A Solution Space for a System of Null-State Partial Differential Equations: Part 1
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405
A Solution Space for a System of Null-State Partial Differential Equations: Part 2
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the second of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities which govern CFT correlation functions of 2 N one-leg boundary operators. In the first article (Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. The analysis of that article is complete except for the proof of a lemma that it invokes. The purpose of this article is to provide that proof. The lemma states that if every interval among ( x 2, x 3), ( x 3, x 4),…,( x 2 N-1, x 2 N ) is a two-leg interval of (defined in Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), then F vanishes. Proving this lemma by contradiction, we show that the existence of such a nonzero function implies the existence of a non-vanishing CFT two-point function involving primary operators with different conformal weights, an impossibility. This proof (which is rigorous in spite of our occasional reference to CFT) involves two different types of estimates, those that give the asymptotic behavior of F as the length of one interval vanishes, and those that give this behavior as the lengths of two intervals vanish simultaneously. We derive these estimates by using Green functions to rewrite certain null-state PDEs as integral equations, combining other null-state PDEs to obtain Schauder interior estimates, and then repeatedly integrating the integral equations with these estimates until we obtain optimal bounds. Estimates in which two interval lengths vanish simultaneously divide into two cases: two adjacent intervals and two non-adjacent intervals. The analysis of the latter case is similar to that for one vanishing
A Solution Space for a System of Null-State Partial Differential Equations: Part 4
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the last of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban in Commun Math Phys, 2012; Flores and Kleban, in Commun Math Phys, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Using these results in the third article (Flores and Kleban, in Commun Math Phys, 2013), we prove that dim and is spanned by (real-valued) solutions constructed with the Coulomb gas (contour integral) formalism of CFT. In this article, we use these results to prove some facts concerning the solution space . First, we show that each of its elements equals a sum of at most two distinct Frobenius series in powers of the difference between two adjacent points (unless is odd, in which case a logarithmic term may appear). This establishes an important element in the operator product expansion for one-leg boundary operators, assumed in CFT. We also identify particular elements of , which we call connectivity weights, and exploit their special properties to conjecture a formula for the probability that the curves of a multiple-SLE process join in a particular connectivity. This leads to new formulas for crossing probabilities of critical lattice models inside polygons with a free/fixed side-alternating boundary condition, which we derive in Flores et al. (Partition functions and crossing probabilities for critical systems inside polygons, in preparation). Finally, we propose a reason for why the exceptional speeds [certain values that appeared in the analysis of the Coulomb gas solutions in Flores and Kleban (Commun Math Phys, 2013)] and
A Solution Space for a System of Null-State Partial Differential Equations: Part 3
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404
Partial rectangular metric spaces and fixed point theorems.
Shukla, Satish
2014-01-01
The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.
Energy considerations in the partial space elevator
Woo, Pamela; Misra, Arun K.
2014-06-01
The space elevator has been proposed as an alternate method for space transportation. A partial elevator is composed of a tether of several hundreds of kilometres, held vertically in tension between two end masses, with its centre of orbit placed at the geosynchronous orbit. A spacecraft can dock at the lower end, and then use the climber on the elevator to ascend to higher altitudes. In this paper, energy calculations are performed, to determine whether a partial elevator can provide sufficient savings in operational costs, compared to the traditional rocket-powered launch. The energy required to launch a spacecraft from a Low Earth Orbit (LEO) to the geostationary orbit (GEO) is calculated for two trajectories. In the first trajectory, the spacecraft travels from LEO to GEO via a Hohmann transfer. In the second trajectory, the spacecraft travels from LEO to the lower end of the partial space elevator with a Hohmann transfer, and then uses the elevator to climb to GEO. The total energy required is compared between the two trajectories. The effects of tether length, spacecraft-to-climber mass ratio, altitude of LEO, and tether material are investigated.
DEFF Research Database (Denmark)
Mailund, Thomas
The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...
Decaying states as physically nonisolable partial systems
International Nuclear Information System (INIS)
Szasz, G.I.
1976-01-01
Presently the investigations of decaying quantum mechanical systems lack a well-founded concept, which is reflected by several formal difficulties of the corresponding mathematical treatment. In order to clarify in some respect the situation, it is investigated, within the framework of nonrelativistic quantum mechanics, the resonant scattering of an initially well localized partial wave packet. If the potential decreases sufficiently fast for r→infinite, the wave packet can be expressed at sufficiently long time after the scattering has taken place, as the sum of a term describing the direct scattering and a function of the resonant solution with complex 'momentum'. From such a heuristic relation one can deduce not only the probability for the creation of unstable particles but also obtain some hints to a connection between decaying states and physically nonisolable partial systems. On the other hand, this connection can perhaps display the inadequacy of attempts which suggest to solve the problem of decaying states within the usual Hilbert space methods. (author)
A simplified classification system for partially edentulous spaces
Directory of Open Access Journals (Sweden)
Bhandari Aruna J, Bhandari Akshay J
2014-04-01
Full Text Available Background: There is no single universally employed classification system that will specify the exact edentulous situation. Several classification systems exist to group the situation and avoid confusion. Classifications based on edentulous areas, finished restored prostheses, type of direct retainers or fulcrum lines are there. Some are based depending on the placement of the implants. Widely accepted Kennedy Applegate classification does not give any idea about length, span or number of teeth missing. Rule 6 governing the application of Kennedy method states that additional edentulous areas are referred as modification number 1,2 etc. Rule 7 states that extent of the modification is not considered; only the number of edentulous areas is considered. Hence there is a need to modify the Kennedy –Applegate System. Aims: This new classification system is an attempt to modify Kennedy –Applegate System so as to give the exact idea about missing teeth, space, span, side and areas of partially edentulous arches. Methods and Material: This system will provide the information regarding Maxillary or Mandibular partially edentulous arches, Left or Right side, length of the edentulous space, number of teeth missing and whether there will be tooth borne or tooth – tissue borne prosthesis. Conclusions: This classification is easy for application, communication and will also help to design the removable cast partial denture in a better logical and systematic way. Also, this system will give the idea of the edentulous status and the number of missing teeth in fixed, hybrid or implant prosthesis.
Overlaps of partial Néel states and Bethe states
International Nuclear Information System (INIS)
Foda, O; Zarembo, K
2016-01-01
Partial Néel states are generalizations of the ordinary Néel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states. (paper: quantum statistical physics, condensed matter, integrable systems)
Deterministic dense coding with partially entangled states
Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni
2005-01-01
The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.
Hilbert space methods in partial differential equations
Showalter, Ralph E
1994-01-01
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Wigner distribution, partial coherence, and phase-space optics
Bastiaans, M.J.
2009-01-01
The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective
Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout
Buehrle, Ralph D.; Kappus, Kathy
2005-01-01
In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.
Faithful teleportation with partially entangled states
International Nuclear Information System (INIS)
Gour, Gilad
2004-01-01
We write explicitly a general protocol for faithful teleportation of a d-state particle (qudit) via a partially entangled pair of (pure) n-state particles. The classical communication cost (CCC) of the protocol is log 2 (nd) bits, and it is implemented by a projective measurement performed by Alice, and a unitary operator performed by Bob (after receiving from Alice the measurement result). We prove the optimality of our protocol by a comparison with the concentrate and teleport strategy. We also show that if d>n/2, or if there is no residual entanglement left after the faithful teleportation, the CCC of any protocol is at least log 2 (nd) bits. Furthermore, we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local operation and classical communication
Partial transpose of random quantum states: Exact formulas and meanders
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)
2013-04-15
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Partial transpose of random quantum states: Exact formulas and meanders
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Quantized fields and operators on a partial inner product space
International Nuclear Information System (INIS)
Shabani, J.
1985-11-01
We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)
Partial separability and entanglement criteria for multiqubit quantum states
Seevinck, M.P.; Uffink, J.B.M.
2008-01-01
We explore the subtle relationships between partial separability and entanglement of subsystems in multiqubit quantum states and give experimentally accessible conditions that distinguish between various classes and levels of partial separability in a hierarchical order. These conditions take the
Partially coherent twisted states in arrays of coupled phase oscillators
Energy Technology Data Exchange (ETDEWEB)
Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)
2014-06-15
We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.
Partially coherent twisted states in arrays of coupled phase oscillators
International Nuclear Information System (INIS)
Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.
2014-01-01
We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system
Fixed Points of Multivalued Contractive Mappings in Partial Metric Spaces
Directory of Open Access Journals (Sweden)
Abdul Rahim Khan
2014-01-01
Full Text Available The aim of this paper is to present fixed point results of multivalued mappings in the framework of partial metric spaces. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature. As an application of our main result, the existence and uniqueness of bounded solution of functional equations arising in dynamic programming are established.
State Space Modeling Using SAS
Directory of Open Access Journals (Sweden)
Rajesh Selukar
2011-05-01
Full Text Available This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing routines for stationary and nonstationary state space models. SAS/IML also provides support for linear algebra and nonlinear function optimization, which makes it a convenient environment for general-purpose state space modeling.
A remark on partial linear spaces of girth 5 with an application to strongly regular graphs
Brouwer, A.E.; Neumaier, A.
1988-01-01
We derive a lower bound on the number of points of a partial linear space of girth 5. As an application, certain strongly regular graphs with=2 are ruled out by observing that the first subconstituents are partial linear spaces.
Volumes of conditioned bipartite state spaces
International Nuclear Information System (INIS)
Milz, Simon; Strunz, Walter T
2015-01-01
We analyze the metric properties of conditioned quantum state spaces M η (n×m) . These spaces are the convex sets of nm×nm density matrices that, when partially traced over m degrees of freedom, respectively yield the given n × n density matrix η. For the case n = 2, the volume of M η (2×m) equipped with the Hilbert–Schmidt measure can be conjectured to be a simple polynomial of the radius of η in the Bloch-ball. Remarkably, for m=2,3 we find numerically that the probability p sep (2×m) (η) to find a separable state in M η (2×m) is independent of η (except for η pure). For m>3, the same holds for p PosPart (2×m) (η), the probability to find a state with a positive partial transpose in M η (2×m) . These results are proven analytically for the case of the family of 4 × 4 X-states, and thoroughly numerically investigated for the general case. The important implications of these findings for the clarification of open problems in quantum theory are pointed out and discussed. (paper)
Superposing pure quantum states with partial prior information
Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter
2018-05-01
The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.
Approximate thermodynamic state relations in partially ionized gas mixtures
International Nuclear Information System (INIS)
Ramshaw, John D.
2004-01-01
Thermodynamic state relations for mixtures of partially ionized nonideal gases are often approximated by artificially partitioning the mixture into compartments or subvolumes occupied by the pure partially ionized constituent gases, and requiring these subvolumes to be in temperature and pressure equilibrium. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (nonionized) ideal gases. The purpose of this paper is to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation in nonideal plasma mixtures
Introduction to partial differential equations and Hilbert space methods
Gustafson, Karl E
1997-01-01
Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.
Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach
Energy Technology Data Exchange (ETDEWEB)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2015-02-15
This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.
My Life with State Space Models
DEFF Research Database (Denmark)
Lundbye-Christensen, Søren
2007-01-01
. The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...
The canonical partial metric and the uniform convexity on normed spaces
Directory of Open Access Journals (Sweden)
S. Oltra
2005-10-01
Full Text Available In this paper we introduce the notion of canonical partial metric associated to a norm to study geometric properties of normed spaces. In particular, we characterize strict convexity and uniform convexity of normed spaces in terms of the canonical partial metric defined by its norm. We prove that these geometric properties can be considered, in this sense, as topological properties that appear when we compare the natural metric topology of the space with the non translation invariant topology induced by the canonical partial metric in the normed space.
State Space Analysis of Hierarchical Coloured Petri Nets
DEFF Research Database (Denmark)
Christensen, Søren; Kristensen, Lars Michael
2003-01-01
In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invokin...... supporting computation and storage of state spaces which exploi the hierarchical structure of the models....... in which formal verification, partial state spaces, and analysis by means of graphical feedback and simulation are integrated entities. The focus of the paper is twofold: the support for graphical feedback and the way it has been integrated with simulation, and the underlying algorithms and data-structures......In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invoking...
Function spaces and partial differential equations 2 volume set
Taheri, Ali
2015-01-01
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour.
Function spaces and partial differential equations volume 2 : contemporary analysis
Taheri, Ali
2015-01-01
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour.
State Space Methods for Timed Petri Nets
DEFF Research Database (Denmark)
Christensen, Søren; Jensen, Kurt; Mailund, Thomas
2001-01-01
it possible to condense the usually infinite state space of a timed Petri net into a finite condensed state space without loosing analysis power. The second method supports on-the-fly verification of certain safety properties of timed systems. We discuss the application of the two methods in a number......We present two recently developed state space methods for timed Petri nets. The two methods reconciles state space methods and time concepts based on the introduction of a global clock and associating time stamps to tokens. The first method is based on an equivalence relation on states which makes...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
2010-10-01
... unless natural ventilation in all ordinary weather conditions is satisfactory to the OCMI. (d) An exhaust... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... PASSENGERS CONSTRUCTION AND ARRANGEMENT Ventilation § 116.600 Ventilation of enclosed and partially enclosed...
Partial radiative recombination cross sections for excited states of hydrogen
International Nuclear Information System (INIS)
Fazio, P.M.
1984-01-01
In calculating the radiative recombination cross sections for interstellar H II regions, usually only the electric dipole term in the expansion of the interaction Hamiltonian is kept. The dipole and quadrupole transition strengths in closed analytical form are calculated here using the Coulomb wave functions because results for any electron energy and for recombination into any angular momentum state of hydrogen are needed. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate angular momentum states at low energies (w < 2eV) and where the free state angular momentum is greater than that of the bound state. Further, that specific intermediate angular momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the normal behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. This leads to minima in the corresponding quadrupole cross sections when plotted as a function of the free electron's kinetic energy. Finally, the partial cross sections for highly excited states are greater than previously calculated because of the additional effects of the quadrupole transitions
Equation of state of partially-ionized dense plasmas
International Nuclear Information System (INIS)
Rogers, F.J.
1989-01-01
This paper describes methods for calculating the equation of state of partially-ionized dense plasmas. The term dense plasma is used rather than strongly coupled plasma, since it is possible that at plasma conditions such that only a few levels can be observed spectroscopically the plasma coupling parameters are not large. Due mainly to their importance in theoretical astrophysics, the properties of partially ionized plasmas have been of interest for a long while. More recently, this interest has intensified due to the development of methods for producing partially ionized plasmas in the laboratory. This has opened up large programs of experimental investigation and of practical application. In this paper we consider detailed statistical mechanical methods that explicitly treat the distribution over ionic species and their energy level structure. These detailed approaches are generally characterized as being in the ''chemical picture'' when a free energy expression is minimized or in the ''physical picture'' when the starting point is the grand canonical ensemble. 52 refs., 2 tabs
Bound states on the lattice with partially twisted boundary conditions
International Nuclear Information System (INIS)
Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.
2015-01-01
We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.
Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories.
Ye, Xiaojing; Chen, Yunmei; Lin, Wei; Huang, Feng
2011-03-01
Both acquisition and reconstruction speed are crucial for magnetic resonance (MR) imaging in clinical applications. In this paper, we present a fast reconstruction algorithm for SENSE in partially parallel MR imaging with arbitrary k-space trajectories. The proposed method is a combination of variable splitting, the classical penalty technique and the optimal gradient method. Variable splitting and the penalty technique reformulate the SENSE model with sparsity regularization as an unconstrained minimization problem, which can be solved by alternating two simple minimizations: One is the total variation and wavelet based denoising that can be quickly solved by several recent numerical methods, whereas the other one involves a linear inversion which is solved by the optimal first order gradient method in our algorithm to significantly improve the performance. Comparisons with several recent parallel imaging algorithms indicate that the proposed method significantly improves the computation efficiency and achieves state-of-the-art reconstruction quality.
Coherent states in the fermionic Fock space
International Nuclear Information System (INIS)
Oeckl, Robert
2015-01-01
We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)
Fermi states of Bose systems in three space dimensions
International Nuclear Information System (INIS)
Garbaczewski, P.
1985-01-01
Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified
Complex space source theory of partially coherent light wave.
Seshadri, S R
2010-07-01
The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.
State-Space Formulation for Circuit Analysis
Martinez-Marin, T.
2010-01-01
This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…
Cubical local partial orders on cubically subdivided spaces - existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....
Cubical local partial orders on cubically subdivided spaces - Existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
2006-01-01
The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....
Projective loop quantum gravity. I. State space
Lanéry, Suzanne; Thiemann, Thomas
2016-12-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.
International Nuclear Information System (INIS)
Yao Ruo-Xia; Wang Wei; Chen Ting-Hua
2014-01-01
Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. (general)
Statistical Software for State Space Methods
Directory of Open Access Journals (Sweden)
Jacques J. F. Commandeur
2011-05-01
Full Text Available In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.
The unitary space of particle internal states
International Nuclear Information System (INIS)
Perjes, Z.
1978-09-01
A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)
Distributed Graph-Based State Space Generation
Blom, Stefan; Kant, Gijs; Rensink, Arend; De Lara, J.; Varro, D.
LTSMIN provides a framework in which state space generation can be distributed easily over many cores on a single compute node, as well as over multiple compute nodes. The tool works on the basis of a vector representation of the states; the individual cores are assigned the task of computing all
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
2010-10-01
... ventilation system unless natural ventilation in all ordinary weather conditions is satisfactory to the OCMI... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Ventilation § 177.600 Ventilation of...
Directory of Open Access Journals (Sweden)
Xiangbing Zhou
2012-01-01
Full Text Available We generalize a fixed point theorem in partially ordered complete metric spaces in the study of A. Amini-Harandi and H. Emami (2010. We also give an application on the existence and uniqueness of the positive solution of a multipoint boundary value problem with fractional derivatives.
Parameter and State Estimator for State Space Models
Directory of Open Access Journals (Sweden)
Ruifeng Ding
2014-01-01
Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
Filtering and smoothing of stae vector for diffuse state space models
Koopman, S.J.; Durbin, J.
2003-01-01
This paper presents exact recursions for calculating the mean and mean square error matrix of the state vector given the observations for the multi-variate linear Gaussian state-space model in the case where the initial state vector is (partially) diffuse.
Space groups for solid state scientists
Glazer, Michael; Glazer, Alexander N
2014-01-01
This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
Coherent and squeezed states in phase space
International Nuclear Information System (INIS)
Jannussis, A.; Bartzis, V.; Vlahos, E.
1990-01-01
In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same
Condensed State Spaces for Symmetrical Coloured Petri Nets
DEFF Research Database (Denmark)
Jensen, Kurt
1996-01-01
equivalence classes of states and equivalence classes of state changes. It is then possible to construct a condensed state space where each node represents an equivalence class of states while each arc represents an equivalence class of state changes. Such a condensed state space is often much smaller than...... the full state space and it is also much faster to construct. Nevertheless, it is possible to use the condensed state space to verify the same kind of behavioural properties as the full state space. Hence, we do not lose analytic power. We define state spaces and condensed state spaces for a language......-nets (or Petri nets in general) - although such knowledge will, of course, be a help. The first four sections of the paper introduce the basic concepts of CP-nets. The next three sections deal with state spaces, condensed state spaces and computer tools for state space analysis. Finally, there is a short...
Energy Technology Data Exchange (ETDEWEB)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-12-01
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.
Partial phenotyping in voluntary blood donors of Gujarat State
Directory of Open Access Journals (Sweden)
Maitrey Gajjar
2016-01-01
Full Text Available Introduction: Partial phenotyping of voluntary blood donors has vital role in transfusion practice, population genetic study and in resolving legal issues.The Rh blood group is one of the most complex and highly immunogenic blood group known in humans. The Kell system, discovered in 1946, is the third most potent system at triggering hemolytic transfusion reactions and consists of 25 highly immunogenic antigens. Knowledge of Rh & Kell phenotypes in given population is relevant for better planning and management of blood bank; the main goal is to find compatible blood for patients needing multiple blood transfusions. The aim of this study was to evaluate the frequency of Rh & Kell phenotype of voluntary donors in Gujarat state. Materials and Methods: The present study was conducted by taking 5670 samples from random voluntary blood donors coming in blood donation camp. Written consent was taken for donor phenotyping. The antigen typing of donors was performed by Qwalys-3(manufacturer: Diagast by using electromagnetic technology on Duolys plates. Results: Out of 5670 donors, the most common Rh antigen observed in the study population was e (99.07% followed by D (95.40%, C (88.77%, c (55.89% and E (17.88%. The frequency of the Kell antigen (K was 1.78 %. Discussion: The antigen frequencies among blood donors from Gujarat were compared with those published for other Indian populations. The frequency of D antigen in our study (95.4% and north Indian donors (93.6 was significantly higher than in the Caucasians (85% and lower than in the Chinese (99%. The frequencies of C, c and E antigens were dissimilar to other ethnic groups while the ′e′ antigen was present in high frequency in our study as also in the other ethnic groups. Kell antigen (K was found in only 101 (1.78 % donors out of 5670. Frequency of Kell antigen in Caucasian and Black populations is 9% & 2% respectively. The most common Kell phenotype was K-k+, not just in Indians (96.5% but
Monogamy relations of quantum entanglement for partially coherently superposed states
Shi, Xian
2017-12-01
Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.
Global Attractivity Results for Mixed-Monotone Mappings in Partially Ordered Complete Metric Spaces
Directory of Open Access Journals (Sweden)
Kalabušić S
2009-01-01
Full Text Available We prove fixed point theorems for mixed-monotone mappings in partially ordered complete metric spaces which satisfy a weaker contraction condition than the classical Banach contraction condition for all points that are related by given ordering. We also give a global attractivity result for all solutions of the difference equation , where satisfies mixed-monotone conditions with respect to the given ordering.
Multimedia Mapping using Continuous State Space Models
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue
2004-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulations...... are performed on recordings of 3-5 sec. video sequences with sentences from the Timit database. The model is able to construct an image sequence from an unknown noisy speech sequence fairly well even though the number of training examples are limited....
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
State-Space Modelling in Marine Science
DEFF Research Database (Denmark)
Albertsen, Christoffer Moesgaard
State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...
2013-05-20
... Smelter, American Smelting and Refining Company (ASARCO) Hayden Smelter, Catalyst Paper, and Arizona... Smelter, ASARCO Hayden Smelter, Catalyst Paper, and AEPCO Apache Generating Station. In summary, we propose to approve a revised set of BART-eligible units for the Miami and Hayden smelters; the State's...
Directory of Open Access Journals (Sweden)
N. Shahzad
2013-01-01
Full Text Available In 1994, Matthews introduced the notion of partial metric space with the aim of providing a quantitative mathematical model suitable for program verification. Concretely, Matthews proved a partial metric version of the celebrated Banach fixed point theorem which has become an appropriate quantitative fixed point technique to capture the meaning of recursive denotational specifications in programming languages. In this paper we show that a few assumptions in statement of Matthews fixed point theorem can be relaxed in order to provide a quantitative fixed point technique useful to analyze the meaning of the aforementioned recursive denotational specifications in programming languages. In particular, we prove a new fixed point theorem for self-mappings between partial metric spaces in which the completeness has been replaced by 0-completeness and the contractive condition has been weakened in such a way that the new one best fits the requirements of practical problems in denotational semantics. Moreover, we provide examples that show that the hypothesis in the statement of our new result cannot be weakened. Finally, we show the potential applicability of the developed theory by means of analyzing a few concrete recursive denotational specifications, some of them admitting a unique meaning and others supporting multiple ones.
International Nuclear Information System (INIS)
Glatter, O.; Gruber, K.
1993-01-01
Indirect Fourier transformation is a widely used technique for the desmearing of instrumental broadening effects, for data smoothing and for Fourier transformation of small-angle scattering data. This technique, however, can only be applied to scattering curves with a band-limited Fourier transform, i.e. separated and noninteracting scattering centers. It can therefore not be used for scattering data from partially ordered systems. In this paper, a modified technique for partially ordered systems working in reciprocal space is presented. A peak-recognition technique allows its application to scattering functions with narrow peaks, such as the scattering functions of layered systems like lamellar stacks or strongly interacting particles. Arbitrary geometry effects and wavelength effects can be corrected. Examples of simulations show the merits and limits of this new method. One example shows its applicability to real data. (orig.)
Modeling volatility using state space models.
Timmer, J; Weigend, A S
1997-08-01
In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).
Numerical studies of entangled positive-partial-transpose states in composite quantum systems
International Nuclear Information System (INIS)
Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan
2010-01-01
We report here on the results of numerical searches for PPT states in a series of bipartite quantum systems of low dimensions. PPT states are represented by density matrices that remain positive semidefinite under partial transposition with respect to one of the subsystems, and our searches are for such states with specified ranks for the density matrix and its partial transpose. For a series of different ranks extremal PPT states and nonextremal entangled PPT states have been found. The results are listed in tables and charted in diagrams. Comparison of the results for systems of different dimensions reveals several regularities. We discuss lower and upper bounds on the ranks of extremal PPT states.
