreasing energy. The calculated cross section data are included in this report. (author)

  16. Suspension of a field-cooled BiPbSrCaCuO high-T sub c superconductor under a toroidal permanent magnet

    CERN Document Server

    Lee, S H; Choe, W; Lee, T S

    2002-01-01

    Magnetic flux measurements of a toroidal magnet revealed a concave-shaped field distribution with a single minimum and a null field along the axis of the torus at the point where the field reversed. The non-linear magnetic field of the toroidal magnet perpendicular to the Ag sub 2 O-doped superconducting disc sample with trapped magnetic flux distorted the field line distribution. As a result, the interaction force between the magnet and the sample exhibited regions of repulsive, null, attractive, null and finally repulsive force. The asymmetrical concave-shaped force pattern along the axis with two null force points indicates that the force exerted on the sample changes direction, the transition from repulsive to attractive at the null force point, and the force becomes repulsive again beyond the second null force point as the distance along the axis increases. The magnetic field simulation using the Poisson numerical code for the toroidal magnet of 46 mm OD, 12 mm ID and 10 mm thickness was in close agreeme...

  17. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  18. Heating of toroidal plasmas by neutral injection

    International Nuclear Information System (INIS)

    Stix, T.H.

    1971-08-01

    This paper presents a brief review of the physics of ion acceleration, charge exchange and ionization, trajectories for fast ions in toroidal magnetic fields, and fast-ion thermalization. The injection of fast atoms is found to be a highly competitive method both for heating present-day experimental toroidal plasmas and for bringing full-scale toroidal CTR plasmas to low-density ignition. 13 refs., 9 figs

  19. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  20. Compact toroid challenge experiment with the increasing in the energy input into plasma and the level of trapped magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romadanov, I.V.; Ryzhkov, S.V., E-mail: ryzhkov@power.bmstu.ru

    2014-12-15

    Highlights: • Compact torus formation method with high level of magnetic flux is proposed. • A compact torus is produced in a theta-pinch-coil with pulse mode of operation. • Key feature is a pulse of current in an axial direction. • We report a level of linked magnetic flux is higher than theta-pinch results. - Abstract: The present work reports on compact toroid hydrogen plasma creation by means of a specially designed discharge system and results of magnetic fields introduction. Experiments in the compact toroid challenge (CTC) device at P.N. Lebedev Physical Institute (FIAN) have been conducted since 2005. The CTC device differs from the conventional theta-pinch formation in the use of an axial current for enhanced efficiency. We have used a novel technique to maximize the flux linked to the plasma. The purpose of this method is to increase the energy input into the plasma and the level of trapped magnetic flux using an additional toroidal magnetic field. A study of compact torus formation with axial and toroidal currents was done and a new method is proposed and implemented.

  1. System for calibration of SPEAR transport line toroids

    International Nuclear Information System (INIS)

    Huang, T.V.; Smith, H.; Crook, K.

    1977-01-01

    A one nanosecond pulse generator was developed for calibration of the intensity monitors (toroids) in the SPEAR transport lines. The generator, located at the toroid, is simple, low cost and resistant to radiation. The generator and its connection to the standard SLAC toroid calibration system are described

  2. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  3. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  4. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  5. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  6. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  7. Investigations of toroidal wave numbers of the kink instabilities in a toroidal pinch plasma

    International Nuclear Information System (INIS)

    Hamajima, Takataro; Irisawa, Juichi; Tsukada, Tokuaki; Sugito, Osamu; Maruyama, Hideaki

    1979-01-01

    The axial toroidal wave numbers of the kink instability of toroidal pinch plasma were measured and investigated with a specially designed coil, and the results were compared with the MHD theory. The schematic figure and the particulars of the experimental apparatus are briefly illustrated in the first part. The method of generating theta-Z pinch plasma, the wave form of the magnetic flux density in Z-direction and the plasma current are also explained. The 360 deg stereoscopic framing photographs were taken with an image converter camera at the intervals of 0.5 μs after the initiation of the main electric discharge in Z-circuit. From these photographs, the growth of the kink instability was observed. The measured magnetic field distribution at t = 2 μs is presented. In the second part, the radial displacement of plasma and toroidal wave number were measured from the above framing photographs. Then the spectra of plasma displacement were analyzed by the Fourier analysis. The measured results of toroidal wave number was analyzed by both the skin current model and the diffuse current model. Many new results obtained from the present study were mainly derived from the observation of the framing photographs, and they are summarized in the final part of this paper. (Aoki, K.)

  8. The SSC superconducting air core toroid design development

    International Nuclear Information System (INIS)

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  9. Form factor of some types of toroidal solenoids

    International Nuclear Information System (INIS)

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  10. Comparative analysis of a fusion reactor blanket in cylindrical and toroidal geometry using Monte Carlo

    International Nuclear Information System (INIS)

    Chapin, D.L.

    1976-03-01

    Differences in neutron fluxes and nuclear reaction rates in a noncircular fusion reactor blanket when analyzed in cylindrical and toroidal geometry are studied using Monte Carlo. The investigation consists of three phases--a one-dimensional calculation using a circular approximation to a hexagonal shaped blanket; a two-dimensional calculation of a hexagonal blanket in an infinite cylinder; and a three-dimensional calculation of the blanket in tori of aspect ratios 3 and 5. The total blanket reaction rate in the two-dimensional model is found to be in good agreement with the circular model. The toroidal calculations reveal large variations in reaction rates at different blanket locations as compared to the hexagonal cylinder model, although the total reaction rate is nearly the same for both models. It is shown that the local perturbations in the toroidal blanket are due mainly to volumetric effects, and can be predicted by modifying the results of the infinite cylinder calculation by simple volume factors dependent on the blanket location and the torus major radius

  11. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Science.gov (United States)

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  12. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...... and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers....

  13. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  14. MHD equilibrium with toroidal rotation

    International Nuclear Information System (INIS)

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  15. Photoelastic analyses of stresses in toroidal magnetic field coils

    International Nuclear Information System (INIS)

    Pih, H.

    1977-02-01

    Several two-dimensional photoelastic stress analyses were made on models of circular and oval toroidal magnetic field coils for fusion reactors. The circumferential variation of each coil's in-plane magnetic force was simulated by applying different pressures to 16 segmented regions of the inner surface of the models. One special loading fixture was used for the model of each shape and size. Birefringence and isoclinic angles were measured in a transmission polariscope at selected points on the loaded model. Boundary stresses in the cases of known boundary conditions were determined directly from the isochromatics. Separate principal stresses were calculated using the combination of photoelastic information and isopachic data obtained by the electrical analogy method from the solution of Laplace's equation. Comparisons were made between experimental results and those computed using the finite element method. The stress distribution between theoretical and experimental agrees very well, although the finite element method yielded slightly higher stresses than the photoelastic method; further work is needed to resolve this difference. In this investigation several variations of coil geometry and methods of support were evaluated. Based on experimental results, optimum structural designs of toroidal field coils were recommended

  16. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  17. Toroidal visco-resistive magnetohydrodynamic steady states contain vortices

    International Nuclear Information System (INIS)

    Bates, J.W.; Montgomery, D.C.

    1998-01-01

    Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics

  18. Experimental studies of plasma confinement in toroidal systems

    International Nuclear Information System (INIS)

    Bodin, H.A.B.; Keen, B.E.

    1977-01-01

    In this article the closed-line magnetic field approach to the plasma isolation and confinement problem in toroidal systems is reviewed. The theoretical aspects of closed-line magnetic field systems, indicating that topologically such systems are toroidal, are surveyed under the headings; topology of closed-line systems, equilibrium in different configurations and classification of toroidal devices, MHD stability, non-ideal effects in MHD stability, microscopic stability, and plasma energy loss. A section covering the experimental results of plasma confinement in toroidal geometry considers Stellerators, Tokamaks, toroidal pinch -the reversed-field pinch, screw pinches and high-β Tokamaks, Levitrons and multipoles (internal-ring devices), and miscellaneous toroidal containment devices. Recent achievements and the present position are discussed with reference to the status of Tokamak research, low-β stellerator research and high-β research. It is concluded from the continuing progress made in this research that the criteria for the magnetic containment of plasmas can be met. Further, it is concluded that the construction of a successful and economic fusion reactor is within the scope of advancing science and technology. 250 references. (U.K.)

  19. Experimental studies of plasma confinement in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, H A.B.; Keen, B E [UKAEA, Abingdon. Culham Lab.

    1977-12-01

    In this article the closed-line magnetic field approach to the plasma isolation and confinement problem in toroidal systems is reviewed. The theoretical aspects of closed-line magnetic field systems, indicating that topologically such systems are toroidal, are surveyed under the headings; topology of closed-line systems, equilibrium in different configurations and classification of toroidal devices, MHD stability, non-ideal effects in MHD stability, microscopic stability, and plasma energy loss. A section covering the experimental results of plasma confinement in toroidal geometry considers Stellerators, Tokamaks, toroidal pinch -the reversed-field pinch, screw pinches and high-..beta.. Tokamaks, Levitrons and multipoles (internal-ring devices), and miscellaneous toroidal containment devices. Recent achievements and the present position are discussed with reference to the status of Tokamak research, low-..beta.. stellerator research and high-..beta.. research. It is concluded from the continuing progress made in this research that the criteria for the magnetic containment of plasmas can be met. Further, it is concluded that the construction of a successful and economic fusion reactor is within the scope of advancing science and technology. 250 references.

  20. The Influence of Injection Timing on Performance Characteristics of Diesel Engine Using Jatropha Biodiesel with and without Partial Hydrogenation

    Directory of Open Access Journals (Sweden)

    Rizqon Fajar

    2014-07-01

    Full Text Available Experimental research has been conducted to investigate the effects of blend of hydrogenated and unhydrogenated Jatropha biodiesel with diesel fuel in volume ratio of 30:70 (B30 on combustion characteristics (BSFC, thermal efficiency and smoke emission of single cylinder diesel engine. In this experiment, engine speed was kept constant at 1,500, 2,500, and 3,500 rpm with maximum engine load at BMEP 5 bar and injection timings were varied. Experimental result showed that at engine speed 1,500 rpm, BSFC of B30 hydrogenated and unhydrogenated Jatropha biodiesel were higher than it of diesel fuel at all injection timings (10° to 18° BTDC. At the same condition, partial hydrogenated Jatropha biodiesel showed higher BSFC than unhydrogenated Jatropha biodiesel. However, the difference in BSFC became smaller for all fuels at engine speed 2,500 rpm and 3,500 rpm at all injection timing. Jatropha biodiesel with and without partial hydrogenation tend to have higher thermal efficiency compared with diesel fuel at all engine speed and injection timing. The best injection timings to operate B30 Jatropha biodiesel with and without hydrogenation were 14°, 18° and 24° BTDC at engine speed 1,500, 2,500, and 3,500 rpm respectively. This conclusion was deduced based on the minimum value of BSFC and the maximum value of thermal efficiency. Smoke emissions for all fuels were in the same level for all conditions.

  1. The complex and unique ATLAS Toroid family

    CERN Multimedia

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  2. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  3. A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-04-01

    Full Text Available operation time. This granulation approach is a more efficient way to shape MOF-type powder materials into application-specific configurations compared to the mechanical pressing method. The pellets could be conveniently packed in a small hydrogen storage...

  4. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    CERN Document Server

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  5. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  6. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.W.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  7. Upper Stage Flight Experiment (USFE) Integral Structure Development Effort

    National Research Council Canada - National Science Library

    Guerrero, Jim; Hamilton, Brent; Burton, Randy; Crockett, Dave; Taylor, Zach

    2004-01-01

    .... AFRL/VS is developing a wide range of tank concepts that include linerless cryogenic tankage, self-healing cryogenic tankage, hydrogen peroxide compatible tankage, volumetrically efficient toroidal (donut shaped...

  8. Quench propagation and protection analysis of the ATLAS Toroids

    OpenAIRE

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  9. Investigation of intrinsic toroidal rotation scaling in KSTAR

    Science.gov (United States)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  10. Toroidal nuclear fusion device

    International Nuclear Information System (INIS)

    Ito, Yutaka; Kasahara, Tatsuo; Takizawa, Teruhiro.

    1975-01-01

    Object: To design a device so as to be formed into a large-size and to arrange ports, through which neutral particles enter, in inclined fashion. Structure: Toroidal coils are wound about vacuum vessels which are divided into plural number. In the outer periphery of the vacuum vessels, ports are disposed inclined in the peripheral direction of the vacuum vessels and communicated with the vacuum vessels, and wall surfaces opposed to the ports of the toroidal coils adjacent at least the inclined sides of the ports are inclined substantially simularly to the port wall surfaces. (Kamimura, M.)

  11. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Energy Technology Data Exchange (ETDEWEB)

    Alatawneh, Natheer, E-mail: natheer80@yahoo.com [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada); Rahman, Tanvir; Lowther, David A. [Department of Electrical and Computer Engineering, McGill University, QC H3A 0E9 (Canada); Chromik, Richard [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada)

    2017-06-15

    Highlights: • Develop a toroidal tester for magnetic measurements under compressive axial stress. • The shape of the toroidal ring has been verified using 3D stress analysis. • The developed design has been prototyped, and measurements were carried out. • Physical explanations for the core loss trend due to stress are provided. - Abstract: Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  12. Hydrogen production in fusion reactors

    Science.gov (United States)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of the methods of innovative energy production in fusion reactors (that do not include a conventional turbine-type generator), the efficient use of fusion-reactor radiation and semiconductors to supply clean fuel in the form of hydrogen gas is studied. Taking the reactor candidates such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a plant system concept are investigated.

  13. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    The quest for higher power density has led to research of very high frequency (30-300 MHz) power converters. Magnetic components based on ferrite cores have limited application within this frequency range due to increased core loss. Air-core magnetics is a viable alternative as they do not exhibit...... core loss. The drawback of most air-core magnetics is that the magnetic field is not contained within a closed shape, and it is thus prone to cause electro magnetic interference. A toroidal air-core inductor configuration can be used to contain the magnetic field. This work presents a novel air......-core toroidal transformer configuration for use in very high frequency power conversion applications. Two prototype transformers (10:10 and 12:12) have been implemented using conventional four layer printed circuit board technology. The transformers have been characterized by two port Z-parameters, which have...

  14. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  15. Toroidally asymmetric particle transport caused by phase-locking of MHD modes in RFX-mod

    International Nuclear Information System (INIS)

    Lorenzini, R.; Terranova, D.; Auriemma, F.; Cavazzana, R.; Innocente, P.; Martini, S.; Serianni, G.; Zuin, M.

    2007-01-01

    The particle and energy transport in reversed field pinch experiments is affected by the locking in phase of the tearing modes, also dubbed dynamo modes, that sustain the magnetic configuration. In standard RFP pulses many m = 1 and m = 0 resonant modes have a relatively large amplitude (a spectrum dubbed MH for multiple helicity). The locking in phase of m = 1 tearing modes produces a helical deformation (locked mode (LM)) of the magnetic surfaces in a region of approximately 40 toroidal degrees. The region of the LM is characterized by a strong plasma-wall interaction and by high losses of energy and particles that account for a significant fraction of the input power and of the total particle outflux. The locking in phase of m = 0 modes modifies the plasma radius, shrinking and enlarging the plasma cross section in two wide toroidal regions of about 100 0 . The purpose of this paper is to investigate to what extent the locking in phase of m = 0 modes introduces toroidal asymmetries in the transport properties of the plasma. This study has been carried out investigating the shape of the density profile in the RFX-mod experiment. The analyses show that the profile exhibits a dependence on the toroidal angle, which is related to the deformation of the plasma column due to the locking in phase of m = 0 modes: the least steep density gradients at the edge are found in the region where the plasma column is shrunk, entailing that in this region the particle transport is enhanced. An analogous asymmetry also characterizes the density and magnetic fluctuations at the edge, which are enhanced in the same toroidal region where the particle transport also is enhanced. This result can be considered the first experimental evidence of an instability localized where the plasma column is shrunk

  16. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  17. Highlights from the assembly of the helical field coils for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Benson, R.D.

    1985-01-01

    The helical field (HF) coils in the Advanced Toroidal Facility (ATF) device consist of a set of 24 identical segments connected to form a continuous pair of helical coils wrapped around a toroidal vacuum vessel. Each segment weighs approximately 1364 kg (3000 lb) and is composed of 14 water-cooled copper plate conductors bolted to a cast stainless steel structural support member with a T-shape cross section (known as the structural tee). The segment components are electrically insulated with Kapton adhesive tape, G-10, Tefzel, and rubber to withstand 2.5 kV. As a final insulator and structural support, the entire segment is vacuum impregnated with epoxy. This paper offers a brief overview of the processes used to assemble the component parts into a completed segment, including identification of items that required special attention. 4 figs

  18. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    Science.gov (United States)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  19. Analysis of MHD equilibria by toroidal multipolar expansions

    International Nuclear Information System (INIS)

    Alladio, F.; Crisanti, F.

    1986-01-01

    The use of fully toroidal co-ordinates permits the two-dimensional problem of the axisymmetric plasma toroidal equilibrium to be reduced to the one-dimensional problem of determining a limited number of its toroidal multipolar moments. This has allowed the creation of a fast semi-analytic predictive equilibrium code that can be used in both free and fixed boundary conditions for plasmas with circular or mildly non-circular cross-section. The concept of toroidal multipoles is also particularly suitable for the analysis of experimental data from magnetic probe measurements and clarifies the conditions under which the plasma thermal and electrical self-inductances βsub(p) and lsub(i) can be estimated separately. Finally, the interpretation of the magnetic equilibrium measurements in terms of toroidal multipoles can directly provide the boundary conditions for a fast equilibrium reconstruction code. Examples of the application of such a code to the JET magnetic measurements are reported. (author)

  20. Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach

    DEFF Research Database (Denmark)

    Ruban, V.P.; Juul Rasmussen, J.

    2003-01-01

    Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...... pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D...... hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)circulation-dominated regime of three-dimensional flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section...

  1. Matter-wave vortices in cigar-shaped and toroidal waveguides

    International Nuclear Information System (INIS)

    Salasnich, L.; Toigo, F.; Malomed, B. A.

    2007-01-01

    We study vortical states in a Bose-Einstein condensate (BEC) filling a cigar-shaped trap. An effective one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) is derived in this setting, for the models with both repulsive and attractive interatomic interactions. Analytical formulas for the density profiles are obtained from the NPSE in the case of self-repulsion within the Thomas-Fermi approximation, and in the case of the self-attraction as exact solutions (bright solitons). A crucially important ingredient of the analysis is the comparison of these predictions with direct numerical solutions for the vortex states in the underlying 3D Gross-Pitaevskii equation. The comparison demonstrates that the NPSE provides for a very accurate approximation, in all the cases, including the prediction of the stability of the bright solitons and collapse threshold for them. In addition to the straight cigar-shaped trap, we also consider a torus-shaped configuration. In that case, we find a threshold for the transition from the axially uniform state, with the transverse intrinsic vorticity, to a symmetry-breaking pattern, due to the instability in the self-attractive BEC filling the circular trap

  2. Toroidal mode-conversion in the ICRF

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  3. Plasma edge physics in the TEXTOR tokamak with poloidal and toroidal limiters

    International Nuclear Information System (INIS)

    Samm, U.; Bogen, P.; Hartwig, H.; Hintz, E.; Hoethker, K.; Lie, Y.T.; Pospieszczyk, A.; Rusbueldt, D.; Schweer, B.; Yu, Y.J.

    1989-01-01

    Investigations of the plasma edge in TEXTOR are presented on the one hand by comparing results obtained with poloidal and toroidal limiters and on the other hand by discussing general problems of plasma edge physics which are independent of the limiter configuration. The characteristic properties of plasma flow to the different limiters are analyzed and show e.g. that the fraction of total ion flow to the limiter is much larger in the case of a toroidal limiter (80%). Density and heat flux profiles are presented which demonstrate that for both types of limiters a significant steepening of the scrape-off layer (SOL) occurs close to the limiter, leading to a small heat load e-folding length of 5-8 mm. The velocity distribution of recycled neutral hydrogen at a main limiter has been determined from the Doppler broadening of the H α line. The data clearly show that a large fraction of particles (30-50%) is reflected at the limiter surface having energies of about the sheath potential. Significant isotopic effects (H/D) concerning the plasma edge properties and the plasma core are presented and their relation to enhanced particle and energy transport in hydrogen compared to deuterium is discussed. A decrease of the cross field diffusion coefficient with increasing density can be deduced from density profile measurements in the SOL and a comparison with density fluctuations is given. The role of oxygen for impurity release is demonstrated. A new type of wall conditioning - boronization - is described, with two major improvements for quasi stationary conditions: reduction of oxygen and better density control. Best results with ICRH have been obtained under these conditions. (orig.)

  4. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  5. Hydrogen production in fusion reactors

    International Nuclear Information System (INIS)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author)

  6. Hydrogen production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author).

  7. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  8. Effects of Toroidal Rotation Sshear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S

    2010-08-19

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  9. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.

    2010-01-01

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  10. Steady state toroidal magnetic field at earth's core-mantle boundary

    Science.gov (United States)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  11. Influence of toroidal rotation on tearing modes

    Science.gov (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  12. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  13. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  15. Toroidal groups line bundles, cohomology and quasi-Abelian varieties

    CERN Document Server

    Kopfermann, Klaus

    2001-01-01

    Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.

  16. Toroidal field ripple effects in large tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tsang, K.T.; Callen, J.D.

    1975-01-01

    In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations

  17. Prandtl number of toroidal plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.; Azumi, M.

    1993-06-01

    Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author)

  18. Toroidal surface complexes of bacteriophage φ12 are responsible for host-cell attachment

    International Nuclear Information System (INIS)

    Leo-Macias, Alejandra; Katz, Garrett; Wei Hui; Alimova, Alexandra; Katz, A.; Rice, William J.; Diaz-Avalos, Ruben; Hu Guobin; Stokes, David L.; Gottlieb, Paul

    2011-01-01

    Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage φ12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of φ12 demonstrates that the gene for the hexameric spike is located in φ12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimates derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: → Subtomogram averaging reveals enhanced detail of a φ12 cystovirus surface protein complex. → The surface protein complex has a toroidal shape and six-fold symmetry. → It is encoded by the medium-size genome segment. → The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.

  19. Ballooning instabilities in tokamaks with sheared toroidal flows

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs

  20. Spherical tokamak without external toroidal fields

    International Nuclear Information System (INIS)

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  1. Transport hysteresis and hydrogen isotope effect on confinement

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  2. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  3. Toroidal Thermonuclear device

    International Nuclear Information System (INIS)

    Takizawa, Teruhiro; Shizuoka, Yoshihide.

    1982-01-01

    Purpose: To reduce the shielding capacity of a current breaker for a current transformer coil and to facilitate the manufacture and the assembly of the current transformer coil. Constitution: A first current transformer coil is provided between a vacuum container for enclosing a plasma and a toroidal magnetic field coil, and a secon current transformer coil is provided outside the toroidal magnetic field coil. The rise of the plasma current is performed by the variation in the current of the coil of the first transformer having high electromagnetic coupling with the plasma current, and the variation in the magnetic flux necessary for maintaining the plasma is performed by the variation in the current of the second transformer coil. In this manner, the current shielding capacity of the first transformer coil can be reduced to decrease the number of coil turns, thereby facilitating the manufacture and assembly. (Seki, T.)

  4. Progress in gyrokinetic simulations of toroidal ITG turbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Dimits, A.M.; Cohen, B.I.; Shumaker, D.E.

    2001-01-01

    The 3-D nonlinear toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence - a key cause of the anomalous transport that limits tokamak plasma performance. Systematic studies of the dependence of ion thermal transport on various parameters and effects are presented, including dependence on E-vectorxB-vector and toroidal velocity shear, sensitivity to the force balance in simulations with radial temperature gradient variation, and the dependences on magnetic shear and ion temperature gradient. (author)

  5. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  6. Toroidal vortices in resistive magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Montgomery, D.; Bates, J.W.; Li, S.

    1997-01-01

    When a time-independent electric current flows toroidally in a uniform ring of electrically conducting fluid, a Lorentz force results, jxB, where j is the local electric current density, and B is the magnetic field it generates. Because of purely geometric effects, the curl of jxB is nonvanishing, and so jxB cannot be balanced by the gradient of any scalar pressure. Taking the curl of the fluid close-quote s equation of motion shows that the net effect of the jxB force is to generate toroidal vorticity. Allowed steady states necessarily contain toroidal vortices, with flows in the poloidal directions. The flow pattern is a characteristic open-quotes double smoke ringclose quotes configuration. The effect seems quite general, although it is analytically simple only in special limits. One limit described here is that of high viscosity (low Reynolds number), with stress-free wall boundary conditions on the velocity field, although it is apparent that similar mechanical motions will result for no-slip boundaries and higher Reynolds numbers. A rather ubiquitous connection between current-carrying toroids and vortex rings seems to be implied, one that disappears in the open-quotes straight cylinderclose quotes limit. copyright 1997 American Institute of Physics

  7. Escape of magnetic toroids from the Sun

    International Nuclear Information System (INIS)

    Bieber, John W.; Rust, David M.

    1996-01-01

    Analysis of heliospheric magnetic fields at 1 AU shows that 10 24 Mx of net toroidal flux escapes from the Sun per solar cycle. This rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed ∼2x10 45 Mx 2 of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx 2 cm -3 at 1 AU, which agrees well with observations

  8. Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Nikolas C.; Park, Jong-Kyu; Kim, Kimin; Wang, Zhirui [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Berkery, John W. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2013-12-15

    This paper presents a calculation of neoclassical toroidal viscous torque independent of large-aspect-ratio expansions across kinetic regimes. The Perturbed Equilibrium Nonambipolar Transport (PENT) code was developed for this purpose, and is compared to previous combined regime models as well as regime specific limits and a drift kinetic δf guiding center code. It is shown that retaining general expressions, without circular large-aspect-ratio or other orbit approximations, can be important at experimentally relevant aspect ratio and shaping. The superbanana plateau, a kinetic resonance effect recently recognized for its relevance to ITER, is recovered by the PENT calculations and shown to require highly accurate treatment of geometric effects.

  9. 2-D skin-current toroidal-MHD-equilibrium code

    International Nuclear Information System (INIS)

    Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.

    1982-09-01

    A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented

  10. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  11. Symmetric bi-pyridyl banana-shaped molecule and its intermolecular hydrogen bonding liquid-crystalline complexes

    Science.gov (United States)

    Sui, Dan; Hou, Qiufei; Chai, Jia; Ye, Ling; Zhao, Liyan; Li, Min; Jiang, Shimei

    2008-11-01

    A new symmetric bi-pyridyl banana-shaped molecule 1,3-phenylene diisonicotinate (PDI) was designed and synthesized. Its molecular structure was confirmed by FTIR, Elemental analysis and 1H NMR. X-ray crystallographic study reveals that there is an angle of approximate 118° among the centroids of the three rings (pyridyl-phenyl-pyridyl) in each PDI molecule indicating a desired banana shape. In addition, a series of liquid crystal complexes nBA:PDI:nBA induced by intermolecular hydrogen bonding between PDI (proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donor) were synthesized and characterized. The mesomorphism properties and optical textures of the complex of nBA:PDI:nBA were investigated by differential scanning calorimetry, polarizing optical microscope and X-ray diffraction.

  12. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  13. Design stresses in probabilistic form for ellipsoidal and toroidal pressure vessels

    International Nuclear Information System (INIS)

    Smith, C.O.

    1979-01-01

    Design has customarily been based on applied loading, geometry, and handbook values for strength to give a deterministic solution. The engineering profession, however, has become increasingly concerned with the adequacy of design calculations. This concern indicates a need for critical evaluation of designs based on arbitrary multipliers, such as factors of safety or worst-case treatment. Ellipsoids are frequently used for end closure of cylindrical pressure shells. Toroids of elliptic or circular cross-section, are widely used, e.g., for connecting two parallel legs in a U-shape. This paper gives equations for means and standard deviations of stresses developed in ellipsoids and toroids with internal pressure. Inherent are: (1) design variables are generally characterized by spectra of values (assumed to be normally distributed), rather than by unique values, and (2) a small, but finite, probability of failure must be recognized in any design. By coupling stresses due to applied loading as calculated by the given equations with strength available in a material, reliability (or the alternative probability of failure) can be calculated. Conversely, for a given reliability the appropriate size can be determined. (orig.)

  14. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  15. Effect of toroidicity during lower hybrid mode conversion

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.

    1985-11-01

    The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω 2 (m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω 2 = ω/sub LH/ 2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω 2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma

  16. Computer simulations of compact toroid formation and acceleration

    International Nuclear Information System (INIS)

    Peterkin, R.E. Jr.; Sovinec, C.R.

    1990-01-01

    Experiments to form, accelerate, and focus compact toroid plasmas will be performed on the 9.4 MJ SHIVA STAR fast capacitor bank at the Air Force Weapons Laboratory during the 1990. The MARAUDER (magnetically accelerated rings to achieve ultrahigh directed energy and radiation) program is a research effort to accelerate magnetized plasma rings with the masses between 0.1 and 1.0 mg to velocities above 10 8 cm/sec and energies above 1 MJ. Research on these high-velocity compact toroids may lead to development of very fast opening switches, high-power microwave sources, and an alternative path to inertial confinement fusion. Design of a compact toroid accelerator experiment on the SHIVA STAR capacitor bank is underway, and computer simulations with the 2 1/2-dimensional magnetohydrodynamics code, MACH2, have been performed to guide this endeavor. The compact toroids are produced in a magnetized coaxial plasma gun, and the acceleration will occur in a configuration similar to a coaxial railgun. Detailed calculations of formation and equilibration of a low beta magnetic force-free configuration (curl B = kB) have been performed with MACH2. In this paper, the authors discuss computer simulations of the focusing and acceleration of the toroid

  17. TIBER-II TF [toroidal-field] winding pack design

    International Nuclear Information System (INIS)

    Kerns, J.A.; Miller, J.R.; Slack, D.S.; Summers, L.T.

    1987-01-01

    The superconducting, toroidal-field (TF) coils in the Tokamak Ignition/Burn Engineering Reactor (TIBER II) are designed with cable-in-conduit conductor (CICC) using Nb 3 Sn composite strands. To design the CICC winding pack, we used an optimization technique that maximizes the conductor stability without violating the constraints imposed by the structure, electrical insulation, quench protection, and fabrication technique. Detailed helium-properties codes calculate the heat removal along a flow path, and detailed field calculations determine the temperature, current, and stability margins. The conductor sheath is designed as distributed structure to partially support the combined in-plane and out-of-plane loads generated within the winding pack. Pancakes of the coil are wound, reacted, and insulated before being potted in the case. This design is aggressive but fully consistent with good engineering practice. 5 refs., 4 figs., 2 tabs

  18. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  19. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  20. External kinks in plasmas with helical boundary deformation and net toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Ardelea, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-11-01

    The investigation of the global ideal magnetohydrodynamic (MHD) stability of plasmas with helical boundary shape and nonvanishing toroidal plasma current constitutes the principal aim of this work. Global external modes with small values of m,n (typically n = 1,2,3 and m = n+1) are studied, where m and n are the poloidal and toroidal mode numbers, respectively. The first and main part of the work concentrates on fixed boundary equilibria generated by systematically varying parameters such as the type and the magnitude of the boundary deformation, the number of equilibrium field periods N{sub per}, the aspect ratio, the toroidal current density profile, {beta} and the pressure profile. Due to the periodicity of the equilibrium, couplings between Fourier perturbation components with different toroidal mode numbers n occur and lead to the apparition of families of modes. The study of a particular (m,n) mode has to take into account all (m{sub l}, n{sub l}) perturbation components with n{sub 1} belonging to the same family as n. The stability analysis is carried out in the parameter region where the inverse rotational transform (the safety factor in the traditional tokamak notation) q{<=}2.0 and {beta}{<=}2%. A particular property of the configurations investigated is that equilibrium Fourier components (m{sub e}, N{sub per}n{sub e}) which are involved in the couplings between the (m,n) mode studied and the (m{sub k},n{sub k}) perturbation components with m{sub k}>n{sub k}>n that exhibit resonances in the q>1 region are very small. As a consequence, the contributions of the (m,n)x(m{sub k},n{sub k}) couplings to the potential energy are very weak. It is shown that a helical boundary deformation can stabilize the n=1,2,3 external modes; if {delta} is a measure of the plasma boundary deformation, then windows of stability [{delta}{sub min}, {delta}{sub max}] may exist for a large variety of equilibrium parameters. (author) figs., tabs., 44 refs.

  1. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  2. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae [Kyungpook National University, Daegu (Korea, Republic of)

    2013-04-15

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors.

  3. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    International Nuclear Information System (INIS)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae

    2013-01-01

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors

  4. Formation of a compact torus using a toroidal plasma gun

    International Nuclear Information System (INIS)

    Levine, M.A.; Pincosy, P.A.

    1981-01-01

    Myers, Levine and Pincosy earlier reported results using a toroidal plasma gun. The device differs from the usual coaxial plasma gun in the use of a strong toroidal bias current for enhanced efficiency, a pair of disk-like accelerating electrodes for reduced viscosity and a fast pulsed toroidal gas valve for more effective use of the injected gas sample. In addition, a technique is used for generating a toroidal current in the plasma ring. The combination offers an opportunity to deliver a plasma with a large amount of energy and to vary the density and relative toroidal and poloidal magnetic field intensities over a range of values. It is the purpose of this paper to report further experimental results, to project the gun's applications to the formation of a compact torus, and to propose a simple modification of the present apparatus as a test

  5. Using numerical simulations to extract parameters of toroidal electron plasmas from experimental data

    DEFF Research Database (Denmark)

    Ha, B. N.; Stoneking,, M. R.; Marler, Joan

    2009-01-01

    Measurements of the image charge induced on electrodes provide the primary means of diagnosing plasmas in the Lawrence Non-neutral Torus II (LNT II) [Phys. Rev. Lett. 100, 155001 (2008)]. Therefore, it is necessary to develop techniques that determine characteristics of the electron plasma from......, as in the cylindrical case. In the toroidal case, additional information about the m=1 motion of the plasma can be obtained by analysis of the image charge signal amplitude and shape. Finally, results from the numerical simulations are compared to experimental data from the LNT II and plasma characteristics...

  6. In vivo preclinical evaluation of the accuracy of toroidal-shaped HIFU treatments using a tumor-mimic model

    International Nuclear Information System (INIS)

    N'Djin, W A; Melodelima, D; Parmentier, H; Chapelon, J Y; Rivoire, M

    2010-01-01

    The pig is an ideal animal model for preclinical evaluation of HIFU treatments, especially in the liver. However, there is no liver tumor model available for pigs. In this work, we propose to study an in vivo tumor-mimic model as a tool for evaluating if a sonographycally guided HIFU treatment, delivered by a toroidal-shaped device dedicated for the treatment of liver metastases, is correctly located in the liver. One centimeter tumor-mimics were created in liver tissues. These tumor-mimics were detectable on ultrasound imaging and on gross pathology. Two studies were carried out. First, an in vivo study of tolerance at mid-term (30 days, 10 pigs) revealed that tumor-mimics are suitable for studying HIFU treatments at a preclinical stage, since local and biological tolerances were excellent. The dimensions of the tumor-mimics were reproducible (diameter at day 0: 9.7 ± 2.0 mm) and were the same as a function of time (p = 0.64). A second in vivo study was carried out in ten pigs. Tumor mimics were used as targets in liver tissues in order to determine if the HIFU treatment is correctly located in the liver. A procedure of extensive HIFU ablation using multiple HIFU lesions juxtaposed manually was then tested on eight tumor-mimics. In 88% of the cases (seven out of eight), tumor-mimics were treated with negative margins (≥1 mm) in all directions. On average, negative margins measured 10.0 ± 6.7 mm. These tumor-mimics constitute an excellent reference for studying in vivo the accuracy of HIFU therapy in the liver.

  7. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  8. Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Fu, G.Y.; Breslau, J.; Fredrickson, E.; Park, W.; Strauss, H.R.

    2004-01-01

    Global hybrid simulations of energetic particle-driven MHD modes have been carried out for tokamaks and spherical tokamaks using the hybrid code M3D. The numerical results for the National Spherical Tokamak Experiments (NSTX) show that Toroidal Alfven Eigenmodes are excited by beam ions with their frequencies consistent with the experimental observations. Nonlinear simulations indicate that the n=2 mode frequency chirps down as the mode moves out radially. For ITER, it is shown that the alpha-particle effects are strongly stabilizing for internal kink mode when central safety factor q(0) is sufficiently close to unity. However, the elongation of ITER plasma shape reduces the stabilization significantly

  9. Measurement of toroidal plasma current in RF heated helical plasmas

    International Nuclear Information System (INIS)

    Besshou, Sakae

    1993-01-01

    This report describes the measurement of toroidal plasma current by a semiflexible Rogowski coil in a helical vacuum chamber. A Rogowski coil measures the toroidal plasma current with a resolution of 0.1 kA, frequency range of up to 1 kHz and sensitivity of 6.5 x 10 -9 V · s/A. We measured the spontaneous toroidal plasma current (from -1.2 to +1.2 kA) under electron cyclotron resonance heating at 0.94 T toroidal field in the Heliotron-E device. We found that the measured direction of toroidal plasma current changes its sign as in the predicted behavior of a neoclassical diffusion-driven bootstrap current, depending on the horizontal position of the plasma column. We explain the observed plasma currents in terms of the compound phenomenon of an ohmic current and a neoclassical diffusion-driven current. The magnitude of the neoclassical current component is smaller than the value predicted by a collisionless neoclassical theory. (author)

  10. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  11. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  12. Partially collisional model of the Titan hydrogen torus

    International Nuclear Information System (INIS)

    Hilton, D.A.