Energy Technology Data Exchange (ETDEWEB)
Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de
2016-12-20
This paper relates the partial cross section of a continuous optical emission into a given scattering channel of the lower electronic state to the photofragment population. This allows one to infer partial emission cross sections ‘non-optically’ from product state distributions; in computations, explicit construction of exact scattering states is therefore avoided. Applications to the emission spectra of NaI, CO{sub 2}, and pyrrole are given. It is also demonstrated that a similar relationship holds between partial cross sections of dissociative photoionization and distributions of ionic fragments over final product channels.
Classes of n-copy undistillable quantum states with negative partial transposition
International Nuclear Information System (INIS)
Bandyopadhyay, Somshubhro; Roychowdhury, Vwani
2003-01-01
The discovery of entangled quantum states from which one cannot distill pure entanglement constitutes a fundamental recent advance in the field of quantum information. Such bipartite bound-entangled (BE) quantum states could fall into two distinct categories: (1) Inseparable states with positive partial transposition (PPT), and (2) states with negative partial transposition (NPT). While the existence of PPT BE states has been confirmed, only one class of conjectured NPT BE states has been discovered so far. We provide explicit constructions of a variety of multicopy undistillable NPT states, and conjecture that they constitute families of NPT BE states. For example, we show that for every pure state of Schmidt rank greater than or equal to 3, one can construct n-copy undistillable NPT states, for any n≥1. The abundance of such conjectured NPT BE states, we believe, considerably strengthens the notion that being NPT is only a necessary condition for a state to be distillable
Unstable quantum states and rigged Hilbert spaces
International Nuclear Information System (INIS)
Gorini, V.; Parravicini, G.
1978-10-01
Rigged Hilbert space techniques are applied to the quantum mechanical treatment of unstable states in nonrelativistic scattering theory. A method is discussed which is based on representations of decay amplitudes in terms of expansions over complete sets of generalized eigenvectors of the interacting Hamiltonian, corresponding to complex eigenvalues. These expansions contain both a discrete and a continuum contribution. The former corresponds to eigenvalues located at the second sheet poles of the S matrix, and yields the exponential terms in the survival amplitude. The latter arises from generalized eigenvectors associated to complex eigenvalues on background contours in the complex plane, and gives the corrections to the exponential law. 27 references
Directory of Open Access Journals (Sweden)
Jian Jiao
2017-09-01
Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.
Multivariable Wind Modeling in State Space
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.
2011-01-01
Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modeling method....... the succeeding state space and ARMA modeling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross...
Decomposition of gene expression state space trajectories.
Directory of Open Access Journals (Sweden)
Jessica C Mar
2009-12-01
Full Text Available Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005 which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005 build on the work of Kauffman (2004 who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions-core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005 dataset.
International Nuclear Information System (INIS)
Fortescue, Ben; Lo, H.-K.
2005-01-01
We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states
Temperature dependence of the partially localized state in a 2D molecular nanoporous network
Energy Technology Data Exchange (ETDEWEB)
Piquero-Zulaica, Ignacio, E-mail: ipiquerozulaica@gmail.com [Centro de Física de Materiales (CSIC/UPV-EHU)—Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastián (Spain); Nowakowska, Sylwia [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Ortega, J. Enrique [Centro de Física de Materiales (CSIC/UPV-EHU)—Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel Lardizabal 4, 20018 San Sebastián (Spain); Departamento Física Aplicada I, Universidad del País Vasco, 20018 San Sebastián (Spain); Stöhr, Meike [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Gade, Lutz H. [Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany); Jung, Thomas A. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Lobo-Checa, Jorge, E-mail: jorge.lobo@csic.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2017-01-01
Highlights: • A state of a 2D porous network is demonstrated to originate from the Shockley state. • The temperature evolution of both states is followed by means of ARPES. • Identical energy shifts are observed for both states, proving their common origin. - Abstract: Two-dimensional organic and metal-organic nanoporous networks can scatter surface electrons, leading to their partial localization. Such quantum states are related to intrinsic surface states of the substrate material. We further corroborate this relation by studying the thermally induced energy shifts of the electronic band stemming from coupled quantum states hosted in a metal-organic array formed by a perylene derivative on Cu(111). We observe by angle-resolved photoemission spectroscopy (ARPES), that both, the Shockley and the partially localized states, shift by the same amount to higher binding energies upon decreasing the sample temperature, providing evidence of their common origin. Our experimental approach and results further support the use of surface states for modelling these systems, which are expected to provide new insight into the physics concerning partially confined electronic states: scattering processes, potential barrier strengths, excited state lifetimes or the influence of guest molecules.
Atomic-partial vibrational density of states of i-AlCuFe quasicrystals
International Nuclear Information System (INIS)
Parshin, P.P.; Zemlyanov, M.; Brand, R.A.; Dianoux, A.J.; Calvayrac, Y.
2002-01-01
We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al 62 Cu 25.5 Fe 12.5 . The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)
Advanced Solid State Lighting for AES Deep Space Hab
National Aeronautics and Space Administration — The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in...
A Database Approach to Distributed State Space Generation
Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.
2007-01-01
We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database
A Compositional Sweep-Line State Space Exploration Method
DEFF Research Database (Denmark)
Kristensen, Lars Michael; Mailund, Thomas
2002-01-01
State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...
A Database Approach to Distributed State Space Generation
Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.
2008-01-01
We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database
Quantum communication for satellite-to-ground networks with partially entangled states
International Nuclear Information System (INIS)
Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong
2015-01-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)
State-Space Inference and Learning with Gaussian Processes
Turner, R; Deisenroth, MP; Rasmussen, CE
2010-01-01
18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...
ASAP: An Extensible Platform for State Space Analysis
DEFF Research Database (Denmark)
Westergaard, Michael; Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
The ASCoVeCo State space Analysis Platform (ASAP) is a tool for performing explicit state space analysis of coloured Petri nets (CPNs) and other formalisms. ASAP supports a wide range of state space reduction techniques and is intended to be easy to extend and to use, making it a suitable tool fo...... for students, researchers, and industrial users that would like to analyze protocols and/or experiment with different algorithms. This paper presents ASAP from these two perspectives....
Space strategy and governance of ESA small member states
Sagath, Daniel; Papadimitriou, Angeliki; Adriaensen, Maarten; Giannopapa, Christina
2018-01-01
The European Space Agency (ESA) has twenty-two Member States with a variety of governance structures and strategic priorities regarding their space activities. The objective of this paper is to provide an up-to date overview and a holistic assessment of the national space governance structures and strategic priorities of the eleven smaller Member States (based on annual ESA contributions). A link is made between the governance structure and the main strategic objectives. The specific needs and interests of small and new Member States in the frame of European Space Integration are addressed. The first part of the paper focuses on the national space governance structures in the eleven smaller ESA Member States. The governance models of these Member States are identified including the responsible ministries and the entities entrusted with the implementation of space strategy/policy and programmes of the country. The second part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in the eleven smaller ESA Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators for space investments. In a third and final part, attention is given to the specific needs and interests of the smaller Member States in the frame of European space integration. ESA instruments are tailored to facilitate the needs and interests of the eleven smaller and/or new Member States.
A Sweep-Line Method for State Space Exploration
DEFF Research Database (Denmark)
Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas
2001-01-01
generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....
How to upload a physical quantum state into correlation space
International Nuclear Information System (INIS)
Morimae, Tomoyuki
2011-01-01
In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.
United State space programs - Present and planned
Frosch, R. A.
1978-01-01
The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.
Some Common Fixed Point Theorems for F-Contraction Type Mappings in 0-Complete Partial Metric Spaces
Directory of Open Access Journals (Sweden)
Satish Shukla
2013-01-01
Full Text Available We prove some common fixed point theorems for F-contractions in 0-complete partial metric spaces. Our results extend, generalize, and unify several known results in the literature. Some examples are included which show that the generalization is proper.
Active Affordance Learning in Continuous State and Action Spaces
Wang, C.; Hindriks, K.V.; Babuska, R.
2014-01-01
Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action
Space transportation activities in the United States
Gabris, Edward A.
1994-01-01
The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.
Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia
2015-12-01
The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits
Space Suit Simulator (S3) for Partial Gravity EVA Experimentation and Training, Phase II
National Aeronautics and Space Administration — Pressurized space suits impose high joint torques on the wearer, reducing mobility for upper and lower body motions. Using actual space suits in training or...
System resiliency quantification using non-state-space and state-space analytic models
International Nuclear Information System (INIS)
Ghosh, Rahul; Kim, DongSeong; Trivedi, Kishor S.
2013-01-01
Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes
Complexity in Simplicity: Flexible Agent-based State Space Exploration
DEFF Research Database (Denmark)
Rasmussen, Jacob Illum; Larsen, Kim Guldstrand
2007-01-01
In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...
Adaptive importance sampling of random walks on continuous state spaces
International Nuclear Information System (INIS)
Baggerly, K.; Cox, D.; Picard, R.
1998-01-01
The authors consider adaptive importance sampling for a random walk with scoring in a general state space. Conditions under which exponential convergence occurs to the zero-variance solution are reviewed. These results generalize previous work for finite, discrete state spaces in Kollman (1993) and in Kollman, Baggerly, Cox, and Picard (1996). This paper is intended for nonstatisticians and includes considerable explanatory material
An Empirical Method to Fuse Partially Overlapping State Vectors for Distributed State Estimation
Sijs, J.; Hanebeck, U.; Noack, B.
2013-01-01
State fusion is a method for merging multiple estimates of the same state into a single fused estimate. Dealing with multiple estimates is one of the main concerns in distributed state estimation, where an estimated value of the desired state vector is computed in each node of a networked system.
National space policy of the United States.
2010-06-28
The space age began as a race for security and prestige between two superpowers . The opportunities : were boundless, and the decades that followed have seen a radical transformation in the way we live our : daily lives, in large part due to our use ...
State space Newton's method for topology optimization
DEFF Research Database (Denmark)
Evgrafov, Anton
2014-01-01
/10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...
United States Army Space Experiment 601
1992-07-29
impossible to urinate except into a diaper . The LES is hot and humid, bulky and heavy, and is unacceptable for space flight. The risk versus comfort...that the DSP satellite solar panels -r::eived enough sunlight reflected from the Earth to completely power the spacecraft, making the CRU output voltage...that were excessively cloudy were excluded from the statistics (if > 90% of pixels in the sample had brightness values above the threshold). The solar
Hacking on decoy-state quantum key distribution system with partial phase randomization
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-01
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Hacking on decoy-state quantum key distribution system with partial phase randomization.
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-23
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Atomic-partial vibrational density of states of i-AlCuFe quasicrystals
Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y
2002-01-01
We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)
Czech Academy of Sciences Publication Activity Database
Krisztin, T.; Rezunenko, Oleksandr
2016-01-01
Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf
A dynamical topology for the space of states
International Nuclear Information System (INIS)
Dittrich, J.
1979-01-01
A new topology is introduced for the space of states of a physical system. This topology is given by dynamics, every state has a neighbourhood consisting of states connected by the time evolution only. With respect to the new topology, all conservation laws can be treated as topological laws. (author)
On infinite-dimensional state spaces
International Nuclear Information System (INIS)
Fritz, Tobias
2013-01-01
It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V −1 U 2 V=U 3 , then finite-dimensionality entails the relation UV −1 UV=V −1 UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V −1 U 2 V=U 3 holds only up to ε and then yields a lower bound on the dimension.
On infinite-dimensional state spaces
Fritz, Tobias
2013-05-01
It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.
State space analysis of minimal channel flow
Energy Technology Data Exchange (ETDEWEB)
Neelavara, Shreyas Acharya; Duguet, Yohann; Lusseyran, François, E-mail: acharya@limsi.fr [LIMSI-CNRS, Campus Universitaire d’Orsay, Université Paris-Saclay, F-91405 Orsay (France)
2017-06-15
Turbulence and edge states are investigated numerically in a plane Poiseuille flow driven by a fixed pressure gradient. Simulations are carried out within the minimal flow unit, a concept introduced by Jiménez and Moin (1991 J . Fluid Mech. 225 213–40) to unravel the dynamics of near-wall structures in the absence of outer large-scale motions. For both turbulent and edge regimes the activity appears to be localised near only one wall at a time, and the long term dynamics features abrupt reversals. The dynamics along one reversal is structured around the transient visit to a subspace of symmetric flow fields. An exact travelling wave solution is found to exist very close to this subspace. Additionally the self-similarity of the asymmetric states is addressed. Contrary to most studies focusing on symmetric solutions, the present study suggests that edge states, when localised near one wall, do not scale in outer units. The current study suggests a composite scaling. (paper)
Ebert, Marcelo R
2018-01-01
This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes...
Automatic Design of a Maglev Controller in State Space
1991-12-01
Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING
Learning State Space Dynamics in Recurrent Networks
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
Partial radiative-recombination cross sections for excited states of hydrogen
International Nuclear Information System (INIS)
Fazio, P.M.; Copeland, G.E.
1985-01-01
The squares of the dipole and quadrupole matrix elements for the free-to-bound transitions of hydrogen up to bound states Vertical Barn = 20,l = 19> are derived in closed analytic form as a function of the kinetic energy of the free electron. Coulomb wave functions are used for the free as well as the bound states and, thus, the results are good for any electron energy. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate-angular-momentum states at low energies (w<1 eV) and where the free-state angular momentum is greater than that of the bound state. Further, that specific intermediate-angular-momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the ''normal'' behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. These ''zeros'' produce minima in the corresponding quadrupole cross sections. Finally, the calculated partial cross sections for recombination into high-angular-momentum states are greater when quadrupole transitions are included
Low-rank extremal positive-partial-transpose states and unextendible product bases
International Nuclear Information System (INIS)
Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan
2010-01-01
It is known how to construct, in a bipartite quantum system, a unique low-rank entangled mixed state with positive partial transpose (a PPT state) from an unextendible product basis (UPB), defined as an unextendible set of orthogonal product vectors. We point out that a state constructed in this way belongs to a continuous family of entangled PPT states of the same rank, all related by nonsingular unitary or nonunitary product transformations. The characteristic property of a state ρ in such a family is that its kernel Ker ρ has a generalized UPB, a basis of product vectors, not necessarily orthogonal, with no product vector in Im ρ, the orthogonal complement of Ker ρ. The generalized UPB in Ker ρ has the special property that it can be transformed to orthogonal form by a product transformation. In the case of a system of dimension 3x3, we give a complete parametrization of orthogonal UPBs. This is then a parametrization of families of rank 4 entangled (and extremal) PPT states, and we present strong numerical evidence that it is a complete classification of such states. We speculate that the lowest rank entangled and extremal PPT states also in higher dimensions are related to generalized, nonorthogonal UPBs in similar ways.
Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space
International Nuclear Information System (INIS)
Du Kai; Qiu, Jinniao; Tang Shanjian
2012-01-01
This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.
State-space prediction model for chaotic time series
Alparslan, A. K.; Sayar, M.; Atilgan, A. R.
1998-08-01
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
A Learning State-Space Model for Image Retrieval
Directory of Open Access Journals (Sweden)
Lee Greg C
2007-01-01
Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.
Reversibility and the structure of the local state space
International Nuclear Information System (INIS)
Al-Safi, Sabri W; Richens, Jonathan
2015-01-01
The richness of quantum theory’s reversible dynamics is one of its unique operational characteristics, with recent results suggesting deep links between the theory’s reversible dynamics, its local state space and the degree of non-locality it permits. We explore the delicate interplay between these features, demonstrating that reversibility places strong constraints on both the local and global state space. Firstly, we show that all reversible dynamics are trivial (composed of local transformations and permutations of subsytems) in maximally non-local theories whose local state spaces satisfy a dichotomy criterion; this applies to a range of operational models that have previously been studied, such as d-dimensional ‘hyperballs’ and almost all regular polytope systems. By separately deriving a similar result for odd-sided polygons, we show that classical systems are the only regular polytope state spaces whose maximally non-local composites allow for non-trivial reversible dynamics. Secondly, we show that non-trivial reversible dynamics do exist in maximally non-local theories whose state spaces are reducible into two or more smaller spaces. We conjecture that this is a necessary condition for the existence of such dynamics, but that reversible entanglement generation remains impossible even in this scenario. (paper)
Stochastic simulations of conditional states of partially observed systems, quantum and classical
International Nuclear Information System (INIS)
Gambetta, Jay; Wiseman, H M
2005-01-01
In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed, even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρ r (t), and if classical, the conditional state will be given by a probability distribution P r (x,t), where r is the result of the measurement. Thus to determine the evolution of this conditional state, under continuous-in-time monitoring, requires a numerically expensive calculation. In this paper we demonstrate a numerical technique based on linear measurement theory that allows us to determine the conditional state using only pure states. That is, our technique reduces the problem size by a factor of N, the number of basis states for the system. Furthermore we show that our method can be applied to joint classical and quantum systems such as arise in modelling realistic (finite bandwidth, noisy) measurement
Correlation functions for fully or partially state-resolved reactive scattering calculations
International Nuclear Information System (INIS)
Manthe, Uwe; Welsch, Ralph
2014-01-01
Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H 2 reaction illustrate important aspects of the formalism
Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto
2016-03-01
The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma.
On the state space of the dipole ghost
International Nuclear Information System (INIS)
Binegar, B.
1984-01-01
A particular representation of SO(4, 2) is identified with the state space of the free dipole ghost. This representation is then given an explicit realization as the solution space of a 4th-order wave equation on a spacetime locally isomorphic to Minkowski space. A discrete basis for this solution space is given, as well as an explicit expression for its SO(4, 2) invariant inner product. The connection between the modes of dipole field and those of the massless scalar field is clarified, and a recent conjecture concerning the restriction of the dipole representation to the Poincare subgroup is confirmed. A particular coordinate transformation then reveals the theory of the dipole ghost in Minkowski space. Finally, it is shown that the solution space of the dipole equation is not unitarizable in a Poincare invariant manner. (orig.)
Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.
Cazier, E A; Trably, E; Steyer, J P; Escudie, R
2015-08-01
In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Sweep-Line Method for State Space Exploration
DEFF Research Database (Denmark)
Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas
2001-01-01
generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...
State Space Reduction for Model Checking Agent Programs
S.-S.T.Q. Jongmans (Sung-Shik); K.V. Hindriks; M.B. van Riemsdijk; L. Dennis; O. Boissier; R.H. Bordini (Rafael)
2012-01-01
htmlabstractState space reduction techniques have been developed to increase the efficiency of model checking in the context of imperative programming languages. Unfortunately, these techniques cannot straightforwardly be applied to agents: the nature of states in the two programming paradigms
Embedding a State Space Model Into a Markov Decision Process
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren
2011-01-01
In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...
Dynamic State Space Partitioning for External Memory Model Checking
DEFF Research Database (Denmark)
Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...
Reinforcement learning in continuous state and action spaces
H. P. van Hasselt (Hado); M.A. Wiering; M. van Otterlo
2012-01-01
textabstractMany traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action
Partial state feedback control of chaotic neural network and its application
International Nuclear Information System (INIS)
He Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki
2007-01-01
The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition
What fills the space between the partially ionized clouds in the local interstellar medium
International Nuclear Information System (INIS)
Linsky, Jeffrey; Redfield, Seth
2015-01-01
The interstellar matter located between the warm clouds in the LISM and in the Local Cavity is now thought to be photoionized gas with temperatures in the range 10,000-20,000 K. While the hot stars ε CMa and β CMa are the primary photoionizing sources in the LISM, hot white dwarfs also contribute. We consider whether the Stromgren sphere gas produced by very local hot white dwarfs like Sirius B can be important in explaining the local intercloud gas. We find that the Stromgren sphere of Sirius can at least partially explain the intercloud gas in the lines of sight to several nearby stars. We also suggest that the partially ionized warm clouds like the Local Interstellar Cloud in which the Sun is located may be in part Strömgren sphere shells
Directory of Open Access Journals (Sweden)
Lingyang Song
2007-04-01
Full Text Available We report a simple differential modulation scheme for quasi-orthogonal space-time block codes. A new class of quasi-orthogonal coding structures that can provide partial transmit diversity is presented for various numbers of transmit antennas. Differential encoding and decoding can be simplified for differential Alamouti-like codes by grouping the signals in the transmitted matrix and decoupling the detection of data symbols, respectively. The new scheme can achieve constant amplitude of transmitted signals, and avoid signal constellation expansion; in addition it has a linear signal detector with very low complexity. Simulation results show that these partial-diversity codes can provide very useful results at low SNR for current communication systems. Extension to more than four transmit antennas is also considered.
Influence of partial ionization and scattering states on the solar interior structure
International Nuclear Information System (INIS)
Ulrich, R.K.
1982-01-01
The equation of state for the solar interior is normally assumed to be a fully ionized gas corrected by the Debye-Hueckel Coulomb interaction, partial degeneracy, and radiation pressure. The assumption of full ionization is dropped in this paper, and the influence of scattering states is included. The theory of scattering states appears to be new to astrophysics. This theory has been developed by Larkin and is discussed thoroughly by Ebeling, Kraft, and Kremp. The effect of scattering states eliminates the need to invoke a process of ''pressure ionization'' for which no satisfactory theory exists. Six solar models which include varying forms of the equation of state are discussed. The Saha equation without scattering states gives a neutrino counting rate of 7.41 SNU for the 37 Cl experiment, while assumed ionization for T>3 x 10 5 K gives 8.87 SNU, and the Saha equation with the lowest order effect of scattering states (Planck-Larkin equation) gives 8.83 SNU. Inclusion of the second virial coefficient due to scattering states brings the result to 9.02 SNU. The changes of quantities such as central temperature and the temperature at the base of the convective envelope are small and bear a similar relationship among the models. The initial hydrogen abundance of the model including the second virial coefficient due to scattering states is in good agreement with that found for the Orion nebula and B stars, i.e., log (N/sub He//N/sub H/)+12 = 10.97
States in the Hilbert space formulation and in the phase space formulation of quantum mechanics
International Nuclear Information System (INIS)
Tosiek, J.; Brzykcy, P.
2013-01-01
We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type. -- Highlights: ► Methods of testing whether a given matrix represents a quantum state. ► The Stratonovich–Weyl correspondence on an arbitrary symplectic manifold. ► Criteria for checking whether a function on a symplectic space is a Wigner function
Information Theoretic Characterization of Physical Theories with Projective State Space
Zaopo, Marco
2015-08-01
Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.
Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.
2012-01-01
In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized
Space Sciences Education and Outreach Project of Moscow State University
Krasotkin, S.
2006-11-01
sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space
The coherent state on SUq(2) homogeneous space
International Nuclear Information System (INIS)
Aizawa, N; Chakrabarti, R
2009-01-01
The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.
Multivariate time series with linear state space structure
Gómez, Víctor
2016-01-01
This book presents a comprehensive study of multivariate time series with linear state space structure. The emphasis is put on both the clarity of the theoretical concepts and on efficient algorithms for implementing the theory. In particular, it investigates the relationship between VARMA and state space models, including canonical forms. It also highlights the relationship between Wiener-Kolmogorov and Kalman filtering both with an infinite and a finite sample. The strength of the book also lies in the numerous algorithms included for state space models that take advantage of the recursive nature of the models. Many of these algorithms can be made robust, fast, reliable and efficient. The book is accompanied by a MATLAB package called SSMMATLAB and a webpage presenting implemented algorithms with many examples and case studies. Though it lays a solid theoretical foundation, the book also focuses on practical application, and includes exercises in each chapter. It is intended for researchers and students wor...
Relativistic resonances as non-orthogonal states in Hilbert space
Blum, W
2003-01-01
We analyze the energy-momentum properties of relativistic short-lived particles with the result that they are characterized by two 4-vectors: in addition to the familiar energy-momentum vector (timelike) there is an energy-momentum 'spread vector' (spacelike). The wave functions in space and time for unstable particles are constructed. For the relativistic properties of unstable states we refer to Wigner's method of Poincare group representations that are induced by representations of the space-time translation and rotation groups. If stable particles, unstable particles and resonances are treated as elementary objects that are not fundamentally different one has to take into account that they will not generally be orthogonal to each other in their state space. The scalar product between a stable and an unstable state with otherwise identical properties is calculated in a particular Lorentz frame. The spin of an unstable particle is not infinitely sharp but has a 'spin spread' giving rise to 'spin neighbors'....
Projective limits of state spaces IV. Fractal label sets
Lanéry, Suzanne; Thiemann, Thomas
2018-01-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski (1977) to represent quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces (see Lanéry (2016) [1] for a concise introduction to this formalism). One can thus bypass the need to select a vacuum state for the theory, and still be provided with an explicit and constructive description of the quantum state space, at least as long as the label set indexing the projective structure is countable. Because uncountable label sets are much less practical in this context, we develop in the present article a general procedure to trim an originally uncountable label set down to countable cardinality. In particular, we investigate how to perform this tightening of the label set in a way that preserves both the physical content of the algebra of observables and its symmetries. This work is notably motivated by applications to the holonomy-flux algebra underlying Loop Quantum Gravity. Building on earlier work by Okołów (2013), a projective state space was introduced for this algebra in Lanéry and Thiemann (2016). However, the non-trivial structure of the holonomy-flux algebra prevents the construction of satisfactory semi-classical states (Lanéry and Thiemann, 2017). Implementing the general procedure just mentioned in the case of a one-dimensional version of this algebra, we show how a discrete subalgebra can be extracted without destroying universality nor diffeomorphism invariance. On this subalgebra, quantum states can then be constructed which are more regular than was possible on the original algebra. In particular, this allows the design of semi-classical states whose semi-classicality is enforced step by step, starting from collective, macroscopic degrees of freedom and going down progressively toward smaller and smaller scales.
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
Energy Technology Data Exchange (ETDEWEB)
Fortes, Raphael; Rigolin, Gustavo, E-mail: rigolin@ifi.unicamp.br
2013-09-15
We push the limits of the direct use of partially pure entangled states to perform quantum teleportation by presenting several protocols in many different scenarios that achieve the optimal efficiency possible. We review and put in a single formalism the three major strategies known to date that allow one to use partially entangled states for direct quantum teleportation (no distillation strategies permitted) and compare their efficiencies in real world implementations. We show how one can improve the efficiency of many direct teleportation protocols by combining these techniques. We then develop new teleportation protocols employing multipartite partially entangled states. The three techniques are also used here in order to achieve the highest efficiency possible. Finally, we prove the upper bound for the optimal success rate for protocols based on partially entangled Bell states and show that some of the protocols here developed achieve such a bound. -- Highlights: •Optimal direct teleportation protocols using directly partially entangled states. •We put in a single formalism all strategies of direct teleportation. •We extend these techniques for multipartite partially entangle states. •We give upper bounds for the optimal efficiency of these protocols.
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne
2011-12-01
State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2011-01-01
State space modeling of Memristor based Wien 'A' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
Dinges, David F.
1999-01-01
This project is concerned with identifying ways to prevent neurobehavioral and physical deterioration due to inadequate sleep in astronauts during long-duration manned space flight. The performance capability of astronauts during extended-duration space flight depends heavily on achieving recovery through adequate sleep. Even with appropriate circadian alignment, sleep loss can erode fundamental elements of human performance capability including vigilance, cognitive speed and accuracy, working memory, reaction time, and physiological alertness. Adequate sleep is essential during manned space flight not only to ensure high levels of safe and effective human performance, but also as a basic regulatory biology critical to healthy human functioning. There is now extensive objective evidence that astronaut sleep is frequently restricted in space flight to averages between 4 hr and 6.5 hr/day. Chronic sleep restriction during manned space flight can occur in response to endogenous disturbances of sleep (motion sickness, stress, circadian rhythms), environmental disruptions of sleep (noise, temperature, light), and curtailment of sleep due to the work demands and other activities that accompany extended space flight operations. The mechanism through which this risk emerges is the development of cumulative homeostatic pressure for sleep across consecutive days of inadequate sleep. Research has shown that the physiological sleepiness and performance deficits engendered by sleep debt can progressively worsen (i.e., accumulate) over consecutive days of sleep restriction, and that sleep limited to levels commonly experienced by astronauts (i.e., 4 - 6 hr per night) for as little as 1 week, can result in increased lapses of attention, degradation of response times, deficits in complex problem solving, reduced learning, mood disturbance, disruption of essential neuroendocrine, metabolic, and neuroimmune responses, and in some vulnerable persons, the emergence of uncontrolled
Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads
Energy Technology Data Exchange (ETDEWEB)
Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)
2015-06-08
Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.
International Nuclear Information System (INIS)
McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.
2010-01-01
Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)
Estimation methods for nonlinear state-space models in ecology
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro
2011-01-01
The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...
Transformation of Socioeconomic Space: The Role of the State
Directory of Open Access Journals (Sweden)
Alexander Nikolaevich Shvetsov
2015-03-01
Full Text Available Modern Russia is traditionally characterized by a special and strong public participation in solving problems of spatial development. Thus, the state has following diverse roles: 1 the creator of the modern space configuration; 2 the mastermind and main driving force of modern spatial transformations; 3 the regulator and investor of these processes; 4 the main sponsor and beneficiary of space transformation; and, finally, the hostage of its own dominance in the processes of spatial transformation. However, stereotypes are being gradually overcome and public policy in the area of spatial transformations focuses not only on «public projects» but also on self-development of regions, combined with the interests of big business which plays an increasing role in the transformation of socioeconomic space. The article reveals the meaning and content of the problem of systemic interaction between the state and space concerning the modernization of the country. The author explores the range of fundamental research and applied issues resulting from the contradictory combination of traditional (historical stereotypes and the latest Russian circumstances. These issues determine the background, nature and consequences of state impacts on socio-economic space, as well as the composition, content and validity of the used instruments
[Partially unfolded state of lysozyme with a developed secondary structure in dimethylsulfoxide].
Timchenko, A A; Kirkitadze, M D; Prokhorov, D A; Potekhin, S A; Serdiuk, I N
1996-06-01
The conformation of a chicken egg lysozyme molecule (dimensions, stoichiometry of its associates, and the degree of helicity) in DMSO was studied by small-angle neutron scattering, dynamic light scattering, and optical rotatory dispersion in the visible region of the spectrum. At high DMSO concentrations (70%), the protein was shown to exist as a dimer. The monomer molecules in the dimer adopt a partially unfolded conformation, with dimensions substantially greater than those in the native state and a high content of secondary structure (the degree of helicity is close to that of native lysozyme). This approach provides a unique possibility to assess the compactness of molecules in associates, which may be very useful in studying protein self-organization.
Deformed two-photon squeezed states in noncommutative space
International Nuclear Information System (INIS)
Zhang Jianzu
2004-01-01
Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator
Dissipative differential systems and the state space H∞ control problem
Trentelman, H.L.; Willems, J.C.
2000-01-01
The purpose of this paper is to apply our very recent results on the synthesis of dissipative linear differential systems to the 'classical' state space H∞ control problem. We first review our general problem set-up, where the problem of rendering a given plant dissipative by general
An Embeddable Virtual Machine for State Space Generation
Weber, M.; Bosnacki, D.; Edelkamp, S.
2007-01-01
The semantics of modelling languages are not always specified in a precise and formal way, and their rather complex underlying models make it a non-trivial exercise to reuse them in newly developed tools. We report on experiments with a virtual machine-based approach for state space generation. The
A state space algorithm for the spectral factorization
Kraffer, F.; Kraffer, F.; Kwakernaak, H.
1997-01-01
This paper presents an algorithm for the spectral factorization of a para-Hermitian polynomial matrix. The algorithm is based on polynomial matrix to state space and vice versa conversions, and avoids elementary polynomial operations in computations; It relies on well-proven methods of numerical
State Space Reduction of Linear Processes using Control Flow Reconstruction
van de Pol, Jan Cornelis; Timmer, Mark
2009-01-01
We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters
State Space Reduction of Linear Processes Using Control Flow Reconstruction
van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.
2009-01-01
We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters
Space Shuttle Orbiter oxygen partial pressure sensing and control system improvements
Frampton, Robert F.; Hoy, Dennis M.; Kelly, Kevin J.; Walleshauser, James J.
1992-01-01
A program aimed at developing a new PPO2 oxygen sensor and a replacement amplifier for the Space Shuttle Orbiter is described. Experimental design methodologies used in the test and modeling process made it possible to enhance the effectiveness of the program and to reduce its cost. Significant cost savings are due to the increased lifetime of the basic sensor cell, the maximization of useful sensor life through an increased amplifier gain adjustment capability, the use of streamlined production processes for the manufacture of the assemblies, and the refurbishment capability of the replacement sensor.
Abelian faces of state spaces of C*-algebras
International Nuclear Information System (INIS)
Batty, C.J.K.
1980-01-01
Let F be a closed face of the weak* compact convex state space of a unital C*-algebra A. The class of F-abelian states, introduced earlier by the author, is studied further. It is shown (without any restriction on A or F) that F is a Choquet simplex if and only if every state in F is F-abelian, and that it is sufficient for this that every pure state in F is F-abelian. As a corollary, it is deduced that an arbitrary C*-dynamical system (A,G,α) is G-abelian if and only if every ergodic state is weakly clustering. Nevertheless the set of all F-abelian (or even G-abelian) states is not necessarily weak* compact. (orig.)
Coherent states on horospheric three-dimensional Lobachevsky space
Energy Technology Data Exchange (ETDEWEB)
Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2016-08-15
In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.
Projective limits of state spaces II. Quantum formalism
Lanéry, Suzanne; Thiemann, Thomas
2017-06-01
In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].
Evaluating Russian space nuclear reactor technology for United States applications
International Nuclear Information System (INIS)
Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.
1994-01-01
Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch
Institute of Scientific and Technical Information of China (English)
戴宏毅; 李承祖; 陈平行
2003-01-01
We present a scheme to probabilistically teleport an arbitrary and unknown three-particle state via a two-particle non-maximally entangled state and a four-particle non-maximally entangled state as the quantum channel. With the help of Bell-state measurements, an arbitrary three-particle state can be perfectly teleported if a receiver introduces a collective unitary transformation. All kinds of unitary transformations are given in greater detail. This scheme can be generalized to the teleportation of an arbitrary and unknown multiparticle state.
Pure state consciousness and its local reduction to neuronal space
Duggins, A. J.
2013-01-01
The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.
Hand gesture recognition in confined spaces with partial observability and occultation constraints
Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2016-05-01
Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.
Structure of Unsteady Partially Premixed Flames and the Existence of State Relationships
Directory of Open Access Journals (Sweden)
Suresh K. Aggarwal
2009-09-01
Full Text Available In this study, we examine the structure and existence of state relationships in unsteady partially premixed flames (PPFs subjected to buoyancy-induced and external perturbations. A detailed numerical model is employed to simulate the steady and unsteady two-dimensional PPFs established using a slot burner under normal and zero-gravity conditions. The coflow velocity is parametrically varied. The methane-air chemistry is modeled using a fairly detailed mechanism that contains 81 elementary reactions and 24 species. Validation of the computational model is provided through comparisons of predictions with nonintrusive measurements. The combustion proceeds in two reaction zones, one a rich premixed zone and the other a nonpremixed zone. These reaction zones are spatially separated, but involve strong interactions between them due to thermochemistry and scalar transport. The fuel is mostly consumed in the premixed zone to produce CO and H2, which are transported to and consumed in the nonpremixed zone. The nonpremixed zone in turn provides heat and H-atoms to the premixed zone. For the range of conditions investigated, the zero-g partially premixed flames exhibit a stable behavior and a remarkably strong resistance to perturbations. In contrast, the corresponding normal-gravity flames exhibit oscillatory behavior at low coflow velocities but a stable behavior at high coflow velocities, and the behavior can be explained in terms of a global and convective instabilities. The effects of coflow and gravity on the flames are characterized through a parameter VR, defined as the ratio of coflow velocity to jet velocity. For VR ≤ 1 (low coflow velocity regime, the structures of both 0- and 1-g flames are strongly sensitive to changes in VR, while they are only mildly affected by coflow in the high coflow velocity regime (VR > 1. In addition, the spatio-temporal characteristics of the 0- and 1-g flames are markedly different in the first regime, but are
State-Space Modelling of Loudspeakers using Fractional Derivatives
DEFF Research Database (Denmark)
King, Alexander Weider; Agerkvist, Finn T.
2015-01-01
This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...
State-space Manifold and Rotating Black Holes
Bellucci, Stefano
2010-01-01
We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...
Practical Application of Neural Networks in State Space Control
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon
the networks, although some modifications are needed for the method to apply to the multilayer perceptron network. In connection with the multilayer perceptron networks it is also pointed out how instantaneous, sample-by-sample linearized state space models can be extracted from a trained network, thus opening......In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...
Safe Exploration of State and Action Spaces in Reinforcement Learning
Garcia, Javier; Fernandez, Fernando
2014-01-01
In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...
Advanced Solid State Lighting for AES Deep Space Hab Project
Holbert, Eirik
2015-01-01
The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.
Real space renormalization group for spectra and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1984-09-01
We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)
Quantum computing based on space states without charge transfer
International Nuclear Information System (INIS)
Vyurkov, V.; Filippov, S.; Gorelik, L.
2010-01-01
An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.
Space-time complexity in solid state models
International Nuclear Information System (INIS)
Bishop, A.R.
1985-01-01
In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter
State space approach to mixed boundary value problems.
Chen, C. F.; Chen, M. M.
1973-01-01
A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.
Energy Technology Data Exchange (ETDEWEB)
Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus [Departemen Fisika, Universitas Indonesia, Depok 16424 (Indonesia)
2016-03-11
A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in two variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.
Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.
2018-05-01
Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.
Datta, Anjali; Cheng, Joseph Y; Hargreaves, Brian A; Baron, Corey A; Nishimura, Dwight G
2018-06-01
To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Solar Pumped High Power Solid State Laser for Space Applications
Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.
2004-01-01
Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.
Complex network analysis of state spaces for random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)
2008-01-15
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.
Complex network analysis of state spaces for random Boolean networks
International Nuclear Information System (INIS)
Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya
2008-01-01
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two
Partially composite Higgs models
DEFF Research Database (Denmark)
Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.
2018-01-01
We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...
Principle of minimum distance in space of states as new principle in quantum physics
International Nuclear Information System (INIS)
Ion, D. B.; Ion, M. L. D.
2007-01-01
The mathematician Leonhard Euler (1707-1783) appears to have been a philosophical optimist having written: 'Since the fabric of universe is the most perfect and is the work of the most wise Creator, nothing whatsoever take place in this universe in which some relation of maximum or minimum does not appear. Wherefore, there is absolutely no doubt that every effect in universe can be explained as satisfactory from final causes themselves the aid of the method of Maxima and Minima, as can from the effective causes'. Having in mind this kind of optimism in the papers mentioned in this work we introduced and investigated the possibility to construct a predictive analytic theory of the elementary particle interaction based on the principle of minimum distance in the space of quantum states (PMD-SQS). So, choosing the partial transition amplitudes as the system variational variables and the distance in the space of the quantum states as a measure of the system effectiveness, we obtained the results presented in this paper. These results proved that the principle of minimum distance in space of quantum states (PMD-SQS) can be chosen as variational principle by which we can find the analytic expressions of the partial transition amplitudes. In this paper we present a description of hadron-hadron scattering via principle of minimum distance PMD-SQS when the distance in space of states is minimized with two directional constraints: dσ/dΩ(±1) = fixed. Then by using the available experimental (pion-nucleon and kaon-nucleon) phase shifts we obtained not only consistent experimental tests of the PMD-SQS optimality, but also strong experimental evidences for new principles in hadronic physics such as: Principle of nonextensivity conjugation via the Riesz-Thorin relation (1/2p + 1/2q = 1) and a new Principle of limited uncertainty in nonextensive quantum physics. The strong experimental evidence obtained here for the nonextensive statistical behavior of the [J,
Mapping from Speech to Images Using Continuous State Space Models
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan
2005-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space...... a subjective point of view the model is able to construct an image sequence from an unknown noisy speech sequence even though the number of training examples are limited.......'. The performance of the system is critically dependent on the number of hidden variables, with too few variables the model cannot represent data, and with too many overfitting is noticed. Simulations are performed on recordings of 3-5 sec.\\$\\backslash\\$ video sequences with sentences from the Timit database. From...
Solid State Pathways towards Molecular Complexity in Space
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
Validation of ecological state space models using the Laplace approximation
DEFF Research Database (Denmark)
Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte
2017-01-01
Many statistical models in ecology follow the state space paradigm. For such models, the important step of model validation rarely receives as much attention as estimation or hypothesis testing, perhaps due to lack of available algorithms and software. Model validation is often based on a naive...... for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... useful directions in which the model could be improved....
On stationary states of electron beams in drift space
International Nuclear Information System (INIS)
Kovalev, N.F.
2002-01-01
The article is devoted to studying the conditions of formation and existence of virtual cathodes. The problem on stationary states of the strongly magnetized electron beams in the homogeneous drift channels is discussed. The problem on the planar and coaxial moduli of the drift spaces is considered. The possibility of existing the virtual cathodes in the coaxial tubular beams by the injection currents, smaller than the threshold ones is highly proved. The inaccuracy of results of a number of works, studying the properties of the virtual cathodes in the strongly magnetized electron beams, is shown [ru
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
State-Space Estimation of Soil Organic Carbon Stock
Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.
2014-04-01
Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.
Space science public outreach at Louisiana State University
Guzik, T.; Babin, E.; Cooney, W.; Giammanco, J.; Hartman, D.; McNeil, R.; Slovak, M.; Stacy, J.
Over the last seven years the Astronomy / Astrophysics group in the Department of Physics and Astronomy of Louisiana State University has developed an exten- sive Space Science education and public outreach program. This program includes the local park district (the Recreation and Park Commission for the Parish of East Baton Rouge, BREC), the local amateur astronomer group (the Baton Rouge As- tronomical Society, BRAS), the Louisiana Arts and Science Museum (LASM), and Southern University (SU, part of the largest HBCU system in the nation). Our effort has directly led to the development of the Highland Road Park Observatory (HRPO, http://www.bro.lsu.edu/hrpo) that supports student astronomy training at LSU and SU, amateur observations and a public program for adults and children, establishment of a series of teacher professional development workshops in astronomy and physics, and the "Robots for Internet Experiences (ROBIE)" project (http://www.bro.lsu.edu/) where we have several instruments (e.g. HAM radio, radio telescope, optical tele- scopes) that can be controlled over the internet by students and teachers in the class- room along with associated lessons developed by a teacher group. In addition, this year the LASM, will be opening a new planetarium / space theater in downtown Baton Rouge, Louisiana. We are currently working to bring live views of the heavens from the HRPO telescope to audiences attending planetarium shows and will be working closely with planetarium staff to develop shows that highlight LSU astronomy / space science research. During the presentation we will provide some details about our in- dividual projects, the overall structure of our program, establishing community links and some of the lessons we learned along the way. Finally, we would like to acknowl- edge NASA, Louisiana State University, the Louisiana Systemic Initiatives Program and the Louisiana Technology Innovation Fund for their support.
DEFF Research Database (Denmark)
Mizuno, Takayuki; Shibahara, Kohki; Ye, Feihong
2017-01-01
In this paper, we present long-haul 32-core dense space division multiplexed (DSDM) unidirectional transmission over a single-mode multicore transmission line. We developed a low-crosstalk heterogeneous 32-core fiber with a square lattice arrangement, and a novel partial recirculating loop system...
A Markovian state-space framework for integrating flexibility into space system design decisions
Lafleur, Jarret M.
The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of
High rate partial-state-of-charge operation of VRLA batteries
Moseley, Patrick T.
The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in
The Case For Space: A Legislative Framework For An Independent United States Space Force
2018-04-01
example of an organization created by competing bureaucratic interests, ARPA hampered and muddled early service efforts to think clearly about space.12...change the way we think and prepare for that eventuality.”54 As aptly stated recently by Melissa de Zwart, Dean of Law at the University of Adelaide in...NASA Bets on Private Companies to Exploit Moon’s Resources,” Phys.org, 9 February 2014, https://phys.org/news/2014-02-nasa-private-companies-exploit
Timed Testing under Partial Observability
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao
2009-01-01
observability of SUT using a set of predicates over the TGA state space, and specify the test purposes in Computation Tree Logic (CTL) formulas. A recently developed partially observable timed game solver is used to generate winning strategies, which are used as test cases. We propose a conformance testing...
Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu
2017-08-01
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
Directory of Open Access Journals (Sweden)
Esfandiar, H.
2013-05-01
Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.
A General State-Space Formulation for Online Scheduling
Directory of Open Access Journals (Sweden)
Dhruv Gupta
2017-11-01
Full Text Available We present a generalized state-space model formulation particularly motivated by an online scheduling perspective, which allows modeling (1 task-delays and unit breakdowns; (2 fractional delays and unit downtimes, when using discrete-time grid; (3 variable batch-sizes; (4 robust scheduling through the use of conservative yield estimates and processing times; (5 feedback on task-yield estimates before the task finishes; (6 task termination during its execution; (7 post-production storage of material in unit; and (8 unit capacity degradation and maintenance. Through these proposed generalizations, we enable a natural way to handle routinely encountered disturbances and a rich set of corresponding counter-decisions. Thereby, greatly simplifying and extending the possible application of mathematical programming based online scheduling solutions to diverse application settings. Finally, we demonstrate the effectiveness of this model on a case study from the field of bio-manufacturing.
Hybrid state-space time integration of rotating beams
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Martin Bjerre
2012-01-01
An efficient time integration algorithm for the dynamic equations of flexible beams in a rotating frame of reference is presented. The equations of motion are formulated in a hybrid state-space format in terms of local displacements and local components of the absolute velocity. With inspiration...... of the system rotation enter via global operations with the angular velocity vector. The algorithm is based on an integrated form of the equations of motion with energy and momentum conserving properties, if a kinematically consistent non-linear formulation is used. A consistent monotonic scheme for algorithmic...... energy dissipation in terms of local displacements and velocities, typical of structural vibrations, is developed and implemented in the form of forward weighting of appropriate mean value terms in the algorithm. The algorithm is implemented for a beam theory with consistent quadratic non...
Connections on the state-space over conformal field theories
International Nuclear Information System (INIS)
Ranganathan, K.; Sonoda, H.; Zwiebach, B.
1994-01-01
Motivated by the problem of background independence of closed string field theory we study geometry on the infinite vector bundle of local fields over the space of conformal field theories (CFTs). With any connection we can associate an excluded domain D for the integral of marginal operators, and an operator one-form ω μ . The pair (D, ω μ ) determines the covariant derivative of any correlator of local fields. We obtain interesting classes of connections in which ω μ 's can be written in terms of CFT data. For these connections we compute their curvatures in terms of four-point correlators, D, and ω μ . Among these connections three are of particular interest. A flat, metric compatible connection Γ, and connections c and c with non-vanishing curvature, with the latter metric compatible. The flat connection cannot be used to do parallel transport over a finite distance. Parallel transport with either c or c, however, allows us to construct a CFT in the state-space of another CFT a finite distance away. The construction is given in the form of perturbation theory manifestly free of divergences. (orig.)
Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces
Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele
2017-12-01
Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Construction of spaces of kinematic quantum states for field theories via projective techniques
International Nuclear Information System (INIS)
Okołów, Andrzej
2013-01-01
We present a method of constructing a space of quantum states for a field theory: given phase space of a theory, we define a family of physical systems each possessing a finite number of degrees of freedom, next we define a space of quantum states for each finite system, finally using projective techniques we organize all these spaces into a space of quantum states which corresponds to the original phase space. This construction is kinematic in this sense that it bases merely on the structure of the phase space of a theory and does not take into account possible constraints on the space. The construction is a generalization of a construction by Kijowski—the latter one is limited to theories of linear phase spaces, while the former one is free of this limitation. The method presented in this paper enables to construct a space of quantum states for the teleparallel equivalent of general relativity. (paper)
Léchappé, V.; Moulay, E.; Plestan, F.
2018-06-01
The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.
A d-person Differential Game with State Space Constraints
International Nuclear Information System (INIS)
Ramasubramanian, S.
2007-01-01
We consider a network of d companies (insurance companies, for example) operating under a treaty to diversify risk. Internal and external borrowing are allowed to avert ruin of any member of the network. The amount borrowed to prevent ruin is viewed upon as control. Repayment of these loans entails a control cost in addition to the usual costs. Each company tries to minimize its repayment liability. This leads to a d -person differential game with state space constraints. If the companies are also in possible competition a Nash equilibrium is sought. Otherwise a utopian equilibrium is more appropriate. The corresponding systems of HJB equations and boundary conditions are derived. In the case of Nash equilibrium, the Hamiltonian can be discontinuous; there are d interlinked control problems with state constraints; each value function is a constrained viscosity solution to the appropriate discontinuous HJB equation. Uniqueness does not hold in general in this case. In the case of utopian equilibrium, each value function turns out to be the unique constrained viscosity solution to the appropriate HJB equation. Connection with Skorokhod problem is briefly discussed
State-space representation of the reactor dynamics equations
International Nuclear Information System (INIS)
Bernard, J.A.
1995-01-01
This paper describes a novel formulation of the reactor space-independent kinetics equations. The intent is to present these equations in a form that is both compatible with modern control theory and mathematically rigorous. It is desired to write the kinetics equations in the standard state variable representation, x = Ax, where x is the state vector and A is the system matrix and, at the same time, avoid mathematical compromises such as the linearization of an equation about a particular operating point. The advantage to this proposed formulation is that it may allow the lateral transfer of existing control concepts, some that have been developed for other fields, to the operation of nuclear reactors. For example, sliding mode control has been developed to allow robots to function in a robust manner in the presence of changes in the system model. This is necessary because a robot is expected to be capable of picking up an object of unknown mass and moving that object along a specified trajectory. The variability of the object's mass introduces an uncertainty into the system model that is used to deduce the appropriate control action. Thus, the robot controller must be made robust against such variations. Sliding mode control is one means of accomplishing this. A reactor controller might benefit from the same concept if its objective were to cause the reactor power to move along a demanded trajectory despite the presence of some uncertainty in the net amount of reactivity that is present
International Nuclear Information System (INIS)
Suzuki, Shigenari; Takeoka, Masahiro; Sasaki, Masahide; Andersen, Ulrik L.; Kannari, Fumihiko
2006-01-01
We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude
78 FR 48326 - Partial Disapproval of State Implementation Plan; Arizona; Regional Haze Requirements
2013-08-08
... Disapproval of State Implementation Plan; Arizona; Regional Haze Requirements AGENCY: Environmental Protection... behalf of National Parks Conservation Association, Sierra Club, Physicians for Social Responsibility... Haze State Implementation Plan Revision submitted by the Arizona Department of Environmental Quality on...