    1987-01-01

    A numerical model was developed for atomic hydrogen densities in the Titan hydrogen torus. The effects of occasional collisions were included in order to accurately simulate physical conditions inferred from the Voyager 1 and 2 Ultraviolet Spectrometer (UVS) results of Broadfoot et al. (1981) and Sandel et al. (1982). The model employed Lagrangian perturbation of orbital elements of hydrogen atoms launched from Titan and Monte Carlo simulation of collisions and loss mechanisms. The torus is found to be azimuthally symmetric with the density sharply peaked at Titan's orbit, and decreasing rapidly in the outward and perpendicular directions and more gradually inward from 17 to 5 R/sub s/. The energetic hydrogen atoms from Saturn's upper atmosphere, first predicted by Shemansky and Smith (1982), were also investigated. Collisions of these Saturnian atoms with the torus population do not contribute to the torus density, and will lead to a net loss of torus atoms if their launch speeds from Saturn extend above 40 km/sec. The Saturnian atoms produce a corona which was modeled using the theory of Chamberlain (1963)

  13. Influence of external toroidal flux on low-aspect-ratio toroidal plasma

    International Nuclear Information System (INIS)

    Ikuno, S.; Natori, M.; Kamitani, A.

    1999-01-01

    In the HIST device, the external flux is generated by two kinds of currents: the current I s flowing along the symmetry axis and the bias coil current I D . The influence of the external flux on the MHD equilibrium and stability of the low-aspect-ratio toroidal plasma in the HIST device is investigated numerically. Equilibrium configurations of the low-aspect-ratio toroidal plasma in the HIST device are numerically determined by means of the combination of FDM and BEM. The influence of I s and I D on their stability is also investigated by using the Mercier criterion. The results of computations show that the Mercier limit decreases to zero with increasing I s and with decreasing I D . Moreover, either a further increase in I s or a further decrease in I D raises the Mercier limit considerably. Besides, the equilibrium configuration in the HIST device changes its state from spheromak through ultra-low q to tokamak with increasing I s and with decreasing I D . (author)

  14. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1979-08-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to the finite toroidicity, is shown to be destabilized by electron Landau damping for typical Tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein-Berk type) branch is found to remain stable and experience enhanced shear damping due to finite toroidicity

  15. Effects of Hydrogen Charging on the Phase Transformation of Martensitic NiTi Shape Memory Alloy Wires

    Science.gov (United States)

    Snir, Yoav; Carl, Matthew; Ley, Nathan A.; Young, Marcus L.

    2017-12-01

    Ti-rich martensitic NiTi shape memory alloy (SMA) wires of 0.5 mm diameter were tested under hydrogen-charging conditions to reveal the effects on phase transformation. Hydrogen charging was performed by immersion testing for several durations. The SMA wires were characterized by differential scanning calorimetry (DSC), scanning electron microscopy with energy dispersive spectroscopy, and synchrotron radiation X-ray diffraction (SR-XRD) for the the as-received, polished, and hydrogen-charged conditions. The DSC revealed the phase-transformation behavior of the NiTi SMA wires. Single and triple heating/cooling cycles in the DSC show the relationship between hydrogen and temperature on the material. Five distinct peaks (peaks I-V) are observed during heating/cooling in the DSC. Peak I corresponds to the martensite-to-austenite (M → A) transformation. Peaks II, III, and IV are related to hydrogen charging. Peak II appears at about 210-230 °C, while peaks III and IV appear at about 350 and 440 °C, respectively. These higher temperature peaks, peaks II-IV, were observed for the first time for a martensitic NiTi SMA due to the large temperature range covered using the DSC. Only one peak (peak V) appears during cooling and corresponds to the austenite-to-martensite transformation peak. Ex situ and in situ SR-XRD revealed the phases and the crystallographic relationship to peaks I-V in the DSC.

  16. Mirror theory applied to toroidal systems

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs

  17. Mirror theory applied to toroidal systems

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs

  18. Theory for neoclassical toroidal plasma viscosity in tokamaks

    International Nuclear Information System (INIS)

    Shaing, K C; Chu, M S; Hsu, C T; Sabbagh, S A; Seol, Jae Chun; Sun, Y

    2012-01-01

    Error fields and magnetohydrodynamic modes break toroidal symmetry in tokamaks. The broken symmetry enhances the toroidal plasma viscosity, which results in a steady-state toroidal plasma flow. A theory for neoclassical toroidal plasma viscosity in the low-collisionality regimes is developed. It extends stellarator transport theory to include multiple modes and to allow for |m − nq| ∼ 1. Here, m is the poloidal mode number, n is the toroidal mode number and q is the safety factor. The bounce averaged drift kinetic equation is solved in several asymptotic limits to obtain transport fluxes. These fluxes depend non-linearly on the radial electric field except for those in the 1/ν regime. Here, ν is the collision frequency. The theory is refined to include the effects of the superbanana plateau resonance at the phase space boundary and the finite ∇B drift on the collisional boundary layer fluxes. Analytical expressions that connect all asymptotic limits are constructed and are in good agreement with the numerical results. The flux–force relations that relate transport fluxes to forces are used to illustrate the roles of transport fluxes in the momentum equation. It is shown that the ambipolar state is reached when the momentum equation is relaxed. It is also shown that the origin of the momentum for plasma flow generated without momentum sources is the local unbalance of particles' momenta and is diamagnetic in nature regardless of the details of the theory. (paper)

  19. Field load and displacement boundary condition computer program used for the finite element analysis and design of toroidal field coils in a tokamak

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-06-01

    The design evaluation of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX) and the Tokamak Fusion Test Reactor (TFTR) has been performed by structural analysis with the finite element method. The technique employed has been simplified with supplementary computer programs that are used to generate the input data for the finite element computer program. Significant automation has been provided by computer codes in three areas of data input. These are the definition of coil geometry by a mesh of node points, the definition of finite elements via the node points and the definition of the node point force/displacement boundary conditions. The computer programs by name that have been used to perform the above functions are PDXNODE, ELEMENT and PDXFORC. The geometric finite element modeling options for toroidal field coils provided by PDXNODE include one-fourth or one-half symmetric sections of circular coils, oval shaped coils or dee-shaped coils with or without a beveled wedging surface. The program ELEMENT which defines the finite elements for input to the finite element computer code can provide considerable time and labor savings when defining the model of coils of non-uniform cross-section or when defining the model of coils whose material properties are different in the R and THETA directions due to the laminations of alternate epoxy and copper windings. The modeling features provided by the program ELEMENT have been used to analyze the PLT and the TFTR toroidal field coils with integral support structures. The computer program named PDXFORC is described. It computes the node point forces in a model of a toroidal field coil from the vector crossproduct of the coil current and the magnetic field. The model can be of one-half or one-fourth symmetry to be consistent with the node model defined by PDXNODE, and the magnetic field is computed from toroidal or poloidal coils

  20. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  1. Interaction of an ice pellet and a toroidal plasma in the JIPP T-IIU tokamak with the injection-angle controllable system

    International Nuclear Information System (INIS)

    Sato, K.N.; Sakakita, H.; Liang, R.; Hamada, Y.; Ida, K.; Kano, Y.; Sakamoto, M.

    1994-01-01

    The interaction of an ice pellet and a toroidal plasma has been studied in the JIPP T-IIU tokamak by using an injection-angle controllable system. In order to carry out various basic experiments by varying the pellet deposition profile within a plasma, anew technique for an ice pellet injection system with controllability of the injection angle has been developed and installed with the JIPP t-IIU tokamak. Injection angle can be varied easily and successfully during an interval of two plasma shots in the course of an experiment. The injection angle has been varied poloidally from 6 to 6 degree by changing the angle of the last stage drift tube, and this makes possible for pellets to aim at from about r = -2 a/3 to r = 2 a/3 of the plasma. From two dimensional observations by CCD cameras, details of the pellet ablation structures with various injections angles have been studied, and a couple of interesting phenomena have been found. In the case of an injection angle (θ) larger than a certain value (θ ≥ 4 0 ), a pellet penetrates straightly through the plasma with a trace of straight ablation cloud, which has been expected from usual theoretical consideration. On the other hand, a long helical tail of ablation light has been observed in the case of the angle smaller than the certain value (θ ≤ 4 0 ). The direction of helical rotation (tail) is independent to that of the total magnetic field lines of the torus. In order to examine the tail direction, further experiments have been carried out as to four conditions of the combination with two (clockwise and counter-clockwise) toroidal field directions and with two plasma current directions. The results show that it seems to rotate to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from

  2. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Influence of toroidal rotation on resistive tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Wang, S.; Ma, Z. W.

    2015-01-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ R /τ V  ≫ 1, where τ R and τ V represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ R /τ V  ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large

  4. Effects of toroidicity on resistive tearing modes

    International Nuclear Information System (INIS)

    Izzo, R.; Monticello, D.A.; Manickam, J.; Strauss, H.R.; Grimm, R.; McGuire, K.

    1983-03-01

    A reduced set of resistive MHD equations is solved numerically in three dimensions to study the stability of tokamak plasmas. Toroidal effects are included self-consistently to leading and next order in inverse aspect ratio, epsilon. The equations satisfy an energy integral. In addition, the momentum equation yields the Grad-Shafranov equation correct to all orders in epsilon. Low beta plasma are studied using several different q-profiles. In all cases, the linear growth rates are reduced by finite toroidicity. Excellent agreement with resistive PEST is obtianed. In some cases, toroidal effects lead to complete stabilization of the mode. Nonlinear results show smaller saturated island widths for finite aspect ratio compared to the cylindrical limit. If the current channel is wide enough so as to produce steep gradients towards the outside of the plasma, both the finite aspect ratio cases and cylindrical cases disrupt

  5. Kinetic energy principle and neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu

    2011-01-01

    It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.

  6. Toroidal field effects on the stability of Heliotron E

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Lynch, V.E.

    1986-02-01

    The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs

  7. Hydrogenated amorphous silicon p-i-n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M. A.; van Swaaij, R.; R. van de Sanden,; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 degrees C and growth rates of about 1?nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with

  8. Toroidal drift magnetic pumping

    International Nuclear Information System (INIS)

    Canobbio, E.

    1977-01-01

    A set of azimuthal coils which carry properly dephased rf-currents in the KHz frequency range can be used to heat toroidal plasmas by perpendicular Landau damping of subsonic Alfven waves. The heating mechanism and the rf-field structure are discussed in some detail

  9. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  10. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  11. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  12. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  13. Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic confinement plasma device under construction at the Oak Ridge National Laboratory (ORNL) that will lead to improvements in toroidal magnetic fusion reactors. The ATF is a type of stellerator, known as a ''torsatron'' which theoretically has the capability to operate at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 2 s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin, helically contoured vacuum vessel inside the coils. The ATF replaces the Impurities Studies Experiment (ISX-B) tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of electron cyclotron heating. The ATF is scheduled to start operation in late 1986. An overview of the ATF device is presented, including details of the construction process envisioned. 9 refs., 7 figs., 3 tabs

  14. Hydrogenated amorphous silicon p–i–n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M.A.; Swaaij, van R.A.C.M.M.; Sanden, van de M.C.M.; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200¿°C and growth rates of about 1¿nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with increasing

  15. The production of hydrogen through the uncatalyzed partial oxidation of methane in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ghazi A.; Wierzba, I. [Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary (Canada)

    2008-04-15

    The thermodynamic and kinetic limitations of the uncatalyzed partial oxidation of methane for the production of synthesis gas, which is made up of mostly hydrogen and carbon monoxide in a variety of proportions, are reviewed. It is suggested that such processes can be made to proceed successfully in a conventional internal combustion engine when operated on excessively rich mixtures of methane and oxygenated air. This is achieved while simultaneously producing power and regenerative exhaust gas heating. Experimental results are described that show a dual fuel engine of the compression ignition type with pilot liquid fuel injection can be operated on excessively rich mixtures of methane and air supplemented with oxygen gas to produce hydrogen rich gas with high methane conversion rates. Similarly, a spark ignition engine was reported to be equally capable of such production and performance. It is shown that there are viable prospects for the simultaneous production of synthesis gas in engines with efficient useful mechanical power and exhaust gas regenerative heating. (author)

  16. Confinement time exceeding one second for a toroidal electron plasma.

    Science.gov (United States)

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  17. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  18. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  19. FURNACE; a toroidal geometry neutronic program system method description and users manual

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1984-12-01

    The FURNACE program system performs neutronic and photonic calculations in 3D toroidal geometry for application to fusion reactors. The geometry description is quite general, allowing any torus cross section and any neutron source density distribution for the plasma, as well as simple parametric representations of circular, elliptic and D-shaped tori and plasmas. The numerical method is based on an approximate transport model that produces results with sufficient accuracy for reactor-design purposes, at acceptable calculational costs. A short description is given of the numerical method, and a user manual for the programs of the system: FURNACE, ANISN-PT, LIBRA, TAPEMA and DRAWER is presented

  20. Effects of 3D magnetic perturbations on toroidal plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2011-01-01

    Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic

  1. Partial radiative-recombination cross sections for excited states of hydrogen

    International Nuclear Information System (INIS)

    Fazio, P.M.; Copeland, G.E.

    1985-01-01

    The squares of the dipole and quadrupole matrix elements for the free-to-bound transitions of hydrogen up to bound states Vertical Barn = 20,l = 19> are derived in closed analytic form as a function of the kinetic energy of the free electron. Coulomb wave functions are used for the free as well as the bound states and, thus, the results are good for any electron energy. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate-angular-momentum states at low energies (w<1 eV) and where the free-state angular momentum is greater than that of the bound state. Further, that specific intermediate-angular-momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the ''normal'' behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. These ''zeros'' produce minima in the corresponding quadrupole cross sections. Finally, the calculated partial cross sections for recombination into high-angular-momentum states are greater when quadrupole transitions are included

  2. Modal analysis of a stiffened toroidal shell sector

    International Nuclear Information System (INIS)

    Cerreta, R.; Di Pietro, E.; Pizzuto, A.

    1987-01-01

    This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found

  3. Hydrogen embrittlement due to hydrogen-inclusion interactions

    International Nuclear Information System (INIS)

    Yu, H.Y.; Li, J.C.M.

    1976-01-01

    Plastic flow around inclusions creates elastic misfit which attracts hydrogen towards the regions of positive dilatation. Upon decohesion of the inclusion-matrix interface, the excess hydrogen escapes into the void and can produce sufficient pressure to cause void growth by plastic deformation. This mechanism of hydrogen embrittlement can be used to understand the increase of ductility with temperature, the decrease of ductility with hydrogen content, and the increase of ductility with the ultimate strength of the matrix. An examination of the effect of the shape of spheroid inclusion reveals that rods are more susceptible to hydrogen embrittlement than disks. The size of the inclusion is unimportant while the volume fraction of inclusions plays the usual role

  4. Hydrogen production by the iodine-sulphur thermochemical cycle. Total and partial pressure measurements

    International Nuclear Information System (INIS)

    D Doizi; V Dauvois; J L Roujou; V Delanne; P Fauvet; B Larousse; O Hercher; P Carles; C Moulin

    2006-01-01

    The iodine sulphur thermochemical cycle appears to be one of the most promising candidate for the massive production of hydrogen using nuclear energy. The key step in this cycle is the HI distillation section which must be optimized to get a good efficiency of the overall cycle. The concept of reactive versus extractive distillation of HI has been proposed because of its potentiality. The design and the optimization of the reactive distillation column requires the knowledge of the liquid vapour equilibrium over the ternary HI-I 2 -H 2 O mixtures up to 300 C and 100 bars. A general methodology based on three experimental devices imposed by the very corrosive and concentrated media will be described: 1) I1 for the total pressure measurement versus different ternary compositions. 2) I2 for the partial and total pressure measurements around 130 C and 2 bars to validate the choice of the analytical optical 'online' techniques we have proposed. 3) I3 for the partial and total pressures measurements in the process domain. The results obtained on pure samples, binary mixtures HI-H 2 O and ternary mixtures using an experimental design analysis in the experimental device I2 will be discussed. (authors)

  5. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  6. Evidence for reduction of the toroidal ITG instability in the transition from saturated to improved Ohmic confinement in the tokamak TEXTOR

    International Nuclear Information System (INIS)

    Kreter, A; Schweer, B; Tokar, M Z; Unterberg, B

    2003-01-01

    In high density Ohmically heated discharges in the tokamak TEXTOR a transition from the saturated Ohmic confinement (SOC) to the improved Ohmic confinement (IOC) was observed triggered by a sudden reduction of the external gas flow. The SOC-IOC transition was investigated regarding the influence of the toroidal ITG instability driven by the ion temperature gradient (ITG). The ion temperature profiles were measured with high radial resolution by means of charge-exchange recombination spectroscopy (CXRS) with a high-energetic diagnostic hydrogen beam recently installed at TEXTOR. On the basis of the measured ion temperature distributions the η i parameter (ratio of the density and ion temperature decay lengths) and the growth rate of the toroidal ITG instability were calculated. After the SOC-IOC transition η i drops and lies in a noticeably smaller radial region over the threshold for the toroidal ITG. In consequence of it, the IOC regime is characterized by a clear reduction of the ITG growth rate γ ITG which was calculated including finite Larmor radius effects. The steepening of the plasma density profile after the decrease of the external gas flow is the main reason for the reduction of the ITG growth rate and the subsequent confinement transition to the IOC regime

  7. Experimental studies of compact toroids

    International Nuclear Information System (INIS)

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity

  8. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  9. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  10. Approximations to the non-adiabatic particle response in toroidal geometry

    International Nuclear Information System (INIS)

    Schep, T.J.; Braams, B.J.

    1981-08-01

    The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure

  11. On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field

    International Nuclear Information System (INIS)

    Singh, R.; Weiland, J.

    1989-01-01

    The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)

  12. First End Cap Toroid knocking on the door of SX1

    CERN Document Server

    Herman Ten Kate

    On Tuesday May 29, the first Toroid End Cap for the A-side was transported from its test station next to B180 to the front of the ATLAS surface building SX1. The 240-ton and 12-m high toroid end-cap moved on a special trailer at walking speed, got over various slopes and survived the difficult turn left in front of the entrance at gate B. The toroid had to wait for almost two months to commence its journey to its destination as the cryogenic test down to 80K was already successfully completed by early April. In the next days, the toroid will slide into the SX1 building, turn around its axes by 90 degrees and then gently slide over the first shaft and land on top of the A-side shaft on Wednesday. There, it will descend by 5 m into the shaft using special lifting tooling before it can be connected to the 2x140 tons overhead cranes which will let the toroid go further down to the cavern. End Cap Toroid A on the trailer on its way to the cavern at Point 1. Crossing the main road near entrance A while t...

  13. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Multimedia

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  14. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu, Y.Q.

    2002-01-01

    Active feedback of resistive wall modes is investigated using cylindrical theory and toroidal calculations. For tokamaks, good performance is obtained by using active coils with one set of coils in the poloidal direction and sensors detecting the poloidal field inside the first wall, located at the outboard mid-plane. With suitable width of the feedback coil such a system can give robust control with respect to variations in plasma current, pressure and rotation. Calculations are shown for ITER-like geometry with a double wall. The voltages and currents in the active coils are well within the design limits for ITER. Calculations for RFP's are presented for a finite number of coils both in the poloidal and toroidal directions. With 4 coils in the poloidal and 24 coils in the toroidal direction, all non-resonant modes can be stabilized both at high and low theta. Several types of sensors, including radial and internal poloidal or toroidal sensors, can stabilize the RWM, but poloidal sensors give the most robust performance. (author)

  15. Design features of HTMR-hybrid toroidal magnet tokamak reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Brunelli, B.; Zampaglione, V.

    1984-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfil the scientific and technological objectives expected from next generation devices with size and costs as small as possible. A hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. The optimization procedure for the hybrid magnet, configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils are described. (author)

  16. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sabot, R [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  17. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    International Nuclear Information System (INIS)

    Vahdani, M.R.K.; Rezaei, G.

    2009-01-01

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  18. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)

    2009-08-17

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  19. Energy measurement of fast ions trapped in the toroidal magnetic field ripple of Tore Supra during ICRF heating

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Grisolia, C.; Hutter, T.; Mayaux, G.; Martin, G.; Saoutic, B.; Vartanian, S.

    1995-01-01

    Direct losses of ions trapped in the toroidal field ripple of Tore Supra using two techniques were made. The first (DRIPPLE I) correlates the ion loss current measured by an electric probe with the ion loss power measured by a calorimeter. As the calorimeter integrates over all particle energies and time, it yields only the averaged lost ion energy. The second technique (DRIPPLE II), still under development, is a Faraday cup positioned and filtered so as to select ions by their Larmor radius. The currents measured are small (1-100 nA), and improvements in instrumentation are needed to take full advantage of the data, but the preliminary results are still useful. During ICRH (hydrogen minority regime, resonance on axis) a direct correlation between the lost ion mean energy and the density of hydrogen was seen. The energy increased when the hydrogen minority density decreased. Moreover, the line averaged density and the lower hybrid heating (LH) had also an effect on fast ion losses. (authors). 3 refs., 7 figs

  20. Low-frequency fluctuations in a pure toroidal magnetized plasma

    Indian Academy of Sciences (India)

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively.

  1. Effects of 3D Magnetic Perturbations on Toroidal Plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2010-01-01

    Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma

  2. Polymer- and salt-induced toroids of hexagonal DNA.

    OpenAIRE

    Ubbink, J; Odijk, T

    1995-01-01

    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  3. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  4. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  5. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  6. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  7. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  8. Matter in the form of toroidal electromagnetic vortices

    Science.gov (United States)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact

  9. Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak

    Science.gov (United States)

    Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.

    2018-02-01

    The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.

  10. Design features of HTMR-Hybrid Toroidal Magnet Tokamak Reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Brunelli, B.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Zampaglione, V.

    1985-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfill the scientific and technological objectives expected from next generation devices (e.g. INTOR-NET) with size and costs as small as possible. An hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. In this paper the authors describe the optimization procedure for the hybrid magnet configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils

  11. Plasma flow in toroidal systems with a separatrix

    International Nuclear Information System (INIS)

    Gribkov, V.M.; Morozov, D.Kh.; Pogutse, O.P.

    1984-01-01

    A hydrodynamic plasma flow in toroidal systems is considered. Rlasma flow lines for various magnetic configurations are calculated. A particular attention is given to studying plasma flow in configurations with two magnetic a axes and a separatrix. The flow picture i the toroidal case is shown to qualita ity to penetrate through the separatrix - the latter becomes ''perforated''. Th he pictkre of these flows is calculated. The plasma diffusion coefficient with account for the separatrix is calculated and is shown not to turn into the infin nity in the toroidal case as well. The plasma flow is analytically considered in the model with distributed current as well as in the model with current conce entrated at the oroidal system axis. In the first case the existence of ''stagnant'' regions near the magnetic axis is established from which the plasma a does not flow out

  12. Design and characterization of a novel toroidal split-ring resonator

    International Nuclear Information System (INIS)

    Bobowski, J. S.; Nakahara, Hiroko

    2016-01-01

    The design and characterization of a novel toroidal split-ring resonator (SRR) are described in detail. In conventional cylindrical SRRs, there is a large magnetic flux within the bore of the resonator. However, there also exists a non-negligible magnetic flux in the free space surrounding the resonator. The energy losses associated with this radiated power diminish the resonator’s quality factor. In the toroidal SRR, on the other hand, the magnetic field lines are strongly confined within the bore of the resonator resulting in high intrinsic quality factors and stable resonance frequencies without requiring additional electromagnetic shielding. This paper describes the design and construction of a toroidal SRR as well as an experimental investigation of its cw response in the frequency-domain and its time-domain response to a rf pulse. Additionally, the dependence of the toroidal SRR’s resonant frequency and quality factor on the strength of inductive coupling to external circuits is investigated both theoretically and experimentally

  13. Mode structure and continuum damping of high-n toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.

    1992-02-01

    An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma

  14. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  15. Reducing Turbulent Transport in Toroidal Configurations via Shaping

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Xanthopoulos, P.

    2011-01-01

    Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also applied to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.

  16. Partial radiative recombination cross sections for excited states of hydrogen

    International Nuclear Information System (INIS)

    Fazio, P.M.

    1984-01-01

    In calculating the radiative recombination cross sections for interstellar H II regions, usually only the electric dipole term in the expansion of the interaction Hamiltonian is kept. The dipole and quadrupole transition strengths in closed analytical form are calculated here using the Coulomb wave functions because results for any electron energy and for recombination into any angular momentum state of hydrogen are needed. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate angular momentum states at low energies (w < 2eV) and where the free state angular momentum is greater than that of the bound state. Further, that specific intermediate angular momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the normal behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. This leads to minima in the corresponding quadrupole cross sections when plotted as a function of the free electron's kinetic energy. Finally, the partial cross sections for highly excited states are greater than previously calculated because of the additional effects of the quadrupole transitions

  17. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  18. Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma

    Science.gov (United States)

    Sato, K. N.; Sakakita, H.; Fujita, H.

    2003-06-01

    Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, "the injection-angle controllable system". A long "helical tail" of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroildal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the "tail" structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation.

  19. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  20. 1D equation for toroidal momentum transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V A; Senichenkov, I Yu

    2010-01-01

    A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.

  1. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  2. Impact of ECRH launcher flexibility on NTM stabilization and advanced scenarios in large toroidal configurations as JET plasmas

    International Nuclear Information System (INIS)

    Nowak, S.; Bruschi, A.; Ramponi, G.; Cirant, S.; Lazzaro, E.; Verhoeven, A.G.A.; Zohm, H.

    2003-01-01

    A beam-tracing code is used for extensive beam-tracing, ECCD and ECRH profile calculations in ideal JET-like plasmas with the main aim of specifying such crucial parameters for the ECRH launcher as the poloidal and toroidal steering ranges, the permitted error in the various launching angles and the optimal shape of the last mirrors reflecting surfaces. In order to be fusion-relevant, the calculations are performed on ideal target plasmas and equilibrium configurations scaled from real JET shots, selected by the JET-EP ECRH Physics Integration Project. The launching scheme is fully compliant with a launcher designed under the geometric constraints of JET, which consists of 6 to 8 beams arranged in pairs, with four end mirrors steerable both in the poloidal and in the toroidal directions. It is shown that with this arrangement all launching configurations requested by the physics goals of ECRH in a JET-like device are feasible. (authors)

  3. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    Science.gov (United States)

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  4. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  5. Structural analysis of the ITER Divertor toroidal rails

    Energy Technology Data Exchange (ETDEWEB)

    Viganò, F., E-mail: Fabio.Vigano@LTCalcoli.it [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Escourbiac, F.; Gicquel, S.; Komarov, V. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Merola, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Ngnitewe, R. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy)

    2013-10-15

    The Divertor is one of the most technically challenging components of the ITER machine, which has the main function of extracting the power conducted in the scrape-off layer while maintaining the plasma purity. There are 54 Divertor cassettes installed in the vacuum vessel (VV). Each cassette body (CB) is fastened on the inner and outer concentric Divertor toroidal rails. The comprehensive assessment (in accordance with the Structural Design Criteria for ITER In-vessel Components: ITER SDC-IC) of the Divertor toroidal rails has been performed during design activity based on performing of thermal and stress analyses at operating conditions of neutron stage of ITER operation. This paper outlines the engineering aspects of the ITER Divertor toroidal rails and focuses on some critical regions of the present design highlighted by the performed structural assessment. The structural assessment has been performed with help of using Finite Element (FE) Abaqus code and based on criteria given by ITER SDC-IC.

  6. A method for external measurement of toroidal equilibrium parameters

    International Nuclear Information System (INIS)

    Brunsell, P.; Hellblom, G.; Brynolf, J.

    1992-01-01

    A method has been developed for determining from external magnetic field measurements the horizontal shift, the vertical shift and the poloidal field asymmetry parameter (Λ) of a toroidal plasma in force equilibrium. The magnetic measurements consist of two toroidal differential flux loops, giving the average vertical magnetic field and the average radial magnetic field respectively, together with cosine-coils for obtaining the m=1 cosine harmonic of the external poloidal magnetic field component. The method is used to analyse the evolution of the toroidal equilibrium during reversed-field pinch discharges in the Extrap T1-U device. We find that good equilibrium control is needed for long plasma pulses. For non-optimized externally applied vertical fields, the diagnostic clearly shows a horizontal drift motion of the pinch resulting in earlier discharge termination. (au)

  7. Efficiency of wave-driven rigid body rotation toroidal confinement

    Science.gov (United States)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  8. ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  9. Electron diamagnetism and toroidal coupling of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Hastie, R.J.

    1987-10-01

    Using a simple model for the layer of the tearing mode, we demonstrate that toroidally coupled tearing modes with two rational surfaces are most unstable when the ω*'s of the electrons at the rational surfaces are equal. The onset of instability may then occur because of the tuning of ω* rather than the passage of Δ'-like quantities through zero. This mechanism for the onset of instability is sharp since the resonance is narrow. The effect of toroidal rotation is also discussed. 7 refs., 2 figs

  10. Progress in the design of a superconducting toroidal magnet for the ATLAS detector on LHC

    International Nuclear Information System (INIS)

    Baze, J.M.; Berriaud, C.; Cure, C.

    1996-01-01

    The toroidal system consists of three air core superconducting toroids. The barrel toroid covers the central region over a length of 26 m with an inner bore of 9.4 m and an outer diameter of 19.5 m. The two end cap toroids are inserted in the barrel at each end over a length of 5.6 m with an inner bore of 1.26 m. Each toroid consists of eight flat coils assembled around the beam axis and carrying 3 MAt each. The present paper describes the barrel toroid. Features of the design which are presented include the electromagnetic design, field and forces calculations, the basic concept of indirectly cooled aluminium conductor and monolithic fully impregnated winding, the description of the alu-alloy mechanical structure, the thermal analysis and the quench protection. Cryogenics principles, cryostat and toroid assembly procedures are summarized. Unsymmetric loadings, fault sensing and stability are discussed, in relation with the requirements of transparency

  11. EMC3-EIRENE modeling of toroidally-localized divertor gas injection experiments on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Lore, J.D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Reinke, M.L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); LaBombard, B. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Churchill, R.M. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)

    2015-08-15

    Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ∼50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modeling, with the simulation yielding a toroidal asymmetry in the heat flow to the outer strike point. Toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.

  12. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  13. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  14. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  15. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II; Calculo de modificacion al campo magnetico toroidal del Tokamak nivillo. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1992-03-15

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  16. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  17. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  18. Advanced Toroidal Facility (ATF)

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic plasma confinement device, under construction at Oak Ridge National Laboratory (ORNL), which will lead to improvements in toroidal magnetic fusion reactors. ATF is a type of stellarator known as a torsatron which theoretically has the capability at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 5-s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin helically contoured vacuum vessel inside the coils. The ATF replaces the ISX-B tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of neutral injection heating and 0.2 MW of electron cyclotron heating. ATF device is scheduled to start operation in the fall of 1986. An overview of the ATF device is presented including details of the construction process envisioned

  19. Volumetric, acoustic and viscometric behaviour of dipotassium hydrogen phosphate and disodium hydrogen phosphate in aqueous solution of N-acetyl glycine at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Mittal, Heena

    2016-01-01

    Highlights: • Densities, speeds of sound, viscosities of phosphate salts in aqueous N-acetyl glycine. • Large values of partial molar volume for dipotassium hydrogen phosphate. • Partial molar volume of transfer are positive for phosphate salts. • Positive B-coefficient values indicate ion–solvent interactions. - Abstract: Densities, speeds of sound and viscosities of dipotassium hydrogen phosphate (DPHP) and disodium hydrogen phosphate (DSHP) in aqueous solutions of N-acetyl glycine (AcGly) are reported at different temperatures. Densities and speeds of sound have been used to calculate apparent molar volume, apparent molar isentropic compression, partial molar volume, partial molar isentropic compression, partial molar volume of transfer, partial molar isentropic compression of transfer and partial molar expansivity. Pair and triplet interaction coefficients have also been calculated. Experimental viscosities have been used to determine B-coefficients. Further pair and triplet interaction coefficients have also been calculated. The results are discussed in terms of solute–solvent interactions.

  20. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  1. Neoclassical diffusion in toroidal three-cut magnetic field

    International Nuclear Information System (INIS)

    Nemov, V.V.; Shishkin, A.A.

    1975-01-01

    Quasi-classical diffusion is investigated in the regime of toroidal drift of 'bananas' in a three cut magnetic field. Unlike previous papers, it is supposed that the inhomogeneity of a helical magnetic field epsilonsub(k) is of the same order or less than that of the toroidal inhomogeneity epsilonsub(t). The case is considered when the efficient frequency of particle collisions exceeds that of the 'banana' precession around the magnetic axis. Expressions for diffusion flows and coefficients are obtained that transform into available ones at epsilonsub(h) > > epsilonsub(t) [ru

  2. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  3. Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart, D-70569 (Germany); Jacquot, J. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Bongard, M. W.; Hinson, E. T.; Volpe, F. A. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gallian, S. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2011-08-15

    The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as {+-}10 cm.

  4. Coupled-channel calculations of partial capture cross sections in multiply charged ion collisions with hydrogen

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.; University of Tennessee, Knoxville, Tennessee 37996)

    1989-01-01

    Partial cross sections for electron capture in 1--50-keV collisions of Ar 6+ and Ar 8+ with atomic hydrogen have been calculated using an atomic expansion including two complete principal shells of final states (n=4,5 for Ar 6+ and n=5,6 for Ar 8+ ). The qualitative structure of the results is in good accord with a reaction window picture. The results for Ar 6+ ions are in agreement with published experimental data when precaution is taken with respect to uncertainties in absolute normalization of the data and with respect to a proper analysis of translation energy spectra at lower impact energies. The limited experimental data for Ar 8+ do not agree with the present results

  5. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO4 nanostructures produced by convenient microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Liu, Hongying; Gu, Chunchuan; Li, Dujuan; Zhang, Mingzhen

    2015-01-01

    Graphical abstract: A non-enzymatic H 2 O 2 sensor with high selectivity and sensitivity based on rose-shaped FeMoO 4 synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO 4 is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO 4 nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO 4 within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H 2 O 2 ) was fabricated on the basis of the FeMoO 4 as electrocatalysis. The resulting FeMoO 4 exhibited high sensitivity and good stability for the detection of H 2 O 2 , which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO 4 . Amperometric response showed that the modified electrode had a good response for H 2 O 2 with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications

  6. NSERC's research and industrial community: a growing force of discovery, people and innovation shaping tomorrow's hydrogen economy

    International Nuclear Information System (INIS)

    Therrien, R.

    2009-01-01

    'Full text': As Canada's largest university research-funding agency, the Natural Sciences and Engineering Research Council of Canada (NSERC) supports the training of some 26,500 university students and postdoctoral fellows, funds the research efforts of more than 11,800 university and college professors and stimulates academic-industry research and development (R and D) partnerships involving over 1,400 companies each year. In the hydrogen and fuel cell arena, NSERC has sponsored cutting edge research for over two decades. During that time, the level of activity has intensified significantly - from a mere handful of projects in the early 1980s and 1990s, to more than 150 grants and scholarships in 2008. Since 2002, NSERC's annual support has tripled from about $2.9 million to over $9 million. More than half of that investment is earmarked for university-industry projects involving over 40 fuel cell and hydrogen business interests. NSERC supports hydrogen advances through its Discovery Grants for basic research, Research Partnerships Programs' grants for research and knowledge transfer involving companies, and scholarships and fellowships for skills development. All of these initiatives provide advanced training for students at the post-graduate level, resulting in job-ready professionals who will help shape tomorrow's hydrogen economy. In 2007, NSERC doubled its funding for strategic research partnerships in the area of sustainable energy systems, including hydrogen-related R and D. These public-private partnerships permit companies to capitalize, at minimal cost, on university innovations and training. In addition to supporting project-specific partnerships, the new funds enabled the creation of several national networks that unite industrial and research interests engaged in fuel cell advancement on the one hand, and in hydrogen technologies on the other. The partnership opportunities that exist at NSERC will be briefly described and examples of successful

  7. A theoretical study on the mechanism of hydrogen evolution on non-precious partially oxidized nickel-based heterostructures for fuel cells.

    Science.gov (United States)

    Pan, Xinju; Zhou, Gang

    2018-03-28

    It is desirable, yet challenging, to utilize non-precious metals instead of noble-metals as efficient catalysts in the renewable energy manufacturing industry. Using first principles calculations, we study the structural characteristics of partially oxidized nickel-based nanoheterostructures (NiO/Ni NHSs), and the interfacial effects on hydrogen evolution. The origin of the enhanced hydrogen evolution performance is discussed at the microscopic level. This study identifies two types of active sites of the exposed Ni surface available for the hydrogen evolution reaction (HER). One is the hcp-hollow sites near the perimeter boundary that exhibit a more excellent HER performance than platinum (Pt), and the other the second nearest neighbor fcc-hollow sites away from the boundary that exhibit a similar performance to Pt. The interfacial effects result from the competitive charge transfer between NiO and Ni surfaces in NHSs, and enhance the reactivity of NiO/Ni NHSs by shifting the d-states of surface atoms down in energy. The illumination of the mechanism would be helpful for the design of more efficient and cheap transition metal-based catalysts.

  8. Particle simulations in toroidal geometry

    International Nuclear Information System (INIS)

    Aydemir, A.Y.

    1992-09-01

    A computational tool to be used in kinetic simulations of toroidal plasmas is being developed. The initial goal of the project is to develop an electrostatic gyrokinetic model for studying transport and stability problems in tokamaks. In this brief report, preliminary results from the early stages of this effort are presented

  9. Partial thermodynamic functions of hydrogen in complex hydrated vanadium(5) and tungsten(6) oxides

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.