United States Changing Demographics - English/Spanish Space Education
Leon, R.
2002-01-01
Accordingly the United States Census Bureau, the ethnic group adding the largest number of people to the national population is the Hispanic exceeding 12 percent of the population and growing by almost 60 percent between 1990 and 2000. The status of the nation's educational system with respect to Hispanic students is perhaps one of the most influential issues facing the largest economy of the world. The low income, lack of language skills, highest drop-out rate in the nation, are some of the reasons why Hispanics are less likely to receive a university degree than any other ethical group. In short, the government requires to implement compensatory programs and bilingual education to ensure global leadership. Because of ongoing immigration, Spanish persists longer among Hispanics than it did among other immigrant groups. Spanish is the fourth most spoken language in the world after Mandarin, Hindustani and English. Although not all U.S. Hispanics speak Spanish, almost all U.S. Spanish speakers are Hispanics. This paper is intended to outline the challenging implementation of a bilingual education project affiliated to NASA Johnson Space Center encouraging greater academic success of Hispanics in engineering, math and science. The prospective project covers the overall role of space activities in the development of science and technology, socioeconomic issues and international cooperation. An existent JSC project is the starting stage to keep on developing an interactive video teleconference and web-media technology and produce stimulating learning products in English and Spanish for students and teachers across the nation and around the world.
Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys
DEFF Research Database (Denmark)
Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt
1995-01-01
We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...... for the ordered alloys are in good agreement with experimental data. For all the alloys the calculated ordering energy and the equilibrium lattices parameters are found to be almost exact quadratic functions of the long-range-order parameter....... and the partially ordered alloys are included in the screened impurity model. The prefactor in the Madelung energy is determined by the requirement that the total energy obtained in direct SS CPA calculations should equal the total energy given by the Connolly-Williams expansion based on Green’s function...
Zafar, Ammar
2012-06-01
In this report, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized while keeping the signal-to-noise-ratio (SNR) above a certain threshold. In the dual problem of power allocation, the end-to-end SNR is maximized under individual and global power constraints. Closed-form expressions for the optimal source and relay powers and the Lagrangian multiplier are obtained. Numerical results show that the optimal power allocation with partial CSI provides comparable performance as optimal power allocation with full CSI at low SNR.
Zafar, Ammar
2012-09-16
In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized while keeping the signal-to-noise-ratio (SNR) above a certain threshold. In the dual problem of power allocation, the end-to-end SNR is maximized under individual and global power constraints. Closed-form expressions for the optimal source and relay powers and the Lagrangian multiplier are obtained. Numerical results show that the optimal power allocation with partial CSI provides comparable performance as optimal power allocation with full CSI at low SNR. © 2012 IEEE.
Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.
2013-09-01
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.
Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems
Steur, Erik; van Leeuwen, Cees; Michiels, Wim
2014-01-01
Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...
Analysis of Life Histories: A State Space Approach
Directory of Open Access Journals (Sweden)
Rajulton, Fernando
2001-01-01
Full Text Available EnglishThe computer package LIFEHIST written by the author, is meant for analyzinglife histories through a state-space approach. Basic ideas on which the various programs have beenbuilt are described in this paper in a non-mathematical language. Users can use various programs formultistate analyses based on Markov and semi-Markov frameworks and sequences of transitions implied inlife histories. The package is under constant revision and programs for using a few specific modelsthe author thinks will be useful for analyzing longitudinal data will be incorporated in the nearfuture.FrenchLe système d'ordinateur LIFEHIST écrit par l'auteur est établi pour analyser desévénements au cours de la vie par une approche qui tient compte des états aucours du temps. Les idées fondamentales à la base des divers programmes dumodule sont décrites dans un langage non-mathématique. Le systèmeLIFEHIST peut être utilisé pour des analyses Markov et semi-Markov desséquences d’événements au cours de la vie. Le module est sous révisionconstante, et des programmes que l’auteur compte ajouter pour l'usage dedonnées longitudinales sont décrit.
A Knowledge Discovery from POS Data using State Space Models
Sato, Tadahiko; Higuchi, Tomoyuki
The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
Holography and quantum states in elliptic de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Halpern, Illan F. [Department of Physics, University of California,Berkeley, CA, 94720 (United States); Neiman, Yasha [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON, N2L 2Y5 (Canada)
2015-12-10
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in “elliptic” de Sitter space dS{sub 4}/ℤ{sub 2}, obtained by identifying antipodal points in dS{sub 4}. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable dS{sub 4}/ℤ{sub 2}. We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in dS{sub 4}/ℤ{sub 2}, in the limit of free bulk fields. We succeed in deriving an observer’s operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.
Finite Word-Length Effects in Digital State-Space Filters
Directory of Open Access Journals (Sweden)
B. Psenicka
1999-12-01
Full Text Available The state-space description of digital filters involves except the relationship between input and output signals an additional set of state variables. The state-space structures of digital filters have many positive properties compared with direct canonical structures. The main advantage of digital filter structures developed using state-space technique is a smaller sensitivity to quantization effects by fixed-point implementation. In our presentation, the emphasis is on the analysis of coefficient quantization and on existence of zero-input limit cycles in state-space digital filters. The comparison with direct form II structure is presented.
Partial dynamical systems, fell bundles and applications
Exel, Ruy
2017-01-01
Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of "partiality". One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamica...
Partial Transposition on Bipartite System
International Nuclear Information System (INIS)
Xi-Jun, Ren; Yong-Jian, Han; Yu-Chun, Wu; Guang-Can, Guo
2008-01-01
Many properties of partial transposition are unclear as yet. Here we carefully consider the number of the negative eigenvalues of ρ T (ρ's partial transposition) when ρ is a two-partite state. There is strong evidence to show that the number of negative eigenvalues of ρ T is N(N − 1)/2 at most when ρ is a state in Hilbert space C N C N . For the special case, the 2 × 2 system, we use this result to give a partial proof of the conjecture |ρ T | T ≥ 0. We find that this conjecture is strongly connected with the entanglement of the state corresponding to the negative eigenvalue of ρ T or the negative entropy of ρ
International Nuclear Information System (INIS)
Näfe, H.
2013-01-01
As far as a multicomponent mixture is concerned, different versions exist in the literature for the relationship between the partial molar and molar quantity of a thermodynamic state function with the most prominent example of the two quantities being the activity coefficient of an arbitrary component and the excess Gibbs free energy of a mixture comprising this component. Since the relationships published so far have to a large degree been derived independently of each other and result from apparently conflicting approaches, they are still considered as separate subjects in the literature. It is demonstrated that despite this curious situation all relationships are equivalent to each other from a mathematical point of view
Identification of a class of nonlinear state-space models using RPE techniques
DEFF Research Database (Denmark)
Zhou, W. W.; Blanke, Mogens
1986-01-01
The recursive prediction error methods in state-space form have been efficiently used as parameter identifiers for linear systems, and especially Ljung's innovations filter using a Newton search direction has proved to be quite ideal. In this paper, the RPE method in state-space form is developed...... a quite convincing performance of the filter as combined parameter and state estimator....
Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages
International Nuclear Information System (INIS)
Sun Yang; Qiao Xueying; Mindich, Leonard
2004-01-01
The cystoviridae are bacteriophages with genomes of three segments of dsRNA enclosed within a polyhedral capsid. Two members of this family, PHI6 and PHI8, have been shown to form carrier states in which the virus replicates as a stable episome in the host bacterium while expressing reporter genes such as kanamycin resistance or lacα. The carrier state does not require the activity of all the genes necessary for phage production. It is possible to generate carrier states by infecting cells with virus or by electroporating nonreplicating plasmids containing cDNA copies of the viral genomes into the host cells. We have found that carrier states in both PHI6 and PHI8 can be formed at high frequency with all three genomic segments or with only the large and small segments. The large genomic segment codes for the proteins that constitute the inner core of the virus, which is the structure responsible for the packaging and replication of the genome. In PHI6, a carrier state can be formed with the large and middle segment if mutations occur in the gene for the major structural protein of the inner core. In PHI8, carrier state formation requires the activity of genes 8 and 12 of segment S
State and parameter estimation of state-space model with entry-wise correlated uniform noise
Czech Academy of Sciences Publication Activity Database
Pavelková, Lenka; Kárný, Miroslav
2014-01-01
Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf
Solid State Energy Conversion for Deep Space Power
National Aeronautics and Space Administration — Thermophotovoltaic (TPV) devices employed in static radioisotope generators show great promise for highly efficient, reliable, and resilient power generation for...
An application of gain-scheduled control using state-space interpolation to hydroactive gas bearings
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Camino, Juan F.; Niemann, Hans Henrik
2016-01-01
with a gain-scheduling strategy using state-space interpolation, which avoids both the performance loss and the increase of controller order associated to the Youla parametrisation. The proposed state-space interpolation for gain-scheduling is applied for mass imbalance rejection for a controllable gas...... bearing scheduled in two parameters. Comparisons against the Youla-based scheduling demonstrate the superiority of the state-space interpolation....
Bove, Antonio; Murthy, MK Venkatesha
2009-01-01
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
Coulomb plus strong interaction bound states - momentum space numerical solutions
International Nuclear Information System (INIS)
Heddle, D.P.; Tabakin, F.
1985-01-01
The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)
The State of Play: US Space Systems Competitiveness
Zapata, Edgar
2017-01-01
Collects space systems cost and related data (flight rate, payload, etc.) over time. Gathers only public data. Non-recurring and recurring. Minimal data processing. Graph, visualize, add context. Focus on US space systems competitiveness. Keep fresh update as data arises, launches occur, etc. Keep fresh focus on recent data, indicative of the future.
Formulating state space models in R with focus on longitudinal regression models
DEFF Research Database (Denmark)
Dethlefsen, Claus; Lundbye-Christensen, Søren
We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms in the form...... We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms...
State Machine Modeling of the Space Launch System Solid Rocket Boosters
Harris, Joshua A.; Patterson-Hine, Ann
2013-01-01
The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.
DEFF Research Database (Denmark)
Topakas, E.; Kalogeris, E.; Kekos, D.
2003-01-01
A number of factors affecting production of feruloyl esterase an enzyme that hydrolyse ester linkages of ferulic acid (FA) in plant cell walls, by the thermophylic fungus Sporotrichum thermophile under solid state fermentation (SSF) were investigated. Initial moisture content and type of carbon...
Directory of Open Access Journals (Sweden)
Padmavathi Tallapragada
2017-06-01
It can be concluded that the fungus M. sanguineus is a good source of amylase production under solid state fermentation. Application of amylase produced by M. sanguineus in detergent industry was also carried out and it was proven very effective in stain removal from the fabrics.
Partial transposition on bi-partite system
Han, Y. -J.; Ren, X. J.; Wu, Y. C.; Guo, G. -C.
2006-01-01
Many of the properties of the partial transposition are not clear so far. Here the number of the negative eigenvalues of K(T)(the partial transposition of K) is considered carefully when K is a two-partite state. There are strong evidences to show that the number of negative eigenvalues of K(T) is N(N-1)/2 at most when K is a state in Hilbert space N*N. For the special case, 2*2 system(two qubits), we use this result to give a partial proof of the conjecture sqrt(K(T))(T)>=0. We find that thi...
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to
International Nuclear Information System (INIS)
Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h -1 . The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h -1 . After the maximum flow rate of 500 ml h -1 , the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar
Probabilistic teleportation via multi-parameter measurements and partially entangled states
Wei, Jiahua; Shi, Lei; Han, Chen; Xu, Zhiyan; Zhu, Yu; Wang, Gang; Wu, Hao
2018-04-01
In this paper, a novel scheme for probabilistic teleportation is presented with multi-parameter measurements via a non-maximally entangled state. This is in contrast to the fact that the measurement kinds for quantum teleportation are usually particular in most previous schemes. The detail implementation producers for our proposal are given by using of appropriate local unitary operations. Moreover, the total success probability and classical information of this proposal are calculated. It is demonstrated that the success probability and classical cost would be changed with the multi-measurement parameters and the entanglement factor of quantum channel. Our scheme could enlarge the research range of probabilistic teleportation.
Baxley, Tamatha; Johnson, Dylan; Pinto, Jose R; Chalovich, Joseph M
2017-06-13
Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca 2+ and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca 2+ concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca 2+ binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca 2+ concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca 2+ sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca 2+ concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca 2+ concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca 2+ . Because Ca 2+ gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.
Directory of Open Access Journals (Sweden)
Dibyangana Raul
2014-01-01
Full Text Available Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF for α-amylase production has been used in lieu of submerged fermentation (SmF due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH42SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.
Melia, Matthew
2017-01-01
Altered States, Altered Spaces: Architecture, Landscape and Space in the work of Stanley Kubrick and Ken Russell.\\ud \\ud Stanley Kubrick and Ken Russell, at first, seem like unlikely bedfellows for a critical comparison: the combined Baroque, Mannerist, frequently excessive and romantic nature of Russell’s screen standing in apparent contrast to the structure, order, organisation, Brutalism and spatial complexity of Kubrick’s.\\ud \\ud In an online blogpost1 (2007) Russell biographer Paul Sutto...
Geodesics in thermodynamic state spaces of quantum gases
International Nuclear Information System (INIS)
Oshima, H.; Obata, T.; Hara, H.
2002-01-01
The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence
Phase space structure of generalized Gaussian cat states
International Nuclear Information System (INIS)
Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.
2010-01-01
We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.
Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M
2015-12-01
With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.
Formulating state space models in R with focus on longitudinal regression models
DEFF Research Database (Denmark)
Dethlefsen, Claus; Lundbye-Christensen, Søren
2006-01-01
We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms...
Problem of short-term forecasting of near-earth space state
International Nuclear Information System (INIS)
Eselevich, V.G.; Ashmanets, V.I.; Startsev, S.A.
1996-01-01
The paper deals with actual and practically important problem of investigation and forecasting of state condition during magnetic storms. The available methods of forecasting of near-earth space state are analyzed. Forecasting of magnetic storms was conducted for control of space vehicles. Quasi-determinate method of magnetic storm forecasting is suggested. 13 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Salgado, Carlos W. [Norfolk State University, Norfolk, VA (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weygand, Dennis P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-04-01
Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.
Improvements in the equation of state for the partially ionized plasmas of the solar interior
Liang, Aihua
2005-11-01
The three major material properties relevant for solar and stellar modeling are the equation of state (EOS), opacity and the nuclear reaction rate. Due to the nature of the equations of stellar structure and evolution, in most parts of a stars interior, the three material properties are entangled, and it is difficult to use astrophysics to constrain a single one. Luckily, thanks to the adiabatic stratification of the convection zone, there the structure only depends on the EOS, which is therefore largely disentangled from the other quantities. Our research, which aims at constraining the EOS using information from the Sun, is therefore most successful when data from the convection zone are used. Among the many solar equations of state that are being currently used there are two popular ones: Mihalas-Däppen-Hummer (MHD) EOS and OPAL EOS. Helioseismic inversion procedures, which have become standard to evaluate the accuracy of different solar models with respect to the real Sun, have revealed that except for the top 2%, the OPAL EOS matches the solar observations better than the MHD EOS. For this reason we have set our research goal to find a modification of the MHD EOS that can, in a first step, simulate the OPAL EOS, and ultimately, the real Sun. This goal has been attained. By construction, the OPAL EOS contains higher order correlation terms which are missing in the MHD EOS. Through an inversion procedure from the activity series expansion (ACTEX), upon which the OPAL EOS is based to the free energy expression of the MHD EOS, we have found out that the free particle assumption, used in the original version of the MHD EOS has indeed to be abandoned. We show that the two-body scattering terms of the Coulomb interaction, as well as electron degeneracy play a significant role in the difference between the original version of the MHD and OPAL EOS. During our interdisciplinary investigation, aiming at seeking an improved MHD EOS under the guidance of the OPAL EOS, we
State-space modeling of the relationship between air quality and mortality.
Murray, C J; Nelson, C R
2000-07-01
A portion of a population is assumed to be at risk, with the mortality hazard varying with atmospheric conditions including total suspended particulates (TSP). This at-risk population is not observed and the hazard function is unknown; we wish to estimate these from mortality count and atmospheric variables. Consideration of population dynamics leads to a state-space representation, allowing the Kalman Filter (KF) to be used for estimation. A harvesting effect is thus implied; high mortality is followed by lower mortality until the population is replenished by new arrivals. The model is applied to daily data for Philadelphia, PA, 1973-1990. The estimated hazard function rises with the level of TSP and at extremes of temperature and also reflects a positive interaction between TSP and temperature. The estimated at-risk population averages about 480 and varies seasonally. We find that lags of TSP are statistically significant, but the presence of negative coefficients suggests their role may be partially statistical rather than biological. In the population dynamics framework, the natural metric for health damage from air pollution is its impact on life expectancy. The range of hazard rates over the sample period is 0.07 to 0.085, corresponding to life expectancies of 14.3 and 11.8 days, respectively.
Making Faces - State-Space Models Applied to Multi-Modal Signal Processing
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue
2005-01-01
The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...... application an information theoretic vector quantizer is also proposed. Based on interactions between particles, it is shown how a quantizing scheme based on an analytic cost function can be derived....
Institute of Scientific and Technical Information of China (English)
Ruan Minzhi; Luo Yi; Li Hua
2014-01-01
Rational planning of spares configuration project is an effective approach to improve equipment availability as well as reduce life cycle cost (LCC). With an analysis of various impacts on support system, the spares demand rate forecast model is constructed. According to systemic analysis method, spares support effectiveness evaluation indicators system is built, and then, initial spares configuration and optimization method is researched. To the issue of discarding and con-sumption for incomplete repairable items, its expected backorders function is approximated by Laplace demand distribution. Combining the (s-1, s) and (R, Q) inventory policy, the spares resup-ply model is established under the batch ordering policy based on inventory state, and the optimi-zation analysis flow for spares configuration is proposed. Through application on shipborne equipment spares configuration, the given scenarios are analyzed under two constraint targets:one is the support effectiveness, and the other is the spares cost. Analysis reveals that the result is consistent with practical regulation;therefore, the model’s correctness, method’s validity as well as optimization project’s rationality are proved to a certain extent.
Partial-Wave Analysis of Centrally Produced Two-Pseudoscalar Final States in pp Reactions at COMPASS
Austregesilo, Alexander
2014-01-01
COMPASS is a fixed-target experiment at the CERN SPS which focused on light-quark hadron spectroscopy during the data taking periods in 2008 and 2009. A world-leading data set was collected with a 190GeV/c hadron beam impinging on a liquid hydrogen target in order to study, inter alia, the central exclusive production of glueball candidates in the light-meson sector. Especially the double-Pomeron exchange mechanism is well suited for the production of mesons without valence quark content. We select centrally produced systems with two pseudo-scalar mesons in the final state from the COMPASS data set recorded with an incoming proton. The decay of this system is decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities of the amplitude analysis. Furthermore, we show that simple parametrisations are able to describe the mass dependence of the fit results with sensible Breit-Wigner parameters.
The state of space science in Africa | Mhlahlo | Africa Insight
African Journals Online (AJOL)
There has been an increase in the number of space science activities and facilities in Africa in the last 15 years. This increase, however, is not proportionate to the indigenous user community for these activities and facilities. In this paper, I discuss these activities and their benefits for the African region, and point out some of ...
Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger
2017-08-01
To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.
2003-01-01
The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru
Description of quantum states using in free space optic communication
Kučera, Petr
2017-11-01
In the article we concentrate our attention on the quantum description of states which are prepared by light sources. The main goal of the article is the determination of density matrix of background radiation source. It is shown that these matrix elements satisfy Geometric distribution in the number state representation.
THE STATE OF GREEN SPACES IN KUMASI CITY (GHANA: LESSONS FOR OTHER AFRICAN CITIES
Directory of Open Access Journals (Sweden)
Collins ADJEI MENSAH
2016-12-01
Full Text Available Integrating green spaces such as parks and gardens into the physical landscape of cities has been identified to enhance the health and wellbeing of urban dwellers. This paper assesses the state of green spaces in Kumasi city (Ghana, once known as the garden city of West Africa. Using a case study approach, a mixture of qualitative research techniques were employed whilst a set of eight themes were put together to guide the assessment. In all, green spaces were found to be in poor state. With the exception of conservation and heritage theme, the remaining seven themes that were used for the assessment all found the green spaces to be in poor state. It is therefore recommended that there should be an attitudinal change towards the maintenance of green spaces, the application of a collaborative governance approach, and priority giving to green spaces in all development agendas by city authorities.
The United States Space Force: Not If, But When
2016-06-01
the World View satellites and Falcon -9 rockets produced today by private companies are helping to forge a path to the heavens. In both of these... Rocket Force, Strategic Support Force. January 3. Accessed February 25, 2016. http://www.janes.com/article/56974/china-establishes-new- rocket -force...Betting Big on Space Warfare — Against China and Russia. February 12. Accessed February 12, 2016. https://news.vice.com/article/the-pentagon-is-betting
United States Military Space: Into the Twenty-First Century
2002-01-01
famous and articulate spokesmen for planetary science; Pale Blue Dot : A Vision of the Human Future in Space (New York: Random House, 1994) was one...and defining human characteristic. Carl Sagan is a primary spokesman for those who view spaceflight in scientific and ecological terms and see it as...Spacefaring Civilization (New York: Jeremy P. Tarcher/Putnam, 1999). Carl Sagan cofounded the Planetary Society in 1980 and was one of the most
Vacuum states for gravitons field in de Sitter space
Bamba, Kazuharu; Rahbardehghan, Surena; Pejhan, Hamed
2017-11-01
In this paper, considering the linearized Einstein equation with a two-parameter family of linear covariant gauges in de Sitter spacetime, we examine possible vacuum states for the gravitons field with respect to invariance under the de Sitter group S O0(1 ,4 ) . Our calculations explicitly reveal that there exists no natural de Sitter-invariant vacuum state (the Euclidean or Bunch-Davies state) for the gravitons field. Indeed, on the foundation of a rigorous group-theoretical reasoning, we prove that if one insists on full covariance as well as causality for the theory, one has to give up the positivity requirement of the inner product. However, one may still look for states with as much symmetry as possible, more precisely, a restrictive version of covariance by considering the gravitons field and the associated vacuum state which are, respectively, covariant and invariant with respect to some maximal subgroup of the full de Sitter group. In this regard, we treat the S O (4 ) case and find a family of S O (4 )-invariant states. The associated S O (4 )-covariant quantum field is given, as well.
International Nuclear Information System (INIS)
Wang Anmin
2007-01-01
We propose and prove protocols of combined and controlled remote implementations of partially unknown quantum operations belonging to the restricted sets [A. M. Wang, Phys. Rev. A 74, 032317 (2006)] using Greenberger-Horne-Zeilinger (GHZ) states. We present the protocols in detail in the cases of one qubit, with two senders and with one controller, respectively. Then we study the variations of protocols with many senders, or with many controllers, or with both many senders and controllers using a multipartite GHZ state. Furthermore, we extend these protocols to the cases of multiqubits. Because our protocols have to request that the senders work together and transfer the information in turn or receive the repertoire of extra supercontrollers, or/and the controller(s) open the quantum channel and distribute the passwords in different ways, they definitely have the strong security in remote quantum information processing and communications. Moreover, the combined protocol with many senders is helpful to arrive at the power of remote implementations of quantum operations to the utmost extent in theory, since the different senders may have different operational resources and different operational rights in practice, and the controlled protocol with many controllers is able to enhance security and increase applications of remote implementations of quantum operations in engineering, since it has some common features in a controlled process
State-of-the-art Space Telescope Digicon performance data
Ginaven, R. O.; Choisser, J. P.; Acton, L.; Wysoczanski, W.; Alting-Mees, H. R.; Smith, R. D., II; Beaver, E. A.; Eck, H. J.; Delamere, A.; Shannon, J. L.
1980-01-01
The Digicon has been chosen as the detector for the High Resolution Spectrograph and the Faint Object Spectrograph of the Space Telescope. Both tubes are 512 channel, parallel-output devices and feature CsTe photocathodes on MgF2 faceplates. Using a computer-assisted test facility, the tubes have been characterized with respect to diode array performance, photocathode response (1100-9000 A), and imaging capability. Data are presented on diode dark current and capacitance distributions, pulse height resolution, photocathode quantum efficiency, uniformity and blemishes, dark count rate, distortion, resolution, and crosstalk.
Quantization of Space-like States in Lorentz-Violating Theories
Colladay, Don
2018-01-01
Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.
Identified state-space prediction model for aero-optical wavefronts
Faghihi, Azin; Tesch, Jonathan; Gibson, Steve
2013-07-01
A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.