    2003-01-01

    The partial thermodynamic characteristics of hydrogen in the complex hydrated vanadium(5) and tungsten(6) oxides, obtained through the sol-gel method, of the general formula H 2 V 12-y W y O 31+δ ·nH 2 O (0 ≤ x ≤ 0.33) are determined through the emf method. The changes in these values (ΔG-bar(H 2 ), ΔH-bar(H 2 ) and ΔS-bar(H 2 )) in dependence on the compound composition are discussed. It is established that ΔG-bar(H 2 ) phases, amorphous to X-rays are determined by the ΔS-bar(H 2 ) value and crystalline ones by ΔH-bar(H 2 ). The scheme of the phase relationships of the H 2 O-H-WO 3 -V 2 O 5 system, whereto the given phases are related are presented [ru

  10. Axisymmetric toroidal equilibrium with flow and anisotropic pressure

    International Nuclear Information System (INIS)

    Iacono, R.; Bondeson, A.; Troyon, F.; Gruber, R.

    1989-10-01

    Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs

  11. Ballooning instabilities in toroidally linked mirror systems

    International Nuclear Information System (INIS)

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  12. Hydrogen storage in planetary physics

    International Nuclear Information System (INIS)

    Baltensperger, W.

    1984-01-01

    Hydrogen in contact with most substances undergoes first order phase transitions with increasing pressure during which hydrides are formed. This applies to the core of hydrogen rich planets. It is speculated that a partial hydrogen storage in the early history of the earth could have lead to the formation of continents. Primordial carbon hydrides are synthesized during this process. (Author) [pt

  13. Generation of toroidal pre-heat plasma

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    The characteristics of toroidal plasma in the initial stage of electric discharge were investigated. A small toroidal-pinch system was used for the present work. A magnetic probe was used to measure the magnetic field. The time of beginning of discharge was determined by observing the variation of the magnetic field. The initial gas pressure dependence of the induced electric field regions, in which electric discharge can be caused, was studied. It is necessary to increase the initial induced electric field for starting discharge. The delay time of large current discharge was measured, and it was about 2 microsecond. Dependences of the electric fields at the beginning of discharge on the charging voltage of capacitors, on the initial gas pressure, and on the discharge frequency were studied. The formation mechanism of plasma column was analyzed. (Kato, T.)

  14. Dual-shaped offset reflector antenna designs from solutions of the geometrical optics first-order partial differential equations

    Science.gov (United States)

    Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.

    1990-01-01

    In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.

  15. Thermodynamic study of the thorium-hydrogen system at 700 K

    International Nuclear Information System (INIS)

    Picard, C.; Kleppa, O.J.

    1980-01-01

    The partial enthalpies of solution of hydrogen in thorium-hydrogen alloys with H/Th ratios ranging from 0 to 2 have been measured calorimetrically at 700 K. From these data we calculate the standard enthalpy of formation of ThH 2 at this temperature to be -34.8 kcal mol -1 with an estimated uncertainty of +- 0.2 kcal mol -1 . This agrees well with values calculated by earlier investigators from plateau pressure equilbrium data. For several alloy compositions within the nearly stoichiometric phase ThH 2 the equilibrium pressures of hydrogen also were determined. Comparisons of the relative partial Gibbs energies of hydrogen obtained from these equilibrium pressures with corresponding enthalpies from calorimetry provide information on the partial entropy. The partial enthalpy and entropy both change dramatically with composition between H/Th = 1.99 and 2.003

  16. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  17. Barrel Toroid fully charged to nominal field, and it works!

    CERN Multimedia

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  18. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  19. Destabilization of a peeling-ballooning mode by a toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Aiba, N.; Hirota, M.; Tokuda, S.; Furukawa, M.

    2009-01-01

    Full text: From the viewpoint of the heat load on the divertor, Type-I edge localized mode (ELM) needs to be suppressed or the amplitude of this ELM needs to be reduced. In JT-60U, some experimental results showed that the ELM frequency depends on the toroidal rotation, and the rapid rotation in the counter direction of the plasma current changes from Type-I ELM to Grassy ELM, whose frequency is high and the amplitude is small. Recent experimental and theoretical/numerical studies in a static system have identified that both Type-I and Grassy ELMs are considered ideal magnetohydrodynamic (MHD) modes destabilizing near the plasma surface, called peeling-ballooning modes. To investigate the mechanism of the change of ELM frequency by a toroidal rotation, theoretical and numerical analyses are important for understanding the toroidal rotation effects on the peeling-ballooning mode. Previous works about the toroidal rotation effect on the edge MHD stability have illustrated that the toroidal rotation with shear can destabilize low/intermediate-n (<50) modes but can stabilize high-n modes, where n is the toroidal mode number. The stabilization of the high-n mode can be understood qualitatively in analogy with the infinite-n ballooning mode case. However, the destabilizing mechanism of the low/intermediate-n mode is not still clarified, and to understand the stability property related to ELM suppression/mitigation, it is important to clarify this destabilizing mechanism. In this paper, we investigate numerically the destabilizing effect of a toroidal rotation on the peeling-ballooning mode with a newly developed code MINERVA, which solves the Frieman-Rotenberg equation. Particularly, we pay attention to the effect of the centrifuged force on not only equilibrium but also change of equation of motion. (author)

  20. Wall conditioning and leak localization in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1989-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described; this technique was developed because access to the outside of the vessel is severely restricted by external components. 10 refs., 6 figs., 2 tabs

  1. Wall conditioning and leak localization in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1990-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described. This technique was developed because access to the outside of the vessel is severely restricted by external components

  2. 21 CFR 186.1551 - Hydrogenated fish oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated fish oil. 186.1551 Section 186.1551... Listing of Specific Substances Affirmed as GRAS § 186.1551 Hydrogenated fish oil. (a) Hydrogenated fish oil (CAS Reg. No. 91078-95-4) is a class of oils produced by partial hydrogenation of oils expressed...

  3. Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD

    International Nuclear Information System (INIS)

    Fukumoto, N.; Hanada, K.; Kawakami, S.

    2008-10-01

    In previous Compact Toroid (CT) injection experiments on several tokamaks, although CT fuelling had been successfully demonstrated, the CT fuelling process has been not clear yet. We have thus conducted CT injection into simple toroidal or vertical vacuum magnetic fields to investigate quantitatively dynamics of CT plasmoid in the penetration process on a spherical tokamak (ST) device. Understanding the process allows us to address appropriately one of the critical issues for practical application of CT injection on reactor-grade tokamaks. In the experiment, the CT shift amount of about 0.26 m in a vertical magnetic field has been observed by using a fast camera. In addition to toroidal magnetic field, vertical one appears to affect CT trajectory in not conventional tokamak but ST devices operated at rather low toroidal fields. We have also observed CT attacks on the target plate with an IR camera. The IR image has indicated that CT shifts 39 mm at the toroidal field of 261 G. From the calorimetric measurement, an input energy due to CT impact in vacuum without magnetic fields is also estimated to be 530 J, which agrees with the initial CT kinetic energy. (author)

  4. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  5. A novel technique for hydrogen production from hog-manure in supercritical partial oxidation (SCWPO)

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Emhemmed A.; Charpentier, Paul [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Nakhla, George [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Elbeshbishy, Elsayed; Hafez, Hisham [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    In this study, the catalytic hydrogen production from hog manure using supercritical water partial oxidation was investigated in a batch reactor at a temperature of 500 C, and pressure of 28 MPa using several metallic catalysts. Hog manure was characterized by a total and soluble chemical oxygen demand (TCOD, SCOD) of 57000 and 28000 mg/L, total and volatile suspended solids (TSS, VSS) of 25000, 19000, and ammonia of 2400 mg/L, respectively. The order of H{sub 2} production was the following: Pd/AC > Ru/Al{sub 2}O{sub 3} > Ru/AC > AC > NaOH. The order of COD reduction efficiency was as follows: NaOH > Ru/AC > AC > Ru/Al{sub 2}O{sub 3} > Pd/AC. The behaviour of the volatile fatty acids (VFA's), ethanol, methanol, ammonia, H{sub 2}S, and Sulfate was investigated experimentally and discussed. A 35 % reduction in the H{sub 2} and CH{sub 4} yields was observed in the sequential gasification partial oxidation (oxidant at an 80 % of theoretical requirement) experiments compared to the gasification experiments (catalyst only). Moreover, this reduction in gas yields was coincided with a 45 % reduction in the liquid effluent chemical oxygen demand (COD), 60 % reduction of the ammonia concentration in the liquid effluent, and 20 % reduction in the H{sub 2}S concentration in the effluent gas. (orig.)

  6. Heat removal in INTOR via a toroidal limiter

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    In the present paper the potential of removing about 100 MW of thermal plasma power via a toroidal limiter in INTOR is studied. The heat flux distributions on various limiter configurations are calculated and the thermal response of a graphite tile limiter is estimated on the base of a one-dimensional heat conduction approach. The evaporation rates which have to be expected for the given energy flux densities and radiation cooled graphite tiles are evaluated. According to the present understanding it should be possible to remove 100 MW power from the INTOR plasma via a radiation cooled toroidal limiter. (author)

  7. Compression of toroidal plasma by imploding plasma-liner

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  8. Stress analysis studies in optimised 'D' shaped TOKAMAK magnet designs

    International Nuclear Information System (INIS)

    Diserens, N.J.

    1975-07-01

    A suite of computer programs TOK was developed which enabled simple data input to be used for computation of magnetic fields and forces in a toroidal system of coils with either D-shaped or circular cross section. An additional requirement was that input data to the Swansea stress analysis program FINESSE could be output from the TOK fields and forces program, and that graphical output from either program should be available. A further program was required to optimise the coil shape. This used the field calculating routines from the TOK program. The starting point for these studies was the proposed 40 coil Princeton design. The stresses resulting from three different shapes of D-coil were compared. (author)

  9. Program for development of toroidal superconducting magnets for fusion research, May 1975

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1975-11-01

    The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document

  10. Parametric design studies of toroidal magnetic energy storage units

    International Nuclear Information System (INIS)

    Herring, J.S.

    1990-01-01

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round-trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code has been written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have 'D' shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. This paper presents designs for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 t to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils have been divided into modules suitable for normal truck or rail transport. 8 refs., 5 tabs

  11. Parametric design studies of toroidal magnetic energy storage units

    Science.gov (United States)

    Herring, J. Stephen

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.

  12. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  13. Onsager relaxation of toroidal plasmas

    International Nuclear Information System (INIS)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  14. Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD

    Directory of Open Access Journals (Sweden)

    H. Tanaka

    2017-08-01

    Full Text Available Toroidal distributions of divertor particle flux during neon (Ne and nitrogen (N2 seeded discharges were investigated in the Large Helical Device (LHD. By using 14 toroidally distributed divertor probe arrays, which were positioned at radially inner side where the divertor flux concentrates in the inward-shifted magnetic axis configuration, it is found that Ne puffing leads to toroidally quasi-uniform reduction of divertor particle fluxes; whereas toroidally localized reductions were observed with N2 puffing. The toroidally asymmetric reduction pattern with N2 puffing is strongly related to the magnetic field structure around the N2 puffing port. Assuming that nitrogen particles do not recycle, EMC3-EIRENE simulation shows similar reduction pattern with the experiment around the N2 puffing port.

  15. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...... in rejection between FFA and glycerides and the highest flux (27 kg h−1 m−2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h−1 m−2) flux was achieved...... with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h−1 m−2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83...

  16. Overview of recent results and future plans on the Compact Toroidal Hybrid experiment

    Science.gov (United States)

    Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.

  17. Search for hyperheavy toroidal nuclear structures formed in Au + Au collisions

    International Nuclear Information System (INIS)

    Sochocka, A.; Planeta, R.; Starypan, Z.; Benisz, A.; Hachaj, P.; Nicolis, N.G.

    2008-01-01

    We study the feasibility of an experimental observation of toroidal breakup configurations in Au+Au collisions using the CHIMERA multidetector system. BUU simulations indicate that the threshold energy for toroidal configuration is around 23 MeV/nucleon. The simulations of decay process using the ETNA code indicate the sensitivity of some observables to different studied break-up geometries. (author)

  18. Stationary shear flows in CGL anisotropic toroidal plasmas

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Ilgisonis, V.I.

    1996-01-01

    Recently a general structure of stationary shear flows in toroidal plasmas was obtained in the frame of ideal isotropic-pressure MHD model. The structure of the stationary plasma flows was shown to be determined by a hidden symmetry of MHD equations inherent in the toroidal systems with nested magnetic surfaces. However, the characteristic frequencies of the stationary plasma motion can considerably exceed the collisional frequencies in real plasma experiments. In this case the CGL collisionless MHD model seems to be more adequate than the simplified isotropic-pressure MHD model to describe the stationary plasma flows. In this paper we have generalized our approach to analyze the stationary plasma flows in the frame of the collisionless CGL model. We have found again that the hidden symmetry inherent in the toroidal topology results in two integral invariants which depend on two independent surface functions. The structure of stationary flows for CGL model is still the same as for isotropic MHD, however, the pressure tensor components satisfy a appreciably modifies the steady state force-balance equation. These results are applied to analyze the generalized equilibrium in axisymmetric (tokamak-like) magnetic confinement systems

  19. Dependence of β·τ on plasma shape in DIII-D

    International Nuclear Information System (INIS)

    Lazarus, E.A.

    1993-05-01

    In this paper we discuss the observed variation in plasma performance with plasma shape, in particular, we shall compare single and double null diverted plasmas. The product β·τ has been used as a figure-of-merit for comparing different toroidal magnetic configurations. Here we shall use it as the figure-of-merit for comparing differing configurations within the DIII-D tokamak

  20. Modelling hydrogen permeation in a hydrogen effusion probe for monitoring corrosion of carbon steels

    International Nuclear Information System (INIS)

    Santiwiparat, P.; Rirksomboon, T.; Steward, F.R.; Lister, D.H.; Cook, W.G.

    2015-01-01

    Hydrogen accumulation inside carbon steel and stainless steel devices shaped like cylindrical cups attached to a pipe containing hydrogen gas was modelled with MATLAB software. Hydrogen transfer around the bottom of the cups (edge effect) and diffusion through the cup walls (material effect) were accounted for. The variation of hydrogen pressure with time was similar for both materials, but the hydrogen plateau pressures in stainless steel cups were significantly higher than those in carbon steel cups. The geometry of the cup also affected the plateau pressure inside the cup. (author)

  1. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  2. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  3. Poloidal and toroidal plasmons and fields of multilayer nanorings

    International Nuclear Information System (INIS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.

    2017-01-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  4. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  5. Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles

    KAUST Repository

    Shuai, Danmeng

    2013-03-01

    Catalytic reduction with Pd has emerged as a promising technology to remove a suite of contaminants from drinking water, such as oxyanions, disinfection byproducts, and halogenated pollutants, but low activity is a major challenge for application. To address this challenge, we synthesized a set of shape- and size-controlled Pd nanoparticles and evaluated the activity of three probe contaminants (i.e., nitrite, N-nitrosodimethylamine (NDMA), and diatrizoate) as a function of facet type (e.g., (100), (110), (111)), ratios of low- to high-coordination sites, and ratios of surface sites to total Pd (i.e., dispersion). Reduction results for an initial contaminant concentration of 100 μM show that initial turnover frequency (TOF0) for nitrite increases 4.7-fold with increasing percent of (100) surface Pd sites (from 0% to 95.3%), whereas the TOF0 for NDMA and for diatrizoate increases 4.5- and 3.6-fold, respectively, with an increasing percent of terrace surface Pd sites (from 79.8% to 95.3%). Results for an initial nitrite concentration of 2 mM show that TOF0 is the same for all shape- and size-controlled Pd nanoparticles. Trends for TOF0 were supported by results showing that all catalysts but one were stable in shape and size up to 12 days; for the exception, iodide liberation in diatrizoate reduction appeared to be responsible for a shape change of 4 nm octahedral Pd nanoparticles. Density functional theory (DFT) simulations for the free energy change of hydrogen (H2), nitrite, and nitric oxide (NO) adsorption and a two-site model based on the Langmuir-Hinshelwood mechanism suggest that competition of adsorbates for different Pd sites can explain the TOF0 results. Our study shows for the first time that catalytic reduction activity for waterborne contaminant removal varies with the Pd shape and size, and it suggests that Pd catalysts can be tailored for optimal performance to treat a variety of contaminants for drinking water. © 2013 American Chemical Society.

  6. Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles

    KAUST Repository

    Shuai, Danmeng; McCalman, Dorrell C.; Choe, Jong Kwon; Shapley, John R.; Schneider, William F.; Werth, Charles J.

    2013-01-01

    Catalytic reduction with Pd has emerged as a promising technology to remove a suite of contaminants from drinking water, such as oxyanions, disinfection byproducts, and halogenated pollutants, but low activity is a major challenge for application. To address this challenge, we synthesized a set of shape- and size-controlled Pd nanoparticles and evaluated the activity of three probe contaminants (i.e., nitrite, N-nitrosodimethylamine (NDMA), and diatrizoate) as a function of facet type (e.g., (100), (110), (111)), ratios of low- to high-coordination sites, and ratios of surface sites to total Pd (i.e., dispersion). Reduction results for an initial contaminant concentration of 100 μM show that initial turnover frequency (TOF0) for nitrite increases 4.7-fold with increasing percent of (100) surface Pd sites (from 0% to 95.3%), whereas the TOF0 for NDMA and for diatrizoate increases 4.5- and 3.6-fold, respectively, with an increasing percent of terrace surface Pd sites (from 79.8% to 95.3%). Results for an initial nitrite concentration of 2 mM show that TOF0 is the same for all shape- and size-controlled Pd nanoparticles. Trends for TOF0 were supported by results showing that all catalysts but one were stable in shape and size up to 12 days; for the exception, iodide liberation in diatrizoate reduction appeared to be responsible for a shape change of 4 nm octahedral Pd nanoparticles. Density functional theory (DFT) simulations for the free energy change of hydrogen (H2), nitrite, and nitric oxide (NO) adsorption and a two-site model based on the Langmuir-Hinshelwood mechanism suggest that competition of adsorbates for different Pd sites can explain the TOF0 results. Our study shows for the first time that catalytic reduction activity for waterborne contaminant removal varies with the Pd shape and size, and it suggests that Pd catalysts can be tailored for optimal performance to treat a variety of contaminants for drinking water. © 2013 American Chemical Society.

  7. Complete suppression of Pfirsch-Schlueter current in a toroidal l=3 stellarator

    International Nuclear Information System (INIS)

    Sato, Yasuhiko; Wakatani, Masahiro; Yokoyama, Masayuki; Pustovitov, V.D.