Abidin, Emilia Zainal; Hashim, Zailina; Semple, Sean
2013-01-01
This study was performed to gather data on second-hand smoke (SHS) concentrations in a range of public venues following the implementation of partial Smoke-Free Legislation in Malaysia in 2004. PM2.5 was measured as a marker of SHS levels in a total of 61 restaurants, entertainment centres, internet cafes and pubs in Kuala Lumpur, Malaysia. Under the current smoke-free laws smoking was prohibited in 42 of the 61 premises. Active smoking was observed in nearly one-third (n=12) of these. For premises where smoking was prohibited and no active smoking observed, the mean (standard deviation) indoor PM2.5 concentration was 33.4 (23.8) μg/m3 compared to 187.1 (135.1) μg/m3 in premises where smoking was observed The highest mean PM2.5 was observed in pubs [361.5 (199.3) μg/m3]. This study provides evidence of high levels of SHS across a range of hospitality venues, including about one-third of those where smoking is prohibited, despite 8 years of smoke-free legislation. Compliance with the legislation appeared to be particularly poor in entertainment centres and internet cafes. Workers and non-smoking patrons continue to be exposed to high concentrations of SHS within the hospitality industry in Malaysia and there is an urgent need for increased enforcement of existing legislation and consideration of more comprehensive laws to protect health.
Solid State Welding Development at Marshall Space Flight Center
Ding, Robert J.; Walker, Bryant
2012-01-01
What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.
Solid state neutron dosimeter for space applications. Final Report
International Nuclear Information System (INIS)
Entine, G.; Nagargar, V.; Sharif, D.
1990-08-01
Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter
Energy Technology Data Exchange (ETDEWEB)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shunailov, S. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Kolomiets, M. D. [Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); Mesyats, G. A. [P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation); Yalandin, M. I. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation)
2016-01-14
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.
Hyperstate matrix models : extending demographic state spaces to higher dimensions
Roth, G.; Caswell, H.
2016-01-01
1. Demographic models describe population dynamics in terms of the movement of individuals among states (e.g. size, age, developmental stage, parity, frailty, physiological condition). Matrix population models originally classified individuals by a single characteristic. This was enlarged to two
Partial Actions, Paradoxicality and Topological full Groups
DEFF Research Database (Denmark)
Scarparo, Eduardo
uniform Roe algebra is finite. In Article C, we analyze the C*-algebra generated by the Koopman representation of a topological full group, showing, in particular, that it is not AF andhas real rank zero. We also prove that if G is a finitely generated, elementary amenable group, and C*(G) has real rank......We study how paradoxicality properties affect the way groups partially acton topological spaces and C*-algebras. We also investigate the real rank zero and AF properties for certain classes of group C*-algebras. Specifically, in article A, we characterize supramenable groups in terms of existence...... of invariant probability measures for partial actions on compact Hausdorff spaces and existence of tracial states on partial crossed products. These characterizations show that, in general, one cannot decompose a partial crossed product of a C*-algebra by a semidirect product of groups as two iterated...
Bhrawy, A. H.; Zaky, M. A.
2015-01-01
In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.
Directory of Open Access Journals (Sweden)
V. Comnac
2009-12-01
Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.
Directory of Open Access Journals (Sweden)
Nataliya Chukhrova
2017-05-01
Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.
Robust Performance of Systems with Structured Uncertainties in State Space
Zhou, K.; Khargonekar, P.P.; Stoustrup, Jakob; Niemann, H.H.
1995-01-01
This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesisproblems under this strongly rob...
The Internet: a global free space with limited state control
Dommering, E.; van Ginkel, B.; de Goede, M.; Koops, B.J.; Plooij-van Gorsel, E.; Verrijn Stuart, H.; Smallenbroek, J.
2015-01-01
Chapter II explains that the internet, as represented by the internet community, has broken free of the traditional structure of the telecommunication sector under international law, namely a convention (recording global agreements about telecommunications) and an international organisation (the International Telecommunication Union) in which national states work together. This structure has been replaced by a multistakeholder model, partly under private law, consisting of ICANN (domain names...
Monthly version of HadISST sea surface temperature state-space components
National Oceanic and Atmospheric Administration, Department of Commerce — State-Space Decomposition of Monthly version of HadISST sea surface temperature component (1-degree). See Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C....
National Research Council Canada - National Science Library
Sullivan, Michael J
2005-01-01
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
A state space approach for the eigenvalue problem of marine risers
Alfosail, Feras; Nayfeh, Ali H.; Younis, Mohammad I.
2017-01-01
A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using
State-Space Realization of the Wave-Radiation Force within FAST: Preprint
Energy Technology Data Exchange (ETDEWEB)
Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.
2013-06-01
Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.
State-of-the art of dc components for secondary power distribution of Space Station Freedom
International Nuclear Information System (INIS)
Krauthamer, S.; Gangal, M.; Das, R.
1991-01-01
The National Aeronautics and Space Administration has selected 120-Vdc secondary power distribution for Space Station Freedom. Although this high voltage level is new for space applications, it is well within the bounds for components and subsystems being developed and in some cases being used in aerospace, defense, and terrestrial applications. In this paper state-of-the-art components and subsystems for Space Station Freedom in terms of performance, size, and topology are examined. One objective is to inform the users of Space Station Freedom about what is available in power supplies and power control devices. The other objective is to stimulate the interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, many of these components may be applied to Space Station Freedom needs
International Nuclear Information System (INIS)
Gessner, W.; Ernst, V.
1980-01-01
The indefinite metric space O/sub M/ of the covariant form of the quantized Maxwell field M is analyzed in some detail. S/sub M/ contains not only the pre-Hilbert space X 0 of states of transverse photons which occurs in the Gupta--Bleuler formalism of the free M, but a whole rosette of continuously many, isomorphic, complete, pre-Hilbert spaces L/sup q/ disjunct up to the zero element o of S/sub M/. The L/sup q/ are the maximal subspaces of S/sub M/ which allow the usual statistical interpretation. Each L/sup q/ corresponds uniquely to one square integrable, spatial distribution j/sup o/(x) of the total charge Q=0. If M is in any state from L/sup q/, the bare charge j 0 (x) appears to be inseparably dressed by the quantum equivalent of its proper, classical Coulomb field E(x). The vacuum occurs only in the state space L 0 of the free Maxwell field. Each L/sup q/ contains a secondary rosette of continuously many, up to o disjunct, isomorphic Hilbert spaces H/sub g//sup q/ related to different electromagnetic gauges. The space H/sub o//sup q/, which corresponds to the Coulomb gauge within the Lorentz gauge, plays a physically distinguished role in that only it leads to the usual concept of energy. If M is in any state from H/sub g//sup q/, the bare 4-current j 0 (x), j(x), where j(x) is any square integrable, transverse current density in space, is endowed with its proper 4-potential which depends on the chosen gauge, and with its proper, gauge independent, Coulomb--Oersted field E(x), B(x). However, these fields exist only in the sense of quantum mechanical expectation values equipped with the corresponding field fluctuations. So they are basically different from classical electromagnetic fields
Secondary structure classification of amino-acid sequences using state-space modeling
Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang
2001-01-01
The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...
State space in BRST-quantization and Kugo-Ojima quartets
International Nuclear Information System (INIS)
Rybkin, G.N.
1989-01-01
The structure of the state space in the BRST-quantization is considered and the connection between different approaches to the proof of the positive definiteness of the metric on the physical state space is established. The correspondence between different expressions for the BRST-charge, quadratic in fields, is obtained. The relation between different representations of the BRST-algebra is found. 22 refs
Limits on nonlocal correlations from the structure of the local state space
International Nuclear Information System (INIS)
Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas
2011-01-01
The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.
Robust Performance of Systems with Structured Uncertainties in State Space
DEFF Research Database (Denmark)
Zhou, Kemin; Khargonekar, Pramod P.; Stoustrup, Jakob
1995-01-01
This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems...... with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesis problems under this strongly robust % performance criterion can be transformed into linear matrix inequality problems, and can be solved...
Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method
DEFF Research Database (Denmark)
Lorentsen, Louise; Kristensen, Lars Michael
2001-01-01
The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space....
Parallel symbolic state-space exploration is difficult, but what is the alternative?
Directory of Open Access Journals (Sweden)
Gianfranco Ciardo
2009-12-01
Full Text Available State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1 parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2 symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal.
Energy Technology Data Exchange (ETDEWEB)
Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)
2015-07-15
In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.
Reeve, Charlie L.; Basalik, Debra
2010-01-01
This study examined the degree to which differences in average IQ across the 50 states was associated with differences in health statistics independent of differences in wealth, health care expenditures and racial composition. Results show that even after controlling for differences in state wealth and health care expenditures, average IQ had…
Jeffrey T. Olson; Allen L. Lundgren
1978-01-01
The 1968 Wisconsin Forest Survey showed large areas of aspen type that are not considered fully stocked. The economic feasibility of converting partially-stocked stands to full stocking is examined, and a rule presented for determining when a partially-stocked stand should be harvested to maximize its present value.
Structural robustness with suboptimal responses for linear state space model
Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan
1989-01-01
A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.
Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization
Ellis, John; Geiger, Klaus; Kowalski, Henryk
1996-01-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic $ep$ collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, an...
State space model extraction of thermohydraulic systems – Part I: A linear graph approach
International Nuclear Information System (INIS)
Uren, K.R.; Schoor, G. van
2013-01-01
Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state
Projective limits of state spaces III. Toy-models
Lanéry, Suzanne; Thiemann, Thomas
2018-01-01
In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013) [1,2], which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). A strategy to implement the dynamics in this formalism was presented in our first paper Lanéry and Thiemann (2017) (see also Lanéry, 2016, section 4), which we now test in two simple toy-models. The first one is a very basic linear model, meant as an illustration of the general procedure, and we will only discuss it at the classical level. In the second one, we reformulate the Schrödinger equation, treated as a classical field theory, within this projective framework, and proceed to its (non-relativistic) second quantization. We are then able to reproduce the physical content of the usual Fock quantization.
On coherent-state representations of quantum mechanics: Wave mechanics in phase space
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino
1997-01-01
In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when...
Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.
Liu, Jingfeng; Zhou, Ming; Yu, Zongfu
2016-09-15
A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.
State-space approach for evaluating the soil-plant-atmosphere system
International Nuclear Information System (INIS)
Timm, L.C.; Reichardt, K.; Cassaro, F.A.M.; Tominaga, T.T.; Bacchi, O.O.S.; Oliveira, J.C.M.; Dourado-Neto, D.
2004-01-01
Using as examples one sugarcane and one forage oat experiment, both carried out in the State of Sao Paulo, Brazil, this chapter presents recent state-space approaches used to evaluate the relation between soil and plant properties. A contrast is made between classical statistics methodologies that do not take into account the sampling position coordinates, and the more recently used methodologies which include the position coordinates, and allow a better interpretation of the field-sampled data. Classical concepts are first introduced, followed by spatially referenced methodologies like the autocorrelation function, the cross correlation function, and the state-space approach. Two variations of the state-space approach are given: one emphasizes the evolution of the state system while the other based on the bayesian formulation emphasizes the evolution of the estimated observations. It is concluded that these state-space analyses using dynamic regression models improve data analyses and are therefore recommended for analyzing time and space data series related to the performance of a given soil-plant-atmosphere system. (author)
Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the
Directory of Open Access Journals (Sweden)
H. Bassi
2017-04-01
Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.
Rigatos, Gerasimos G
2017-01-01
The book conclusively solves problems associated with the control and estimation of nonlinear and chaotic dynamics in ﬁnancial systems when these are described in the form of nonlinear ordinary diﬀerential equations. It then addresses problems associated with the control and estimation of ﬁnancial systems governed by partial diﬀerential equations (e.g. the Black–Scholes partial differential equation (PDE) and its variants). Lastly it an offers optimal solution to the problem of statistical validation of computational models and tools used to support ﬁnancial engineers in decision making. The application of state-space models in ﬁnancial engineering means that the heuristics and empirical methods currently in use in decision-making procedures for ﬁnance can be eliminated. It also allows methods of fault-free performance and optimality in the management of assets and capitals and methods assuring stability in the functioning of ﬁnancial systems to be established. Covering the following key are...
Evaluating abundance and trends in a Hawaiian avian community using state-space analysis
Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.
2016-01-01
Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.
DEFF Research Database (Denmark)
Mohd. Azam, Sazuan Nazrah
2017-01-01
In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....
Weaponizing the Final Frontier: The United States and the New Space Race
2017-06-09
prepare to defend these systems from attack.41 The next logical step is the development and execution of this philosophy to secure national interests...fourth argument impacting the weaponization of space references is the question of morality . In the article, Moral and Ethical Decisions Regarding Space...Warfare, Col (now General) John Hyten and Dr. Robert Uy describe the moral and ethical considerations to evaluate as the United States shapes
State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory
Directory of Open Access Journals (Sweden)
Stefano Bellucci
2014-01-01
Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.
Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir
2016-02-01
Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased
On classical state space realizability of bilinear inout-output differential equations
Kotta, U.; Mullari, T.; Kotta, P.; Zinober, A.S.I.
2006-01-01
This paper studies the realizability property of continuous-time bilinear i/o equations in the classical state space form. Constraints on the parameters of the bilinear i/o model are suggested that lead to realizable models. The paper proves that the 2nd order bilinear i/o differential equation, unlike the discrete-time case, is always realizable in the classical state space form. The complete list of 3rd and 4th order realizable i/o bilinear models is given and two subclasses of realizable i...
Quantum states and the Hadamard form. III. Constraints in cosmological space-times
International Nuclear Information System (INIS)
Najmi, A.; Ottewill, A.C.
1985-01-01
We examine the constraints on the construction of Fock spaces for scalar fields in spatially flat Robertson-Walker space-times imposed by requiring that the vacuum state of the theory have a two-point function possessing the Hadamard singularity structure required by standard renormalization theory. It is shown that any such vacuum state must be a second-order adiabatic vacuum. We discuss the global requirements on the two-point function for it to possess the Hadamard form at all times if it possesses it at one time
Mixture estimation with state-space components and Markov model of switching
Czech Academy of Sciences Publication Activity Database
Nagy, Ivan; Suzdaleva, Evgenia
2013-01-01
Roč. 37, č. 24 (2013), s. 9970-9984 ISSN 0307-904X R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : probabilistic dynamic mixtures, * probability density function * state-space models * recursive mixture estimation * Bayesian dynamic decision making under uncertainty * Kerridge inaccuracy Subject RIV: BC - Control Systems Theory Impact factor: 2.158, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/nagy-mixture estimation with state-space components and markov model of switching.pdf
Dukart, Juergen; Bertolino, Alessandro
2014-01-01
Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.
Energy Technology Data Exchange (ETDEWEB)
Hadizadeh, Dariusch R., E-mail: Dariusch.Hadizadeh@ukb.uni-bonn.de [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Gieseke, Juergen [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Philips Healthcare, Best (Netherlands); Beck, Gabriele; Geerts, Liesbeth [Philips Healthcare, Best (Netherlands); Kukuk, Guido M. [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Bostroem, Azize [Department of Neurosurgery, Sigmund-Freud-Strasse 25, 53127 Bonn, Deutschland (Germany); Urbach, Horst; Schild, Hans H.; Willinek, Winfried A. [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)
2011-11-15
Introduction: Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CEMRA) of the intracranial vasculature has proved its clinical value for the evaluation of cerebral vascular disease in cases where both flow hemodynamics and morphology are important. The purpose of this study was to evaluate a combination of view-sharing with keyhole imaging to increase spatial and temporal resolution of time-resolved CEMRA at 3.0 T. Methods: Alternating view-sharing was combined with randomly segmented k-space ordering, keyhole imaging, partial Fourier and parallel imaging (4DkvsMRA). 4DkvsMRA was evaluated using varying compression factors (80-100) resulting in spatial resolutions ranging from (1.1 x 1.1 x 1.4) to (0.96 x 0.96 x 0.95) mm{sup 3} and temporal resolutions ranging from 586 ms/dynamic scan - 288 ms/dynamic scan in three protocols in 10 healthy volunteers and seven patients (17 subjects). DSA correlation was available in four patients with cerebral arteriovenous malformations (cAVMs) and one patient with cerebral teleangiectasia. Results: 4DkvsMRA was successfully performed in all subjects and showed clear depiction of arterial and venous phases with diagnostic image quality. At the maximum view-sharing compression factor (=100), a 'flickering' artefact was observed. Conclusion: View-sharing in keyhole imaging allows for increased spatial and temporal resolution in time-resolved MRA.
International Nuclear Information System (INIS)
Hadizadeh, Dariusch R.; Gieseke, Juergen; Beck, Gabriele; Geerts, Liesbeth; Kukuk, Guido M.; Bostroem, Azize; Urbach, Horst; Schild, Hans H.; Willinek, Winfried A.
2011-01-01
Introduction: Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CEMRA) of the intracranial vasculature has proved its clinical value for the evaluation of cerebral vascular disease in cases where both flow hemodynamics and morphology are important. The purpose of this study was to evaluate a combination of view-sharing with keyhole imaging to increase spatial and temporal resolution of time-resolved CEMRA at 3.0 T. Methods: Alternating view-sharing was combined with randomly segmented k-space ordering, keyhole imaging, partial Fourier and parallel imaging (4DkvsMRA). 4DkvsMRA was evaluated using varying compression factors (80-100) resulting in spatial resolutions ranging from (1.1 x 1.1 x 1.4) to (0.96 x 0.96 x 0.95) mm 3 and temporal resolutions ranging from 586 ms/dynamic scan - 288 ms/dynamic scan in three protocols in 10 healthy volunteers and seven patients (17 subjects). DSA correlation was available in four patients with cerebral arteriovenous malformations (cAVMs) and one patient with cerebral teleangiectasia. Results: 4DkvsMRA was successfully performed in all subjects and showed clear depiction of arterial and venous phases with diagnostic image quality. At the maximum view-sharing compression factor (=100), a 'flickering' artefact was observed. Conclusion: View-sharing in keyhole imaging allows for increased spatial and temporal resolution in time-resolved MRA.
Coherent states for FLRW space-times in loop quantum gravity
International Nuclear Information System (INIS)
Magliaro, Elena; Perini, Claudio; Marciano, Antonino
2011-01-01
We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.
Directory of Open Access Journals (Sweden)
Dumitrescu Sorin
2016-08-01
Full Text Available The paper shows the importance of trending of partial discharge activity in assessing the insulation condition. It is presented the principle of the measurement method and the quantities that characterize partial discharges and also the criteria utilized for the assessement of the insulation condition of the hydrogenerators. Results of the measurements made on several hydrogenerators are presented, like the variation with time of the two main quantities that characterize the partial discharges, maximum magnitude, Qm and the normalized quantity, NQN over a period of about 10 years. Further, a classification of the insulation condition by 3 main and 2 intermediary categories and the definition of these categories are given. The criteria used for the assessment of the insulation condition are presented in the form of a table: quantitative criteria by the ± NQN and ± Qm values and qualitative criteria for the analysis of the 2D and 3D diagrams. At the end of each set of measurements, an analyze of the insulation condition annual evaluation is made, also a verdict is put, and of course, the recommendations made relating to the maintenance and the decisions that have been taken. The paper ends with several considerations on the method of on-line partial discharges and especially, on the conditions for valid trending activity in time.
Gamow state vectors as functionals over subspaces of the nuclear space
International Nuclear Information System (INIS)
Bohm, A.
1979-12-01
Exponentially decaying Gamow state vectors are obtained from S-matrix poles in the lower half of the second sheet, and are defined as functionals over a subspace of the nuclear space, PHI. Exponentially growing Gamow state vectors are obtained from S-matrix poles in the upper half of the second sheet, and are defined as functionals over another subspace of PHI. On functionals over these two subspaces the dynamical group of time development splits into two semigroups
Identification of a Class of Non-linear State Space Models using RPE Techniques
DEFF Research Database (Denmark)
Zhou, Wei-Wu; Blanke, Mogens
1989-01-01
The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Negative norm states in de Sitter space and QFT without renormalization procedure
International Nuclear Information System (INIS)
Takook, M.V.
2002-01-01
In recent papers, 1,2 it has been shown that the presence of negative norm states or negative frequency solutions are indispensable for a fully covariant quantization of the minimally coupled scalar field in de Sitter space. Their presence, while leaving unchanged the physical content of the theory, offers the advantage of eliminating any ultraviolet divergence in the vacuum energy 2 and infrared divergence in the two point function. 3 We attempt here to extend this method to the interacting quantum field in Minkowski space-time. As an illustration of the procedure, we consider the λϕ 4 theory in Minkowski space-time. The mathematical consequences of this method is the disappearance of the ultraviolet divergence to the one-loop approximation. This means, the effect of these auxiliary negative norm states is to allow an automatic renormalization of the theory in this approximation. (author)
Algorithms for a parallel implementation of Hidden Markov Models with a small state space
DEFF Research Database (Denmark)
Nielsen, Jesper; Sand, Andreas
2011-01-01
Two of the most important algorithms for Hidden Markov Models are the forward and the Viterbi algorithms. We show how formulating these using linear algebra naturally lends itself to parallelization. Although the obtained algorithms are slow for Hidden Markov Models with large state spaces...
Is long distance free space quantum communication with the OAM state of light feasible [Presentation
CSIR Research Space (South Africa)
Hamadou Ibrahim, A
2013-06-01
Full Text Available -space quantum communication with the OAM state of light feasible? A. HAMADOU IBRAHIM1,2, F.S. ROUX1, M. McLAREN1,3 , A. FORBES1,2,3 & T. KONRAD2 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of Kwazulu...
Evolved finite state controller for hybrid system in reduced search space
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun
2009-01-01
This paper presents an evolutionary methodology to automatically generate finite state automata (FSA) controllers to control hybrid systems. The proposed approach reduces the search space using an invariant analysis of the system. FSA controllers for a case study of two-tank system have been...
Wigner's dynamical transition state theory in phase space : classical and quantum
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs
A non-linear state space approach to model groundwater fluctuations
Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.
2006-01-01
A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual
System Identification of Civil Engineering Structures using State Space and ARMAV Models
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune
In this paper the relations between an ambient excited structural system, represented by an innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAV) model are considered. It is shown how to obtain a multivariate estimate of the ARMAV model from output measurements, usi...
Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Koopman, S.J.; Lucas, A.; Scharth, M.
2015-01-01
We propose a general likelihood evaluation method for nonlinear non-Gaussian state-space models using the simulation-based method of efficient importance sampling. We minimize the simulation effort by replacing some key steps of the likelihood estimation procedure by numerical integration. We refer
Determinants of road traffic safety : new evidence from Australia using state-space analysis.
Nghiem, S. Commandeur, J.J.F. & Connelly, L.B.
2016-01-01
This paper examines the determinants of road traffic crash fatalities in Queensland for the period 1958–2007 using a state-space time-series model. In particular, we investigate the effects of policies that aimed to reduce drink-driving on traffic fatalities, as well as indicators of the economic
State-space solutions to the h_inf/ltr design problem
DEFF Research Database (Denmark)
Niemann, Hans Henrik
1993-01-01
observer based approach is proposed, where the Z part of the controller is appended to a standard full-order observer. Second, allowing for general controllers, an JC state-space problem is formulated directly from the recovery errors. Both approaches lead to controller orders of at most 2n. In the minimum...
A direct derivation of the exact Fisther information matrix of Gaussian vector state space models
Klein, A.A.B.; Neudecker, H.
2000-01-01
This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be
Steady-State Calculation of the ATLAS Test Facility Using the SPACE Code
International Nuclear Information System (INIS)
Kim, Hyoung Tae; Choi, Ki Yong; Kim, Kyung Doo
2011-01-01
The Korean nuclear industry is developing a thermalhydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). Several research and industrial organizations including KAERI (Korea Atomic Energy Research Institute) are participating in the collaboration for the development of the SPACE code. One of the main tasks of KAERI is to carry out separate effect tests (SET) and integral effect tests (IET) for code verification and validation (V and V). The IET has been performed with ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation) based on the design features of the APR1400 (Advanced Power Reactor of 1400MWe). In the present work the SPACE code input-deck for ATLAS is developed and used for simulation of the steady-state conditions of ATLAS as a preliminary work for IET V and V of the SPACE code
Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method
DEFF Research Database (Denmark)
Lorentsen, Louise; Kristensen, Lars Michael
2001-01-01
The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space.......The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate...
Beginning partial differential equations
O'Neil, Peter V
2011-01-01
A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres
Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan
2012-01-01
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
International Nuclear Information System (INIS)
Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José
2016-01-01
Highlights: • State space representations for simulating wind power plant output are proposed. • The representation of wind speed in state space allows structural analysis. • The joint model incorporates the temporal and spatial dependence structure. • The models are easily integrable into a backward/forward sweep algorithm. • Results evidence the remarkable differences between joint and marginal models. - Abstract: This paper proposes the use of state space models to generate scenarios for the analysis of wind power plant (WPP) generation capabilities. The proposal is rooted on the advantages that state space models present for dealing with stochastic processes; mainly their structural definition and the use of Kalman filter to naturally tackle some involved operations. The specification proposed in this paper comprises a structured representation of individual Box–Jenkins models, with indications about further improvements that can be easily performed. These marginal models are combined to form a joint model in which the dependence structure is easily handled. Indications about the procedure to calibrate and check the model, as well as a validation of its statistical appropriateness, are provided. Application of the proposed state space models provides insight on the need to properly specify the structural dependence between wind speeds. In this paper the joint and marginal models are smoothly integrated into a backward–forward sweep algorithm to determine the performance indicators (voltages and powers) of a WPP through simulation. As a result, visibly heavy tails emerge in the generated power probability distribution through the use of the joint model—incorporating a detailed description of the dependence structure—in contrast with the normally distributed power yielded by the margin-based model.
State-space models for bio-loggers: A methodological road map
DEFF Research Database (Denmark)
Jonsen, I.D.; Basson, M.; Bestley, S.
2012-01-01
Ecologists have an unprecedented array of bio-logging technologies available to conduct in situ studies of horizontal and vertical movement patterns of marine animals. These tracking data provide key information about foraging, migratory, and other behaviours that can be linked with bio-physical...... development of state-space modelling approaches for animal movement data provides statistical rigor for inferring hidden behavioural states, relating these states to bio-physical data, and ultimately for predicting the potential impacts of climate change. Despite the widespread utility, and current popularity...
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Dahl, Jens Peder
1996-01-01
For some applications the overall phase of a quantum state is crucial. For the so-called displaced squeezed number state (DSN), which is a generalization of the well-known squeezed coherent state, we obtain the position space representation with the correct overall phase, from the dynamics...... in a harmonic potential. The importance of the overall phase is demonstrated in the context of characteristic or moment generating functions. For two special cases the characteristic function is shown to be computable from the inner product of two different DSNs....
The quantum state vector in phase space and Gabor's windowed Fourier transform
International Nuclear Information System (INIS)
Bracken, A J; Watson, P
2010-01-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.
Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression
Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.
2013-10-01
Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.
Energy Technology Data Exchange (ETDEWEB)
Chen, J.; Hubbard, S.; Williams, K.; Pride, S.; Li, L.; Steefel, C.; Slater, L.
2009-04-15
We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end-products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical datasets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment datasets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical datasets.
Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path
Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.
2003-01-01
We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.
You Pretty Little Flocker: Exploring the Aesthetic State Space of Creative Ecosystems.
Eldridge, Alice
2015-01-01
Artificial life models constitute a rich compendium of tools for the generative arts; complex, self-organizing, emergent behaviors have great interactive and generative potential. But how can we go beyond simply visualizing scientific simulations and manipulate these models for use in design and creative art contexts? You Pretty Little Flocker is a proof-of-concept study in expanding and exploring the aesthetic state space of a model for generative design. A modified version of Reynolds' flocking algorithm (1987) is described in which the space of possible images is extended and navigable in a way that at once provides user control and maintains generative autonomy.
Inequities in coverage of smokefree space policies within the United States
Directory of Open Access Journals (Sweden)
Christopher Lowrie
2017-05-01
Full Text Available Abstract Background Previous studies have found extensive geographic and demographic differences in tobacco use. These differences have been found to be reduced by effective public policies, including banning smoking in public spaces. Smokefree indoor and outdoor spaces reduce secondhand smoke exposure and denormalize smoking. Methods We evaluated regional and demographic differences in the proportion of the population covered by smokefree policies enacted in the United States prior to 2014, for both adults and children. Results Significant differences in coverage were found by ethnicity, region, income, and education (p < 0.001. Smokefree policy coverage was lower for jurisdictions with higher proportions of poor households, households with no high school diploma and the Southeast region. Increased ethnic heterogeneity was found to be a significant predictor of coverage in indoor “public spaces generally”, meaning that diversity is protective, with differential effect by region (p = 0.004 – which may relate to urbanicity. Children had a low level of protection in playgrounds and schools (~10% covered nationwide – these spaces were found to be covered at lower rates than indoor spaces. Conclusions Disparities in smokefree space policies have potential to exacerbate existing health inequities. A national increase in smokefree policies to protect children in playgrounds and schools is a crucial intervention to reduce such inequities.
Evolution from pure states into mixed states in de Sitter space
International Nuclear Information System (INIS)
Sakagami, Masa-aki.
1987-03-01
An attempt is made to clarify realization of a classical distribution from quantum fluctuations of the order parameter in the inflationary universe. We discuss destruction of quantum coherence associated with a state of the order parameter in models where it interacts with the environment. For that purpose, the time evolution of the reduced density matrix ρ tilde, which is obtained by coarse-graining of the environment, is investigated. It is shown that off-diagonal elements of ρ tilde decrease as the phase transition proceeds. (author)
Motion state analysis of space target based on optical cross section
Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao
2017-10-01
In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.
Parameter retrieval of chiral metamaterials based on the state-space approach.
Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali
2013-08-01
This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2016-04-01
Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.
Urban Green Space and the Pursuit of Health Equity in Parts of the United States
Directory of Open Access Journals (Sweden)
Viniece Jennings
2017-11-01
Full Text Available Research has demonstrated that inequitable access to green space can relate to health disparities or inequalities. This commentary aims to shift the dialogue to initiatives that have integrated green spaces in projects that may promote health equity in the United States. Specifically, we connect this topic to factors such as community revitalization, affordable housing, neighborhood walkability, food security, job creation, and youth engagement. We provide a synopsis of locations and initiatives in different phases of development along with characteristics to support effectiveness and strategies to overcome challenges. The projects cover locations such as Atlanta (GA, Los Angeles (CA, the District of Columbia (Washington D.C., South Bronx (NY, and Utica (NY. Such insight can develop our understanding of green space projects that support health equity and inform the dialogue on this topic in ways that advance research and advocacy.
International Nuclear Information System (INIS)
BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.
2005-01-01
The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests
Quantum corrections in thermal states of fermions on anti-de Sitter space-time
Ambruş, Victor E.; Winstanley, Elizabeth
2017-12-01
We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.
DEFF Research Database (Denmark)
Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don
2003-01-01
and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...
Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling......For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc-dc....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....
Robust control of uncertain dynamic systems a linear state space approach
Yedavalli, Rama K
2014-01-01
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...
A state space approach for the eigenvalue problem of marine risers
Alfosail, Feras
2017-10-05
A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using the modified Gram–Schmidt orthonormalization process as an intermediate step during the numerical integration process with the fourth-order Runge–Kutta scheme. The obtained results are validated against those obtained with other numerical methods, such as the finite-element, Galerkin, and power-series methods, and are found to be in good agreement. The state-space approach is shown to be computationally more efficient than the other methods. Also, we investigate the effect of a high applied tension, a high apparent weight, and higher-order modes on the accuracy of the numerical scheme. We demonstrate that, by applying the orthonormalization process, the stability and convergence of the approach are significantly improved.
State-space-based harmonic stability analysis for paralleled grid-connected inverters
DEFF Research Database (Denmark)
Wang, Yanbo; Wang, Xiongfei; Chen, Zhe
2016-01-01
This paper addresses a state-space-based harmonic stability analysis of paralleled grid-connected inverters system. A small signal model of individual inverter is developed, where LCL filter, the equivalent delay of control system, and current controller are modeled. Then, the overall small signal...... model of paralleled grid-connected inverters is built. Finally, the state space-based stability analysis approach is developed to explain the harmonic resonance phenomenon. The eigenvalue traces associated with time delay and coupled grid impedance are obtained, which accounts for how the unstable...... inverter produces the harmonic resonance and leads to the instability of whole paralleled system. The proposed approach reveals the contributions of the grid impedance as well as the coupled effect on other grid-connected inverters under different grid conditions. Simulation and experimental results...
Deep-inelastic final states in a space-time description of shower development and hadronization
International Nuclear Information System (INIS)
Ellis, J.
1996-06-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic ep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions. (orig.)
Use of digital control theory state space formalism for feedback at SLC
International Nuclear Information System (INIS)
Himel, T.; Hendrickson, L.; Rouse, F.; Shoaee, H.
1991-05-01
The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allows simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs
A state-space-based prognostics model for lithium-ion battery degradation
International Nuclear Information System (INIS)
Xu, Xin; Chen, Nan
2017-01-01
This paper proposes to analyze the degradation of lithium-ion batteries with the sequentially observed discharging profiles. A general state-space model is developed in which the observation model is used to approximate the discharging profile of each cycle, the corresponding parameter vector is treated as the hidden state, and the state-transition model is used to track the evolution of the parameter vector as the battery ages. The EM and EKF algorithms are adopted to estimate and update the model parameters and states jointly. Based on this model, we construct prediction on the end of discharge times for unobserved cycles and the remaining useful cycles before the battery failure. The effectiveness of the proposed model is demonstrated using a real lithium-ion battery degradation data set. - Highlights: • Unifying model for Li-Ion battery SOC and SOH estimation. • Extended Kalman filter based efficient inference algorithm. • Using voltage curves in discharging to have wide validity.
Volume of the space of qubit-qubit channels and state transformations under random quantum channels
Lovas, Attila; Andai, Attila
2017-01-01
The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...
State-Space Dynamic Model for Estimation of Radon Entry Rate, based on Kalman Filtering
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Jílek, K.
2007-01-01
Roč. 98, - (2007), s. 285-297 ISSN 0265-931X Grant - others:GA SÚJB JC_11/2006 Institutional research plan: CEZ:AV0Z10300504 Keywords : air ventilation rate * radon entry rate * state-space modeling * extended Kalman filter * maximum likelihood estimation * prediction error decomposition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.963, year: 2007
Estimation of Unobserved Inflation Expectations in India using State-Space Model
Chattopadhyay, Siddhartha; Sahu, Sohini; Jha, Saakshi
2016-01-01
Inflation expectations is an important marker for monetary policy makers. India being a new entrant to the group of countries that pursue inflation targeting as its monetary policy objective, estimating the inflation expectation is of paramount importance. This paper estimates the unobserved inflation expectations in India between 1993:Q1 to 2016:Q1 from the Fisher equation relation using the state space approach (Kalman Filter). We find that our results match well with the inflation forecast...
Quantum limits to information about states for finite dimensional Hilbert space
International Nuclear Information System (INIS)
Jones, K.R.W.
1990-01-01
A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs
The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer
Davis, Anthony B.
2012-01-01
Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.
State-space prediction of spring discharge in a karst catchment in southwest China
Li, Zhenwei; Xu, Xianli; Liu, Meixian; Li, Xuezhang; Zhang, Rongfei; Wang, Kelin; Xu, Chaohao
2017-06-01
Southwest China represents one of the largest continuous karst regions in the world. It is estimated that around 1.7 million people are heavily dependent on water derived from karst springs in southwest China. However, there is a limited amount of water supply in this region. Moreover, there is not enough information on temporal patterns of spring discharge in the area. In this context, it is essential to accurately predict spring discharge, as well as understand karst hydrological processes in a thorough manner, so that water shortages in this area could be predicted and managed efficiently. The objectives of this study were to determine the primary factors that govern spring discharge patterns and to develop a state-space model to predict spring discharge. Spring discharge, precipitation (PT), relative humidity (RD), water temperature (WD), and electrical conductivity (EC) were the variables analyzed in the present work, and they were monitored at two different locations (referred to as karst springs A and B, respectively, in this paper) in a karst catchment area in southwest China from May to November 2015. Results showed that a state-space model using any combinations of variables outperformed a classical linear regression, a back-propagation artificial neural network model, and a least square support vector machine in modeling spring discharge time series for karst spring A. The best state-space model was obtained by using PT and RD, which accounted for 99.9% of the total variation in spring discharge. This model was then applied to an independent data set obtained from karst spring B, and it provided accurate spring discharge estimates. Therefore, state-space modeling was a useful tool for predicting spring discharge in karst regions in southwest China, and this modeling procedure may help researchers to obtain accurate results in other karst regions.
Construction of rigged Hilbert spaces to describe resonances and virtual states
International Nuclear Information System (INIS)
Gadella, M.
1983-01-01
In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t > 0 and the other for t < 0, hence showing the irreversibility of the decaying process
Recursive prediction error methods for online estimation in nonlinear state-space models
Directory of Open Access Journals (Sweden)
Dag Ljungquist
1994-04-01
Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.
Construction of rigged Hilbert spaces to describe resonances and virtual states
International Nuclear Information System (INIS)
Gadella, M.
1984-01-01
In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t>0 and the other for t<0, hence showing the irreversibility of the decaying process. (orig.)
International Nuclear Information System (INIS)
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-01-01
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
Energy-momentum tensor and definition of particle states for Robertson-Walker space-time
International Nuclear Information System (INIS)
Brown, M.R.; Dutton, C.R.
1978-01-01
A new regularization scheme is developed for calculating expectation values of the energy-momentum tensor of a quantized scalar field in Robertson-Walker space-times. Using this regularized stress tensor we consider a definition for the vacuum state of the scalar field on any initial hypersurface. Asymptotic methods are developed to investigate the structure of both the divergent and finite terms of the stress tensor when evaluated in this state. The conformal anomaly is discussed in the context of this model. It does not naturally enter into the analysis and we argue that its inclusion is unnecessary
Effect of stress-state and spacing on voids in a shear-field
DEFF Research Database (Denmark)
Tvergaard, Viggo
2012-01-01
in the overall average stress state can be prescribed. This also allows for studies of the effect of different initial void spacing in the two in-plane coordinate directions. The stress states considered are essentially simple shear, with various levels of tensile stresses or compressive stresses superposed, i.......e. low positive stress triaxiality or even negative stress triaxiality. For high aspect ratio unit cells a clear localization band is found inside the cell, which actually represents several parallel bands, due to periodicity. In the materials represented by a low aspect ratio unit cell localization...
Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.
2016-01-01
State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.
State-space modelling for the ejector-based refrigeration system driven by low grade energy
International Nuclear Information System (INIS)
Xue, Binqiang; Cai, Wenjian; Wang, Xinli
2015-01-01
This paper presents a novel global state-space model to describe the ejector-based refrigeration system, which includes the dynamics of the two heat exchangers and the static properties of ejector, compressor and expansion valve. Different from the existing methods, the proposed method introduces some intermediate variables into the dynamic modelling in developing reduced order models of the heat exchangers (evaporator and condenser) based on the Number of Transfer Units (NTU) method. This global model with fewer dimensions is much simpler and can be more convenient for the real-time control system design, compared with other dynamic models. Finally, the proposed state-space model has been validated by dynamic response experiments on the ejector-based refrigeration cycle with refrigerant R134a.The experimental results indicate that the proposed model can predict well the dynamics of the ejector-based refrigeration system. - Highlights: • A low-order state-space model of ejector-based refrigeration system is presented. • Reduced-order models of heat exchangers are developed based on NTU method. • The variations of mass flow rates are introduced in multiple fluid phase regions. • Experimental results show the proposed model has a good performance
A state-space model for estimating detailed movements and home range from acoustic receiver data
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Weng, Kevin
2013-01-01
We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....
Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
Okumura, Hisashi
2008-09-28
Partial multicanonical algorithm is proposed for molecular dynamics and Monte Carlo simulations. The partial multicanonical simulation samples a wide range of a part of the potential-energy terms, which is necessary to sample the conformational space widely, whereas a wide range of total potential energy is sampled in the multicanonical algorithm. Thus, one can concentrate the effort to determine the weight factor only on the important energy terms in the partial multicanonical simulation. The partial multicanonical, multicanonical, and canonical molecular dynamics algorithms were applied to an alanine dipeptide in explicit water solvent. The canonical simulation sampled the states of P(II), C(5), alpha(R), and alpha(P). The multicanonical simulation covered the alpha(L) state as well as these states. The partial multicanonical simulation also sampled the C(7) (ax) state in addition to the states that were sampled by the multicanonical simulation. In the partial multicanonical simulation, furthermore, backbone dihedral angles phi and psi rotated more frequently than those in the multicanonical and canonical simulations. These results mean that the partial multicanonical algorithm has a higher sampling efficiency than the multicanonical and canonical algorithms.
2010-09-03
... coatings, side dressing, lawn application and starter ground cover) and applications in the fields of soil... announcement. ADDRESSES: United States Army Engineer Research and Development Center, Attn: CEERD-OT (Ms. Bea...
Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen
2015-12-01
In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the
Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems
Luo, Xiaodong
2014-12-01
This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.
Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems
Luo, Xiaodong; Hoteit, Ibrahim
2014-01-01
This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.
Di Piazza, A.
2018-03-01
Volkov states and Volkov propagator are the basic analytical tools to investigate QED processes occurring in the presence of an intense plane-wave electromagnetic field. In the present paper we provide alternative and relatively simple proofs of the completeness and of the orthonormality at a fixed time of the Volkov states. Concerning the completeness, we exploit some known properties of the Green's function of the Dirac operator in a plane wave, whereas the orthonormality of the Volkov states is proved, relying only on a geometric argument based on the Gauss theorem in four dimensions. In relation with the completeness of the Volkov states, we also study some analytical properties of the Green's function of the Dirac operator in a plane wave, which we explicitly prove to coincide with the Volkov propagator in configuration space. In particular, a closed-form expression in terms of modified Bessel functions and Hankel functions is derived by means of the operator technique in a plane wave and different asymptotic forms are determined. Finally, the transformation properties of the Volkov propagator under general gauge transformations and a general gauge-invariant expression of the so-called dressed mass in configuration space are presented.
Sullivan, Michael J.
2005-01-01
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.
Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions
Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo
2018-02-01
We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.
A novel Generalized State-Space Averaging (GSSA) model for advanced aircraft electric power systems
International Nuclear Information System (INIS)
Ebrahimi, Hadi; El-Kishky, Hassan
2015-01-01
Highlights: • A study model is developed for aircraft electric power systems. • A novel GSSA model is developed for the interconnected power grid. • The system’s dynamics are characterized under various conditions. • The averaged results are compared and verified with the actual model. • The obtained measured values are validated with available aircraft standards. - Abstract: The growing complexity of Advanced Aircraft Electric Power Systems (AAEPS) has made conventional state-space averaging models inadequate for systems analysis and characterization. This paper presents a novel Generalized State-Space Averaging (GSSA) model for the system analysis, control and characterization of AAEPS. The primary objective of this paper is to introduce a mathematically elegant and computationally simple model to copy the AAEPS behavior at the critical nodes of the electric grid. Also, to reduce some or all of the drawbacks (complexity, cost, simulation time…, etc) associated with sensor-based monitoring and computer aided design software simulations popularly used for AAEPS characterization. It is shown in this paper that the GSSA approach overcomes the limitations of the conventional state-space averaging method, which fails to predict the behavior of AC signals in a circuit analysis. Unlike conventional averaging method, the GSSA model presented in this paper includes both DC and AC components. This would capture the key dynamic and steady-state characteristics of the aircraft electric systems. The developed model is then examined for the aircraft system’s visualization and accuracy of computation under different loading scenarios. Through several case studies, the applicability and effectiveness of the GSSA method is verified by comparing to the actual real-time simulation model obtained from Powersim 9 (PSIM9) software environment. The simulations results represent voltage, current and load power at the major nodes of the AAEPS. It has been demonstrated that
State-space dimensionality in short-memory hidden-variable theories
International Nuclear Information System (INIS)
Montina, Alberto
2011-01-01
Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.
Deep-inelastic final states in a space-time description of shower development and hadronization
International Nuclear Information System (INIS)
Ellis, J.; Geiger, K.; Kowalski, H.
1996-01-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time, and momentum space to deep-inelastic ep collisions, with particular reference to experiments at DESY HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of color-singlet prehadronic clusters and their decays into hadrons. The time evolution of the spacelike initial-state shower and the timelike secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a nonperturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse, and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA, and AA collisions. copyright 1996 The American Physical Society
DEFF Research Database (Denmark)
Panagiotou, Gianni; Granouillet, P.; Olsson, Lisbeth
2006-01-01
The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum...
National Academy of Sciences - National Research Council, Washington, DC.
The results of a survey, conducted by the Committee on Rock Mechanics, to determine the status of training and research in rock mechanics in presented in this publication. In 1964 and 1965 information was gathered by questionnaires sent to industries, selected federal agencies, and universities in both the United States and Canada. Results are…
2011-06-17
... by the fluid in which the sample is incorporated determines the gap without need of a spacer. To... States Army Engineer Research and Development Center, Attn: CEERD-OT (Ms. Bea Shahin), 2902 Newmark Drive... each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the...
International Nuclear Information System (INIS)
Khalili-Damghani, Kaveh; Amiri, Maghsoud
2012-01-01
In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations. - Highlights: ► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.
Real-time validation of receiver state information in optical space-time block code systems.
Alamia, John; Kurzweg, Timothy
2014-06-15
Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.
Grey-box state-space identification of nonlinear mechanical vibrations
Noël, J. P.; Schoukens, J.
2018-05-01
The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...
United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration
Rhatigan, Jennifer L.
2009-01-01
In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well
State-space modeling of the radio frequency inductively-coupled plasma generator
International Nuclear Information System (INIS)
Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N
2010-01-01
Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.
Investigation of multidimensional control systems in the state space and wavelet medium
Fedosenkov, D. B.; Simikova, A. A.; Fedosenkov, B. A.
2018-05-01
The notions are introduced of “one-dimensional-point” and “multidimensional-point” automatic control systems. To demonstrate the joint use of approaches based on the concepts of state space and wavelet transforms, a method for optimal control in a state space medium represented in the form of time-frequency representations (maps), is considered. The computer-aided control system is formed on the basis of the similarity transformation method, which makes it possible to exclude the use of reduced state variable observers. 1D-material flow signals formed by primary transducers are converted by means of wavelet transformations into multidimensional concentrated-at-a point variables in the form of time-frequency distributions of Cohen’s class. The algorithm for synthesizing a stationary controller for feeding processes is given here. The conclusion is made that the formation of an optimal control law with time-frequency distributions available contributes to the improvement of transient processes quality in feeding subsystems and the mixing unit. Confirming the efficiency of the method presented is illustrated by an example of the current registration of material flows in the multi-feeding unit. The first section in your paper.
Generalized state spaces and nonlocality in fault-tolerant quantum-computing schemes
International Nuclear Information System (INIS)
Ratanje, N.; Virmani, S.
2011-01-01
We develop connections between generalized notions of entanglement and quantum computational devices where the measurements available are restricted, either because they are noisy and/or because by design they are only along Pauli directions. By considering restricted measurements one can (by considering the dual positive operators) construct single-particle-state spaces that are different to the usual quantum-state space. This leads to a modified notion of entanglement that can be very different to the quantum version (for example, Bell states can become separable). We use this approach to develop alternative methods of classical simulation that have strong connections to the study of nonlocal correlations: we construct noisy quantum computers that admit operations outside the Clifford set and can generate some forms of multiparty quantum entanglement, but are otherwise classical in that they can be efficiently simulated classically and cannot generate nonlocal statistics. Although the approach provides new regimes of noisy quantum evolution that can be efficiently simulated classically, it does not appear to lead to significant reductions of existing upper bounds to fault tolerance thresholds for common noise models.
A robust state-space kinetics-guided framework for dynamic PET image reconstruction
International Nuclear Information System (INIS)
Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P
2011-01-01
Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H ∞ filtering is adopted for robust estimation. H ∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.
State space orderings for Gauss-Seidel in Markov chains revisited
Energy Technology Data Exchange (ETDEWEB)
Dayar, T. [Bilkent Univ., Ankara (Turkey)
1996-12-31
Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.
Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.
2017-07-01
We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.
Birth spacing, human capital, and the motherhood penalty at midlife in the United States
Directory of Open Access Journals (Sweden)
Margaret Gough
2017-08-01
Full Text Available Background: Researchers have examined how first-birth timing is related to motherhood wage penalties, but research that examines birth spacing is lacking. Furthermore, little research has examined the persistence of penalties across the life course. Objective: The objective is to estimate the effects of birth spacing on midlife labor market outcomes and assess the extent to which these effects vary by education and age at first birth. Methods: I use data from the United States from the 1979-2010 waves of the National Longitudinal Survey of Youth 1979 and dynamic inverse probability of treatment weighting to estimate the effects of different birth intervals on mothers' midlife cumulative work hours, cumulative earnings, and hourly wages. I examine how education and age at first birth moderate these effects. Results: Women with birth intervals longer than two years but no longer than six years have the smallest penalties for cumulative outcomes; in models interacting the birth interval with age at first birth, postponement of a first birth to at least age 30 appears to be more important for cumulative outcomes than birth spacing. College-educated women benefit more from a longer birth interval than less educated women. Conclusions: Childbearing strategies that result in greater accumulation of human capital provide long-run labor market benefits to mothers, and results suggest that different birth-spacing patterns could play a small role in facilitating this accumulation, as theorized in past literature. Contribution: I contribute to the demographic literature by testing the theory that birth spacing matters for mothers' labor market outcomes and by assessing the effects at midlife rather than immediately following a birth.
Full-potential multiple scattering theory with space-filling cells for bound and continuum states.
Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R
2010-05-12
We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.
The consciousness state space (CSS – a unifying model for consciousness and self
Directory of Open Access Journals (Sweden)
Aviva eBerkovich-Ohana
2014-04-01
Full Text Available Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience.Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively. CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature.The CSS dynamics includes two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlaying several testable predictions raised by the CSS model.