    1999-10-01

    Pfirsch-Schlueter (P-S) current is an inherent property of a finite pressure toroidal equilibrium of tokamak and stellarator. However, it was pointed out recently (V.D. Pustovitov, Nuclear Fusion 36 (1996) 583) that the P-S current would be suppressed completely if the external vertical field could be adjusted to satisfy the condition Ω= in an l=3 stellarator. Here Ω= 2 >/B 0 2 -2ε cosθ, l is a pole number, |B tilde| the vacuum helical magnetic field, B 0 the toroidal field, ε the inverse aspect ratio, θ the poloidal angle and denotes the average over the toroidal angle. An example of such a stellarator equilibrium is presented in this paper. For this stellarator equilibrium, behavior of rotational transform and Boozer magnetic spectrum is clarified when the pressure is increased. Both formation of helical magnetic axis and reduction of toroidal curvature are important ingredients to reduce the P-S current. However, the collisionless particle confinement is not improved in this example. (author)

  8. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  9. Lowering the first ATLAS toroid

    CERN Document Server

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  10. Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift

    OpenAIRE

    Tkalya, E. V.

    2005-01-01

    We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...

  11. Final report on cost estimate of forward superconducting air core toroid

    International Nuclear Information System (INIS)

    Fields, T.

    1992-12-01

    An independent cost-estimate for key components of the forward superconducting air core toroid (ACT) was obtained in May 1992 from an experienced manufacturer of large cryogenic vessels. This new cost estimate is summarized in this report. It implies that a suitably designed ACT may have a cost which is approximately equal to that of the presently designed SDC forward iron core toroid

  12. Characterization of plasma parameters in shaped PBX-M discharges

    Science.gov (United States)

    England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.

    1997-09-01

    The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.

  13. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    Science.gov (United States)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  14. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  15. Orbisphere: an immediate measurement of hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The device presented here, has in the beginning been conceived for nuclear industries (nuclear power plants, waste processing, uranium enrichment) and can measure the concentration of dissolved hydrogen and the partial pressures of gaseous hydrogen. This hydrogen analyser has numerous applications, particularly in metal corrosion research and control, water processing, organic and mineral synthesis, in pharmaceutic industry, for gas purity control [fr

  16. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb$_{3}$Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, a...

  17. Design study of toroidal magnets for tokamak experimental power reactors

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.; Lucas, E.J.

    1976-12-01

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed

  18. Saddle-splay screening and chiral symmetry breaking in toroidal nematics

    OpenAIRE

    Koning, Vinzenz; van Zuiden, Benjamin C.; Kamien, Randall D.; Vitelli, Vincenzo

    2013-01-01

    We present a theoretical study of director fields in toroidal geometries with degenerate planar boundary conditions. We find spontaneous chirality: despite the achiral nature of nematics the director configuration show a handedness if the toroid is thick enough. In the chiral state the director field displays a double twist, whereas in the achiral state there is only bend deformation. The critical thickness increases as the difference between the twist and saddle-splay moduli grows. A positiv...

  19. Individual Low-Energy Toroidal Dipole State in Mg 24

    Science.gov (United States)

    Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.

    2018-05-01

    The low-energy dipole excitations in Mg 24 are investigated within the Skyrme quasiparticle random phase approximation for axial nuclei. The calculations with the force SLy6 reveal a remarkable feature: the lowest IπK =1-1 excitation (E =7.92 MeV ) in Mg 24 is a vortical toroidal state (TS) representing a specific vortex-antivortex realization of the well-known spherical Hill's vortex in a strongly deformed axial confinement. This is a striking example of an individual TS which can be much more easily discriminated in experiment than the toroidal dipole resonance embracing many states. The TS acquires the lowest energy due to the huge prolate axial deformation in Mg 24 . The result persists for different Skyrme parametrizations (SLy6, SVbas, SkM*). We analyze spectroscopic properties of the TS and its relation with the cluster structure of Mg 24 . Similar TSs could exist in other highly prolate light nuclei. They could serve as promising tests for various reactions to probe a vortical (toroidal) nuclear flow.

  20. Curvature-induced electrostatic drift modes in a toroidal plasma

    International Nuclear Information System (INIS)

    Venema, M.

    1985-01-01

    This thesis deals with a number of problems in the theory of linear stability of a hot, fully ionized plasma immersed in a strong magnetic field. The most widely used system to magnetically confine a plasma is the tokamak. This is a toroidal, current carrying device with a strong, externally imposed, magnetic field. The author discusses the linear theory of unstable, low-frequency waves in the gradient region, restricted to electrostatic waves. In that case the resulting radial fluxes of particles and energy are due to electric cross-field drifts. In the presence of magnetic fluctuations and small-scale reconnection phenomena, radial transport could also be predominantly along field lines. At present, it is not clear which of the two mechanisms is the dominant feature of the observed anomalous transport. First, the author introduces the theory of drift waves in toroidal geometry. Next, the electrostratic drift modes in toroidal geometry (weakly collisional regime), the equations for low-frequency waves in the strongly collisional regime and the electrostatic drift modes (strongly collisional regime) are discussed. (Auth.)

  1. Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies

    Directory of Open Access Journals (Sweden)

    Ahmet YILDIZ

    2014-04-01

    Full Text Available The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely.Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature

  2. Hydrogen in niobium-titanium alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Cabral, F.A.O.; Florencio, O.

    1985-01-01

    High purity Nb-Ti polycrystalline alloys were doped with hydrogen in equilibrium with the gaseous atmosphere at a pressure of 80 torr. at different temperatures. The partial molar enthalpy and entropy of the hydrogen solution at high dilution, ΔH sup(-) 0 and ΔS sup(-) 0 , were calculated from the equilibrium solubility data. The ΔH sup(-) 0 values are compared with the electron screened proton model of metal-hydrogen solutions. The addition of titanium to niobium has the effect to increase the hydrogen solubility at a given equilibrium temperature. (Author) [pt

  3. Risks incurred by hydrogen escaping from containers and conduits

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Grilliot, E.S. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  4. Basic toroidal Effects on Alfven Wave Current in Small Aspect Ratio Tokamaks

    International Nuclear Information System (INIS)

    Burma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    The Alfven wave current drive (AWCD) in small aspect ratio Tokamaks is properly calculated, with consideration of the basic toroidicity effects present in (i) the dielectric tensor-operator (involving the strongly toroidal equilibrium profiles), (ii) the structure of the r.f. fields obtained as a solution of the wave equation (through Maxwell's equations' toroidal operators as well as the conversion rate and conversion layer location, depending also on the equilibrium profiles) and (iii) the formulation of the AWCD (which, besides its dependence on the r.f. fields - affected by toroidicity as mentioned at points (i) and (ii) - also requires the equilibrium-magnetic-surface averaging of non-resonant forces involved). Thus, we consider consistent equilibrium profiles with neo-classical conductivity corresponding to an ohmic START-like discharge; use a resistive (anisotropic) MHD dielectric tensor-operator Edith practically no limitations, adequate to describe the plasma response in the pre-heated stage ; solve numerically the 2(1/2)D full- wave equation by the aid of an advanced finite element code developed in; and evaluate the AWCD by the aid of the recently proposed, quite general formulation holding in the case of strongly toroidal fusion devices and including contributions due to helicity injection, momentum transfer and plasma Bow. A general discussion of the results obtained in this work is presented

  5. Suppression of m = 0 in a RFP by toroidal field coils

    International Nuclear Information System (INIS)

    Alexander, D.; Robertson, S.

    1993-01-01

    The Reversatron RFP is normally operated with the toroidal field coils connected in series. The time-integrated voltage applied to the circuit determines the sum of the fluxes linking each turn but not the flux within each turn. Each winding may have a different flux determined by the external drive and by currents within the plasma. A parallel connection of the field coils results in the flux within each coil being determined by the volt-seconds applied to the windings; thus the toroidal flux is the same within each coil. This configuration suppresses any toroidal variation in the toroidal flux and effectively reduces the level of the m = 0 component of the radial field. The m = 0 fluctuations are expected to arise due to nonlinear coupling of the m = 1 modes. A parallel connection of field coils is impractical due to the low impedance required for driving the coils. The authors have tested the effect of parallel connected coils by adding an auxiliary set of 36 coils. These are connected in parallel but are not connected to any supply. The toroidal flux is generated by the series-connected coils which generate voltage but not current in the parallel-connected coils. With the auxiliary coils, the discharge duration is increased from 500 to 550 μsec, the plasma current is increased from 50 kA to 60 kA, F is more negative, Θ is larger, and there is less shot-to-shot variation in the discharges. The m = 0 fluctuations measured by 43 surface coils are, however, only slightly reduced

  6. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO{sub 4} nanostructures produced by convenient microwave-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China); Gu, Chunchuan [Department of Clinical Laboratory, Hangzhou Cancer Hospital, Zhejiang, Hangzhou 310002 (China); Li, Dujuan; Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China)

    2015-04-15

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.

  7. Compact toroid theory issues and approaches: a panel report

    International Nuclear Information System (INIS)

    1985-06-01

    In the six years since the initiation of the compact toroid program by the Office of Fusion Energy, remarkable scientific advances have occurred on both field-reversed configurations (FRC) and spheromaks. This progress has been stimulated by a diverse experimental program with facilities at six laboratories, and by a small but nevertheless broad theoretical research effort encompassing more than a dozen institutions. The close coupling between theoretical and experimental programs has contributed immeasurably to this progress. This document offers guidance for future compact toroid theory by identifying and discussing the key physics issues. In most cases promising approaches to these issues are offered

  8. ALT-II toroidal belt limiter biasing experiments on TEXTOR

    International Nuclear Information System (INIS)

    Doerner, R.; Boedo, J.A.; Gray, D.S.

    1991-01-01

    Edge electric fields have been related to H-mode-like behaviour. The experiments reported here are an attempt to control the SOL profiles by electrostatic biasing of the full toroidal-belt limiter ALT-II. The specific goals are: influencing the edge particle flows, particle removal, power deposition and the global confinement. The ALT-II pump limiter is a full toroidal belt located at 45 o below the outer midplane and consisting of eight graphite covered blades which can be independently biased. Particle scoops located behind the limiter neutralize and direct the incoming plasma into the pumping ducts. (author) 5 refs., 3 figs

  9. Does Additional Biceps Augmentation Improve Rotator Cuff Healing and Clinical Outcomes in Anterior L-Shaped Rotator Cuff Tears? Clinical Comparisons With Arthroscopic Partial Repair.

    Science.gov (United States)

    Jeon, Yoon Sang; Lee, Juyeob; Kim, Rag Gyu; Ko, Young-Won; Shin, Sang-Jin

    2017-11-01

    The repair of anterior L-shaped tears is usually difficult because of the lack of anterior rotator cuff tendon to cover the footprint. The biceps tendon is usually exposed from the retracted anterolateral corner of the torn tendon and can be easily used to augment rotator cuff repair. Hypothesis/Purpose: This study compared the clinical outcomes of the biceps augmentation technique with those of partial tendon repair for the arthroscopic treatment of large anterior L-shaped rotator cuff tears to evaluate the role of additional biceps augmentation in tendon healing. We hypothesized that the biceps augmentation technique would lead to a lower rotator cuff tendon retear rate and provide satisfactory functional outcomes. Cohort study; Level of evidence, 3. This study included 64 patients with anterior L-shaped rotator cuff tears who underwent arthroscopic repair. Patients were divided into 2 groups: group A (31 patients) underwent repair of an anterior L-shaped tear combined with biceps augmentation, and group B (33 patients) had a partially repaired tendon whose footprint was exposed after repair without undue tension on the retracted tendon. Clinical evaluations were performed using the American Shoulder and Elbow Surgeons (ASES) score, Constant score, muscle strength, visual analog scale for pain, and patient satisfaction. Magnetic resonance imaging (MRI) was performed for tendon integrity at 6 months postoperatively. The mean period of follow-up was 29.1 ± 3.5 months (range, 24-40 months). The mean ASES and Constant scores significantly improved from 52.8 ± 10.6 and 43.2 ± 9.9 preoperatively to 88.2 ± 6.9 and 86.8 ± 6.2 at final follow-up in group A ( P rotation [ER]: 57.5 ± 9.9 to 86.8 ± 9.3; internal rotation [IR]: 68.1 ± 10.8 to 88.1 ± 8.4; P rotator cuff tendon on postoperative MRI. The retear rate between the 2 groups showed no significant difference ( P = .552). Regarding clinical outcomes, both groups had no significant difference in the ASES score

  10. Transport in the high temperature core of toroidal confinement systems

    International Nuclear Information System (INIS)

    Weiland, J.

    1994-01-01

    Recent theoretical and experimental results on confinement of hot plasmas in toroidal devices, particularly tokamaks, are discussed from general principal points of view and related to predictions from a toroidal drift wave model using a full transport matrix including off diagonal terms. A reactive fluid model corresponding to a two pole approximation of the kinetic response is used. This model has the ability to reproduce both adiabatic and isothermal limits of the perpendicular dynamics. 106 refs, 8 figs, 1 tab

  11. On the effect of electron's runaway in partially ionized hydrogen semiclassical nonideal plasma

    International Nuclear Information System (INIS)

    Turekhanova, K.M.

    2011-01-01

    Complete text of publication follows. The effect of runaway electrons occurs frequently in tokamak plasmas. The majority of experiments in tokamak research have been devoted to the study of confinement properties of runaway electrons. Runaway electrons are reason of various destroying untolarance in tokamak plasmas. At high plasma density, when the critical energy is comparable with the rest energy the multiplication of runaway electrons accelerate at the sacrifice of increase of plasma density. The plasma conductivity is determined by electrons with energy several times higher than the thermal one and does not practically depend on slower electrons distribution. It is important to analyze the probability of runaway electrons at investigation of physical properties of nonideal plasmas under external electric field and running numerical simulations of their. The present paper is devoted to the investigation of effect of runaway electrons in partially ionized hydrogen dense plasma using the effective potentials of particle's interaction. At the investigation of composition of plasma we used the Saha equation with corrections to nonideality (lowering of ionization potentials). The Saha equation was solved for obtaining of plasma ionization stages at the different number density and temperature. As well, when take into account quantum-mechanical diffraction and screening effects, whereas free path of electrons increases with increase of plasma coupling parameter. The condition for appearance of runaway electrons in semiclassical partially ionized plasma is more favorable in regime of dense plasma. In summary it means that the probability of runaway electron in dense plasma is more than the same in rarified plasma that is possibly connected with formation of some ordered structures in dense plasma.

  12. Design and fabrication of the vacuum vessel for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Chipley, K.K.; Frey, G.N.

    1985-01-01

    The vacuum vessel for the Advanced Toroidal Facility (ATF) is a heavily contoured and very complex formed vessel that is specifically designed to allow for maximum plasma volume in a pure stellarator arrangement. The design of the facility incorporates an internal vessel that is closely fitted to the two helical field coils following the winding law theta = 1/6phi. Metallic seals have been incorporated throughout the system to minimize impurities. The vessel has been fabricated utilizing a comprehensive set of tooling fixtures specifically designed for the task of forming 6-mm stainless steel plate to the complex shape. Computer programs were used to develop a series of ribs that essentially form an internal mold of the vessel. Plates were press-formed with multiple compound curves, fitted to the fixture, and joined with full-penetration welds. 7 refs., 8 figs

  13. Elastic stability and vibration of toroidal magnets for fusion reactors. Final report

    International Nuclear Information System (INIS)

    Moon, F.C.; Swanson, C.

    1975-09-01

    The vibration and elastic stability of a set of discrete superconducting toroidal field magnets arranged to form a ''bumpy'' torus is examined. The mutual destabilizing magnetic forces between magnet pairs are calculated using a numerical differential inductance technique. It is shown that the mutual attractive magnetic forces can produce elastic buckling of the entire toroidal set. The vibration modes of the set are also found as functions of the coil current. The response of the set of magnets to an earthquake type motion of the toroidal base is calculated. The calculations have been incorporated in a computer code which accompanies the report. Measurements are made of the lateral stiffness of a flexible, planar, superconducting coil between two rigid coils in series. These tests show a dramatic decrease in the natural bending frequency with subsequent elastic instability or ''buckling'' at a critical value of the current in the coils. These observations support a magnetoelastic analysis which shows that proposed designs, of toroidal field coils for Tokamak fusion reactors, have insufficient lateral support for mechanical stability of the magnets

  14. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  15. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...... by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations...

  16. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  17. Engineering status of the superconducting end cap toroid magnets for the ATLAS experiment at LHC

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Courthold, M J D; Cragg, D A; Densham, C J; Evans, D; Holtom, E; Rochford, J; Sole, D; Towndrow, Edwin F; Warner, G P

    2000-01-01

    The ATLAS experiment at LHC, CERN will utilise a large, superconducting, air-cored toroid magnet system for precision muon measurements. The magnet system will consist of a long barrel and two end-cap toroids. Each end-cap toroid will contain eight racetrack coils mounted as a single cold mass in cryostat vessel of ~10 m diameter. The project has now moved from the design/specification stage into the fabrication phase. This paper presents the engineering status of the cold masses and vacuum vessels that are under fabrication in industry. Final designs of cold mass supports, cryogenic systems and control/protection systems are presented. Planning for toroid integration, test and installation is described. (3 refs).

  18. Passing particle toroidal precession induced by electric field in a tokamak

    International Nuclear Information System (INIS)

    Andreev, V. V.; Ilgisonis, V. I.; Sorokina, E. A.

    2013-01-01

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles

  19. Passing particle toroidal precession induced by electric field in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); Ilgisonis, V. I.; Sorokina, E. A. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); NRC “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles.

  20. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  1. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  2. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  3. Locked magnetic island chains in toroidally flow damped tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R; Waelbroeck, F L

    2010-01-01

    The physics of a locked magnetic island chain maintained in the pedestal of an H-mode tokamak plasma by a static, externally generated, multi-harmonic, helical magnetic perturbation is investigated. The non-resonant harmonics of the external perturbation are assumed to give rise to significant toroidal flow damping in the pedestal, in addition to the naturally occurring poloidal flow damping. Furthermore, the flow damping is assumed to be sufficiently strong to relax the pedestal ion toroidal and poloidal fluid velocities to fixed values determined by neoclassical theory. The resulting neoclassical ion flow causes a helical phase-shift to develop between the locked island chain and the resonant harmonic of the external perturbation. Furthermore, when this phase-shift exceeds a critical value, the chain unlocks from the resonant harmonic and starts to rotate, after which it decays away and is replaced by a helical current sheet. The neoclassical flow also generates an ion polarization current in the vicinity of the island chain which either increases or decreases the chain's radial width, depending on the direction of the flow. If the polarization effect is stabilizing, and exceeds a critical amplitude, then the helical island equilibrium becomes unstable, and the chain again decays away. The critical amplitude of the resonant harmonic of the external perturbation at which the island chain either unlocks or becomes unstable is calculated as a function of the pedestal ion pressure, the neoclassical poloidal and toroidal ion velocities and the poloidal and toroidal flow damping rates.