The consciousness state space (CSS)-a unifying model for consciousness and self.
Berkovich-Ohana, Aviva; Glicksohn, Joseph
2014-01-01
Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model.
State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections
Institute of Scientific and Technical Information of China (English)
LI Jinyuan; PAN Xin; WANG Xiqin
2007-01-01
State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.
Equilibrium points of the tilted perfect fluid Bianchi VIh state space
Apostolopoulos, Pantelis S.
2005-05-01
We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h VIh.
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...
Independence of automorphism group, center, and state space of quantum logics
International Nuclear Information System (INIS)
Navara, M.
1992-01-01
We prove that quantum logics (-orthomodular posets) admit full independence of the attributes important within the foundations of quantum mechanics. Namely, we present the construction of quantum logics with given sublogics (=physical subsystems), automorphism groups, centers (=open-quotes classical partsclose quotes of the systems), and state spaces. Thus, all these open-quotes parametersclose quotes are independent. Our result is rooted in the line of investigation carried out by Greechie; Kallus and Trnkova; Kalmbach; and Navara and Ptak; and considerably enriches the known algebraic methods in orthomodular posets. 19 refs., 1 fig
Conditions for extinction events in chemical reaction networks with discrete state spaces.
Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert
2018-05-01
We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.
DEFF Research Database (Denmark)
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer Moesgaard
2016-01-01
problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter......State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible...
Precise Model Analysis for 3-phase High Power Converter using the Harmonic State Space Modeling
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede
2015-01-01
This paper presents about the generalized multi-frequency modeling and analysis methodology, which can be used in control loop design and stability analysis. In terms of the switching frequency of high power converter, there can be harmonics interruption if the voltage source converter has a low...... switching frequency ratio or multi-sampling frequency. The range of the control bandwidth can include the switching component. Thus, the systems become unstable. This paper applies the Harmonic State Space (HSS) Modeling method in order to find out the transfer function for each harmonics terms...
Addressing challenges in single species assessments via a simple state-space assessment model
DEFF Research Database (Denmark)
Nielsen, Anders
Single-species and age-structured fish stock assessments still remains the main tool for managing fish stocks. A simple state-space assessment model is presented as an alternative to (semi) deterministic procedures and the full parametric statistical catch at age models. It offers a solution...... to some of the key challenges of these models. Compared to the deterministic procedures it solves a list of problems originating from falsely assuming that age classified catches are known without errors and allows quantification of uncertainties of estimated quantities of interest. Compared to full...
A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space
International Nuclear Information System (INIS)
Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel
2006-01-01
Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations
Parental and Infant Gender Factors in Parent–Infant Interaction: State-Space Dynamic Analysis
M. Angeles Cerezo; Purificación Sierra-García; Gemma Pons-Salvador; Rosa M. Trenado
2017-01-01
This study aimed to investigate the influence of parental gender on their interaction with their infants, considering, as well, the role of the infant’s gender. The State Space Grid (SSG) method, a graphical tool based on the non-linear dynamic system (NDS) approach was used to analyze the interaction, in Free-Play setting, of 52 infants, aged 6 to 10 months, divided into two groups: half of the infants interacted with their fathers and half with their mothers. There were 50% boys in each gro...
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi
State-space representation of instationary two-dimensional airfoil aerodynamics
Energy Technology Data Exchange (ETDEWEB)
Meyer, Marcus; Matthies, Hermann G. [Institute of Scientific Computing, Technical University Braunschweig, Hans-Sommer-Str. 65, Braunschweig 38106 (Germany)
2004-03-01
In the aero-elastic analysis of wind turbines the need to include a model of the local, two-dimensional instationary aerodynamic loads, commonly referred to as dynamic stall model, has become obvious in the last years. In this contribution an alternative choice for such a model is described, based on the DLR model. Its derivation is governed by the flow physics, thus enabling interpolation between different profile geometries. An advantage of the proposed model is its state-space form, i.e. a system of differential equations, which facilitates the important tasks of aeroelastic stability and sensitivity investigations. The model is validated with numerical calculations.
Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach
DEFF Research Database (Denmark)
Boldrini, Lorenzo
In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based......) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature...
Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space
Czech Academy of Sciences Publication Activity Database
Rezunenko, Oleksandr; Zagalak, Petr
2013-01-01
Roč. 33, č. 2 (2013), s. 819-835 ISSN 1078-0947 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Partial differential equations with delay s * well-posedness * metric space Subject RIV: BC - Control Systems Theory Impact factor: 0.923, year: 2013 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0381969.pdf
Large-signal analysis of DC motor drive system using state-space averaging technique
International Nuclear Information System (INIS)
Bekir Yildiz, Ali
2008-01-01
The analysis of a separately excited DC motor driven by DC-DC converter is realized by using state-space averaging technique. Firstly, a general and unified large-signal averaged circuit model for DC-DC converters is given. The method converts power electronic systems, which are periodic time-variant because of their switching operation, to unified and time independent systems. Using the averaged circuit model enables us to combine the different topologies of converters. Thus, all analysis and design processes about DC motor can be easily realized by using the unified averaged model which is valid during whole period. Some large-signal variations such as speed and current relating to DC motor, steady-state analysis, large-signal and small-signal transfer functions are easily obtained by using the averaged circuit model
International Nuclear Information System (INIS)
1978-11-01
This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing
PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS
Directory of Open Access Journals (Sweden)
D. A. Arkhipov
2015-11-01
Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Directory of Open Access Journals (Sweden)
М.М. Karimova
2017-05-01
Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.
Directory of Open Access Journals (Sweden)
Yew Chee Kam
2017-12-01
Full Text Available Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i optimize the fermentation parameters via solid state fermentation (SSF; and (ii study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB with used cooking oil (UCO via SSF and its production was optimized using Design-Expert® 7.0.0. Fractions 30% (ScLipA and 70% (ScLipB which contained high lipase activity were obtained by stepwise (NH42SO4 precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that ScLipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas ScLipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, ScLipA was able to synthesize trilaurin and triacetin. Conversely, ScLipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that ScLipA and ScLipB are sn-2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.
Wigner's dynamical transition state theory in phase space: classical and quantum
International Nuclear Information System (INIS)
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
2008-01-01
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs the evolution from reactants to products in high dimensional systems. In the classical case this is the standard Poincaré–Birkhoff normal form. In the quantum case we develop a normal form based on the Weyl calculus and an explicit algorithm for computing this quantum normal form. The classical normal form allows us to discover and compute the phase space structures that govern classical reaction dynamics. From this knowledge we are able to provide a direct construction of an energy dependent dividing surface in phase space having the properties that trajectories do not locally 're-cross' the surface and the directional flux across the surface is minimal. Using this, we are able to give a formula for the directional flux through the dividing surface that goes beyond the harmonic approximation. We relate this construction to the flux–flux autocorrelation function which is a standard ingredient in the expression for the reaction rate in the chemistry community. We also give a classical mechanical interpretation of the activated complex as a normally hyperbolic invariant manifold (NHIM), and further describe the structure of the NHIM. The quantum normal form provides us with an efficient algorithm to compute quantum reaction rates and we relate this algorithm to the quantum version of the flux–flux autocorrelation function formalism. The significance of the classical phase space structures for the quantum mechanics of reactions is elucidated by studying the phase space distribution of scattering states. The quantum normal form also provides an efficient way of computing Gamov–Siegert resonances. We relate these resonances to the lifetimes of the quantum activated
Svensson, Andreas; Schön, Thomas B.; Lindsten, Fredrik
2018-05-01
Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for systematic representation of uncertainty using probability theory. However, probabilistic learning often leads to computationally challenging problems. Some problems of this type that were previously intractable can now be solved on standard personal computers thanks to recent advances in Monte Carlo methods. In particular, for learning of unknown parameters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo method) have proven very useful. A notoriously challenging problem, however, still occurs when the observations in the state-space model are highly informative, i.e. when there is very little or no measurement noise present, relative to the amount of process noise. The particle filter will then struggle in estimating one of the basic components for probabilistic learning, namely the likelihood p (data | parameters). To this end we suggest an algorithm which initially assumes that there is substantial amount of artificial measurement noise present. The variance of this noise is sequentially decreased in an adaptive fashion such that we, in the end, recover the original problem or possibly a very close approximation of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which gives our proposed method a clear resemblance to the SMC2 method. Another natural link is also made to the ideas underlying the approximate Bayesian computation (ABC). We illustrate it with numerical examples, and in particular show promising results for a challenging Wiener-Hammerstein benchmark problem.
Liu, Juan; Murkin, Andrew S
2012-07-03
As part of the non-mevalonate pathway for the biosynthesis of the isoprenoid precursor isopentenyl pyrophosphate, 1-deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR) catalyzes the conversion of DXP into 2-C-methyl-D-erythritol 4-phosphate (MEP) by consecutive isomerization and NADPH-dependent reduction reactions. Because this pathway is essential to many infectious organisms but is absent in humans, DXR is a target for drug discovery. In an attempt to characterize its kinetic mechanism and identify rate-limiting steps, we present the first complete transient kinetic investigation of DXR. Stopped-flow fluorescence measurements with Mycobacterium tuberculosis DXR (MtDXR) revealed that NADPH and MEP bind to the free enzyme and that the two bind together to generate a nonproductive ternary complex. Unlike the Escherichia coli orthologue, MtDXR exhibited a burst in the oxidation of NADPH during pre-steady-state reactions, indicating a partially rate-limiting step follows chemistry. By monitoring NADPH fluorescence during these experiments, the transient generation of MtDXR·NADPH·MEP was observed. Global kinetic analysis supports a model involving random substrate binding and ordered release of NADP(+) followed by MEP. The partially rate-limiting release of MEP occurs via two pathways--directly from the binary complex and indirectly via the MtDXR·NADPH·MEP complex--the partitioning being dependent on NADPH concentration. Previous mechanistic studies, including kinetic isotope effects and product inhibition, are discussed in light of this kinetic mechanism.
Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy
Bose, Riya
2016-05-26
Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.
Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy
Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.
2016-01-01
Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.
A State-Space Estimation of the Lee-Carter Mortality Model and Implications for Annuity Pricing
Man Chung Fung; Gareth W. Peters; Pavel V. Shevchenko
2015-01-01
In this article we investigate a state-space representation of the Lee-Carter model which is a benchmark stochastic mortality model for forecasting age-specific death rates. Existing relevant literature focuses mainly on mortality forecasting or pricing of longevity derivatives, while the full implications and methods of using the state-space representation of the Lee-Carter model in pricing retirement income products is yet to be examined. The main contribution of this article is twofold. Fi...
International Nuclear Information System (INIS)
Uren, Kenneth Richard; Schoor, George van
2013-01-01
This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies
Directory of Open Access Journals (Sweden)
Kosuke Yoshida
Full Text Available In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS regression to resting-state functional magnetic resonance imaging (rs-fMRI data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area.
da Silva, Ronivaldo Rodrigues; de Freitas Cabral, Tatiana Pereira; Rodrigues, André; Cabral, Hamilton
2013-01-01
Enzyme production varies in different fermentation systems. Enzyme expression in different fermentation systems yields important information for improving our understanding of enzymatic production induction. Comparative studies between solid-state fermentation (SSF) using agro-industrial waste wheat bran and submerged fermentation (SmF) using synthetic media were carried out to determinate the best parameters for peptidase production by the fungus Aspergillus fumigatus Fresen. Variables tested include: the concentration of carbon and protein nitrogen sources, the size of the inoculum, the pH of the media, temperature, and the length of the fermentation process. The best peptidase production during SSF was obtained after 96 hours using wheat bran at 30 °C with an inoculum of 1 × 10(6) spores and yielded 1500 active units (U/mL). The best peptidase production using SmF was obtained after periods of 72 and 96 hours of fermentation in media containing 0.5% and 0.25% of casein, respectively, at a pH of 6.0 and at 30 °C and yielded 40 U/mL. We also found examples of catabolite repression of peptidase production under SmF conditions. Biochemical characterization of the peptidases produced by both fermentative processes showed optimum activity at pH 8.0 and 50 °C, and also showed that their proteolytic activity is modulated by surfactants. The enzymatic inhibition profile using phenylmethylsulfonyl fluoride (PMSF) in SmF and SSF indicated that both fermentative processes produced a serine peptidase. Additionally, the inhibitory effect of the ethylene-diaminetetraacetic acid (EDTA) chelating agent on the peptidase produced by SmF indicated that this fermentative process also produced a metallopeptidase.
Partially Hidden Markov Models
DEFF Research Database (Denmark)
Forchhammer, Søren Otto; Rissanen, Jorma
1996-01-01
Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...
State-space based analysis and forecasting of macroscopic road safety trends in Greece.
Antoniou, Constantinos; Yannis, George
2013-11-01
In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Haas, Florian
2014-01-01
The dynamics of strong interaction in the regime of low energies, i.e. large distances, is still not understood. Given its simplicity the non-relativistic simple quark model (SQM) describes successfully the observed hadronic spectra. QCD-inspired models, however, predict hadronic states where the gluonic content contributes to the hadron quantum numbers. These so-called hybrids cannot be explained within the SQM. A solid experimental proof of the existence of such systems would be the observation of spin-exotic states, with spin-parity quantum numbers, not allowed in the SQM. The study of mesons, the simplest hadrons, permits to gain insight into the realm of strong interaction where hadrons are the relevant degrees of freedom. The most promising spin-exotic meson candidate is the π 1 (1600), which was claimed in several experiments and in particular in data taken during a previous hadron campaign of the COMPASS experiment. The hadron spectroscopy program of the COMPASS experiment at CERN focuses on the investigation of the light-meson spectrum in order to enlighten this rarely understood regime of strong interaction. During the 2008 data taking an unprecedented statistical precision has been reached in peripheral interactions of 190 GeV/c pions with a proton target leading to the π - π - π + final state. A spin-parity analysis in the kinematical region of the squared fourmomentum transfer 0.1≤t'0≤1.0 GeV 2 /c 2 was carried out based on a model of 88 partial waves up to a total angular momentum of 6. Besides the precise determination of properties of known resonances, a new axial-vector state, the a 1 (1420), was observed for the first time in a mass region where neither model nor lattice calculations predict mesons with this quantum numbers. Noteworthy is the very small intensity of this signal and that it only couples to the f 0 (980) isobar which is assumed to have a large strangeness content. The spin-exotic π 1 (1600) was observed albeit as a
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally
Kulkarni, Rishikesh; Rastogi, Pramod
2018-05-01
A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.
Complete synchronization of chaotic atmospheric models by connecting only a subset of state space
Directory of Open Access Journals (Sweden)
P. H. Hiemstra
2012-11-01
Full Text Available Connected chaotic systems can, under some circumstances, synchronize their states with an exchange of matter and energy between the systems. This is the case for toy models like the Lorenz 63, and more complex models. In this study we perform synchronization experiments with two connected quasi-geostrophic (QG models of the atmosphere with 1449 degrees of freedom. The purpose is to determine whether connecting only a subset of the model state space can still lead to complete synchronization (CS. In addition, we evaluated whether empirical orthogonal functions (EOF form efficient basis functions for synchronization in order to limit the number of connections. In this paper, we show that only the intermediate spectral wavenumbers (5–12 need to be connected in order to achieve CS. In addition, the minimum connection timescale needed for CS is 7.3 days. Both the connection subset and the connection timescale, or strength, are consistent with the time and spatial scales of the baroclinic instabilities in the model. This is in line with the fact that the baroclinic instabilities are the largest source of divergence between the two connected models. Using the Lorenz 63 model, we show that EOFs are nearly optimal basis functions for synchronization. The QG model results show that the minimum number of EOFs that need to be connected for CS is a factor of three smaller than when connecting the original state variables.
Space resolved x-ray diffraction measurements of the supercooled state of polymers
International Nuclear Information System (INIS)
Asano, Tsutomu; Yoshida, Shinya; Nishida, Akira; Mina, M.F.
2002-01-01
In order to measure an ordering process of polymers, the supercooled state near the crystallizing surface was observed by a space resolved X-ray diffraction method at Photon Factory (PF). Using temperature slope crystallization, low density polyethylene and even-number paraffins were examined during crystallization from the melt state. The results indicate that polyethylene shows a sharp b-axis orientation where the lamellar normal and crystalline c-axis are perpendicular to the temperature slope. The crystalline lamellae are well-developed with lamellar thickness of 180 A. The supercooled melt state just above the crystallizing plane shows some diffraction in the small angle region without any crystalline reflection in the wide angle. This fact suggests that a long-range ordering (lamellar structure) appears prior to the short-range one (crystalline structure). The in-situ crystallizing surface was observed by an optical microscope connected to a TV system. The crystallizing surface of even-number paraffins moves to upwards in the temperature slope. In-situ X-ray measurements at PF revealed that the crystalline c-axis and lamellar normal of the even number paraffins are parallel to the temperature slope. From these results, the crystalline ordering and the surface movement of even number paraffins are explained using special nucleation mechanism including a screw dislocation. (author)
Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining
2018-06-01
The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Pret, D.; Ferrage, E.; Tertre, E.; Robinet, J.C.; Faurel, M.; Hubert, F.; Pelletier, M.; Bihannic, I.
2013-01-01
For clay based materials, the investigation of both mineral skeleton and pore space organization as well as water distribution remains a key and challenging task. Such information is however required in order to fully understand and model their macroscopic hydro-mechanical or transport properties. In particular, as far as swelling clay minerals are involved, even pure clay materials are well known to represent spatially heterogeneous, anisotropic and deformable media from the nanometre to the centimetre scale. Probing their organization over such extremely large scale range requires the combination of different techniques providing quantitative results that can be used to feed global balances of water and pore distributions. Bulk physical measurements have been used for decades for analyzing clay systems at the dry state or for hydrated states under free macroscopic swelling conditions of samples. These approaches need to be associated to reveal the complexity of the pore space network. Indeed, all probes exhibit contrasted accessibilities and provide data on the basis of simple geometrical models either about pore or neck/throat size for a given size range. The main interest of imaging techniques is their ability to reveal the spatial heterogeneities of organization as well as the real morphology of pores. Still, they are poorly documented in literature as preparation procedures and extraction of quantitative data are not straightforward for clay materials. Clay organization is highly reactive and is, for example, a function of the resin/water removal technique used during embedding process, the content/composition of pore water or the pressure applied. Imaging techniques based on electron beam generally requires vacuum conditions around the sample and imply its impregnation by a resin. It is then generally difficult to assess the hydration state corresponding to the organization observed. Coupling different techniques is thus only possible when similar
Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)
Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.
2012-04-01
Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the
David N. Bengston; Jennifer O. Fletcher
2003-01-01
The public sector in the United States has responded to growing concern about the social and environmental costs of sprawling development patterns by creating a wide range of policy instruments designed to manage urban growth and protect open space. These techniques have been implemented at the local, regional, state and, to a limited extent, national levels. This...
Few-Body Techniques Using Coordinate Space for Bound and Continuum States
Garrido, E.
2018-05-01
These notes are a short summary of a set of lectures given within the frame of the "Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.
Phase space dynamics and control of the quantum particles associated to hypergraph states
Directory of Open Access Journals (Sweden)
Berec Vesna
2015-01-01
Full Text Available As today’s nanotechnology focus becomes primarily oriented toward production and manipulation of materials at the subatomic level, allowing the performance and complexity of interconnects where the device density accepts more than hundreds devices on a single chip, the manipulation of semiconductor nanostructures at the subatomic level sets its prime tasks on preserving and adequate transmission of information encoded in specified (quantum states. The presented study employs the quantum communication protocol based on the hypergraph network model where the numerical solutions of equations of motion of quantum particles are associated to vertices (assembled with device chip, which follow specific controllable paths in the phase space. We address these findings towards ultimate quest for prediction and selective control of quantum particle trajectories. In addition, presented protocols could represent valuable tool for reducing background noise and uncertainty in low-dimensional and operationally meaningful, scalable complex systems.
A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations
DEFF Research Database (Denmark)
Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge
2004-01-01
This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...
DEFF Research Database (Denmark)
Poulsen, T.G.; Christophersen, Mette; Moldrup, P.
2003-01-01
were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...
PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models
Directory of Open Access Journals (Sweden)
Christopher Strickland
2014-04-01
Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.
Uncertainty evaluation for IIR (infinite impulse response) filtering using a state-space approach
International Nuclear Information System (INIS)
Link, Alfred; Elster, Clemens
2009-01-01
A novel method is proposed for evaluating the uncertainty associated with the output of a discrete-time IIR filter when the input signal is corrupted by additive noise and the filter coefficients are uncertain. This task arises, for instance, when the noise-corrupted output of a measurement system is compensated by a digital filter which has been designed on the basis of the characteristics of the measurement system. We assume that the noise is either stationary or uncorrelated, and we presume knowledge about its autocovariance function or its time-dependent variances, respectively. Uncertainty evaluation is considered in line with the 'Guide to the Expression of Uncertainty in Measurement'. A state-space representation is used to derive a calculation scheme which allows the uncertainties to be evaluated in an easy way and also enables real-time applications. The proposed procedure is illustrated by an example
State space modeling of reactor core in a pressurized water reactor
Energy Technology Data Exchange (ETDEWEB)
Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)
2014-07-10
The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.
Directory of Open Access Journals (Sweden)
Emran Tohidi
2013-01-01
Full Text Available The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space analysis and optimal control problems (OCPs has been proposed in this paper. After imposing the Pontryagins maximum principle to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.
An optical flow-based state-space model of the vocal folds
DEFF Research Database (Denmark)
Granados, Alba; Brunskog, Jonas
2017-01-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...
Space-group approach to two-electron states in unconventional superconductors
International Nuclear Information System (INIS)
Yarzhemsky, V. G.
2008-01-01
The direct application of the space-group representation theory, makes possible to obtain limitations for the symmetry of SOP on lines and planes of symmetry in one-electron Brillouin zone. In the case of highly symmetric UPt 3 only theoretical nodal structure of IR E 2u is in agreement with all the experimental results. On the other hand, in the case of high-T c superconductors the two electron description of Cooper pairs in D 2h symmetry is not sufficient to describe experimental nodal structure. It was shown that in this case, the nodal structure is the result of underlying interactions between two-electron states and hidden symmetry D-4 h . (author)
Real time evolution at finite temperatures with operator space matrix product states
International Nuclear Information System (INIS)
Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine
2014-01-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)
Real time evolution at finite temperatures with operator space matrix product states
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Johnston, Matthew D
2017-12-01
Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
New integrable model of quantum field theory in the state space with indefinite metric
International Nuclear Information System (INIS)
Makhankov, V.G.; Pashaev, O.K.
1981-01-01
The system of coupled nonlinear Schroedinger eqs. (NLS) with noncompact internal symmetry group U(p, q) is considered. It describes in quasiclassical limit the system of two ''coloured'' Bose-gases with point-like interaction. The structure of tran-sition matrix is studied via the spectral transform (ST) (in-verse method). The Poisson brackets of the elements of this matrix and integrals of motion it generates are found. The theory under consideration may be put in the corresponding quantum field theory in the state vector space with indefinite metric. The so-called R matrix (Faddeev) and commutation relations for the transition matrix elements are also obtained, which implies the model to be investigated with the help of the quantum version of ST
Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
-model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...
Studies of HOMs in chains of SRF cavities using state-space concatenation scheme
Energy Technology Data Exchange (ETDEWEB)
Galek, Tomasz; Heller, Johann; Flisgen, Thomas; Brackebusch, Korinna; Rienen, Ursula van [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock (Germany)
2016-07-01
The design of modern superconducting radio frequency cavities for acceleration of charged particle bunches requires intensive numerical simulations, as they typically arise as modules of several multi-cell cavities. A wide variety of parameters vital to the proper operation of accelerating cavities must be optimized and studied. One of the most important issues concerning the SRF cavities is the influence of the higher order modes on the beam quality, in this contribution. For TESLA-like structures with 1.3 GHz accelerating mode, higher order modes are calculated up to 4 GHz, the external quality factor and the shunt/geometrical impedance spectra are analyzed. To compute properties of complete RF modules the state-space concatenation scheme is used. The aspects of the concatenation scheme and its application to the bERLinPro's chain of cavities is discussed.
Summary results of the first United States manned orbital space flight
Glenn, J. H. Jr
1963-01-01
This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.
Contaminant ingress into multizone buildings: An analytical state-space approach
Parker, Simon
2013-08-13
The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-space approach is adopted to represent the concentration dynamics within multizone buildings. Analysis based on this approach is used to demonstrate that the exposure in every interior location is limited to the exterior exposure in the absence of removal mechanisms. Estimates are also developed for the short term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models of residential buildings. Quantitative measures are provided of the standard deviation of concentration and exposure within a range of residential multizone buildings. Ratios of the maximum short term concentrations and exposures to single zone building estimates are also provided for the same buildings. © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
Parental and Infant Gender Factors in Parent-Infant Interaction: State-Space Dynamic Analysis.