  4. Measurement of toroidal and poloidal plasma rotation in TCA

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-01-01

    With optimal observation geometry we have measured both the toroidal and poloidal rotation velocities in the edge and in the bulk of the TCA plasma. Regular calibration and correction for variations in the spectrometer temperature permitted a measurement with an error of ∼0.5 km/s which is an order of magnitude smaller than the range of measured velocities. In general, changes in the velocities are observed to be stronger and faster in the plasma edge than in the plasma bulk. With increasing density, the toroidal velocity is observed to change sign and follow the plasma density, while the poloidal velocity increases. These two effects lead to an increase in the absolute value of the radial electric field. With very strong gas puffing, the toroidal velocity is observed to again reverse and tend to zero, an effect which is stronger as the gradient of the density ramp is increased. Comparison between gas puffing and high power AWH does not show a significant difference in the radial electric field that could be responsible for the large associated density rise, which still remains unexplained. (author) 4 figs., 2 refs

  5. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  6. Toroidal charge exchange recombination spectroscopy on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Yingying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yu, Yi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Yuejiang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lyu, Bo; Fu, Jia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Du, Xuewei; Yin, Xianghui; Zhang, Yi; Wang, Qiuping [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan, Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    A toroidal charge exchange recombination spectroscopy (CXRS) diagnostic, on the basis of a heating neutral beam injector (NBI), is constructed on EAST tokamak. Simulation of Spectra (SOS) code is used to design and evaluate the diagnostic performance. 30 spatial channels work simultaneously in recent experiment, which covers a radial region from 1.55 m to 2.30 m in the cross section. The CXRS has a radial resolution of 1–3.5 cm from core to edge. The acquisition time is typically 10 ms, limited by the poor photon statistics. The diagnostic can observe not only the normal C{sup 5+} emission line at 529.1 nm but also any interested wavelength in the range of 400–700 nm. In this work, a brief overview on the R&D and the instrument performance for the toroidal CXRS diagnostic is described, together with first results.

  7. Toroidal simulation magnet tests

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Domm, T.C.

    1975-01-01

    A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly

  8. On the longitudinal coupling impedance of a toroidal beam tube

    International Nuclear Information System (INIS)

    Hahn, H.; Tepikian, S.

    1990-01-01

    In this paper, the longitudinal coupling impedance of a smooth toroidal beam tube is derived. By treating the torus as a slow-wave structure, the well-known method of describing the impedance in terms of cavity resonances can be used. A simple analytical expression for the coupling impedance of a toroidal beam tube with square cross section valid in the low-frequency limit is obtained. The results from the present study are compared with previously published solutions and qualitative differences are pointed out. 16 refs., 3 figs., 1 tab

  9. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetic, Nanjing University of Information Science and Technology, Nanjing, 210044 (China)

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  10. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  11. Anisotropic diffusion in a toroidal geometry

    International Nuclear Information System (INIS)

    Fischer, Paul F

    2005-01-01

    As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note

  12. Toroidal electric field in front of the lower hybrid grill of the castor tokamak

    International Nuclear Information System (INIS)

    Zacek, F.; Petrzilka, V.; Devynck, P.; Goniche, M.

    2003-01-01

    A small tokamak Castor (R/a = 0.4/0.85 m) with low plasma energy density and short pulses (20 ms) offers a unique possibility to carry out probe measurements in front of the grill antenna and as a consequence to provide direct information about the local electric fields in this region. For measurements of the toroidal electrical field, a small double probe with 2 tips separated by 3.5 mm in the toroidal direction has been used. The tips are oriented in the radial direction. The probe is radially movable in front of the central grill waveguide. Cross-correlations and FFT (fast Fourier transform) analysis of the measured V fl signals are given together with an attempt to investigate characteristics of toroidal electric field E tor (up to 500 kHz), derived from V fl measured by 2 toroidally separated tips

  13. Toroidal 12 cavity klystron : a novel approach

    International Nuclear Information System (INIS)

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  14. Compact toroids with Alfvenic flows

    International Nuclear Information System (INIS)

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  15. Toroidally Resolved Structure of Divertor Heat Flux in RMP H-mode Discharges on DIII-D

    International Nuclear Information System (INIS)

    Jakubowski, M.W.; Evans, T.E.; Fenstermacher, M.E.; Lasnier, C.J.; Wolf, R.C.; Baylor, Larry R.; Boedo, J.A.; Burrell, K.H.; DeGrassie, J.S.; Gohil, P.; Mordijck, S.; Laengner, R.; Leonard, A.W.; Moyer, R.A.; Petrie, T.W.; Petty, C.C.; Pinsker, R.I.; Rhodes, T.L.; Schaffer, M.J.; Schmitz, O.; Snyder, P.B.; Stoschus, H.; Osborne, T.H.; Orlov, D.M.; Unterberg, Ezekial A.; Watkins, J.G.

    2011-01-01

    As shown on DIII-D edge localized modes (ELMs) can be either completely eliminated or mitigated with resonant magnetic perturbation (RMP) fields. Two infrared cameras, separated 105 degrees toroidally, were used to make simultaneous measurements of ELM heat loads with high frame rates. Without the RMP fields ELMs display a variety of different heat load dynamics and a range of toroidal variability that is characteristic of their 3D structure. Comparing radial averages there is no asymmetry between two toroidal locations. With RMP-mitigated ELMs, the variability in the radially averaged power loads is significantly reduced and toroidal asymmetries in power loads are introduced. In addition to RMP ELM suppression scenarios an RMP scenario with only very small ELMs and very good confinement has been achieved.

  16. Observations of toroidal and poloidal rotation in the high beta tokamak Torus II

    International Nuclear Information System (INIS)

    Kostek, C.A.

    1983-01-01

    The macroscopic rotation of plasma in a toroidal containment device is an important feature of the equilibrium. Toroidal and poloidal rotation in the high beta tokamak Torus II is measured experimentally by examining the Doppler shift of the 4685.75 A He II line emitted from the plasma. The toroidal flow at an average velocity of 1.6 x 10 6 cm/sec, a small fraction of the ion thermal speed, moves in the same direction as the toroidal plasma current. The poloidal flow follows the ion diamagnetic current direction, also at an average speed of 1.6 x 10 6 cm/sec. In view of certain ordering parameters, the toroidal flow is compared with predictions from neoclassical theory in the collosional, Pfirsch-Schluter regime. The poloidal motion, however results from an E x B drift in a positive radial electric field, approaching a stable ambipolar state. This radial electric field is determined from theory by using the measured poloidal velocity. Mechanisms for the time evolution of rotation are also examined. It appears that the circulation damping is governed by a global decay of the temperature and density gradients which, in turn, may be functions of radiative cooling, loss of equilibrium due to external field decay, or the emergence of a growing instability, occasionally observed in CO 2 interferometry measurements

  17. Charge-exchange neutral hydrogen measurements in TFTR using Pd-MOS microsensors

    International Nuclear Information System (INIS)

    Bastasz, R.; Kilpatrick, S.J.; Ruzic, D.N.

    1991-06-01

    An array of Pd-metal-oxide semiconductor (Pd-MOS) diodes has been used to monitor the fluence and energy of charge-exchange neutral hydrogen isotopes striking the wall of the Tokamak Fusion Test Reactor (TFTR). The array was positioned 4 cm behind the graphite-tiled wall at the toroidal midplane and exposed to several hundred plasma discharges. Hydrogen isotopes striking the Pd-MOS diodes were detected by measuring the leakage current, which is affected by the presence of these species at the Pd/SiO 2 interface. It was found that the midplane flux strongly increased for neutral-beam heated plasmas and correlated with co-injected neutral beam power. The majority of the neutral flux was <50 eV in energy but its energy distribution extended to above 500 eV. 20 refs., 4 figs

  18. The guidance of visual search by shape features and shape configurations.

    Science.gov (United States)

    McCants, Cody W; Berggren, Nick; Eimer, Martin

    2018-03-01

    Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Compact toroid fueling of the TdeV tokamak

    International Nuclear Information System (INIS)

    Martin, F.; Raman, R.; Xiao, C.; Thomas, J.

    1993-01-01

    Compact toroids have been proposed as a means of centrally fueling tokamak reactors because of the high velocity to which they can be accelerated. These are cold (T e ∼ 10 eV), high density (n e > 10 20 m -3 ) spheromak plasmoids that are accelerated in a magnetized Marshall gun. As a proof of principle experiment, a compact toroid fueler (CTF) has been developed for injection into the TdeV tokamak. The engineering goals of the experiment are to measure and minimize the impurity content of the CT plasma and the neutral gas remaining after CT formation. Also of importance is the effect of CT central fueling on the tokamak density profile and bootstrap current, and the relaxation rate of the density profile providing information on the confinement time of the CT fuel

  20. Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation

    International Nuclear Information System (INIS)

    Mansur, N.L.P.

    1986-01-01

    A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt

  1. Toroidal effects on the non-linearly saturated m = 1 island in tokamaks

    International Nuclear Information System (INIS)

    Avinash, K.; Haas, F.A.; Thyagaraja, A.

    1990-01-01

    This paper investigates the influence of toroidal effects (due to the coupling of various poloidal harmonics) on the non-linear saturation of the m=1 island. Bounds are obtained relating the aspect ratio, the shear at the q=1 surface and the saturated island width. Provided these bounds are satisfied, then we find that the cylindrical m=1 island theory is valid for toroidal geometry. (author)

  2. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects

    International Nuclear Information System (INIS)

    Schmalz, R.

    1980-11-01

    The resistive MHD equations for toroidal plasma configurations are reduced by expanding to the second order in epsilon, the inverse aspect ratio, allowing for high β = μsub(o)p/B 2 of order epsilon. The result is a closed system of nonlinear, three-dimensional equations where the fast magnetohydrodynamic time scale is eliminated. In particular, the equation for the toroidal velocity remains decoupled. (orig.)

  3. Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1982-04-01

    A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given

  4. Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1983-01-01

    A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)

  5. Metal oxide/hydrogen secondary battery; Kinzoku sankabutsu/suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Hosobuchi, H.; Ema, M.

    1995-12-12

    Since the shape of powder produced by crushing the hydrogen storage alloy containing rare earth element varies widely, the density of the negative electrode made by packing the alloy powder is low. As a result, the secondary battery employing this negative electrode has a small discharge capacity. This invention solves the problem. Employing the hydrogen storage alloy containing rare earth element composed of particle shape of aspect ratio, A, of over 1.0 and below 3.0 gives rise to the negative electrode with high packing density, improving the discharge capacity of the metal oxide - hydrogen secondary battery. The more the shape of powder of hydrogen storage alloy containing rare earth element is near to sphere, the higher the packing density of negative electrode made of the hydrogen storage alloy containing rare earth element becomes. The preferable aspect ratio, A, of the powder is 1.0 {le} A {le} 2.0. Such alloy powder can be produced by mechanically grinding the rare-earth-element-containing hydrogen alloy ingot, or grinding by hydration, or grinding by atomizing followed by sieving. 1 fig., 1 tab.

  6. The forming of a superconductor cable during the winding of a large toroidal field coil

    International Nuclear Information System (INIS)

    Messemer, G.; Zehlein, H.

    1984-01-01

    The feasible range for the tension force which acts on a superconductor cable during the winding of a large D-shaped toroidal field coil depends strongly on the mechanical properties of the cable, on the geometry of the winding pack and on the arrangement of the equipment. The upper limit is imposed by possible damage within the cable. The lower limit is set by the need to assure enough compaction and to overcome the friction forces between the layers. Within this 'corridor' optimal control of elastic prestresses is desirable: this may be chosen with regard to the residual stresses and/or the elastic springback after removal of the coil former. This paper presents a simplified elastica conductor model built by a finite chain of intervals with constant bending moment and curvature. This paper describes the discrete model as well as the iterative shooting method, which finds the equilibrium shape of the conductor. The distributions of bending moment and shear forces around the D-shaped contour, as well as along the conductor, are given. Desirable improvements are outlined. In particular, the possibility of mitigating the stress concentration effect by supporting rollers suitably placed along the 'free' conductor near the bobbin is discussed. (author)

  7. Hydrogen solubility in polycrystalline - and nonocrystalline niobium

    International Nuclear Information System (INIS)

    Ishikawa, T.T.; Silva, J.R.G. da

    1981-01-01

    Hydrogen solubility in polycrystalline and monocrystalline niobium was measured in the range 400 0 C to 1000 0 C at one atmosphere hydrogen partial pressure. The experimental technique consists of saturation of the solvent metal with hydrogen, followed by quenching and analysis of the solid solution. It is presented solubility curves versus reciprocal of the absolute doping temperature, associated with their thermodynamical equation. (Author) [pt

  8. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-01

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.

  9. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  10. On toroidal Green close-quote s functions

    International Nuclear Information System (INIS)

    Bates, J.W.

    1997-01-01

    Green close-quote s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green close-quote s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as open-quotes standard,close quotes but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green close-quote s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A open-quotes torsionalclose quotes Green close-quote s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example. copyright 1997 American Institute of Physics

  11. Toroidal magnetic confinement of non-neutral plasmas

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Ogawa, Yuichi; Morikawa, Junji; Himura, Haruhiko; Kondo, Shigeo; Nakashima, Chihiro; Kakuno, Shuichi; Iqbal, Muhamad; Volponi, Francesco; Shibayama, Norihisa; Tahara, Shigeru

    1999-01-01

    A new method of toroidal non-neutral plasma trap has been developed with applying the chaos-induced radial transport of particles near a magnetic null point. A pure electron plasma is produced by injecting an electron beam. The poloidal gyroradius of an electron at the energy of 1 keV is of order 10 mm, which determines the length scale of the chaotic region. Amongst various applications of toroidal non-neutral plasmas, a possibility of producing very high-β plasma, which is suitable for advanced fusion, has been examined. The self-electric field of a non-neutral plasma can generate a strong shear flow. When the flow velocity is comparable to the Alfven speed (which is smaller than the ion sound speed, if β>1), a high-β equilibrium can be produced in which the plasma pressure is primarily balanced by the dynamic pressure of the flow. This configuration is described by a generalized Bernoulli law

  12. Calculations of toroidal EXTRAP equilibria for different toroidal ring current configurations

    International Nuclear Information System (INIS)

    Drake, J.R.; Scheffel, J.

    1985-12-01

    EXTRAP is a concept in which a pure Z-pinch is generated along the axis of an octupole field. Experiments in a linear as well as in a sector geometry have demonstrated that the pinch becomes stable against instabilities for many Alfven times. The octupole field in EXTRAP is produced by four, external, current-carrying rings. In the toroidal geometry these rings must be supplemented by additional rings to compensate for the plasma loop force and transformer core leakage flux. Equilibrium studies are carried out for two basically ring designs. The studies are based on numerical equilibrium copmputations using the GOYA code. Sensitivity of the equilibrium to technical imperfections is also analyzed. (author)

  13. Formation of polymeric toroidal-spiral particles.

    Science.gov (United States)

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  14. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    International Nuclear Information System (INIS)

    Qin, Hong; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-01-01

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ((var e psilon) -1 ) larger than the E x B velocity, where (var e psilon) is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  15. Numerical stress analysis of toroidal coil by three-dimensional finite element method

    International Nuclear Information System (INIS)

    Nishimura, Hidetomo; Shimamoto, Susumu

    1977-10-01

    A structure analysis program based on finite element method for toroidal coils, developed in JAERI, and its example application to a medium-size tokamak are described. In this application, the effects of material anisotropy, poloidal field and spring constant value were studied, and also the influence of toroidal coil failure on the peak stress. The following were revealed. The effect of anisotropy on the peak stress in reinforcement must be considered. The effect of poloidal field on the peak stress is small compared with that of toroidal field. The spring constant value between coil and support does not much influence the peak stress value, The peak stress in reinforcement rises with increasing number of failed coils. In the case of 2000 nodes on the structure, CPU time with the program is about 40 min. (auth.)

  16. Pure tension superconducting toroidal-field coil system design studies for the Argonne Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Purcell, J.R.; Demichele, D.W.; Turner, L.R.

    1975-11-01

    As part of the Argonne Tokamak Experimental Power Reactor (TEPR) design studies, a toroidal field (TF) coil system has been designed. NbTi was chosen as the most suitable superconductor and 8T was regarded as a practical peak field level in this study. The 16-coil design was chosen as a reasonable compromise between 2 percent field ripple and 3 m access gap. To minimize the coil structure and the bending moments on the conductor, a pure tension coil shape is necessary. A correct approach for determining the pure tension coil profile in a bumpy TF coil system is given. Verification of the pure tension coil by a three-dimensional stress analysis is presented. For coil quench protection, a series-connected scheme is proposed

  17. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  18. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    Science.gov (United States)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  19. Structural characteristics of proposed ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coil conductor

    International Nuclear Information System (INIS)

    Gibson, C.R.; Miller, J.R.

    1988-01-01

    This paper analyzes the effect of transverse loading on a cable-in-conduit conductor which has been proposed for the toroidal field coils of the International Thermonuclear Experimental Reactor. The primary components of this conductor are a loose cable of superconducting wires, a thin-wall tube for helium containment, and a U-shaped structural channel. A method is given where the geometry of this conductor can be optimized for a given set of operating conditions. It is shown, using finite-element modeling, that the structural channel is effective in supporting loads due to transverse forces and internal pressure. In addition, it is shown that the superconducting cable is effectively shielded from external transverse loads that might otherwise degrade its current carrying capacity. 10 refs., 10 figs., 3 tabs

  20. On the radiation of electric, magnetic and toroidal dipoles

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2002-01-01

    We consider the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium (this corresponds to the Tamm-Frank problem). The densities of these dipoles are obtained from the corresponding charge-current densities in an infinitesimal limit. The behaviour of radiation intensities in the neighbourhood of the Cherenkov threshold β = 1/n is investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The comparison with previous attempts is given. We consider also the radiation of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite space interval (this corresponds to the Tamm problem). The properties of radiation arising from the precession of a magnetic dipole are studied

  1. On the Radiation of Electric, Magnetic and Toroidal Dipoles

    CERN Document Server

    Afanasiev, G N

    2002-01-01

    We consider the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium (this corresponds to the Tamm-Frank problem). The densities of these dipoles are obtained from the corresponding charge-current densities in an infinitesimal limit. The behaviour of radiation intensities in the neighbourhood of the Cherenkov threshold beta=1/n is investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The comparison with previous attempts is given. We consider also the radiation of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite space interval (this corresponds to the Tamm problem). The properties of radiation arising from the precession of a magnetic dipole are studied.

  2. Overview, Progress, and Plans for the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Hartwell, G. J.; Allen, N. R.; Ennis, D. A.; Hanson, J. D.; Howell, E. C.; Johnson, C. A.; Knowlton, S. F.; Kring, J. D.; Ma, X.; Maurer, D. A.; Ross, K. G.; Schmitt, J. C.; Traverso, P. J.; Williamson, E. N.

    2017-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | disruption studies. The main goals of the CTH experiment are to study disruptive behavior as a function of applied 3D magnetic shaping, and to test and advance the V3FIT reconstruction code and NIMROD modeling of CTH. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased with no observed threshold for avoidance. Low-q operations (1.1 routine, with disruptions ceasing if the vacuum transform is raised above 0.07. Sawteeth are observed in CTH and have a similar phenomenology to tokamak sawteeth despite employing a 3D confining field. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges. Internal SXR diagnostics, in conjunction with external magnetics, extend the range of reconstruction accuracy into the plasma core. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  3. Validation of helium inlet design for ITER toroidal field coil

    International Nuclear Information System (INIS)

    Boyer, C.; Seo, K.; Hamada, K.; Foussat, A.; Le Rest, M.; Mitchell, N.; Decool, P.; Savary, F.; Sgobba, S.; Weiss, K.P.