Cerezo, M Angeles; Sierra-García, Purificación; Pons-Salvador, Gemma; Trenado, Rosa M
2017-01-01
This study aimed to investigate the influence of parental gender on their interaction with their infants, considering, as well, the role of the infant's gender. The State Space Grid (SSG) method, a graphical tool based on the non-linear dynamic system (NDS) approach was used to analyze the interaction, in Free-Play setting, of 52 infants, aged 6 to 10 months, divided into two groups: half of the infants interacted with their fathers and half with their mothers. There were 50% boys in each group. MANOVA results showed no differential parenting of boys and girls. Additionally, mothers and fathers showed no differences in the Diversity of behavioral dyadic states nor in Predictability. However, differences associated with parent's gender were found in that the paternal dyads were more "active" than the maternal dyads: they were faster in the rates per second of behavioral events and transitions or change of state. In contrast, maternal dyads were more repetitive because, once they visited a certain dyadic state, they tend to be involved in more events. Results showed a significant discriminant function on the parental groups, fathers and mothers. Specifically, the content analyses carried out for the three NDS variables, that previously showed differences between groups, showed particular dyadic behavioral states associated with the rate of Transitions and the Events per Visit ratio. Thus, the transitions involving 'in-out' of 'Child Social Approach neutral - Sensitive Approach neutral' state and the repetitions of events in the dyadic state 'Child Play-Sensitive Approach neutral' distinguished fathers from mothers. The classification of dyads (with fathers and mothers) based on this discriminant function identified 73.10% (19/26) of the father-infant dyads and 88.5% (23/26) of the mother-infant dyads. The study of father-infant interaction using the SSG approach offers interesting possibilities because it characterizes and quantifies the actual moment-to-moment flow
Parental and Infant Gender Factors in Parent–Infant Interaction: State-Space Dynamic Analysis
Directory of Open Access Journals (Sweden)
M. Angeles Cerezo
2017-10-01
Full Text Available This study aimed to investigate the influence of parental gender on their interaction with their infants, considering, as well, the role of the infant’s gender. The State Space Grid (SSG method, a graphical tool based on the non-linear dynamic system (NDS approach was used to analyze the interaction, in Free-Play setting, of 52 infants, aged 6 to 10 months, divided into two groups: half of the infants interacted with their fathers and half with their mothers. There were 50% boys in each group. MANOVA results showed no differential parenting of boys and girls. Additionally, mothers and fathers showed no differences in the Diversity of behavioral dyadic states nor in Predictability. However, differences associated with parent’s gender were found in that the paternal dyads were more “active” than the maternal dyads: they were faster in the rates per second of behavioral events and transitions or change of state. In contrast, maternal dyads were more repetitive because, once they visited a certain dyadic state, they tend to be involved in more events. Results showed a significant discriminant function on the parental groups, fathers and mothers. Specifically, the content analyses carried out for the three NDS variables, that previously showed differences between groups, showed particular dyadic behavioral states associated with the rate of Transitions and the Events per Visit ratio. Thus, the transitions involving ‘in–out’ of ‘Child Social Approach neutral – Sensitive Approach neutral’ state and the repetitions of events in the dyadic state ‘Child Play-Sensitive Approach neutral’ distinguished fathers from mothers. The classification of dyads (with fathers and mothers based on this discriminant function identified 73.10% (19/26 of the father–infant dyads and 88.5% (23/26 of the mother–infant dyads. The study of father-infant interaction using the SSG approach offers interesting possibilities because it characterizes and
Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.
Jalili, Mahdi; Lavoie, Suzie; Deppen, Patricia; Meuli, Reto; Do, Kim Q; Cuénod, Michel; Hasler, Martin; De Feo, Oscar; Knyazeva, Maria G
2007-10-24
The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity. The new method of
Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.
Directory of Open Access Journals (Sweden)
Mahdi Jalili
2007-10-01
Full Text Available The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals.To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity.The new
State-space forecasting of Schistosoma haematobium time-series in Niono, Mali.
Medina, Daniel C; Findley, Sally E; Doumbia, Seydou
2008-08-13
Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with infectious diseases. The incidence of Schistosoma sp.-which are neglected tropical diseases exposing and infecting more than 500 and 200 million individuals in 77 countries, respectively-is rising because of 1) numerous irrigation and hydro-electric projects, 2) steady shifts from nomadic to sedentary existence, and 3) ineffective control programs. Notwithstanding the colossal scope of these parasitic infections, less than 0.5% of Schistosoma sp. investigations have attempted to predict their spatial and or temporal distributions. Undoubtedly, public health programs in developing countries could benefit from parsimonious forecasting and early warning systems to enhance management of these parasitic diseases. In this longitudinal retrospective (01/1996-06/2004) investigation, the Schistosoma haematobium time-series for the district of Niono, Mali, was fitted with general-purpose exponential smoothing methods to generate contemporaneous on-line forecasts. These methods, which are encapsulated within a state-space framework, accommodate seasonal and inter-annual time-series fluctuations. Mean absolute percentage error values were circa 25% for 1- to 5-month horizon forecasts. The exponential smoothing state-space framework employed herein produced reasonably accurate forecasts for this time-series, which reflects the incidence of S. haematobium-induced terminal hematuria. It obliquely captured prior non-linear interactions between disease dynamics and exogenous covariates (e.g., climate, irrigation, and public health interventions), thus obviating the need for more complex forecasting methods in the district of Niono, Mali. Therefore, this framework could assist with managing and assessing S. haematobium transmission and intervention impact, respectively, in this district and potentially elsewhere in the Sahel.
Musso, Francesco; Konrad, Andreas; Vucurevic, Goran; Schäffner, Cornelius; Friedrich, Britta; Frech, Peter; Stoeter, Peter; Winterer, Georg
2006-02-15
Human cortical information processing is thought to be dominated by distributed activity in vector state space (Churchland, P.S., Sejnowski, T.J., 1992. The Computational Brain. MIT Press, Cambridge.). In principle, it should be possible to quantify distributed brain activation with independent component analysis (ICA) through vector-based decomposition, i.e., through a separation of a mixture of sources. Using event-related functional magnetic resonance imaging (fMRI) during a selective attention-requiring task (visual oddball), we explored how the number of independent components within activated cortical areas is related to reaction time. Prior to ICA, the activated cortical areas were determined on the basis of a General linear model (GLM) voxel-by-voxel analysis of the target stimuli (checkerboard reversal). Two activated cortical areas (temporoparietal cortex, medial prefrontal cortex) were further investigated as these cortical regions are known to be the sites of simultaneously active electromagnetic generators which give rise to the compound event-related potential P300 during oddball task conditions. We found that the number of independent components more strongly predicted reaction time than the overall level of "activation" (GLM BOLD-response) in the left temporoparietal area whereas in the medial prefrontal cortex both ICA and GLM predicted reaction time equally well. Comparable correlations were not seen when principle components were used instead of independent components. These results indicate that the number of independently activated components, i.e., a high level of cortical activation complexity in cortical vector state space, may index particularly efficient information processing during selective attention-requiring tasks. To our best knowledge, this is the first report describing a potential relationship between neuronal generators of cognitive processes, the associated electrophysiological evidence for the existence of distributed networks
32 CFR 751.13 - Partial payments.
2010-07-01
... voucher and all other information related to the partial payment shall be placed in the claim file. Action... 32 National Defense 5 2010-07-01 2010-07-01 false Partial payments. 751.13 Section 751.13 National... Claims Against the United States § 751.13 Partial payments. (a) Partial payments when hardship exists...
DEFF Research Database (Denmark)
Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
parameters on the harmonic instability of the power system. Moreover, the harmonic-frequency oscillation modes are identified, where participation analysis is presented to evaluate the contributions of different states to these modes and to further reveal how the system gives rise to harmonic instability......This paper presents a harmonic instability analysis method using state-space modeling and participation analysis in the inverter-fed ac power systems. A full-order state-space model for the droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of the digital...... control system, inner current and voltage control loops, and outer droop-based power control loop. Based on the DG inverter model, an overall state-space model of a two-inverter-fed system is established. The eigenvalue-based stability analysis is then presented to assess the influence of controller...
International Nuclear Information System (INIS)
Mueller, D.R.; Ederer, D.L.; van Ek, J.; OBrien, W.L.; Dong, Q.Y.; Jia, J.; Callcott, T.A.
1996-01-01
Photon-excited yttrium M IV,V , and electron-excited oxygen K x-ray emission spectra for yttrium oxide are presented. It is shown that, as in the case of yttrium metal, the decay of M IV vacancies does not contribute substantially to the oxide M IV,V emission. The valence emission is interpreted in a one-electron picture as a measure of the local p-type partial density of states. The yttrium and oxygen valence emission bands are very similar and strongly resemble published photoelectron spectra. Using local-density approximation electronic structure calculations, we show that the broadening of the Y-4p signal in yttrium oxide relative to Y metal are due to two inequivalent yttrium sites in Y 2 O 3 . Features present in the oxide, but not the metal spectrum, are the result of overlap (hybridization) between the Y-4p wave function and states in the oxygen 2s subband. copyright 1996 The American Physical Society
Fermionic bound states in Minkowski space. Light-cone singularities and structure
Energy Technology Data Exchange (ETDEWEB)
Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)
2017-11-15
The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)
Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models
Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim
2015-01-01
This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.
State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.
Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J
2016-01-15
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.
More on the rainbow chain: entanglement, space-time geometry and thermal states
International Nuclear Information System (INIS)
Rodríguez-Laguna, Javier; Dubail, Jérôme; Ramírez, Giovanni; Calabrese, Pasquale; Sierra, Germán
2017-01-01
The rainbow chain is an inhomogenous exactly solvable local spin model that, in its ground state, displays a half-chain entanglement entropy growing linearly with the system size. Although many exact results about the rainbow chain are known, the structure of the underlying quantum field theory has not yet been unraveled. Here we show that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = − h "2 ( h is the amplitude of the inhomogeneity). This identification allows us to use recently developed techniques to study inhomogeneous conformal systems and to analytically characterise the entanglement entropies of more general bipartitions. These results are carefully tested against exact numerical calculations. Finally, we study the entanglement entropies of the rainbow chain in thermal states, and find that there is a non-trivial interplay between the rainbow effective temperature T_R and the physical temperature T . (paper)
Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models
Ait-El-Fquih, Boujemaa
2015-08-13
This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.
A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.
Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J Douglas
2016-01-01
In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.
Visceral leishmaniasis in the state of Sao Paulo, Brazil: spatial and space-time analysis.
Cardim, Marisa Furtado Mozini; Guirado, Marluci Monteiro; Dibo, Margareth Regina; Chiaravalloti, Francisco
2016-08-11
To perform both space and space-time evaluations of visceral leishmaniasis in humans in the state of Sao Paulo, Brazil. The population considered in the study comprised autochthonous cases of visceral leishmaniasis and deaths resulting from it in Sao Paulo, between 1999 and 2013. The analysis considered the western region of the state as its studied area. Thematic maps were created to show visceral leishmaniasis dissemination in humans in the municipality. Spatial analysis tools Kernel and Kernel ratio were used to respectively obtain the distribution of cases and deaths and the distribution of incidence and mortality. Scan statistics were used in order to identify spatial and space-time clusters of cases and deaths. The visceral leishmaniasis cases in humans, during the studied period, were observed to occur in the western portion of Sao Paulo, and their territorial extension mainly followed the eastbound course of the Marechal Rondon highway. The incidences were characterized as two sequences of concentric ellipses of decreasing intensities. The first and more intense one was found to have its epicenter in the municipality of Castilho (where the Marechal Rondon highway crosses the border of the state of Mato Grosso do Sul) and the second one in Bauru. Mortality was found to have a similar behavior to incidence. The spatial and space-time clusters of cases were observed to coincide with the two areas of highest incidence. Both the space-time clusters identified, even without coinciding in time, were started three years after the human cases were detected and had the same duration, that is, six years. The expansion of visceral leishmaniasis in Sao Paulo has been taking place in an eastbound direction, focusing on the role of highways, especially Marechal Rondon, in this process. The space-time analysis detected the disease occurred in cycles, in different spaces and time periods. These meetings, if considered, may contribute to the adoption of actions that aim to
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Partially massless fields during inflation
Baumann, Daniel; Goon, Garrett; Lee, Hayden; Pimentel, Guilherme L.
2018-04-01
The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.
Annihilating time and space: The electrification of the United States Army, 1875--1920
Brown, Shannon Allen
2000-10-01
The United States Army embraced electrical technology in the 1870s as part of a wider initiative to meet the challenge of the coastal defense mission. As commercial power storage, generation, and transmission technology improved and the army came to recognize the value of the energy source as a means and method of improving command and control, localized electrical networks were integrated into the active service of the military. New vulnerabilities emerged as the army became ever more reliant upon electric power, however, and electrification---the institutional adoption and adaptation of electrical technologies---emerged as a very expensive and contentious process guided by technical, political, and economic pressures, and influenced by conflicting personalities within the service. This study considers the institutional evolution of the U.S. Army before and during World War I with respect to the adoption and application of electrical technology. The changing relationships between the military and electrical manufacturing and utilities industries during the period 1875--1920 are also explored. Using a combination of military archival sources and published primary materials, this study traces the effects of electrification on the army. In the end, this study proves that electrification was, at first, a symptom of, and later, a partial solution to the army's struggle to modernize and centralize during the period under consideration. Electrification produced a set of conditions that encouraged a new maturity within the ranks of the army, in technical, doctrinal, and administrative terms. This growth eventually led to the development of new capabilities, new forms of military organization, new missions, and new approaches to warfare.
Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.
Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are
Eloranta, Terho O.; Raina, Aarne M.
1977-01-01
S-Adenosylmethionine metabolism and its relation to the synthesis and accumulation of polyamines was studied in rat liver under various nutritional conditions, in adrenalectomized or partially hepatectomized animals and after treatment with cortisol, thioacetamide or methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidine)dinitrilo]diguanidine}. Starvation for 2 days only slightly affected S-adenosylmethionine metabolism. The ratio of spermidine/spermine decreased markedly, but the concentration of total polyamines did not change significantly. The activity of S-adenosylmethionine decarboxylase initially decreased and then increased during prolonged starvation. This increase was dependent on intact adrenals. Re-feeding of starved animals caused a rapid but transient stimulation of polyamine synthesis and also increased the concentrations of S-adenosylmethionine and S-adenosylhomocysteine. Similarly, cortisol treatment enhanced the synthesis of polyamines, S-adenosylmethionine and S-adenosylhomocysteine. Feeding with a methionine-deficient diet for 7–14 days profoundly increased the concentration of spermidine, whereas the concentrations of total polyamines and of S-adenosylmethionine showed no significant changes. The results show that nutritional state and adrenal function play a significant role in the regulation of hepatic metabolism of S-adenosylmethionine and polyamines. They further indicate that under a variety of physiological and experimental conditions the concentrations of S-adenosylmethionine and of total polyamines remain fairly constant and that changes in polyamine metabolism are not primarily connected with changes in the accumulation of S-adenosylmethionine or S-adenosylhomocysteine. PMID:597268
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
International Nuclear Information System (INIS)
Flisgen, Thomas
2015-01-01
The modeling of large chains of superconducting cavities with couplers is a challenging task in computational electrical engineering. The direct numerical treatment of these structures can easily lead to problems with more than ten million degrees of freedom. Problems of this complexity are typically solved with the help of parallel programs running on supercomputing infrastructures. However, these infrastructures are expensive to purchase, to operate, and to maintain. The aim of this thesis is to introduce and to validate an approach which allows for modeling large structures on a standard workstation. The novel technique is called State-Space Concatenations and is based on the decomposition of the complete structure into individual segments. The radio-frequency properties of the generated segments are described by a set of state-space equations which either emerge from analytical considerations or from numerical discretization schemes. The model order of these equations is reduced using dedicated model order reduction techniques. In a final step, the reduced-order state-space models of the segments are concatenated in accordance with the topology of the complete structure. The concatenation is based on algebraic continuity constraints of electric and magnetic fields on the decomposition planes and results in a compact state-space system of the complete radio-frequency structure. Compared to the original problem, the number of degrees of freedom is drastically reduced, i.e. a problem with more than ten million degrees of freedom can be reduced on a standard workstation to a problem with less than one thousand degrees of freedom. The final state-space system allows for determining frequency-domain transfer functions, field distributions, resonances, and quality factors of the complete structure in a convenient manner. This thesis presents the theory of the state-space concatenation approach and discusses several validation and application examples. The examples
Energy Technology Data Exchange (ETDEWEB)
Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)
2009-05-01
The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)
Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.
The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.
K.W. Seidel; S. Conrade. Head
1983-01-01
A survey in the Blue Mountains of north-eastern Oregon and southeastern Washington showed that, on the average, partial cuts in the grand fir/big huckleberry community were well stocked with a mixture of advance, natural post-harvest, and planted reproduction of a number of species. Partial cuts in the mixed conifer/pinegrass community had considerably fewer seedlings...
Tomicic, Alemka; Martínez, Claudio; Pérez, J Carola; Hollenstein, Tom; Angulo, Salvador; Gerstmann, Adam; Barroux, Isabelle; Krause, Mariane
2015-01-01
This study seeks to provide evidence of the dynamics associated with the configurations of discourse-voice regulatory strategies in patient-therapist interactions in relevant episodes within psychotherapeutic sessions. Its central assumption is that discourses manifest themselves differently in terms of their prosodic characteristics according to their regulatory functions in a system of interactions. The association between discourse and vocal quality in patients and therapists was analyzed in a sample of 153 relevant episodes taken from 164 sessions of five psychotherapies using the state space grid (SSG) method, a graphical tool based on the dynamic systems theory (DST). The results showed eight recurrent and stable discourse-voice regulatory strategies of the patients and three of the therapists. Also, four specific groups of these discourse-voice strategies were identified. The latter were interpreted as regulatory configurations, that is to say, as emergent self-organized groups of discourse-voice regulatory strategies constituting specific interactional systems. Both regulatory strategies and their configurations differed between two types of relevant episodes: Change Episodes and Rupture Episodes. As a whole, these results support the assumption that speaking and listening, as dimensions of the interaction that takes place during therapeutic conversation, occur at different levels. The study not only shows that these dimensions are dependent on each other, but also that they function as a complex and dynamic whole in therapeutic dialog, generating relational offers which allow the patient and the therapist to regulate each other and shape the psychotherapeutic process that characterizes each type of relevant episode.
International Nuclear Information System (INIS)
Sahmani, S.; Ansari, R.
2011-01-01
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis
Energy Technology Data Exchange (ETDEWEB)
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
Impacts of the 2011 Tohoku earthquake on electricity demand in Japan. State space approach
International Nuclear Information System (INIS)
Honjo, Keita; Ashina, Shuichi
2017-01-01
Some papers report that consumers' electricity saving behavior (Setsuden) after the 2011 Tohoku Earthquake resulted in the reduction of the domestic electricity demand. However, time variation of the electricity saving effect (ESE) has not yet been sufficiently investigated. In this study, we develop a state space model of monthly electricity demand using long-term data, and estimate time variation of the ESE. We also estimate time variation of CO_2 emissions caused by Setsuden. Our result clearly indicates that Setsuden after the earthquake was not temporary but became established as a habit. Between March 2011 and October 2015, the ESE on power demand ranged from 2.9% to 6.9%, and the ESE on light demand ranged from 2.6% to 9.0%. The ESE on the total electricity demand was 3.2%-7.5%. Setsuden also contributed to the reduction of CO_2 emissions, but it could not offset the emissions increase caused by the shutdown of nuclear power plants. (author)
Bivariate autoregressive state-space modeling of psychophysiological time series data.
Smith, Daniel M; Abtahi, Mohammadreza; Amiri, Amir Mohammad; Mankodiya, Kunal
2016-08-01
Heart rate (HR) and electrodermal activity (EDA) are often used as physiological measures of psychological arousal in various neuropsychology experiments. In this exploratory study, we analyze HR and EDA data collected from four participants, each with a history of suicidal tendencies, during a cognitive task known as the Paced Auditory Serial Addition Test (PASAT). A central aim of this investigation is to guide future research by assessing heterogeneity in the population of individuals with suicidal tendencies. Using a state-space modeling approach to time series analysis, we evaluate the effect of an exogenous input, i.e., the stimulus presentation rate which was increased systematically during the experimental task. Participants differed in several parameters characterizing the way in which psychological arousal was experienced during the task. Increasing the stimulus presentation rate was associated with an increase in EDA in participants 2 and 4. The effect on HR was positive for participant 2 and negative for participants 3 and 4. We discuss future directions in light of the heterogeneity in the population indicated by these findings.
Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach
DEFF Research Database (Denmark)
Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo
Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrela......Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based...... on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology...... and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter...
Application of space technologies for the purpose of education at the Belarusian state university
Liashkevich, Siarhey
Application of space technologies for the purpose of education at the Aerospace Educational Center of Belarusian state university is discussed. The aim of the work is to prepare launch of small satellite. Students are expected to participate in the design of control station, systems of communication, earth observation, navigation, and positioning. Benefit of such project-based learning from economical perspective is discussed. At present our training system at the base of EyasSat classroom satellite is used for management of satellite orientation and stabilization system. Principles of video processing, communication technologies and informational security for small spacecraft are developed at the base of Wi9M-2443 developer kit. More recent equipment allows obtaining the skills in digital signal processing at the base of FPGA. Development of ground station includes setup of 2.6 meter diameter dish for L-band, and spiral rotational antennas for UHF and VHF bands. Receiver equipment from National Instruments is used for digital signal processing and signal management.
Lee-Carter state space modeling: Application to the Malaysia mortality data
Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.
2014-06-01
This article presents an approach that formalizes the Lee-Carter (LC) model as a state space model. Maximum likelihood through Expectation-Maximum (EM) algorithm was used to estimate the model. The methodology is applied to Malaysia's total population mortality data. Malaysia's mortality data was modeled based on age specific death rates (ASDR) data from 1971-2009. The fitted ASDR are compared to the actual observed values. However, results from the comparison of the fitted and actual values between LC-SS model and the original LC model shows that the fitted values from the LC-SS model and original LC model are quite close. In addition, there is not much difference between the value of root mean squared error (RMSE) and Akaike information criteria (AIC) from both models. The LC-SS model estimated for this study can be extended for forecasting ASDR in Malaysia. Then, accuracy of the LC-SS compared to the original LC can be further examined by verifying the forecasting power using out-of-sample comparison.
Determinants of road traffic safety: New evidence from Australia using state-space analysis.
Nghiem, Son; Commandeur, Jacques J F; Connelly, Luke B
2016-09-01
This paper examines the determinants of road traffic crash fatalities in Queensland for the period 1958-2007 using a state-space time-series model. In particular, we investigate the effects of policies that aimed to reduce drink-driving on traffic fatalities, as well as indicators of the economic environment that may affect exposure to traffic, and hence affect the number of accidents and fatalities. The results show that the introduction of a random breath testing program in 1988 was associated with a 11.3% reduction in traffic fatalities; its expansion in 1998 was associated with a 26.2% reduction in traffic fatalities; and the effect of the "Safe4life" program, which was introduced in 2004, was a 14.3% reduction in traffic fatalities. Reductions in economic activity are also associated with reductions in road fatalities: we estimate that a one percent increase in the unemployment rate is associated with a 0.2% reduction in traffic fatalities. Copyright © 2016 Elsevier Ltd. All rights reserved.
SiGN-SSM: open source parallel software for estimating gene networks with state space models.
Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru
2011-04-15
SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.
State-space dynamic model for estimation of radon entry rate, based on Kalman filtering
International Nuclear Information System (INIS)
Brabec, Marek; Jilek, Karel
2007-01-01
To predict the radon concentration in a house environment and to understand the role of all factors affecting its behavior, it is necessary to recognize time variation in both air exchange rate and radon entry rate into a house. This paper describes a new approach to the separation of their effects, which effectively allows continuous estimation of both radon entry rate and air exchange rate from simultaneous tracer gas (carbon monoxide) and radon gas measurement data. It is based on a state-space statistical model which permits quick and efficient calculations. Underlying computations are based on (extended) Kalman filtering, whose practical software implementation is easy. Key property is the model's flexibility, so that it can be easily adjusted to handle various artificial regimens of both radon gas and CO gas level manipulation. After introducing the statistical model formally, its performance will be demonstrated on real data from measurements conducted in our experimental, naturally ventilated and unoccupied room. To verify our method, radon entry rate calculated via proposed statistical model was compared with its known reference value. The results from several days of measurement indicated fairly good agreement (up to 5% between reference value radon entry rate and its value calculated continuously via proposed method, in average). Measured radon concentration moved around the level approximately 600 Bq m -3 , whereas the range of air exchange rate was 0.3-0.8 (h -1 )
State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI.
Solo, Victor
2016-05-01
The recent interest in the dynamics of networks and the advent, across a range of applications, of measuring modalities that operate on different temporal scales have put the spotlight on some significant gaps in the theory of multivariate time series. Fundamental to the description of network dynamics is the direction of interaction between nodes, accompanied by a measure of the strength of such interactions. Granger causality and its associated frequency domain strength measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs involves computing submodels of vector time series models, for which reliable methods do not exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the impact of downsampling on GEMs has never been established. In this work, using state-space methods, we resolve all these issues and illustrate the results with some simulations. Our analysis is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general applicability.