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb 3 Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are preparing the helium inlet mock-up for a qualification test. (authors)

  4. H2-dependent attachment kinetics and shape evolution in chemical vapor deposition graphene growth

    Science.gov (United States)

    Meca, Esteban; Shenoy, Vivek B.; Lowengrub, John

    2017-09-01

    Experiments on graphene growth through chemical vapor deposition (CVD) involving methane (CH4) and hydrogen (H2) gases reveal a complex shape evolution and a non-monotonic dependence on the partial pressure of H2 ({{p}{{\\text{H}2}}} ). To explain these intriguing observations, we develop a microkinetic model for the stepwise decomposition of CH4 into mobile radicals and consider two possible mechanisms of attachment to graphene crystals: CH radicals to hydrogen-decorated edges of the crystals and C radicals to bare crystal edges. We derive an effective mass flux and an effective kinetic coefficient, both of which depend on {{p}{{\\text{H}2}}} , and incorporate these into a phase field model. The model reproduces both the non-monotonic dependence on {{p}{{\\text{H}2}}} and the characteristic shapes of graphene crystals observed in experiments. At small {{p}{{\\text{H}2}}} , growth is limited by the kinetics of attachment while at large {{p}{{\\text{H}2}}} growth is limited because the effective mass flux is small. We also derive a simple analytical model that captures the non-monotone behavior, enables the two mechanisms of attachment to be distinguished and provides guidelines for CVD growth of defect-free 2D crystals.

  5. RF current drive in a toroidal plasna in the banana regime

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Plotnik, I.S.

    1982-01-01

    The use of travelling waves for the steady-state current drive in an axisymmetric toroidal plasma in the banana regime is studied. The treatment is based on a quasi-linear equation for the electron distribution function averaged over the period of the particle motion along the small azimuth of the torus. It is show that the trapped electrons do not absorb the energy of the monochromatic (over frequency) RF field and thus only the circulating electrons contribute to the driving current and to the absorbed RF power. The current and the absorbed power are calculated by using the electron distribution function obtained for the case of narrow wave packet, both the toroidal magnetic field and the distortion of the electron distribution over transverse velocities being taken into consideration. The significant role of the barely carculating electrons is revealed. It is pointed out that the toroidal satellite resonances can affect the RF current drive by spreading and splitting the region of the wave-marticle interaction

  6. Dependence of {beta} {center_dot} {tau} on plasma shape in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, E.A. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    In this paper we discuss the observed variation in plasma performance with plasma shape, in particular, we shall compare single and double null diverted plasmas. The product {beta} {center_dot} {tau} has been used as a figure-of-merit for comparing different toroidal magnetic configurations. Here we shall use it as the figure-of-merit for comparing differing configurations within the DIII-D tokamak. (author) 5 refs., 5 figs.

  7. Representation of magnetic fields with toroidal topology in terms of field-line invariants

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1990-01-01

    Beginning with Boozer's representation of magnetic fields with toroidal topology [Phys. Fluids 26, 1288 (1983)], a general formalism is presented for the representation of any magnetic field with toroidal topology in terms of field-line invariants. The formalism is an application to the magnetic field case of results developed recently by Lewis et al. (submitted for publication to J. Phys. A) for arbitrary time-dependent Hamiltonian systems with one degree of freedom. Every magnetic field with toroidal topology can be associated with time-dependent Hamiltonian systems with one degree of freedom and every time-dependent Hamiltonian system with one degree of freedom can be associated with magnetic fields with toroidal topology. In the Hamiltonian context, given any particular function I(q,p,t), Lewis et al. derived those Hamiltonians for which I(q,p,t) is an invariant. In addition, for each of those Hamiltonians, they derived a function canonically conjugate to I(q,p,t) that is also an invariant. They applied this result to the case where I(q,p,t) is expressed as a function of two canonically conjugate functions. This general Hamiltonian formalism provides a basis for representing magnetic fields with toroidal topology in terms of field-line invariants. The magnetic fields usually contain plasma with flow and anisotropic pressure. A class of fields with or without rotational symmetry is identified for which there are magnetic surfaces. The formalism is developed for application to the case of vacuum magnetic fields

  8. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II

    International Nuclear Information System (INIS)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E.

    1992-03-01

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  9. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Peter A., E-mail: gilman@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2017-06-20

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both have e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.

  10. Field effect-gas sensor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plihal, M [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorium

    1977-01-01

    MIS diodes with palladium gate can be used to detect and to measure quantitatively the hydrogen concentration in gas mixtures. The dependence of the differential capacitance of these diodes on the partial pressure of hydrogen in nitrogen, oxygen and air is investigated. A theoretical model is developed which gives satisfactory agreement with most of the experimental results.

  11. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.

    1994-11-01

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency ω A = V A /qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode

  12. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  13. Effect of toroidal field ripple on the formation of internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Vries, P C de; Hawkes, N C; Challis, C D; Andrew, Y; Beurskens, M; Brix, M; Giroud, C; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Joffrin, E [EFDA-JET CSU, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Litaudon, X [Association EURATOM-CEA, DSM/DFRC, CEA Cadarache, 13108, St Paul lez Durance (France); Brzozowski, J; Johnson, T [Association EURATOM-VR, Fusion Plasma Physics, EES, KTH, Stockholm (Sweden); Crombe, K [Department of Applied Physics, Ghent University, Ghent (Belgium); Hobirk, J [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany); Loennroth, J; Salmi, A [Association Euratom-Tekes, Helsinki University of Technology, PO Box 4100, 02015 TKK (Finland); Tala, T [Association Euratom-Tekes, VTT, PO Box 1000, 02044 VTT (Finland); Yavorskij, V [Institute for Theoretical Physics, Association EURATOM-OEAW, University of Innsbruck (Austria)], E-mail: Peter.de.Vries@jet.uk

    2008-06-15

    The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to {delta} = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.

  14. Partial replacement of corn grain by hydrogenated oil in grazing dairy cows in early lactation.

    Science.gov (United States)

    Salado, E E; Gagliostro, G A; Becu-Villalobos, D; Lacau-Mengido, I

    2004-05-01

    Thirty-six grazing dairy cows were used to determine milk production and composition, and dry matter and energy intake when corn grain was partially replaced by hydrogenated oil in the concentrate. Four additional cows, each fitted with a ruminal cannula, were used in a crossover design to evaluate effects of supplemental fat on rumen environment and pasture digestion. All cows grazed mixed pastures with an herbage allowance of 30 kg dry matter/cow per day. The control group was fed a concentrate containing corn grain (4.49 kg dry matter/cow per day) and fishmeal (0.37 kg dry matter/cow per day), whereas the other group (fat) received a concentrate containing corn grain (2.87 kg dry matter/cow per day), fishmeal (0.37 kg dry matter/cow per day) and fat (0.7 kg dry matter/cow per day). The fat was obtained by hydrogenation of vegetable oils (melting point 58 to 60 degrees C, 30.3% C16:0, 34.9% C18:0, 21.8% C18:1, 3.3% C18:2). Supplemental fat increased milk production (control = 23.7 vs. fat = 25.0 kg/cow per day), fat-corrected milk (control = 22.5 vs. fat = 24.5 kg/cow per day), milk fat content (control = 3.64% vs. fat = 3.86%) and yields of milk fat (control = 0.86 vs. fat = 0.97 kg/cow per day) and protein (control = 0.74 vs. fat = 0.78 kg/cow per day). Milk percentages of protein, lactose, casein, cholesterol, and urea nitrogen were not affected. Pasture DMI and total DMI of pasture and concentrate and estimated energy intake were unchanged. No differences in loss of body weight or body condition score were detected. Plasma concentrations of nonesterified fatty acids, somatotropin, insulin, and insulin-like growth factor were not affected by supplemental fat. Concentrations of plasma triglyceride and total cholesterol were increased by supplemented fat, and no changes in plasma glucose and urea nitrogen were observed. The acetate-to-propionate ratio was higher in rumen fluid of cows that consumed fat (fat = 3.39 vs. control = 3.27). In situ pasture NDF

  15. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  16. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1985-01-01

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented

  17. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    International Nuclear Information System (INIS)

    Palacios, W.D.; Koropecki, R.R.; Arce, R.D.; Busso, A.

    2008-01-01

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium

  18. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, W.D. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina); Koropecki, R.R. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina)], E-mail: rkoro@intec.ceride.gov.ar; Arce, R.D. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina); Busso, A. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina)

    2008-04-30

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium.

  19. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of

  20. Poloidal and toroidal heat flux distribution in the CCT tokamak

    International Nuclear Information System (INIS)

    Brown, M.L.; Dhir, V.K.; Taylor, R.J.

    1990-01-01

    Plasma heat flux to the Faraday shield panels of the UCLA Continuous Current Tokamak (CCT) has been measured calorimetrically in order to identify the dominant parameters affecting the spatial distribution of heat deposition. Three heating methods were investigated: audio frequency discharge cleaning, RF heating, and AC ohmic. Significant poloidal asymmetry is present in the heat flux distribution. On the average, the outer panels received 25-30% greater heat flux than the inner ones, with the ratio of maximum to minimum values attaining a difference of more than a factor of 2. As a diagnostic experiment the current to a selected toroidal field coil was reduced in order to locally deflect the toroidal field lines outward in a ripple-like fashion. Greatly enhanced heat deposition (up to a factor of 4) was observed at this location on the outside Faraday panels. The enhancement was greatest for conditions of low toroidal field and low neutral pressure, leading to low plasma densities, for which Coulomb collisions are the smallest. An exponential model based on a heat flux e-folding length describes the experimentally found localization of thermal energy quite adequately. (orig.)

  1. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  2. Extensive analysis of hydrogen costs

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, D M; Martin, D; Garcia-Alegre, M C; Guinea, D [Consejo Superior de Investigaciones Cientificas, Arganda, Madrid (Spain). Inst. de Automatica Industrial; Agila, W E [Acciona Infraestructuras, Alcobendas, Madrid (Spain). Dept. I+D+i

    2010-07-01

    Cost is a key issue in the spreading of any technology. In this work, the cost of hydrogen is analyzed and determined, for hydrogen obtained by electrolysis. Different contributing partial costs are taken into account to calculate the hydrogen final cost, such as energy and electrolyzers taxes. Energy cost data is taken from official URLs, while electrolyzer costs are obtained from commercial companies. The analysis is accomplished under different hypothesis, and for different countries: Germany, France, Austria, Switzerland, Spain and the Canadian region of Ontario. Finally, the obtained costs are compared to those of the most used fossil fuels, both in the automotive industry (gasoline and diesel) and in the residential sector (butane, coal, town gas and wood), and the possibilities of hydrogen competing against fuels are discussed. According to this work, in the automotive industry, even neglecting subsidies, hydrogen can compete with fossil fuels. Hydrogen can also compete with gaseous domestic fuels. Electrolyzer prices were found to have the highest influence on hydrogen prices. (orig.)

  3. Induction Motor with Switchable Number of Poles and Toroidal Winding

    Directory of Open Access Journals (Sweden)

    MUNTEANU, A.

    2011-05-01

    Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.

  4. Development of coal partial hydropyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Hideaki Yabe; Takafumi Kawamura; Kohichiroh Gotoh; Akemitsu Akimoto [Nippon Steel Corporation, Chiba (Japan)

    2005-07-01

    Coal partial hydropyrolysis process aims at co-production of high yield of light oil such as BTX and naphthalene and synthesis gas from a low rank coal under a mild hydropyrolysis condition. The characteristic of this process is in the two-staged entrained hydropyrolysis reactor composed of the reformer and gasifier. This reactor arrangement gives us high heat efficiency of this process. So far, in order to evaluate the process concept a small-scale basic experiment and a 1t/day process development unit study were carried out. The experimental results showed that coal volatiles were partially hydrogenated to increase the light oil and hydrocarbon gases at the condition of partial hydropyrolysis such as pressure of 2-3MPa, temperature of 700-900{sup o}C and hydrogen concentration of 30-50%. This process has a possibility of producing efficiently and economically liquid and gas products as chemicals and fuel for power generation. As a further development in the period of 2003 to 2008, a 20t/day pilot plant study named ECOPRO (efficient co-production with coal flash hydropyrolysis technology) has been started to establish the process technologies for commercialization. 12 refs., 6 figs., 3 tabs.

  5. Structure and damping of toroidal drift waves (and their implications for anomalous transport)

    International Nuclear Information System (INIS)

    Taylor, J.B.; Connor, J.; Wilson, H.R.

    1993-05-01

    The conventional theory of high-n toroidal drift waves, based on the ballooning representation, indicates that shear-damping is generally reduced in a torus compared to its plane-slab value. It therefore describes the most unstable class of toroidal drift waves. However, modes of this type occur only i f the diamagnetic frequency ω*(r) has a maximum in r, and they affect only a small fraction, Ο(1/n l/2 ), of the plasma radius around this maximum. Consequently they may produce little anomalous transport. In the present work we show that, within the ballooning description, there is another class of toroidal drift waves with very different properties to the conventional ones. The new modes have greater shear-damping (closer to that in a plane-slab) than the conventional ones and so have a higher instability threshold. However, they occur for any plasma profile and at all radii, and they have larger radial extent. Consequently they may produce much greater anomalous transport than the possibly benign conventional modes. This suggests a picture of anomalous transport in which the plasma profile is determined by marginal stability, but marginal to the new class of modes not to the conventional ones. This might explain why marginally stable profiles calculated for drift waves with plane-slab damping sometimes agree well with the profiles in toroidal experiments. It is also consistent with the fact that experimental profiles may exceed conventional toroidal instability thresholds. The new modes may also be related to the tong radial structures which appear in some plasma simulations and in experiments

  6. A comparison between linear and toroidal Extrap systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-09-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)

  7. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  8. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  9. Stellarator approach to toroidal plasma confinement

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized

  10. TORFA - toroidal reactor for fusion applications

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1980-09-01

    The near-term goal of the US controlled fusion program should be the development, for practical applications, of an intense, quasi-steady, reliable 14-MeV neutron source with an electrical utilization efficiency at least 10 times larger than the value characterizing beam/solid-target neutron generators. This report outlines a method for implementing that goal, based on tokamak fusion reactors featuring resistive toroidal-field coils designed for ease of demountability

  11. The influence of toroidicity, pressure and local profile changes on tearing mode stability

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Martin, T.J.; Cowley, S.C.

    1992-01-01

    Tearing modes appear to play a significant role in determining Tokamak behaviour. In high temperature plasmas realistic plasma models for the response at the resonant magnetic surfaces necessitate the use of asymptotic matching methods (the Δ' formulation) in calculations of linear stability and non-linear saturation. These calculations are complicated by toroidal and surface shape effects which cause coupling of different poloidal harmonics in a tearing mode. This leads to coupling of tearing modes centred on different resonant surfaces. However, when diamagnetic effects and sheared equilibrium flows are taken into account theory predicts that tearing will occur at only one surface. At all other surfaces the plasma response is determined by the ideal inertial equations. As a first approximation we treat this as infinite, and calculate the scalar Δ' m/n associated with one resonant surface at a time. (author) 8 refs., 2 figs., 2 tabs

  12. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  13. Finite beta and compressibility effects on stability of resistive modes in toroidal geometry

    International Nuclear Information System (INIS)

    Leboeuf, J-N.G.; Kurita, Gen-ichi.

    1998-03-01

    Linear resistive stability results obtained from the toroidal magnetohydrodynamic codes FAR developed at the Oak Ridge National Laboratory in United States of America and AEOLUS developed at the Japan Atomic Energy Research Institute are compared for carefully constructed benchmark profiles and parameters. These are unstable to a tearing mode with toroidal mode number n=1. The eigenvalues and eigenfunctions calculated with both codes are in close agreement and show that the effect of compressibility is weak for these modes. The effect of finite plasma beta is considered, and the eigenvalues calculated by the FAR and AEOLUS codes also show good agreement. It is shown that the finite beta has a stabilizing effect on the toroidal tearing mode, but that the compressibility also has little effect on finite beta tearing modes. (author)

  14. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  15. Experimental studies of equilibrium in the toroidal Extrap T1 experiment

    International Nuclear Information System (INIS)

    Drake, J.R.; Hedin, E.R.; Karlsson, P.; Jin Li; Saetherblom, H.E.

    1989-03-01

    Experimental studies of a toroidal, high-beta plasma discharge with a non-circular cross-section are described. In Extrap T1, four toroidal, current-carrying rings outside the plasma discharge current channel produce a separatrix which bounds the plasma. Plasma currents of up to 40 kA are induced, operating with a toroidal field of up to 0.2 T. The major radius of the device is 0.45 m and the average minor radius of the current channel is about 40 mm. The discharge pulse is approximately 100 μsec long. For the discharges reported here, the peak current density on the discharge axis is about 9 MA/m 2 , which corresponds to an on-axis safety factor q o of about 0.1. The plasma density is in the range n ≅ 0.2 to 1 x 10 21 m -3 , and the electron temperature is in the range T e ≅ 10 to 30 eV. Magnetic flux plots of the experiment have been studied using magnetic probes and current and pressure profiles have been derived from the magnetic data

  16. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations

  17. A proposal for laminated pie mechanical construction of a toroidal magnet for the far detector for the MINOS experiment

    International Nuclear Information System (INIS)

    Fields, T.; Guarino, V.; Petereit, E.; Schoessow, P.; Thompson, K.

    1996-01-01

    This proposal describes an alternative to the reference design for the construction of the toroidal magnet for the detector for the MINOS experiment. This design proposes to construct the steel planes from several steel sheets and laminate them into the required thickness of four centimeters. The 8 meter planes are constructed by cutting all of the steel plates to the same size, which is pie a pie shaped segment of either 30 or 22.5 degrees each. All of the plates in the construction are identical, which is conducive to rapid production and lower cost. The advantages of the proposed laminated construction over the reference design are listed in this paper

  18. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.

    1992-01-01

    Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers

  19. Plasma Discharge in Toroidal System

    International Nuclear Information System (INIS)

    Usada, Widdi; Suryadi; Purwadi, Agus; Kasiyo

    1996-01-01

    A toroidal discharge apparatus has been made as an initial research in magnetic confinement system. This system consists of a capacitor, a RF source, an igniter system, a primary coil, a torus, and completed by Rogowski probe as a current detector. In this system, the discharge occurs when the minimum voltage is operated at 5 kV. The experiment result shows that the coupling factor is 0.35, it is proved that there is an equality between estimated and measurement results of the primary inductance i.e 8.5 μH

  20. Pellet injection and toroidal confinement

    International Nuclear Information System (INIS)

    1989-12-01

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs