WorldWideScience

Sample records for partial molar entropy

  1. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.

    Science.gov (United States)

    Slavchov, Radomir I; Ivanov, Tzanko I

    2014-02-21

    A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  2. Partial molar volumes and partial molar adiabatic compressibilities of a short chain perfluorosurfactant: Sodium heptafluorobutyrate in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)]. E-mail: faruso@usc.es; Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2005-12-15

    Density and ultrasound measurements of sodium heptafluorobutyrate in aqueous solutions at T = (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K have been obtained. From these results partial molar volumes and isentropic partial molar adiabatic compressibilities were calculated. Deviations from the Debye-Hueckel limiting law provide evidence for limited association at lower concentrations. The change of the partial molar volume and isentropic partial molar adiabatic compressibility upon aggregation was calculated. Variations of the change of partial molar volumes and isentropic partial molar adiabatic compressibility upon aggregation are discussed in terms of temperature.

  3. Partial molar volumes and partial molar adiabatic compressibilities of a short chain perfluorosurfactant: Sodium heptafluorobutyrate in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Blanco, Elena; Ruso, Juan M.; Prieto, Gerardo; Sarmiento, Felix

    2005-01-01

    Density and ultrasound measurements of sodium heptafluorobutyrate in aqueous solutions at T = (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K have been obtained. From these results partial molar volumes and isentropic partial molar adiabatic compressibilities were calculated. Deviations from the Debye-Hueckel limiting law provide evidence for limited association at lower concentrations. The change of the partial molar volume and isentropic partial molar adiabatic compressibility upon aggregation was calculated. Variations of the change of partial molar volumes and isentropic partial molar adiabatic compressibility upon aggregation are discussed in terms of temperature

  4. A principle to correlate extreme values of excess thermody-namic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e. , forming a triple cross point. The relationship is hold for properties such as enthalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly for a special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  5. A principle to correlate extreme values of excess thermodynamic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    尉志武; 刘芸; 周蕊; 薛芳渝

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e.F1E = F2E = FmE , forming a triple cross point. The relationship is hold for properties such as en-thalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly fora special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  6. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  7. Absolute entropy of ions in methanol

    International Nuclear Information System (INIS)

    Abakshin, V.A.; Kobenin, V.A.; Krestov, G.A.

    1978-01-01

    By measuring the initial thermoelectromotive forces of chains with bromo-silver electrodes in tetraalkylammonium bromide solutions the absolute entropy of bromide-ion in methanol is determined in the 298.15-318.15 K range. The anti Ssub(Brsup(-))sup(0) = 9.8 entropy units value is used for calculation of the absolute partial molar entropy of alkali metal ions and halogenide ions. It has been found that, absolute entropy of Cs + =12.0 entropy units, I - =14.0 entropy units. The obtained ion absolute entropies in methanol at 298.15 K within 1-2 entropy units is in an agreement with published data

  8. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  9. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    Science.gov (United States)

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  10. The partial molar volume of BeSO4 in aqueous solutions

    International Nuclear Information System (INIS)

    Kuschel, F.; Seidel, J.

    1981-01-01

    The density of aqueous solutions of BeSO 4 has been measured as a function of the mole fraction in the range of 0.02487 x 10 -2 to 6.3082 x 10 -2 . From the results obtained the molar volume and partial molar volume have been calculated and the limiting value of the partial molar volume for Be 2+ was extrapolated in accordance with the Debye-Hueckel law

  11. Parsing partial molar volumes of small molecules: a molecular dynamics study.

    Science.gov (United States)

    Patel, Nisha; Dubins, David N; Pomès, Régis; Chalikian, Tigran V

    2011-04-28

    We used molecular dynamics (MD) simulations in conjunction with the Kirkwood-Buff theory to compute the partial molar volumes for a number of small solutes of various chemical natures. We repeated our computations using modified pair potentials, first, in the absence of the Coulombic term and, second, in the absence of the Coulombic and the attractive Lennard-Jones terms. Comparison of our results with experimental data and the volumetric results of Monte Carlo simulation with hard sphere potentials and scaled particle theory-based computations led us to conclude that, for small solutes, the partial molar volume computed with the Lennard-Jones potential in the absence of the Coulombic term nearly coincides with the cavity volume. On the other hand, MD simulations carried out with the pair interaction potentials containing only the repulsive Lennard-Jones term produce unrealistically large partial molar volumes of solutes that are close to their excluded volumes. Our simulation results are in good agreement with the reported schemes for parsing partial molar volume data on small solutes. In particular, our determined interaction volumes() and the thickness of the thermal volume for individual compounds are in good agreement with empirical estimates. This work is the first computational study that supports and lends credence to the practical algorithms of parsing partial molar volume data that are currently in use for molecular interpretations of volumetric data.

  12. Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid nonelectrolyte

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2012-01-01

    Highlights: ► Excess limiting molar volume may be regarded as a solvation-related characteristic. ► Volumetric and enthalpic effects of dissolution are interrelated thermodynamically. ► Possibility to estimate the partial change in solute compressibility is described. - Abstract: On the basis of thermodynamic analysis, it is concluded that the excess limiting partial molar volume, like the excess limiting partial molar enthalpy, can be considered as a solvation-related characteristic of a liquid nonelectrolyte. A thermodynamically grounded interrelation between standard volumetric and enthalpic effects of solution of a liquid nonelectrolyte (or series of nonelectrolytes) is suggested.

  13. Excess molar volumes and partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and p = 0.1 MPa

    International Nuclear Information System (INIS)

    Deenadayalu, N.; Bhujrajh, P.

    2006-01-01

    The excess molar volumes and the partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and at atmospheric pressure are reported. The hydrogen bonding between the OH133;NC groups are discussed in terms of the chain length of the alkanol. The alkanols studied are (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol). The excess molar volume data was fitted to the Redlich-Kister equation The partial molar volumes were calculated from the Redlich-Kister coefficients

  14. Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10-90 degrees C.

    Science.gov (United States)

    Häckel, M; Hinz, H J; Hedwig, G R

    1999-11-15

    The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.

  15. Partial Molar Volumes of Aqua Ions from First Principles.

    Science.gov (United States)

    Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo

    2017-08-08

    Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.

  16. Partial molar volumes of hydrogen and deuterium in niobium and vanadium

    International Nuclear Information System (INIS)

    Herro, H.M.

    1979-01-01

    Lattice dilation studies and direct pressure experiments gave comparable values for the partial molar volumes of hydrogen and deuterium in niobium and vanadium. Small isotope effects in the partial molar volume of hydrogen were measured in both metals by the differential isotope method. Hydrogen had a larger partial molar volume than deuterium in niobium, but the reverse was true in vanadium. The isotope effect measured in niobium can be represented as being due to the larger amplitude of vibration of the hydrogen atom than the deuterium atom in the metal lattice. Since hydrogen has a larger mean displacement from the equilibrium position than does deuterium, the average force hydrogen exerts on the metal atoms is greater than the force deuterium exerts. The isotope effect in vanadium is likely a result of anharmonic effects in the lattice and local vibrational modes

  17. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  18. The unfolding effects on the protein hydration shell and partial molar volume: a computational study.

    Science.gov (United States)

    Del Galdo, Sara; Amadei, Andrea

    2016-10-12

    In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.

  19. Partial molar volumes of hydrogen and deuterium in niobium, vanadium, and tantalum

    International Nuclear Information System (INIS)

    Peterson, D.T.; Herro, H.M.

    1983-01-01

    The partial molar volumes of hydrogen and deuterium were measured in vanadium, niobium, and tantalum by a differential pressure technique. One-half of an electrolytically charged sample plat was compressed between hardened steel blocks in a hydraulic press. The activity of hydrogen in the hig pressure region was raised and caused hydrogen to diffuse into the low pressure region. The partia molar volume was calculated from the ratio of the hydrogen concentrations in the high and low pressure regions of the sample. Small isotope effects were found in the partial molar volume. Hydrogen had the larger volume in niobium and tantalum, but the reverse was true in vanadium

  20. Determination of partial molar volumes from free energy perturbation theory†

    Science.gov (United States)

    Vilseck, Jonah Z.; Tirado-Rives, Julian

    2016-01-01

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343

  1. Determination of partial molar volumes from free energy perturbation theory.

    Science.gov (United States)

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-07

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.

  2. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.

    2013-01-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH 4 H 2 O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H 2 O, NaOH, and NaAl(OH) 4 are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components

  3. Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory.

    Science.gov (United States)

    Graziano, Giuseppe

    2006-04-07

    The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.

  4. Partial and apparent molar volumes of aqueous solutions of the 1:1 type electrolytes

    International Nuclear Information System (INIS)

    Klugman, I.Yu.

    2002-01-01

    Formulas for calculating partial and apparent molar volumes of MX (M=Li-Cs; X = Cl-I) electrolyte aqueous solutions in a wide range of concentrations from 0 to 4 mol/kg with error not in excess of 0.05% are suggested. It is shown that the previously employed formulas for calculating partial molar volumes of electrolytes give false indications of mutual effect of ions and actually they are fit solely for very small concentrations [ru

  5. The partial molar heat capacity, expansion, isentropic, and isothermal compressions of thymidine in aqueous solution at T = 298.15 K

    International Nuclear Information System (INIS)

    Hedwig, Gavin R.; Jameson, Geoffrey B.; Hoiland, Harald

    2011-01-01

    Highlights: → Solution densities and sound speeds were measured for aqueous solutions of thymidine. → Partial molar volumetric properties at infinite dilution and T = 298.15 K were derived. → The partial molar isentropic and isothermal compressions are of opposite signs. → The partial molar heat capacity for thymidine at infinite dilution was determined. - Abstract: Solution densities have been determined for aqueous solutions of thymidine at T = (288.15, 298.15, 303.15, and 313.15) K. The partial molar volumes at infinite dilution, V 2 0 , obtained from the density data were used to derive the partial molar isobaric expansion at infinite dilution for thymidine at T = 298.15 K, E 2 0 {E 2 0 =(∂V 2 0 /∂T) p }. The partial molar heat capacity at infinite dilution for thymidine, C p,2 0 , at T = 298.15 K has also been determined. Sound speeds have been measured for aqueous solutions of thymidine at T = 298.15 K. The partial molar isentropic compression at infinite dilution, K S,2 0 , and the partial molar isothermal compression at infinite dilution, K T,2 0 {K T,2 0 =-(∂V 2 0 /∂P) T }, have been derived from the sound speed data. The V 2 0 , E 2 0 , C p,2 0 , and K S,2 0 results for thymidine are critically compared with those available from the literature.

  6. Standard partial molar volumes of some electrolytes in ethylene carbonate based mixtures

    International Nuclear Information System (INIS)

    Zhao, Yang; Wang, Jianji.; Lu, Hui; Lin, Ruisen

    2004-01-01

    Apparent molar volumes V 2,phi and standard partial molar volumes V 2,phi 0 of LiClO 4 , LiBr and three symmetrical tetraalkylammonium bromides R 4 NBr (R=ethyl, propyl, butyl) have been determined at 298.15 K from precise density measurements in solvent mixtures of ethylene carbonate with tetrahydrofuran (THF), acetonitrile (AN), ethyl acetate (EA) and dimethoxyethane (DME). It is shown that the V 2,phi 0 values of LiClO 4 and LiBr are dependent strongly on the nature of the solvents, whereas the contribution of CH 2 group to the partial molar volume of the tetraalkylammonium salts has nothing to do with the nature of the solvents and the composition of the solvent mixtures. This provided a helpful evidence for the unsolvation of large tetraalkylammonium cations in organic solvents. The results have been discussed from ion-solvent interactions and the dielectric effect of the solvents

  7. Uncertainty principle and informational entropy for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1986-01-01

    It is shown that, among all partially coherent wave fields having the same informational entropy, the product of the effective widths of the intensity functions in the space and the spatial-frequency domains takes its minimum value for a wave field with a Gaussian-shaped cross-spectral density

  8. Partial Molar Volume of Methanol in Water: Effect of Polarizability

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2009-01-01

    Roč. 74, č. 4 (2009), s. 559-563 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : water–methanol mixtures * partial molar volume * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009

  9. 1. Thermochemical properties

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    Thermodynamic properties (activity; molar heat capacity; free energy of reactions; partial molar free energy of solution; heat of reactions; heat of formation at 298 0 K; partial molar heat of solution; molar heat of evaporation, fusion, sublimation and transformation; standard entropy at 298 0 K; entropy of reactions; partial molar entropy of solution; molar entropy of evaporation, fusion, sublimation and transformation) of thorium, its compounds and binary alloy systems are reviewed

  10. Gravel Image Segmentation in Noisy Background Based on Partial Entropy Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In this paper, we develop a partial entropy method and succeed to realize gravel objects segmentation. We give entropy principles and fur calculation methods. Moreover, we use minimum entropy error automaticly to select a threshold to segment image. We introduce the filter method using mathematical morphology. The segment experiments are performed by using different window dimensions for a group of gravel image and demonstrates that this method has high segmentation rate and low noise sensitivity.

  11. Effect of Molecular Size of Solutes on Their Partial Molar Volumes in Supercritical n-Pentane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The densities of n-pentane, methane-n-pentane, propane-n-pentane, n-heptane-n-pentane, and n-decane-n-pentane binary mixtures were determined at 476.5K in the pressure range from 2 to 5 MPa. The partial molar volumes of the solutes in n-pentane were calculated using the density data. It was found that the partial molar volumes of methane and propane are positive , while those of n-heptane and n-decane are negative.

  12. Infinitely dilute partial molar properties of proteins from computer simulation.

    Science.gov (United States)

    Ploetz, Elizabeth A; Smith, Paul E

    2014-11-13

    A detailed understanding of temperature and pressure effects on an infinitely dilute protein's conformational equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular dynamics methodologies generally have not provided a way to calculate these properties without either a loss of thermodynamic rigor, the introduction of nonunique parameters, or a loss of information about which solute conformations specifically contributed to the output values. Here we implement a simple method that is thermodynamically rigorous and possesses none of the above disadvantages, and we report on the method's feasibility and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature and/or pressure dependence of the corresponding ensemble averages.

  13. Partial molar volume of anionic polyelectrolytes in aqueous solution.

    Science.gov (United States)

    Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo

    2007-05-15

    In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.

  14. Determination of Partial Molar Volumes of EPA and DHA Ethyl Esters in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The use of supercritical-fluid chromatography for determining partial molar volumes of ethyl esters of cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis -4,7,10,13,16,19- docosa-hexaenoic acid (DHA) in supercritical carbon dioxide is presented and discussed. Partial molar volumes of EPA and DHA esters are obtained from the variation of the retention properties with the density of mobile phase at 313.15 K, 323.15 K, 333.15 K and in the pressure range from 9 MPa to 21 MPa.

  15. Deptermination of Partial Molar Volumes of EPA and DHA Ethyl Esters in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    MeiHUANG; XianDaWANG; 等

    2002-01-01

    The use of supercritical-fluid shromatogrphy for determining partial molar volumes of ethyl esters of cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosa-hexaenoic acid(DHA) in supercritical carbon dioxide is presented and discussed. Partial molar volumes of EPA and DHA esters are obtained from the variation of the retention properties with the density of mobile phase at 313.15K,323.15K,333.15K and in the pressure range from 9 MPa to 21 MPa.

  16. Minimizing the entropy production in a chemical process for dehydrogenation of propane

    International Nuclear Information System (INIS)

    Rosjorde, A.; Kjelstrup, S.; Johannessen, E.; Hansen, R.

    2007-01-01

    We minimize the total entropy production of a process designed for dehydrogenation of propane. The process consists of 21 units, including a plug-flow reactor, a partial condenser, two tray distillation columns and a handful of heat exchangers and compressors. The units were modeled in a manner that made them relatively insensitive to changes in the molar flow rates, to make the optimization more flexible. The operating conditions, as well as to some degree the design of selected units, which minimized the total entropy production of the process, were found. The most important variables were the amount of recycled propane and propylene, conversion and selectivity in the reactor, as well as the number of tubes in the reactor. The optimal conversion, selectivity and recycle flows were results of a very clear trade-off among the entropy produced in the reactor, the partial condenser and the two distillation columns. Although several simplifying assumptions were made for computational reasons, this shows for the first time that it is also meaningful to use the entropy production as an objective function in chemical engineering process optimization studies

  17. Partial molar volumes of (acetonitrile + water) mixtures over the temperature range (273.15 to 318.15) K

    International Nuclear Information System (INIS)

    Yeow, Y. Leong; Leong, Yee-Kwong

    2007-01-01

    Isothermal molar volume data of (acetonitrile + water) mixtures, between T = 273.15 K and T = 318.15 K, extracted from different sources are combined and treated as a single set to even out minor differences between sources and to increase the number of data points for each temperature. Tikhonov regularization is applied to compute the isothermal first and second derivatives of these data with respect to molar composition. For the reference temperature of 298.15 K, this computation is extended to the third derivative. Generalized Cross Validation is used to guide the selection of the regularization parameter that keeps noise amplification under control. The resulting first derivatives are used to construct the partial molar volume curves which are then checked against published results. Properties of the partial molar volumes are analysed by examining their derivatives. Finally the general shape of the second derivative curve of molar volume is explained qualitatively in terms of tripartite segmentation of the molar composition interval but quantitative comparisons are required to confirm this explanation

  18. Partial molar volumes of some drug and pro-drug substances in 1-octanol at T = 298.15 K

    International Nuclear Information System (INIS)

    Manin, Alex N.; Shmukler, Liudmila E.; Safonova, Liubov P.; Perlovich, German L.

    2010-01-01

    The article deals with measuring the densities of phenol, acetanilide, benzamide, benzoic acid, phenacetin, i-(acetylamino)-benzoic acid, i-hydroxy-benzamide, and i-acetaminophen (where i = 1, 2, 3) in 1-octanol in the wide concentration interval at T = 298.15 K. It also concerns the evaluation of apparent molar volumes and partial molar volumes at infinite dilution, V 2 0 -bar as well as comparative analysis of the free volumes per molecule in the octanolic solutions, V 2 free , and in the crystal lattices, V 2 free (cr), from the nature and position of the substitutes. Also described is the evaluation of the increments of V 2 0 -bar andV 2 free for the unsubstituted molecules and isomers and the methods to obtain partial molar volumes for various functional groups at infinite dilution in 1-octanol at T = 298.15 K. Also considered is the limiting partial molar volume of the solutes in terms of the scaled particle theory.

  19. Partial molar volume of mefenamic acid in alcohol at temperatures between T=293.15 and T=313.15 K

    OpenAIRE

    Iqbal, Muhammad J.; Siddiquah, Mahrukh

    2006-01-01

    Apparent molar volume (Vphi), partial molar volume (V), solute-solute interaction parameter (Sv), partial molar expansivity (E(0)2) and isobaric thermal expansion coefficient (alpha2) of mefenamic acid in six different organic solvents namely, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol, have been calculated from the measured solution densities over a temperature range of T=293.15 and T=313.15±0.1K. The solution densities were measured by an automated vibrating tube de...

  20. Ab initio calculations of partial molar properties in the single-site approximation

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate...

  1. Thermodynamic study of (heptane + amine) mixtures. II. Excess and partial molar volumes at 298.15 K

    International Nuclear Information System (INIS)

    Lepori, Luciano; Gianni, Paolo; Spanedda, Andrea; Matteoli, Enrico

    2011-01-01

    Research highlights: → Excess and partial molar volumes of primary (amines + heptane) mixtures. → Excess volumes are positive for small size amines and decrease as the size increases. → Group contributions to predict the partial molar volumes of amines in heptane. → The void volume is larger for branched than for linear amines in heptane. - Abstract: Excess molar volumes V E at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of heptane + primary n-alkyl (C 3 to C 10 ) and branched amines (iso-propyl-, iso-, sec-, and tert-butyl-, iso-, tert-pentyl-, and pentan-3-amine) in the whole composition range. The apparent molar volumes of solid dodecyl- and tetradecylamine in heptane dilute solution were also determined. The V E values were found positive for mixtures involving C 3 to C 8 linear amines, with V E decreasing with chain lengthening. Heptane + nonyl and decylamine showed s-shaped, markedly asymmetric, curves. Mixtures with branched C 3 to C 5 amines displayed positive V E 's larger than those observed in the mixtures of the corresponding linear isomers. Partial molar volumes V o at infinite dilution in heptane were evaluated for the examined amines and compared with those of alkanes and alkanols taken from the literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH 3 , CH 2 , CH, C, NH 2 , and OH) contributions to V o . The effect of branching on V o and the limiting slope of the apparent excess molar volumes were evaluated and discussed in terms of solute-solvent and solute-solute interactions.

  2. On a relationship between molecular polarizability and partial molar volume in water.

    Science.gov (United States)

    Ratkova, Ekaterina L; Fedorov, Maxim V

    2011-12-28

    We reveal a universal relationship between molecular polarizability (a single-molecule property) and partial molar volume in water that is an ensemble property characterizing solute-solvent systems. Since both of these quantities are of the key importance to describe solvation behavior of dissolved molecular species in aqueous solutions, the obtained relationship should have a high impact in chemistry, pharmaceutical, and life sciences as well as in environments. We demonstrated that the obtained relationship between the partial molar volume in water and the molecular polarizability has in general a non-homogeneous character. We performed a detailed analysis of this relationship on a set of ~200 organic molecules from various chemical classes and revealed its fine well-organized structure. We found that this structure strongly depends on the chemical nature of the solutes and can be rationalized in terms of specific solute-solvent interactions. Efficiency and universality of the proposed approach was demonstrated on an external test set containing several dozens of polyfunctional and druglike molecules.

  3. Molar Pregnancy

    Science.gov (United States)

    ... weeks of pregnancy Ovarian cysts Anemia Overactive thyroid (hyperthyroidism) Causes A molar pregnancy is caused by an ... have this complication than a partial molar pregnancy. Prevention If you've had a molar pregnancy, talk ...

  4. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    Science.gov (United States)

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Partial molar volumes of some drug and pro-drug substances in 1-octanol at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Manin, Alex N.; Shmukler, Liudmila E.; Safonova, Liubov P. [Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo (Russian Federation); Perlovich, German L., E-mail: glp@isc-ras.r [Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo (Russian Federation)

    2010-03-15

    The article deals with measuring the densities of phenol, acetanilide, benzamide, benzoic acid, phenacetin, i-(acetylamino)-benzoic acid, i-hydroxy-benzamide, and i-acetaminophen (where i = 1, 2, 3) in 1-octanol in the wide concentration interval at T = 298.15 K. It also concerns the evaluation of apparent molar volumes and partial molar volumes at infinite dilution, V{sub 2}{sup 0}-bar as well as comparative analysis of the free volumes per molecule in the octanolic solutions, V{sub 2}{sup free}, and in the crystal lattices, V{sub 2}{sup free} (cr), from the nature and position of the substitutes. Also described is the evaluation of the increments of V{sub 2}{sup 0}-bar andV{sub 2}{sup free} for the unsubstituted molecules and isomers and the methods to obtain partial molar volumes for various functional groups at infinite dilution in 1-octanol at T = 298.15 K. Also considered is the limiting partial molar volume of the solutes in terms of the scaled particle theory.

  6. Relationship between the partial molar and molar quantity of a thermodynamic state function in a multicomponent mixture – revisited

    International Nuclear Information System (INIS)

    Näfe, H.

    2013-01-01

    As far as a multicomponent mixture is concerned, different versions exist in the literature for the relationship between the partial molar and molar quantity of a thermodynamic state function with the most prominent example of the two quantities being the activity coefficient of an arbitrary component and the excess Gibbs free energy of a mixture comprising this component. Since the relationships published so far have to a large degree been derived independently of each other and result from apparently conflicting approaches, they are still considered as separate subjects in the literature. It is demonstrated that despite this curious situation all relationships are equivalent to each other from a mathematical point of view

  7. A study of partial molar volumes of citric acid and tartaric acid

    Indian Academy of Sciences (India)

    Partial molar volumes of citric acid and tartaric acid have been determined in water and binary aqueous mixtures of ethanol (5, 10, 15, 20 and 25% by weight of ethanol) at different temperatures and acid concentrations from the solution density measurements. The data have been evaluated by using Masson equation and ...

  8. Dilatometric measurement of the partial molar volume of water sorbed to durum wheat flour.

    Science.gov (United States)

    Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    Moisture sorption isotherms were measured at 25 °C for untreated, dry-heated and pre-gelatinized durum wheat flour samples. The isotherms could be expressed by the Guggenheim-Anderson-de Boer equation. The amount of water sorbed to the untreated flour was highest for low water activity, with water sorbed to the pre-gelatinized and dry-heated flour samples following. The dry-heated and pregelatinized flour samples exhibited the same dependence of the moisture content on the partial molar volume of water at 25 °C as the untreated flour. The partial molar volume of water was ca. 9 cm(3)/mol at a moisture content of 0.03 kg-H2O/kg-d.m. The volume increased with increasing moisture content, and reached a constant value of ca. 17.5 cm(3)/mol at a moisture content of 0.2 kg-H2O/kg-d.m. or higher.

  9. Vapor pressures and standard molar enthalpies, entropies, and Gibbs free energies of sublimation of 2,4- and 3,4-dinitrobenzoic acids

    International Nuclear Information System (INIS)

    Vecchio, Stefano; Brunetti, Bruno

    2009-01-01

    The vapor pressures of the solid and liquid 2,4- and 3,4-dinitrobenzoic acids were determined by torsion-effusion and thermogravimetry under both isothermal and non-isothermal conditions, respectively. From the temperature dependence of vapor pressure derived by the experimental torsion-effusion and thermogravimetry data the molar enthalpies of sublimation Δ cr g H m 0 ( ) and vaporization Δ l g H m 0 ( ) were determined, respectively, at the middle of the respective temperature intervals. The melting temperatures and the molar enthalpies of fusion of these compounds were measured by d.s.c. Finally, the results obtained by all the methods proposed were corrected at the reference temperature of 298.15 K using the estimated heat capacity differences between gas and liquid for vaporization experiments and the estimated heat capacity differences between gas and solid for sublimation experiments. Therefore, the averages of the standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation at 298.15 K, have been derived.

  10. Entropy generation in Poiseuille flow through a channel partially filled with a porous material

    Directory of Open Access Journals (Sweden)

    Kumar Vikas

    2015-01-01

    Full Text Available In the present paper, a theoretical analysis of entropy generation due to fully developed flow and heat transfer through a parallel plate channel partially filled with a porous medium under the effect of transverse magnetic field and radiation is presented. Both horizontal plates of the channel are kept at constant and equal temperature. An exact solution of governing equation for both porous and clear fluid regions has been obtained in closed form. The entropy generation number and the Bejan number are also calculated. The effects of various parameters such as magnetic field parameter, radiation parameter, Brinkman number, permeability parameter, ratios of viscosities and thermal conductivities are examined on velocity, temperature, entropy generation rate.

  11. Calculation of partial molar volume of components in supercritical ammonia synthesis system

    Institute of Scientific and Technical Information of China (English)

    Cunwen WANG; Chuanbo YU; Wen CHEN; Weiguo WANG; Yuanxin WU; Junfeng ZHANG

    2008-01-01

    The partial molar volumes of components in supercritical ammonia synthesis system are calculated in detail by the calculation formula of partial molar volume derived from the R-K equation of state under different conditions. The objectives are to comprehend phase beha-vior of components and to provide the theoretic explana-tion and guidance for probing novel processes of ammonia synthesis under supercritical conditions. The conditions of calculation are H2/N2= 3, at a concentra-tion of NH3 in synthesis gas ranging from 2% to 15%, Concentration of medium in supercritical ammonia syn-thesis system ranging from 20% to 50%, temperature ran-ging from 243 K to 699 K and pressure ranging from 0.1 MPa to 187 MPa. The results show that the ammonia synthesis system can reach supercritical state by adding a suitable supercritical medium and then controlling the reaction conditions. It is helpful for the supercritical ammonia synthesis that medium reaches supercritical state under the conditions of the corresponding total pres-sure and components near the normal temperature or near the critical temperature of medium or in the range of tem-perature of industrialized ammonia synthesis.

  12. Partial Molar Volumes of 15-Crown-5 Ether in Mixtures of N,N-Dimethylformamide with Water.

    Science.gov (United States)

    Tyczyńska, Magdalena; Jóźwiak, Małgorzata

    2014-01-01

    The density of 15-crown-5 ether (15C5) solutions in the mixtures of N,N -dimethylformamide (DMF) and water (H 2 O) was measured within the temperature range 293.15-308.15 K using an Anton Paar oscillatory U-tube densimeter. The results were used to calculate the apparent molar volumes ( V Φ ) of 15C5 in the mixtures of DMF + H 2 O over the whole concentration range. Using the apparent molar volumes and Redlich and Mayer equation, the standard partial molar volumes of 15-crown-5 were calculated at infinite dilution ([Formula: see text]). The limiting apparent molar expansibilities ( α ) were also calculated. The data are discussed from the point of view of the effect of concentration changes on interactions in solution.

  13. Group additivity values for enthalpies of formation (298 K), entropies (298 K), and molar heat capacities (300 K < T < 1500 K) of gaseous fluorocarbons

    International Nuclear Information System (INIS)

    Van Otterloo, Maren K.; Girshick, Steven L.; Roberts, Jeffrey T.

    2007-01-01

    A group additivity method was developed to estimate standard enthalpies of formation and standard entropies at 298 K of linear radical and closed-shell, gaseous fluorocarbon neutrals containing four or more carbon atoms. The method can also be used to estimate constant pressure molar heat capacities of the same compounds over the temperature range 300 K to 1500 K. Seventeen groups and seven fluorine-fluorine interaction terms were defined from 12 fluorocarbon molecules. Interaction term values from Yamada and Bozzelli [T. Yamada, J.W. Bozzelli, J. Phys. Chem. A 103 (1999) 7373-7379] were utilized. The enthalpy of formation group values were derived from G3MP2 calculations by Bauschlicher and Ricca [C.W. Bauschlicher, A. Ricca, J. Phys. Chem. A 104 (2000) 4581-4585]. Standard entropy and molar heat capacity group values were estimated from ab initio geometry optimization and frequency calculations at the Hartree-Fock level using the 6-31G(d) basis set. Enthalpies of formation for larger fluorocarbons estimated from the group additivity method compare well to enthalpies of formation found in the literature

  14. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    International Nuclear Information System (INIS)

    Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.; Miller, Benjamin T.; Brooks, Bernard R.; Ichiye, Toshiko

    2015-01-01

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V E as a function of ethanol mole fraction X E is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water

  15. The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes

    International Nuclear Information System (INIS)

    Carmen Grande, Maria del; Julia, Jorge Alvarez; Barrero, Carmen R.; Marschoff, Carlos M.; Bianchi, Hugo L.

    2006-01-01

    Density and viscosity of (water + acetonitrile) mixtures were measured over the whole composition range at the temperatures: (298.15, 303.15, 308.15, 313.15, and 318.15) K. A new mathematical approach was developed which allows the calculation of the derivatives of density with respect to composition avoiding the appearance of local discontinuities. Thus, reliable partial molar volumes and thermal expansion coefficients were obtained

  16. Partial molar volume of proteins studied by the three-dimensional reference interaction site model theory.

    Science.gov (United States)

    Imai, Takashi; Kovalenko, Andriy; Hirata, Fumio

    2005-04-14

    The three-dimensional reference interaction site model (3D-RISM) theory is applied to the analysis of hydration effects on the partial molar volume of proteins. For the native structure of some proteins, the partial molar volume is decomposed into geometric and hydration contributions using the 3D-RISM theory combined with the geometric volume calculation. The hydration contributions are correlated with the surface properties of the protein. The thermal volume, which is the volume of voids around the protein induced by the thermal fluctuation of water molecules, is directly proportional to the accessible surface area of the protein. The interaction volume, which is the contribution of electrostatic interactions between the protein and water molecules, is apparently governed by the charged atomic groups on the protein surface. The polar atomic groups do not make any contribution to the interaction volume. The volume differences between low- and high-pressure structures of lysozyme are also analyzed by the present method.

  17. Hydration of alcohol clusters in 1-propanol-water mixture studied by quasielastic neutron scattering and an interpretation of anomalous excess partial molar volume.

    Science.gov (United States)

    Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O

    2006-08-21

    Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.

  18. Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A Al-Rashed

    2017-09-01

    Full Text Available Natural convection and entropy generation due to the heat transfer and fluid friction irreversibilities in a three-dimensional cubical cavity with partially heated and cooled vertical walls has been investigated numerically using the finite volume method. Four different arrangements of partially active vertical sidewalls of the cubical cavity are considered. Numerical calculations are carried out for Rayleigh numbers from (103 ≤ Ra ≤ 106, various locations of the partial heating and cooling vertical sidewalls, while the Prandtl number of air is considered constant as Pr=0.7 and the irreversibility coefficient is taken as (φ=10−4. The results explain that the total entropy generation rate increases when the Rayleigh number increases. While, the Bejan number decreases as the Rayleigh number increases. Also, it is found that the arrangements of heating and cooling regions have a significant effect on the fluid flow and heat transfer characteristics of natural convection and entropy generation in a cubical cavity. The Middle-Middle arrangement produces higher values of average Nusselt numbers.

  19. Vapor pressures and standard molar enthalpies, entropies and Gibbs energies of sublimation of two hexachloro herbicides using a TG unit

    International Nuclear Information System (INIS)

    Vecchio, Stefano

    2010-01-01

    The vapor pressures above the solid hexachlorobenzene (HCB) and above both the solid and liquid 1,2,3,4,5,6-hexachlorocyclohexane (lindane) were determined in the ranges 332-450 K and 347-429 K, respectively, by measuring the mass loss rates recorded by thermogravimetry under both isothermal and nonisothermal conditions. The results obtained were compared with those taken from literature. From the temperature dependence of vapor pressure derived by the experimental thermogravimetry data the molar enthalpies of sublimation Δ cr g H m o ( ) were selected for HCB and lindane as well as the molar enthalpy of vaporization Δ l g H m o ( ) for lindane only, at the middle of the respective temperature intervals. The melting temperatures and the molar enthalpies of fusion Δ cr l H m o (T fus ) of lindane were measured by differential scanning calorimetry. Finally, the standard molar enthalpies of sublimation Δ cr g H m o (298.15 K) were obtained for both chlorinated compounds at the reference temperature of 298.15 K using the Δ cr g H m o ( ), Δ l g H m o ( ) and Δ cr l H m o (T fus ) values, as well as the heat capacity differences between gas and liquid and the heat capacity differences between gas and solid, Δ l g C p,m o and Δ cr g C p,m o , respectively, both estimated by applying a group additivity procedure. Therefore, the averages of the standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation at 298.15 K, have been derived.

  20. Partial molar volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and glycylglycine in water, NaCl, and DMSO aqueous solutions at T 298.15 K

    International Nuclear Information System (INIS)

    Yuan Quan; Li Zhifen; Wang Baohuai

    2006-01-01

    The apparent molar volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and glycylglycine in water and in the aqueous solutions of NaCl and DMSO with various concentrations at T = 298.15 K have been measured by the precise vibrating-tube digital densimeter. The calculated partial molar volumes at infinite dilution have been used to obtain corresponding transfer volumes from water to various solutions. The experimental results show that the standard partial molar volumes of the above amino acids and peptide at the dilute DMSO aqueous solutions are very close to those in water. However, the volumes show several types of variations with the increase of the concentrations of DMSO due to different types of side chain of amino acids, which should be discussed specifically. The NaCl changes considerably the infinite dilution standard partial molar volumes of the above amino acids and peptide in the aqueous solutions. The infinite dilution standard partial molar volumes of the each amino acids and peptide increase with the concentrations of NaCl. The experimental results have been rationalized by a cosphere overlap model

  1. Symplectic entropy

    International Nuclear Information System (INIS)

    De Nicola, Sergio; Fedele, Renato; Man'ko, Margarita A; Man'ko, Vladimir I

    2007-01-01

    The tomographic-probability description of quantum states is reviewed. The symplectic tomography of quantum states with continuous variables is studied. The symplectic entropy of the states with continuous variables is discussed and its relation to Shannon entropy and information is elucidated. The known entropic uncertainty relations of the probability distribution in position and momentum of a particle are extended and new uncertainty relations for symplectic entropy are obtained. The partial case of symplectic entropy, which is optical entropy of quantum states, is considered. The entropy associated to optical tomogram is shown to satisfy the new entropic uncertainty relation. The example of Gaussian states of harmonic oscillator is studied and the entropic uncertainty relations for optical tomograms of the Gaussian state are shown to minimize the uncertainty relation

  2. Partial Molar Volumes of Air-Component Gases in Several Liquid n-Alkanes and 1-Alkanols at 313.15 K

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Cibulka, I.; Heintz, A.

    1995-01-01

    Roč. 109, č. 2 (1995), s. 227-234 ISSN 0378-3812 Keywords : data density * partial molar volume * gas -liquid mixture Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.024, year: 1995

  3. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Steven M.; Ashbaugh, Henry S., E-mail: hanka@tulane.edu [Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118 (United States)

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  4. Note: Nonpolar solute partial molar volume response to attractive interactions with water.

    Science.gov (United States)

    Williams, Steven M; Ashbaugh, Henry S

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  5. Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction

    International Nuclear Information System (INIS)

    Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V

    2010-01-01

    We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol -1 for a test set of 120 organic molecules). (fast track communication)

  6. Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction.

    Science.gov (United States)

    Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V

    2010-12-15

    We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol (- 1) for a test set of 120 organic molecules).

  7. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    Science.gov (United States)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  8. Molar volume dependence of the pressure of solid 3He at very low temperatures

    International Nuclear Information System (INIS)

    Mamiya, T.; Sawada, A.; Fukuyama, H.; Iwahashi, K.; Masuda, Y.

    1983-01-01

    The pressure of solid 3 He has been measured as a function of temperature T between 0.3 and 50 mK at molar volumes between 24.19 and 23.31 cm 3 . The entropy discontinuity obtained from the pressure jump at the ordering transition turned out to be almost independent of molar volumes, being about 0.40Rln2 in the studied range of molar volumes

  9. Standard molar enthalpies of formation of 1- and 2-cyanonaphthalene

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Lobo Ferreira, Ana I.M.C.; Barros, Ana L.M.; Bessa, Ana R.C.; Brito, Barbara C.S.A.; Vieira, Joana A.S.; Martins, Silvia A.P.

    2011-01-01

    Highlights: → Enthalpies of formation of 1- and 2-cyanonaphthalene were measured by combustion calorimetry. → Vapor pressures of crystalline 1- and 2-cyanonaphthalene obtained by Knudsen effusion mass loss technique. → Enthalpies, entropies and Gibbs functions of sublimation at T = 298.15 K were calculated. - Abstract: The standard (p o = 0.1 MPa) molar enthalpies of formation, in the crystalline state, of the 1- and 2-cyanonaphthalene were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static-bomb combustion calorimetry. Vapor pressure measurements at different temperatures, using the Knudsen mass loss effusion technique, enabled the determination of the enthalpy, entropy, and Gibbs energy of sublimation, at T = 298.15 K, for both isomers. The standard molar enthalpies of sublimation, at T = 298.15 K, for 1- and 2-cyanonaphthalene, were also measured by high-temperature Calvet microcalorimetry. (table) Combining these two experimental values, the gas-phase standard molar enthalpies, at T = 298.15 K, were derived and compared with those estimated by employing two different methodologies: one based on the Cox scheme and the other one based on G3MP2B3 calculations. The calculated values show a good agreement with the experimental values obtained in this work.

  10. Partial molar volume and isentropic compressibility of symmetrical and asymmetrical quaternary ammonium bromides in aqueous solution

    International Nuclear Information System (INIS)

    Moreno, Nicolás; Buchner, Richard; Vargas, Edgar F.

    2015-01-01

    Highlights: • Structural effects of the cations on surrounding water molecules are discussed. • Alkyl-chain geometry determines the hydration of Bu 4 N + isomers. • The “compactness” in the hydration shells varies significantly among the isomers. - Abstract: Values of apparent molar volume and isentropic compressibility of symmetric and asymmetric isomers of tetrabutylammonium bromide, namely tetra-n-butylammonium bromide, tetra-iso-butylammonium bromide, tetra-sec-butylammonium bromide, di-n-butyl-di-iso-butylammonium bromide and di-n-butyl-di-sec-butylammonium bromide, in aqueous solution were determined from density and speed of sound measurements. These properties were obtained as a function of molal concentration within the range of 0.01 < m/mol · kg −1 < 0.1 covering temperatures from 278.15 ⩽ T/K ⩽ 293.15. The partial molar volumes and the apparent isentropic molar compressibility at infinite dilution were calculated and their dependence on temperature examined. The results show that cations with sec-butyl chains have larger structural volumes compared to those with iso-butyl chains. In addition, cations with sec-butyl chains induce smaller structural changes in their hydration shell than the others

  11. Third derivative thermodynamic quantities of aqueous tetrahydrofuran at 25 degrees C

    DEFF Research Database (Denmark)

    Westh, Peter; Yoshida, Koh; Inaba, Akira

    2015-01-01

    –THF interaction functions, HETHF–THF, and SETHF–THF. Using the literature density data, the effect of THF on the excess partial molar volume of THF, VETHF–THF, was also evaluated. Furthermore, we directly determined the partial molar entropy-volume cross fluctuation density of THF, View the MathML sourceδ......We measured the excess chemical potential, μΕTHF, the excess partial molar enthalpy and entropy of solute tetrahydrofuran (THF), HETHF and SETHF, in THF–H2O at 25 °C. Using these second derivatives of G, we graphically evaluated the third derivative quantities; the enthalpic, entropic THF...

  12. Aqueous partial molar heat capacities and volumes for NaReO4 and NaTcO4

    International Nuclear Information System (INIS)

    Lemire, R.J.; Saluja, P.P.S.; Campbell, A.B.

    1989-01-01

    As part of the Canadian Nuclear Fuel Waste Management Program, data are required to model the equilibrium thermodynamic behavior of key radionuclides at temperatures above 25 degree C. A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species. Measurements for solutions of aqueous NaReO 4 (a common analogue for NaTcO 4 ) were made at seven temperatures (15 to 100 degree C) over the concentration range 0.05 to 0.2 mol·kg -1 . Subsequently, measurements were made for NaTcO 4 solutions under similar conditions. The heat capacity and density data are analyzed using Pitzer's ion-interaction model, and values of the NaReO 4 partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO 4 data is good below 75 degree C, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. The uncertainties introduced by using thermodynamic data for ReO 4 - , in the absence of data for TcO 4 - , are discussed

  13. Entropy of Mixing of Distinguishable Particles

    Science.gov (United States)

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  14. Thermodynamic properties of peptide solutions 20. Partial molar volumes and isothermal compressions for some tripeptides of sequence gly-X-gly (X = gly, ala, leu, asn, thr, and tyr) in aqueous solution at T = 298.15 K and p = (10–120) MPa

    International Nuclear Information System (INIS)

    Hedwig, Gavin R.; Høiland, Harald

    2016-01-01

    Highlights: • Sound speeds were measured for aqueous solutions of some tripeptides at high pressures. • Partial molar volumes and isothermal compressions were derived for T = 298.15 K and p = (10–120) MPa. • The partial molar volumes for non-polar amino acid side-chains decrease with increasing pressure. • The partial molar volumes for polar side-chains do not change significantly with increasing pressure. - Abstract: Sound speeds have been measured for aqueous solutions of six tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids glycine, alanine, leucine, asparagine, threonine, and tyrosine at T = 298.15 K and at the pressures p = (10, 20, 40, 60, 80, 100, and 120) MPa. Using methods described in previous work, these sound speeds were used to derive the partial molar volumes at infinite dilution, V_2"o, the partial molar isentropic compressions at infinite dilution, K_S_,_2"o, and the partial molar isothermal compressions at infinite dilution, K"o_T_,_2 {K"o_T_,_2 = −(∂V_2"o/∂p)_T}, for the tripeptides in aqueous solution at the elevated pressures. The results were used to calculate the partial molar volumes and partial molar isothermal compressions for the various amino acid side-chains over the pressure range p = (10–120) MPa.

  15. A combined experimental and computational investigation of excess molar enthalpies of (nitrobenzene + alkanol) mixtures

    International Nuclear Information System (INIS)

    Neyband, Razieh Sadat; Zarei, Hosseinali

    2015-01-01

    Highlights: • Excess molar enthalpies for the binary mixtures of nitrobenzene + alkanols mixtures were measured. • The infinite dilution excess partial molar enthalpies were calculated using the ab initio methods. • The PCM calculations were performed. • The computed excess partial molar enthalpies at infinite dilution were compared to experimental results. - Abstract: Excess molar enthalpies (H m E ) for the binary mixtures of {(nitrobenzene + ethanol), 1-propanol, 2-propanol, 1-butanol and 2-butanol} have been measured over the entire composition range at ambient pressure (81.5 kPa) and temperature 298 K using a Parr 1455 solution calorimeter. From the experimental results, the excess partial molar enthalpies (H i E ) and excess partial molar enthalpies at infinite dilution (H i E,∞ ) were calculated. The excess molar enthalpies (H m E ) are positive for all {nitrobenzene (1) + alkanol (2)} mixtures over the entire composition range. A state-of-the-art computational strategy for the evaluation of excess partial molar enthalpies at infinite dilution was followed at the M05-2X/6-311++G ∗∗ level of theory with the PCM model. The experimental excess partial molar enthalpies at infinite dilution have been compared to the computational data of the ab initio in liquid phase. Integrated experimental and computational results help to clarify the nature of the intermolecular interactions in {nitrobenzene (1) + alkanol (2)} mixtures. The experimental and computational work which was done in this study complements and extends the general research on the computation of excess partial molar enthalpy at infinite dilution of binary mixtures

  16. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    Science.gov (United States)

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  17. Predicting pathology in impacted mandibular third molars

    Directory of Open Access Journals (Sweden)

    Aveek Mukherji

    2017-01-01

    Full Text Available Introduction: The rising incidence of the impacted mandibular third molars and their association with pathologies is now considered a public health problem. Aims and Objectives: The objective of this study was to assess the position of impacted mandibular third molars that are prone to developing pathologies and to determine the frequency and type of pathological conditions associated with these impacted teeth to facilitate planning for their prophylactic removal. Materials and Methods: Consecutive panoramic radiographs and clinical examination of 300 patients with impacted mandibular third molars were collected. They were segregated according to Pell and Gregory’s classification, Winter’s classification, and according to their state of eruption. These were correlated with associated pathologies based on clinical and radiological criteria. Statistical Analysis Used: Descriptive statistics included computation of percentages, mean, and standard deviations. The statistical test applied for the analysis was Pearson’s Chi-square test (χ2. For this test, confidence interval and P value were set at 93% and ≤0.03, respectively. Results: The pathology most commonly associated with impacted third molars was pericoronitis, which had the highest frequency of occurrence in partially erupted, distoangular, and IA positioned (as per Pell and Gregory classification impacted teeth. Impacted mandibular third molars, which were in IA position, placed mesially, and partially erupted, were prone to develop pathologies such as dental caries and periodontitis. Conclusion: The clinical and radiographical features of impacted third molar may be correlated to the development of their pathological complications. The partially impacted mandibular third molars with mesioangularly aligned in IA position have the highest potential to cause pathological complications.

  18. Partial molar volumes of organic solutes in water. XXIII. Cyclic ketones at T = (298 to 573) K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan; Simurka, Lukas; Hnedkovsky, Lubomir; Bolotov, Alexander

    2011-01-01

    Research highlights: → In this study we examine standard molar volumes of aqueous cyclic ketones. → State parameters of measurements were (298 to 573) K and pressures up to 30 MPa. → Differences in behavior of monoketones and cyclohexane-1,4-dione were observed. → Group contribution method was designed and examined. - Abstract: Density data for dilute aqueous solutions of four cyclic ketones (cyclopentanone, cyclohexanone, cycloheptanone, and cyclohexane-1,4-dione) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were close to the saturated vapor pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Contributions of the molecular structural segments (methylene and carbonyl groups) to the standard molar volume were also evaluated and analyzed.

  19. Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Obada, A.-S.F.; Hessian, Hosny A.

    2004-01-01

    We study how intrinsic decoherence leads to growing entropy and a strong degradation of the maximal generated entanglement in the multiquanta Jaynes-Cummings model. We find an exact solution of the Milburn equation in multiquanta precesses and calculate the partial entropy of the particle (atom or trapped ion) and field subsystem as well as total entropy. As the total entropy is not conserved, and it is shown to increase as time develops, one cannot use the partial field or atomic entropy as a direct measure of particle-field entanglement. For a good entropy measure, we also calculate the negativity of the eigenvalues of the partially transposed density matrix. We find that, at least qualitatively, the difference of the total entropy to the sum of field and atom partial entropies can be also used as an entanglement measure. Our results show that the degree of entanglement is very sensitive to any change in the intrinsic decoherence parameter

  20. Effect of temperature on the partial molar volume, isentropic compressibility and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Rodríguez, Diana M.; Ribeiro, Ana C.F.; Esteso, Miguel A.

    2017-01-01

    Highlights: • Apparent volumes, apparent compressibilities, viscosities of DL-2-aminobutyric acid. • Effect of temperature on the values for these properties. • Hydrophobic and hydrophilic interactions and the effect of sodium chloride. - Abstract: Density, sound velocity and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions have been measured at temperatures of (293.15, 298.15, 303.15, 308.15 and 313.15) K. The experimental results were used to determine the apparent molar volume and the apparent molar compressibility as a function of composition at these temperatures. The limiting values of both the partial molar volume and the partial molar adiabatic compressibility at infinite dilution of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions were determined at each temperature. The experimental viscosity values were adjusted by a least-squares method to a second order equation as proposed by Tsangaris-Martin to obtain the viscosity B coefficient which depends on the size, shape and charge of the solute molecule. The influence of the temperature on the behaviour of the selected properties is discussed in terms of both the solute hydration and the balance between hydrophobic and hydrophilic interactions between the acids and water, and the effect of the sodium chloride concentration.

  1. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    Science.gov (United States)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  2. Entropy methods for diffusive partial differential equations

    CERN Document Server

    Jüngel, Ansgar

    2016-01-01

    This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.

  3. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    KAUST Repository

    Kou, Jisheng

    2018-02-25

    In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager\\'s reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.

  4. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2018-01-01

    In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager's reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.

  5. The Correlation of Standard Entropy with Enthalpy Supplied from 0 to 298.15 K

    Science.gov (United States)

    Lambert, Frank L.; Leff, Harvey S.

    2009-01-01

    As a substance is heated at constant pressure from near 0 K to 298 K, each incremental enthalpy increase, dH, alters entropy by dH/T, bringing it from approximately zero to its standard molar entropy S degrees. Using heat capacity data for 32 solids and CODATA results for another 45, we found a roughly linear relationship between S degrees and…

  6. Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.

    Science.gov (United States)

    Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-06-05

    Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.

  7. Excess molar volume and viscosity deviation for binary mixtures of γ-butyrolactone with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Krakowiak, Joanna; Śmiechowski, Maciej

    2017-01-01

    Highlights: • Densities and viscosities of DMSO-GBL binary liquid mixtures were measured. • The volumetric parameters and excess quantities were obtained. • Ab initio calculations were performed for single molecules and dimers in the studied mixture. • The interactions in solutions are weaker than in pure solvents. - Abstract: The densities of binary liquid mixtures of dimethyl sulfoxide and γ-butyrolactone at (293.15, 298.15, 303.15 and 313.15) K and viscosity at T = 298.15 K have been measured at atmospheric pressure over the entire range of concentration. From these data the excess molar volumes V E at (293.15, 298.15, 303.15 and 313.15) K and the viscosity deviation, the excess entropy, and the excess Gibbs energy of activation for viscous flow at T = 298.15 K have been determined. These data were mathematically represented by the Redlich-Kister polynomial. Partial and apparent molar volumes have been calculated for better understanding of the interactions in the binary systems. The obtained data indicate the lack of specific interactions between unlike molecules, which seem to be a little weaker as compared to the interactions in pure solvents.

  8. Molar development in sheep: morphology, radiography, microhardness

    International Nuclear Information System (INIS)

    Milhaud, G.; Nezit, J.

    1991-01-01

    The chronology of molar development is studied from radiographic and macroscopic observations on 48 south Pre-Alps were living under optimal nutritional conditions. It was found that the first molar started its development in utero, the second molar at one month after birth, and the third molar, at 9-10 months. The first molar emerged into the oral cavity at 3 months, the second at 9 months and the third molar at 18 months. The first molar began the development of its roots at 6-7 months, the second molar at 11-12 months and the third molar at 20-22 months. The first molar reached completion of the growth of its roots at 3.5-4 years, the second and the third molars at about 6 years. The molars show the particularity of being functional during the three months which follow their eruption although the development of the crown is not completed. Then the accelerated wear is only partially compensated by the growth of the roots. The study also shows how the combined effects of wear and dentine deposit in the pulp cavity affect the morphology of molars. It reveals the marked hardness of enamel (240 Vickers units) and the low resistance of dentine at the surface of attrition (30 Vickers units)

  9. The in vitro effect of Antimicrobial Photodynamic Therapy on dental microcosm biofilms from partially erupted permanent molars: A pilot study.

    Science.gov (United States)

    de Oliveira, Fabiana Sodré; Cruvinel, Thiago; Cusicanqui Méndez, Daniela Alejandra; Dionísio, Evandro José; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira

    2018-03-01

    Antimicrobial Photodynamic Therapy (aPDT) could enhance the prevention of dental caries lesions in pits and fissures of partially erupted molars, by killing microorganisms from complex dental biofilms. This pilot study aimed to evaluate the effect of Antimicrobial Photodynamic Therapy (aPDT) on the viability of specific microorganism groups of dental microcosm biofilms from occlusal surfaces of first permanent molars in eruption. Dental microcosm biofilms grown on bovine enamel blocks, from dental plaque collected on occlusal surfaces of a partially erupted lower right first permanent molar, with McBain medium plus 1% sucrose in anaerobic condition at 37 °C for 72 h. The experiments were performed in eight groups: L-P- = no treatment (control), L18.75P- = 18.75 J/cm 2 LED, L37.5P- = 37.5 J/cm 2 LED, L75P- = 75 J/cm 2 LED, L-P+ = 200 mM TBO, L18.75P+ = 200 mM TBO + 18.75 J/cm 2 LED, L37.5P+ = 200 mM TBO + 37.5 J/cm 2 LED, and L75P+ = 200 mM TBO + 75 J/cm 2 LED. The counts of total microorganisms, total streptococci and mutans streptococci were determined on selective media agar plates by colony-forming units per mL. The log-transformed counts were analyzed by Kruskal-Wallis and post-hoc Dunn's test (P < 0.05). The counts of all microorganisms treated in the group L75P+ were statistically lower than those treated in L-P-. The aPDT promoted a significant reduction of microorganisms, with a trend of dose-dependent effect. TBO-mediated aPDT was effective in reducing the viability of specific microbial groups in dental microcosm biofilms originated from occlusal of permanent molars in eruption. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experimental study of the density and derived volumetric (excess, apparent, and partial molar volumes) properties of aqueous 1-propanol mixtures at temperatures from 298 K to 582 K and pressures up to 40 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2014-01-01

    Highlights: • Density of (water + 1-propanol) mixtures. • Excess molar volumes of (water + 1-propanol) mixtures. • Apparent molar volumes of (water + 1-propanol) mixtures. -- Abstract: Densities of (water + 1-propanol) mixtures have been measured over the temperature range from 298 K to 582 K and at pressures up to 40 MPa using the constant-volume piezometer immersed in a precision liquid thermostat. The measurements were made for six compositions of (0.869, 2.465, 2.531, 7.407, 14.377, and 56.348) mol · kg −1 of 1-propanol. The expanded uncertainty of the density, pressure, temperature, and concentration measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.06%, 0.05%, 15 mK, and 0.015%, respectively. The derived volumetric properties such as excess (V m E ), apparent (V Φ ), and partial (V ¯ 2 ∞ ) molar volumes were calculated using the measured values of density for the mixture and for pure components (water and 1-propanol). The concentration dependences of the apparent molar volumes were extrapolated to zero concentration to yield the partial molar volumes of 1-propanol at infinite dilution (V ¯ 2 ∞ ). The temperature, pressure, and concentration dependence of density and derived properties of the mixture were studied. All experimental and derived properties (excess, apparent, and partial molar volumes) were compared with the reported data by other authors. The small and negative values of excess molar volume for the mixtures were found at all experimental temperatures, pressures, and over the entire concentration range. The excess molar volume minimum is found at concentration about 0.4 mole fraction of 1-propanol. The concentration minimum of the derived apparent molar volumes V Φ near the 2.5 mol · kg −1 (dilute mixture) was observed

  11. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  12. Vaporization study on nonstoichiometric NbOsub(2+-x) by mass-spectrometric method

    International Nuclear Information System (INIS)

    Matsui, T.; Naito, K.

    1981-01-01

    The vapor pressures over nonstoichiometric NbOsub(2+-x)(s) (1.972 2 (g) and NbO(g) over nonstoichiometric NbOsub(2+-x), from which the partial molar enthalpies and entropies of oxygen were calculated as a function of O/Nb composition. The composition dependence of the partial molar enthalpy and entropy obtained suggested the existence of some kind of short-range ordering in the nonstoichiometric Nbsub(2+-x) (s) phase. The enthalpies of formation of nonstoichiometric NbOsub(2+-x) (s) were also determined as a function of composition by combining the partial molar enthalpies of oxygen with the enthalpy of formation of stoichiometric NbOsub(2.000) (s). The phase diagram around NbOsub(2+-x) at high temperatures was determined from the vaporization study. (orig.)

  13. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    Science.gov (United States)

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  14. Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Jian; ZOU Jian

    2006-01-01

    Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.

  15. Partial molar volume of paracetamol in water, 0.1 M HCl and 0.154 M NaCl at T = (298.15, 303.15, 308.15 and 310.65) K and at 101.325 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed [Department of Chemistry, Quaid-i-Azam University, Islamabad, Capital 54320 (Pakistan)]. E-mail: mjiqauchem@yahoo.com; Malik, Qaisar Mahmood [Department of Chemistry, Quaid-i-Azam University, Islamabad, Capital 54320 (Pakistan)]. E-mail: qaisar_@hotmail.com

    2005-12-15

    The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, V {sub m}, of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E {sup .}, the isobaric coefficient of thermal expansion, {alpha} {sub p}, and the interaction coefficient, S {sub v}, have also been computed. The expansivity data show dependence of E {sup .} values on the structure of the solute molecules.

  16. Partial molar volume of paracetamol in water, 0.1 M HCl and 0.154 M NaCl at T = (298.15, 303.15, 308.15 and 310.65) K and at 101.325 kPa

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Javed; Malik, Qaisar Mahmood

    2005-01-01

    The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, V m , of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E . , the isobaric coefficient of thermal expansion, α p , and the interaction coefficient, S v , have also been computed. The expansivity data show dependence of E . values on the structure of the solute molecules

  17. A Molar Pregnancy within the Fallopian Tube

    Directory of Open Access Journals (Sweden)

    Laura Allen

    2016-01-01

    Full Text Available Background. Discussion of the incidence of molar pregnancy and ectopic pregnancy. Role of salpingostomy and special considerations for postoperative care. Case. The patient is a 29-year-old G7P4 who presented with vaginal bleeding in the first trimester and was initially thought to have a spontaneous abortion. Ultrasound was performed due to ongoing symptoms and an adnexal mass was noted. She underwent uncomplicated salpingostomy and was later found to have a partial molar ectopic pregnancy. Conclusion. This case illustrates the rare occurrence of a molar ectopic pregnancy. There was no indication of molar pregnancy preoperatively and this case highlights the importance of submitting and reviewing pathological specimens.

  18. Apparent and partial molar volumes of long-chain alkyldimethylbenzylammonium chlorides and bromides in aqueous solutions at T=15 deg. C and T=25 deg. C

    International Nuclear Information System (INIS)

    Gonzalez-Perez, A.; Ruso, J.M.; Nimo, J.; Rodriguez, J.R.

    2003-01-01

    Density measurements of dodecyl- (C 12 DBACl), tetradecyl- (C 14 DBACl), hexadecyldimethylbenzylammonium chloride (C 16 DBACl) and of decyl- (C 10 DBABr) and dodecyldimethylbenzylammonium bromide (C 12 DBABr) in aqueous solutions at T=15 deg. C and T=25 deg. C have been carried out. From these results, apparent and partial molar volumes were calculated. Positive deviations from the Debye-Hueckel limiting law provide evidence for limited association at concentrations below the critical micelle concentration. The change of the apparent molar volume upon micellization was calculated. The relevant parameters have been presented in function of the alkyl chain length. Apparent molar volumes of the present compounds in the micellar phase, V phi m , and the change upon micellization, ΔV phi m , have been discussed in terms of temperature and type of counterion

  19. Association of the Mandibular Third Molar Position to the Pericoronitis

    Directory of Open Access Journals (Sweden)

    Tsvetan Tsvetanov

    2018-02-01

    Full Text Available Introduction: Pericoronitis is inflammation of the soft tissues surrounding the crown of a partially erupted tooth. Objective: To provide measurement of lower third molar angulation and determine relationship between mandibular third molar position and presence of pericoronitis. Material and methods: We studied 104 patients with lower third molar pericoronitis with clinical manifestations and measurement of lower third molar angulation. The mean age of patients was 25.7 years (range 18-35 years. Results: In this study was used the following statistical analysis, Pearson correlation coefficient and Spearman’s correlation coefficient (nonparametric version of the Pearson correlation coefficient for measure of the linear correlation between two variables - pericoronitis and angulation of the lower third molars. The chi-square test was used to assesses case incidences. The level of significance was p<0.05. 36.04% of partially impacted mandibular third molars were mesioangular followed by the vertical (25.47%, horizontal (18.97%, distoangular (9.21%, buccal (5.42% and lingual (3.79% position. The lowest part of the mandibular third molars is located in the ramus of mandible (1.08%. The present study was found in relation to mesioangular, distoangular, vertical impaction and pericoronitis (p<0.05. Conclusion: We conclude that the position of lower third molar may be able to be associated with presence of pericoronitis.

  20. Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars.

    Science.gov (United States)

    Mansfield, J M; Campbell, J H; Bhandari, A R; Jesionowski, A M; Vickerman, M M

    2012-07-01

    Small subunit rRNA sequencing and phylogenetic analysis were used to identify cultivable and uncultivable microorganisms present in the dental plaque of symptomatic and asymptomatic partially erupted third molars to determine the prevalence of putative periodontal pathogens in pericoronal sites. Template DNA prepared from subgingival plaque collected from partially erupted symptomatic and asymptomatic mandibular third molars and healthy incisors was used in polymerase chain reaction with broad-range oligonucleotide primers to amplify 16S rRNA bacterial and archaeal genes. Amplicons were cloned, sequenced, and compared with known nucleotide sequences in online databases to identify the microorganisms present. Two thousand three hundred two clones from the plaque of 12 patients carried bacterial sequences from 63 genera belonging to 11 phyla, including members of the uncultivable TM7, SR1, and Chloroflexi, and difficult-to-cultivate Synergistetes and Spirochaetes. Dialister invisus, Filifactor alocis, Fusobacterium nucleatum, Porphyromonas endodontalis, Prevotella denticola, Tannerella forsythia, and Treponema denticola, which have been associated with periodontal disease, were found in significantly greater abundance in pericoronal compared with incisor sites. Dialister invisus and F nucleatum were found in greater abundance in sites exhibiting clinical symptoms. The archaeal species, Methanobrevibacter oralis, which has been associated with severe periodontitis, was found in 3 symptomatic patients. These findings have provided new insights into the complex microbiota of pericoronitis. Several bacterial and archaeal species implicated in periodontal disease were recovered in greater incidence and abundance from the plaque of partially erupted third molars compared with incisors, supporting the hypothesis that the pericoronal region may provide a favored niche for periodontal pathogens in otherwise healthy mouths. Copyright © 2012 American Association of Oral and

  1. Thermodynamic study of (heptane + amine) mixtures. III: Excess and partial molar volumes in mixtures with secondary, tertiary, and cyclic amines at 298.15 K

    International Nuclear Information System (INIS)

    Lepori, Luciano; Gianni, Paolo; Spanedda, Andrea; Matteoli, Enrico

    2011-01-01

    Graphical abstract: Highlights: → Excess volumes of (sec., tert., or cyclic amines + heptane) mixtures. → Excess volumes are positive for small size amines and decrease as the size increases. → Group contributions to predict the partial molar volumes of amines in heptane. → The void volume is larger for sec. and tert. than for linear amines in heptane. → The void volume is much smaller for cyclic than for linear amines in heptane. - Abstract: Excess molar volumes V E at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of {heptane + open chain secondary (diethyl to dibutyl) and tertiary (triethyl to tripentyl) amines} as well as for cyclic imines (C 2 , C 3 , C 4 , C 6 , and C 7 ) and primary cycloalkylamines (C 5 , C 6 , C 7 , and C 12 ). The V E values were found positive for mixtures involving small size amines, with V E decreasing as the size increases. Negative V E 's were found for tributyl- and tripentylamine, heptamethylenimine, and cyclododecylamine. Mixtures of heptane with cycloheptylamine showed an s-shaped curve. Partial molar volumes V 0 of amines at infinite dilution in heptane were obtained from V E and compared with V 0 of hydrocarbons and other classes of organic compounds taken from literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH 3 , CH 2 , CH, C, NH 2 , NH, N, OH, O, CO, and COO) contributions to V 0 . These contributions, the effect of cyclization on V 0 , and the limiting slope of the apparent excess molar volumes were discussed in terms of solute-solvent and solute-solute interactions.

  2. Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián César

    2018-04-01

    Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.

  3. Prevalence of missing and impacted third molars in adults aged 25 years and above

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yun Hoa; Cho, Bong Hae [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yansan (Korea, Republic of)

    2013-12-15

    The purpose of this study was to determine the prevalence of missing and impacted third molars in people aged 25 years and above. The study sample of 3,799 patients was chosen randomly from patients who visited Pusan National University Dental Hospital and had panoramic radiographs taken. The data collected included presence and impaction state, angulation, and depth of impaction of third molars, and radiographically detected lesions of third molars and adjacent second molars. A greater percentage of men than women retained at least one third molar. The incidence of third molars decreased with increasing age. The incidence of partially impacted third molars greatly declined after the age of 30. Vertically impacted maxillary third molars and horizontally impacted mandibular third molars were most frequent in all age groups. Among the maxillary third molars, those impacted below the cervical line of the second molar were most frequent in all age groups, and among the mandibular third molars, deeply impacted third molars were most frequent in those aged over 40. Dental caries was the most common radiographic lesion of the third molars. Mesioangularly impacted third molars showed radiographic lesions in 13 (9.5%) adjacent maxillary second molars and 117 (27.4%) mandibular second molars. The number of remaining third molars decreased and the percentage of Class C depth increased with age. Caries was the most frequent lesion in third molars. Partially impacted mesioangular third molars showed a high incidence of caries or periodontal bone loss of the adjacent second molar. Regular oral examination will be essential to keep asymptomatic third molars in good health.

  4. Prevalence of missing and impacted third molars in adults aged 25 years and above

    International Nuclear Information System (INIS)

    Jung, Yun Hoa; Cho, Bong Hae

    2013-01-01

    The purpose of this study was to determine the prevalence of missing and impacted third molars in people aged 25 years and above. The study sample of 3,799 patients was chosen randomly from patients who visited Pusan National University Dental Hospital and had panoramic radiographs taken. The data collected included presence and impaction state, angulation, and depth of impaction of third molars, and radiographically detected lesions of third molars and adjacent second molars. A greater percentage of men than women retained at least one third molar. The incidence of third molars decreased with increasing age. The incidence of partially impacted third molars greatly declined after the age of 30. Vertically impacted maxillary third molars and horizontally impacted mandibular third molars were most frequent in all age groups. Among the maxillary third molars, those impacted below the cervical line of the second molar were most frequent in all age groups, and among the mandibular third molars, deeply impacted third molars were most frequent in those aged over 40. Dental caries was the most common radiographic lesion of the third molars. Mesioangularly impacted third molars showed radiographic lesions in 13 (9.5%) adjacent maxillary second molars and 117 (27.4%) mandibular second molars. The number of remaining third molars decreased and the percentage of Class C depth increased with age. Caries was the most frequent lesion in third molars. Partially impacted mesioangular third molars showed a high incidence of caries or periodontal bone loss of the adjacent second molar. Regular oral examination will be essential to keep asymptomatic third molars in good health.

  5. Entropy of level-cut random Gaussian structures at different volume fractions.

    Science.gov (United States)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  6. Entropy of level-cut random Gaussian structures at different volume fractions

    Science.gov (United States)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  7. Apparent molar volumes and compressibilities of electrolytes and ions in γ-butyrolactone

    International Nuclear Information System (INIS)

    Krakowiak, Joanna; Wawer, Jarosław; Farmas, Aleksander

    2012-01-01

    Highlights: ► Density and speed of sound for salts solutions in γ-butyrolactone were measured. ► The apparent molar volumes and compressibilities have been determined. ► The limiting molar quantities are split into independent ionic contributions. ► These data are used to describe ion–solvent interactions. - Abstract: The densities of tetraphenylphosphonium bromide, sodium tetraphenylborate, lithium perchlorate, sodium perchlorate and lithium bromide in γ-butyrolactone at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and speed of sound at 298.15 K have been measured. From these data apparent molar volumes V Φ at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and the apparent molar isentropic compressibility K S,Φ , at T = 298.15 K of the salts have been determined. The apparent molar volumes and the apparent molar isentropic compressibilities were fitted to the Redlich, Rosenfeld and Mayer equation as well as to the Pitzer and Masson equations yielding infinite dilution data. The obtained limiting values have been used to estimate the ionic data of the standard partial molar volume and the standard partial isentropic compressibility in γ-butyrolactone solutions.

  8. Partial molar volumes of organic solutes in water. XXIV. Selected alkane-α,ω-diols at temperatures T = 298 K to 573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan; Hnědkovský, Lubomír

    2013-01-01

    Highlights: • Standard molar volumes of three alkane-α,ω-diols (C 5 , C 8 , C 9 ) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Dependences on carbon atom number, temperature, and pressure are analysed. -- Abstract: Density data for dilute aqueous solutions of three alkane-α,ω-diols (pentane-1,5-diol, octane-1,8-diol, nonane-1,9-diol) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were slightly above the saturation vapour pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Measured standard molar volumes were combined with data previously published for other members of the homologous series and discussed. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Dependences of standard molar volumes on temperature and pressure were analysed. Contributions of the methylene group to the standard molar volume were also evaluated and discussed

  9. Prevalence of missing and impacted third molars in adults aged 25 years and above

    Science.gov (United States)

    Jung, Yun-Hoa

    2013-01-01

    Purpose The purpose of this study was to determine the prevalence of missing and impacted third molars in people aged 25 years and above. Materials and Methods The study sample of 3,799 patients was chosen randomly from patients who visited Pusan National University Dental Hospital and had panoramic radiographs taken. The data collected included presence and impaction state, angulation, and depth of impaction of third molars, and radiographically detected lesions of third molars and adjacent second molars. Results A greater percentage of men than women retained at least one third molar. The incidence of third molars decreased with increasing age. The incidence of partially impacted third molars greatly declined after the age of 30. Vertically impacted maxillary third molars and horizontally impacted mandibular third molars were most frequent in all age groups. Among the maxillary third molars, those impacted below the cervical line of the second molar were most frequent in all age groups, and among the mandibular third molars, deeply impacted third molars were most frequent in those aged over 40. Dental caries was the most common radiographic lesion of the third molars. Mesioangularly impacted third molars showed radiographic lesions in 13 (9.5%) adjacent maxillary second molars and 117 (27.4%) mandibular second molars. Conclusion The number of remaining third molars decreased and the percentage of Class C depth increased with age. Caries was the most frequent lesion in third molars. Partially impacted mesioangular third molars showed a high incidence of caries or periodontal bone loss of the adjacent second molar. Regular oral examination will be essential to keep asymptomatic third molars in good health. PMID:24380060

  10. Hydrogen bond basicity of ionic liquids and molar entropy of hydration of salts as major descriptors in the formation of aqueous biphasic systems.

    Science.gov (United States)

    Passos, Helena; Dinis, Teresa B V; Cláudio, Ana Filipa M; Freire, Mara G; Coutinho, João A P

    2018-05-23

    Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and conventional salts have been largely investigated and successfully used in separation processes, for which the determination of the corresponding ternary phase diagrams is a prerequisite. However, due the large number of ILs that can be prepared and their high structural versatility, it is impossible to experimentally cover and characterize all possible combinations of ILs and salts that may form ABS. The development of tools for the prediction and design of IL-based ABS is thus a crucial requirement. Based on a large compilation of experimental data, a correlation describing the formation of IL-based ABS is shown here, based on the hydrogen-bonding interaction energies of ILs (EHB) obtained by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and the molar entropy of hydration of the salt ions. The ability of the proposed model to predict the formation of novel IL-based ABS is further ascertained.

  11. Solubilities and partial molar volumes of N,N′-dibutyl-oxalamide, N,N′-dihexyl-oxalamide, N,N′-dioctyl-oxalamide in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Luo, Jie; Yang, Hai-Jian; Jin, Jing; Chang, Fei

    2012-01-01

    Highlights: ► Three new “CO 2 -philic” compounds were designed and synthesized. ► The tested solubility data were calculated and correlated with two models. ► Satisfactory agreements were obtained between the tested and calculated data. ► AARD was lower than 13% for Chrastil model correlation. ► The partial molar volumes V ¯ 2 for each compound were estimated. - Abstract: Three new potent CO 2 -philic compounds were synthesized and their structures were characterized by FT-IR, NMR, and elemental analysis. The solubility of the three compounds in supercritical CO 2 was determined at T = (313 to 353) K from 9.1 MPa to 15.0 MPa. The experimental data were correlated with two density-based models proposed by Bartle and Chrastil, and the calculated results showed good agreement with the tested data. The calculated data by Bartle model differed from the measured values by (6.76 to 9.60)%, and the average value of absolute relative deviations (AARD) with Chrastil model were observed to be between (7.42 to 12.27)%. Furthermore, solubility data were also utilized to estimate the partial molar volume V ¯ 2 for each compound in the supercritical phase using the theory developed by Kumar and Johnston.

  12. Apparent and standard partial molar heat capacities and volumes of aqueous tartaric acid and its sodium salts at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Xie Wei; Trevani, Liliana; Tremaine, Peter R.

    2004-01-01

    Apparent molar heat capacities and volumes have been determined for aqueous solutions of tartaric acid (H 2 Tar, Tar=C 4 H 4 O 6 ), two buffer solutions of (H 2 Tar/NaHTar) and (NaHTar/Na 2 Tar), and solutions of disodium tartrate (Na 2 Tar) at four temperatures in the range 283.15≤T/K≤328.15 at p=1 MPa. Apparent molar volumes for H 2 Tar(aq) and Na 2 Tar(aq) have been measured at temperatures 377.15≤T/K≤529.15 and p=10.4 MPa. The experimental results have been represented with a model to describe the molality and temperature dependence. Extrapolations to infinite dilution yielded standard partial molar heat capacities C p 0 and volumes V 0 for the species H 2 Tar(aq), HTar - (aq) and Tar 2- (aq) over the range of experimental measurements. The temperature dependence of V 0 for Na 2 Tar(aq) is consistent with other aqueous electrolytes, while that of H 2 Tar(aq) may be anomalous, in that it does not show divergence towards increasingly positive values with increasing temperature

  13. Conditional quantum entropy power inequality for d-level quantum systems

    Science.gov (United States)

    Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok

    2018-04-01

    We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.

  14. The Partial Molar Volume and Compressibility of FeO in CaO-SiO2 Liquids: Systematic Variation with Fe2+ Coordination Change

    Science.gov (United States)

    Guo, X.; Lange, R. A.; Ai, Y.

    2009-12-01

    Iron is an important element in magmatic liquid, since its concentration can range up to 18% in some basaltic liquids, and it has two oxidation states. In order to model magmatic processes, thermodynamic descriptions of silicate melts must include precise information for both the FeO and Fe2O3 components. Currently, the partial molar volume of FeO is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Yet these data are required in order to convert sound speed measurements on FeO-bearing liquids into compressibility data, which in turn are needed extend density models for magmatic liquids to elevated pressures. Moreover, there is growing evidence from the spectroscopic literature that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and thus it is possible that the partial molar volume and compressibility of FeO may vary with Fe2+ coordination, and thus with melt composition. To explore these issues, we have conducted both density and relaxed sound speed measurements on liquids in the CaO-FeO-SiO2 system, where the CaO/SiO2 ratio was systematically varied at constant FeO concentration (40 mol%). Density was measured between 1594 and 1813K with the double-bob Archimedean method using molybdenum bobs and crucible in a reducing gas (1%CO-99%Ar) environment. The sounds speeds were measured under similar conditions with a frequency-sweep acoustic interferometer. The derived partial molar volume of FeO increases systematically from 13.7 to 15.2 cm3/mol at 1673 K as the CaO/SiO2 ratio increases and the Fe2+ coordination number decreases. From a comparison with the crystalline volume of FeO (halite structure; 12.06 cm3/mol), which serves as a lower limit for VFeO in silicate liquids when Fe2+ is in 6-fold coordination, we estimate that the average Fe2+ coordination in our experimental melts extends up to values between 5 and 4, consistent with the spectroscopic literature. The

  15. High temperature thermodynamics of solutions of oxygen in vanadium, niobium and tantalum

    International Nuclear Information System (INIS)

    Boureau, G.; Gerdanian, P.

    1981-01-01

    The Tian-Calvet microcalorimetric method has been applied to the determination at 1323 K of ΔH(O 2 ), the partial molar enthalpy of mixing of oxygen in vanadium, niobium and tantalum. The present results are in good agreement with earlier studies using e.m.f. techniques. Nevertheless in the first two solutions, ΔH(O 2 ) has been found somewhat more negative than previously reported. The partial molar entropies of mixing have been recalculated. The low values of the excess entropies are explained by a strong increase of the Debye temperature and a decrease of the electronic density of states at the Fermi level as the oxygen content increases. (author)

  16. Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide

    International Nuclear Information System (INIS)

    Warmińska, Dorota; Wawer, Jarosław

    2012-01-01

    Highlights: ► Sequence of volumes and compressibilities of Ln 3+ ions in DMSO is: La 3+ > Gd 3+ 3+ . ► Sequence of the partial molar volumes do not change with temperature. ► These results are the consequence of nature of the ion–solvent bonding. - Abstract: Temperature dependencies of the densities of dimethylsulfoxide solutions of lanthanum, gadolinium and lutetium trifluoromethanesulfonates have been determined over a wide range of concentrations. The apparent molar volumes and partial molar volumes of the salts at infinite dilution, as well as the expansibilities of the salts, have been calculated from density data. Additionally, the apparent molar isentropic compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates have been calculated from sound velocity data at 298.15 K. The data obtained have been interpreted in terms of ion−solvent interactions.

  17. The constraint rule of the maximum entropy principle

    NARCIS (Netherlands)

    Uffink, J.

    1995-01-01

    The principle of maximum entropy is a method for assigning values to probability distributions on the basis of partial information. In usual formulations of this and related methods of inference one assumes that this partial information takes the form of a constraint on allowed probability

  18. The influence of point defects on the entropy profiles of Lithium Ion Battery cathodes: a lattice-gas Monte Carlo study

    International Nuclear Information System (INIS)

    Mercer, Michael P.; Finnigan, Sophie; Kramer, Denis; Richards, Daniel; Hoster, Harry E.

    2017-01-01

    In-situ diagnostic tools have become established to as a means to understanding the aging processes that occur during charge/discharge cycles in Li-ion batteries (LIBs). One electrochemical thermodynamic technique that can be applied to this problem is known as entropy profiling. Entropy profiles are obtained by monitoring the variation in the open circuit potential as a function of temperature. The peaks in these profiles are related to phase transitions, such as order/disorder transitions, in the lattice. In battery aging studies of cathode materials, the peaks become suppressed but the mechanism by which this occurs is currently poorly understood. One suggested mechanism is the formation of point defects. Intentional modifications of LIB electrodes may also lead to the introduction of point defects. To gain quantitative understanding of the entropy profile changes that could be caused by point defects, we have performed Monte Carlo simulations on lattices of variable defect content. As a model cathode, we have chosen manganese spinel, which has a well-described order-disorder transition when it is half filled with Li. We assume, in the case of trivalent defect substitution (M = Cr,Co) that each defect M permanently pins one Li atom. This assumption is supported by Density Functional Theory (DFT) calculations. Assuming that the distribution of the pinned Li sites is completely random, we observe the same trend in the change in partial molar entropy with defect content as observed in experiment: the peak amplitudes become increasing suppressed as the defect fraction is increased. We also examine changes in the configurational entropy itself, rather than the entropy change, as a function of the defect fraction and analyse these results with respect to the ones expected for an ideal solid solution. We discuss the implications of the quantitative differences between some of the results obtained from the model and the experimentally observed ones.

  19. Buoyancy Effect of Ionic Vacancy on the Change of the Partial Molar Volume in Ferricyanide-Ferrocyanide Redox Reaction under a Vertical Gravity Field

    Directory of Open Access Journals (Sweden)

    Yoshinobu Oshikiri

    2013-01-01

    Full Text Available With a gravity electrode (GE in a vertical gravity field, the buoyancy effect of ionic vacancy on the change of the partial molar volume in the redox reaction between ferricyanide (FERRI and ferrocyanide (FERRO ions was examined. The buoyancy force of ionic vacancy takes a positive or negative value, depending on whether the rate-determining step is the production or extinction of the vacancy. Though the upward convection over an upward electrode in the FERRO ion oxidation suggests the contribution of the positive buoyancy force arising from the vacancy production, the partial molar volume of the vacancy was not measured. On the other hand, for the downward convection under a downward electrode in the FERRI ion reduction, it was not completely but partly measured by the contribution of the negative buoyancy force from the vacancy extinction. Since the lifetime of the vacancy is decreased by the collision between ionic vacancies during the convection, the former result was ascribed to the shortened lifetime due to the increasing collision efficiency in the enhanced upward convection over an upward electrode, whereas the latter was thought to arise from the elongated lifetime due to the decreasing collision efficiency by the stagnation under the downward electrode.

  20. Experimental standard molar enthalpies of formation of some methylbenzenediol isomers

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Lobo Ferreira, Ana I.M.C.

    2009-01-01

    The present work is part of a research program on the energetics of formation of alkyl substituted benzenediols, aiming the study of the enthalpic effect of the introduction of methyl substituents into benzenediols. In this work we present the results of the thermochemical research on 2-methylresorcinol, 3-methylresorcinol, 4-methylresorcinol, and methylhydroquinone. The standard (p 0 =0.1MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds mentioned above were derived from their standard massic energies of combustion, measured by static-bomb combustion calorimetry, while the standard molar enthalpies of sublimation of those compounds were obtained by the temperature dependence of their vapour pressures determined by the Knudsen effusion technique. From experimental values, the standard molar enthalpies of formation of the studied methylbenzenediols in the gaseous phase, at T = 298.15 K were then derived. The results are interpreted in terms of structural contributions to the energetics of the substituted benzenediols and compared with the same parameters estimated from the Cox Scheme. Moreover, the standard (p 0 =0.1MPa) molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived for the four isomers of methylbenzenediols.

  1. Intrinsic alterations in the partial molar volume on the protein denaturation: surficial Kirkwood-Buff approach.

    Science.gov (United States)

    Yu, Isseki; Takayanagi, Masayoshi; Nagaoka, Masataka

    2009-03-19

    The partial molar volume (PMV) of the protein chymotrypsin inhibitor 2 (CI2) was calculated by all-atom MD simulation. Denatured CI2 showed almost the same average PMV value as that of native CI2. This is consistent with the phenomenological question of the protein volume paradox. Furthermore, using the surficial Kirkwood-Buff approach, spatial distributions of PMV were analyzed as a function of the distance from the CI2 surface. The profiles of the new R-dependent PMV indicate that, in denatured CI2, the reduction in the solvent electrostatic interaction volume is canceled out mainly by an increment in thermal volume in the vicinity of its surface. In addition, the PMV of the denatured CI2 was found to increase in the region in which the number density of water atoms is minimum. These results provide a direct and detailed picture of the mechanism of the protein volume paradox suggested by Chalikian et al.

  2. Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol

    International Nuclear Information System (INIS)

    Jiang Haichao; Wang Jianying; Zhao Fengyun; Qi Guodi; Hu Yongqi

    2012-01-01

    Highlights: ► Density and surface tension of [Ocpy][NO 3 ] were measured. ► Thermal expansion coefficient, molecular volume, and standard entropies were obtained. ► The critical temperature and enthalpy of vaporization were discussed. ► Density and surface tension were measured for (ionic liquid + alcohols) mixtures. ► Excess molar volumes and surface tension deviations were fitted to Redlich–Kister equation. - Abstract: The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.

  3. High temperature thermodynamics of H2 and D2 in titanium, and in dilute titanium oxygen solid solutions

    International Nuclear Information System (INIS)

    Dantzer, P.

    1983-01-01

    The Tian Calvet microcalorimetric method has been improved in order to determine ΔH-barsub(H)(D), the partial molar enthalpy of mixing of hydrogen (deuterium) in the Ti-H 2 (D 2 ) solid systems for compositions 0 2 solid solutions (y = (O/Ti)) at 745 K. The combined calorimetric and equilibrium method allows a precise evaluation of the partial molar entropies. The results of this study differ substantially from earlier published data. (author)

  4. The Partial Molar Volume and Thermal Expansivity of Fe2O3 in Alkali Silicate Liquids: Evidence for the Average Coordination of Fe3+

    Science.gov (United States)

    Liu, Q.; Lange, R.

    2003-12-01

    Ferric iron is an important component in magmatic liquids, especially in those formed at subduction zones. Although it has long been known that Fe3+ occurs in four-, five- and six-fold coordination in crystalline compounds, only recently have all three Fe3+ coordination sites been confirmed in silicate glasses utilizing XANES spectroscopy at the Fe K-edge (Farges et al., 2003). Because the density of a magmatic liquid is largely determined by the geometrical packing of its network-forming cations (e.g., Si4+, Al3+, Ti4+, and Fe3+), the capacity of Fe3+ to undergo composition-induced coordination change affects the partial molar volume of the Fe2O3 component, which must be known to calculate how the ferric-ferrous ratio in magmatic liquids changes with pressure. Previous work has shown that the partial molar volume of Fe2O3 (VFe2O3) varies between calcic vs. sodic silicate melts (Mo et al., 1982; Dingwell and Brearley, 1988; Dingwell et al., 1988). The purpose of this study is to extend the data set in order to search for systematic variations in VFe2O3 with melt composition. High temperature (867-1534° C) density measurements were performed on eleven liquids in the Na2O-Fe2O3-FeO-SiO2 (NFS) system and five liquids in the K2O-Fe2O3-FeO-SiO2 (KFS) system using Pt double-bob Archimedean method. The ferric-ferrous ratio in the sodic and potassic liquids at each temperature of density measurement were calculated from the experimentally calibrated models of Lange and Carmichael (1989) and Tangeman et al. (2001) respectively. Compositions range (in mol%) from 4-18 Fe2O3, 0-3 FeO, 12-39 Na2O, 25-37 K2O, and 43-78 SiO2. Our density data are consistent with those of Dingwell et al. (1988) on similar sodic liquids. Our results indicate that for all five KFS liquids and for eight of eleven NFS liquids, the partial molar volume of the Fe2O3 component is a constant (41.57 ñ 0.14 cm3/mol) and exhibits zero thermal expansivity (similar to that for the SiO2 component). This value

  5. Application of Shannon Wavelet Entropy and Shannon Wavelet Packet Entropy in Analysis of Power System Transient Signals

    Directory of Open Access Journals (Sweden)

    Jikai Chen

    2016-12-01

    Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.

  6. Fate of third molar in line of mandibular angle fracture - Retrospective study

    Directory of Open Access Journals (Sweden)

    Preetha Balaji

    2015-01-01

    Conclusion: The present study fails to identify any concrete factors that would predict the failure of the retained third molar that were involved in the line of mandibular fractures. The proof presented here, especially with low complication rates indicate that all impacted third molar along the line of fracture be removed and unless necessary, the partially erupted teeth would also be extracted. In such a situation, the rate of infection and survival of the third molar would have been entirely different.

  7. SpatEntropy: Spatial Entropy Measures in R

    OpenAIRE

    Altieri, Linda; Cocchi, Daniela; Roli, Giulia

    2018-01-01

    This article illustrates how to measure the heterogeneity of spatial data presenting a finite number of categories via computation of spatial entropy. The R package SpatEntropy contains functions for the computation of entropy and spatial entropy measures. The extension to spatial entropy measures is a unique feature of SpatEntropy. In addition to the traditional version of Shannon's entropy, the package includes Batty's spatial entropy, O'Neill's entropy, Li and Reynolds' contagion index, Ka...

  8. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  9. Properties of pure n-butylammonium nitrate ionic liquid and its binary mixtures of with alcohols at T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Xu, Yingjie; Chen, Bin; Qian, Wu; Li, Haoran

    2013-01-01

    Highlights: ► Densities and viscosities of (N4NO 3 + alcohols) mixtures were measured. ► Coefficient of thermal expansion, molecular volume, standard entropy, and lattice energy were obtained. ► Excess molar volumes, viscosity deviations, and partial molar volumes were calculated. ► Redlich–Kister polynomial was used to correlate the excess properties. ► The intermolecular interactions between N4NO 3 and alcohols were analysed. -- Abstract: Values of the density and viscosity of the pure ionic liquid n-butylammonium nitrate (N4NO 3 ) and its binary mixtures with methanol, ethanol, 1-propanol, and 1-butanol were measured at temperature ranging from T = (293.15 to 313.15) K. The thermal expansion coefficient, molecular volume, standard entropy, and lattice energy of N4NO 3 were deduced from the experimental density results. The temperature dependence of the viscosity of N4NO 3 was fitted to the fluidity equation. Excess molar volumes V E and viscosity deviations Δη for the binary mixtures were calculated and fitted to the Redlich–Kister equation with satisfactory results. Both excess molar volumes and viscosity deviations show negative deviations for (N4NO 3 + alcohol) mixtures. The effect of the temperature and the size of the alcohol on the excess molar volumes and viscosity deviations are discussed and analysed. Other derived properties, such as the apparent molar volume, partial molar volume, excess partial molar volume, thermal expansion coefficient, and excess thermal expansion coefficient of the above-mentioned systems were also calculated

  10. Adjoint entropy vs topological entropy

    OpenAIRE

    Giordano Bruno, Anna

    2012-01-01

    Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...

  11. Upper entropy axioms and lower entropy axioms

    International Nuclear Information System (INIS)

    Guo, Jin-Li; Suo, Qi

    2015-01-01

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics

  12. Efficacy of orally administered prednisolone versus partial endodontic treatment on pain reduction in emergency care of acute irreversible pulpitis of mandibular molars: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Kérourédan, Olivia; Jallon, Léonard; Perez, Paul; Germain, Christine; Péli, Jean-François; Oriez, Dominique; Fricain, Jean-Christophe; Arrivé, Elise; Devillard, Raphaël

    2017-03-28

    Irreversible pulpitis is a highly painful inflammatory condition of the dental pulp which represents a common dental emergency. Recommended care is partial endodontic treatment. The dental literature reports major difficulties in achieving adequate analgesia to perform this emergency treatment, especially in the case of mandibular molars. In current practice, short-course, orally administered corticotherapy is used for the management of oral pain of inflammatory origin. The efficacy of intraosseous local steroid injections for irreversible pulpitis in mandibular molars has already been demonstrated but resulted in local comorbidities. Oral administration of short-course prednisolone is simple and safe but its efficacy to manage pain caused by irreversible pulpitis has not yet been demonstrated. This trial aims to evaluate the noninferiority of short-course, orally administered corticotherapy versus partial endodontic treatment for the emergency care of irreversible pulpitis in mandibular molars. This study is a noninferiority, open-label, randomized controlled clinical trial conducted at the Bordeaux University Hospital. One hundred and twenty subjects will be randomized in two 1:1 parallel arms: the intervention arm will receive one oral dose of prednisolone (1 mg/kg) during the emergency visit, followed by one morning dose each day for 3 days and the reference arm will receive partial endodontic treatment. Both groups will receive planned complete endodontic treatment 72 h after enrollment. The primary outcome is the proportion of patients with pain intensity below 5 on a Numeric Scale 24 h after the emergency visit. Secondary outcomes include comfort during care, the number of injected anesthetic cartridges when performing complete endodontic treatment, the number of antalgic drugs and the number of patients coming back for consultation after 72 h. This randomized trial will assess the ability of short-term corticotherapy to reduce pain in irreversible

  13. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  14. Entropy, neutro-entropy and anti-entropy for neutrosophic information

    OpenAIRE

    Vasile Patrascu

    2017-01-01

    This approach presents a multi-valued representation of the neutrosophic information. It highlights the link between the bifuzzy information and neutrosophic one. The constructed deca-valued structure shows the neutrosophic information complexity. This deca-valued structure led to construction of two new concepts for the neutrosophic information: neutro-entropy and anti-entropy. These two concepts are added to the two existing: entropy and non-entropy. Thus, we obtained the following triad: e...

  15. Physical entropy, information entropy and their evolution equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.

  16. Explaining the entropy concept and entropy components

    Directory of Open Access Journals (Sweden)

    Marko Popovic

    2018-04-01

    Full Text Available Total entropy of a thermodynamic system consists of two components: thermal entropy due to energy, and residual entropy due to molecular orientation. In this article, a three-step method for explaining entropy is suggested. Step one is to use a classical method to introduce thermal entropy STM as a function of temperature T and heat capacity at constant pressure Cp: STM = ∫(Cp/T dT. Thermal entropy is the entropy due to uncertainty in motion of molecules and vanishes at absolute zero (zero-point energy state. It is also the measure of useless thermal energy that cannot be converted into useful work. The next step is to introduce residual entropy S0 as a function of the number of molecules N and the number of distinct orientations available to them in a crystal m: S0 = N kB ln m, where kB is the Boltzmann constant. Residual entropy quantifies the uncertainty in molecular orientation. Residual entropy, unlike thermal entropy, is independent of temperature and remains present at absolute zero. The third step is to show that thermal entropy and residual entropy add up to the total entropy of a thermodynamic system S: S = S0 + STM. This method of explanation should result in a better comprehension of residual entropy and thermal entropy, as well as of their similarities and differences. The new method was tested in teaching at Faculty of Chemistry University of Belgrade, Serbia. The results of the test show that the new method has a potential to improve the quality of teaching.

  17. Deciduous molar hypomineralization and molar incisor hypomineralization

    NARCIS (Netherlands)

    Elfrink, M.E.C.; ten Cate, J.M.; Jaddoe, V.W.V.; Hofman, A.; Moll, H.A.; Veerkamp, J.S.J.

    2012-01-01

    This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. This study focused on the relationship between Deciduous Molar Hypomineralization (DMH) and Molar Incisor Hypomineralization (MIH). First permanent molars develop

  18. Entropy, neutro-entropy and anti-entropy for neutrosophic information

    OpenAIRE

    Vasile Patrascu

    2017-01-01

    This article shows a deca-valued representation of neutrosophic information in which are defined the following features: truth, falsity, weak truth, weak falsity, ignorance, contradiction, saturation, neutrality, ambiguity and hesitation. Using these features, there are constructed computing formulas for entropy, neutro-entropy and anti-entropy.

  19. Phase equilibria and excess molar volumes of tetrahydrofuran (1) + deuterium oxide (2)

    International Nuclear Information System (INIS)

    Lejcek, P.; Matous, J.; Novak, J.P.; Pick, J.

    1975-01-01

    Vapour + liquid equilibrium at 313.15 and 333.15K, liquid + liquid equilibrium throughout the whole region of limited miscibility, and excess molar volumes at 298.15K have been studied for tetrahydrofuran + deuterium oxide. The mixtures show large positive deviations from Raoult's law and a closed loop of limited miscibility. The modified Redlich-Kister equation has been used for the correlation of the vapour + liquid equilibrium. The computation has been carried out according to a recently proposed procedure which makes it possible to obtain such constants of the correlation relation which are not inconsistent with physical reality, i.e. with the complete miscibility (partial delta 2 G/deltax 1 2 >0) under experimental conditions. Thermodynamic consistency was checked by the classical Redlich-Kister test and the one proposed by Ulrichson and Stevenson. Excess molar volumes are negative at all compositions with a point of inflexion in the water-rich region which indicates the extremes in partial molar volumes. (author)

  20. Experimental evidence for excess entropy discontinuities in glass-forming solutions.

    Science.gov (United States)

    Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas

    2012-02-21

    Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics

  1. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar; Lee, Inkyu; Moon, Il

    2015-01-01

    Excess molar volumes (V m E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V m E values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V m E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V m E values for systems with s-shaped V m E versus x 1 graph, the V m E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures

  2. Solubility comparison and partial molar volumes of 1,2-hexanediol before and after end-group modification by methyl oxalyl chloride and ethyl oxalyl monochloride in supercritical CO2

    International Nuclear Information System (INIS)

    Zhao, Lu; Yang, Hai-Jian; Cai, Zhuofu

    2013-01-01

    Highlights: ► Two new “CO 2 -philic” compounds were designed and synthesized. ► The tested solubility data were calculated and correlated with two models. ► Satisfactory agreements were obtained between the tested and calculated data. ► The partial molar volumes V ¯ 2 for three compounds were estimated. - Abstract: Bis(methoxy oxalic)-1,2-haxenediester and bis(ethoxy oxalic)-1,2-haxenediester were synthesized by modifying the end groups of 1,2-hexanediol with methyl oxalyl chloride and ethyl oxalyl monochloride. The solubilities of all three compounds in supercritical carbon dioxide were determined at different conditions of pressures (8.8 to 18.8) MPa and temperatures (313, 333, and 353) K. Then, the solubility data were correlated with the Bartle model and the Chrastil model. The average absolute relative deviation (AARD) for the Bartle model was in the range of (3.89 to 25.46)% which is within a good approximation. The Chrastil model also showed satisfactory agreement and the AARD was in the range of (3.70 to 16.92)%. Furthermore, the partial molar volumes of those compounds were estimated following the theory developed by Kumar and Johnston.

  3. Application of ERAS-model and Prigogine-Flory-Patterson theory to excess molar volumes for ternary mixtures of (2-chlorobutane + butylacetate + isobutanol) at T = 298.15 K

    International Nuclear Information System (INIS)

    Khanlarzadeh, K.; Iloukhani, H.

    2011-01-01

    Highlights: → Density of ternary and three binary mixtures of (2-chlorobutane + butylacetate + isobutanol) determined. → Excess molar volume, partial molar volume and apparent molar volume were calculated. → Excess molar volume was correlated as a function of mole fraction by using the Redlich-Kister and Cibulka equation for all mixtures. → The experimental results have been used to test the applicability of the ERAS-model and PFP theory. - Abstract: Densities of the ternary mixture consisting of {2-chlorobutane (1) + butylacetate (2) + isobutanol (3)} and related binary mixtures were measured over the whole range of composition at T = 298.15 K and ambient pressure. Excess molar volumes V m E for the mixtures were derived and correlated as a function of mole fraction by using the Redlich-Kister and the Cibulka equations for binary and ternary mixtures, respectively. From the experimental data, partial molar volumes, V-bar m,i excess partial molar volumes, V-bar i E partial molar volumes at infinite dilution V-bar m,i 0 and apparent molar volumes V-bar φ,i were also calculated. For all binary mixtures over the entire range of mole fractions V m E data are positive. The experimental results of the constituted binary mixtures have been used to test the applicability of the extended real associated solution (ERAS-model) and Prigogine-Flory-Paterson (PFP) theory.

  4. Densities, molar volumes, and isobaric expansivities of (d-xylose+hydrochloric acid+water) systems

    International Nuclear Information System (INIS)

    Zhang Qiufen; Yan Zhenning; Wang Jianji; Zhang Hucheng

    2006-01-01

    Densities of (d-xylose+HCl+water) have been measured at temperature in the range (278.15 to 318.15) K as a function of concentration of both d-xylose and hydrochloric acid. The densities have been used to estimate the molar volumes and isobaric expansivity of the ternary solutions. The molar volumes of the ternary solutions vary linearly with mole fraction of d-xylose. The standard partial molar volumes V 2,φ - bar for d-xylose in aqueous solutions of molality (0.2, 0.4, 0.7, 1.1, 1.6, and 2.1) mol.kg -1 HCl have been determined. In the investigated temperature range, the relation: V 2,φ - bar =c 1 +c 2 {(T/K)-273.15} 1/2 , can be used to describe the temperature dependence of the standard partial molar volumes. These results have, in conjunction with the results obtained in water, been used to deduce the standard volumes of transfer, Δ t V - bar , of d-xylose from water to aqueous HCl solutions. An increase in the transfer volume of d-xylose with increasing HCl concentrations has been explained by the stronger interactions of H + with the hydrophilic groups of d-xylose

  5. Calculation of von Neumann entropy for hydrogen and positronium negative ions

    International Nuclear Information System (INIS)

    Lin, Chien-Hao; Ho, Yew Kam

    2014-01-01

    In the present work, we carry out calculations of von Neumann entropies and linear entropies for the hydrogen negative ion and the positronium negative ion. We concentrate on the spatial (electron–electron orbital) entanglement in these ions by using highly correlated Hylleraas functions to represent their ground states, and to take care of correlation effects. We apply the Schmidt decomposition method on the partial-wave expanded two-electron wave functions, and from which the one-particle reduced density matrix can be obtained, leading to the quantifications of linear entropy and von Neumann entropy in the H − and Ps − ions. - Highlights: • We calculate von Neumann entropies and linear entropies for hydrogen and positronium negative ions. • We employ highly correlated Hylleraas functions to take into account of correlation effects. • Spatial (electron–electron orbital) entanglement is quantified using the Schmidt decomposition method. • The eigenvalues of the one-particle reduced density matrix are calculated

  6. 二氧化碳与2-丁醇二元体系在高压下的亨利系数和偏摩尔体积性质计算%Calculation of Henry's coefficient and partial molar volume of carbon dioxide in 2-butanol at elevated pressures

    Institute of Scientific and Technical Information of China (English)

    田爱琴; 孙洪博; 陈文涛; 王琳

    2012-01-01

    Based on vapor-liquid phase equilibria data for CO2+2-butanol binary system from 323K to 353K by constant-volume visual high-pressure cell, the solubility model of CO2 in 2-butanol was established with Krichevsky-Kasarnovsky equation. Henry's coefficients and partial molar volumes of CO2 at infinite dilution were calculated. Meanwhile, Partial molar volumes of CO2 and 2-butanol at equilibrium were calculated from partial molar volumes properties together with Peng-Robinson equation of state and Van der Waals-2 mixed rule. The results showed that Henry's coefficients and partial molar volumes of CO2 at infinite dilution were both the function of temperature, and Henry's coefficients decreased with temperature. The partial molar volumes of CO2 at infinite dilution were negative and the magnitudes decreased with temperature. The calculated effects of partial molar volumes of vapor and liquid phase at equilibrium showed that the partial molar volumes of CO2 and 2-butanol in liquid phase were positive, but in vapor the partial molar volumes of CO2 were negative and the partial molar volumes of 2-butanol were positive. The research provided theoretical basis for deciding supercritical extraction conditions and instructing industrial production.%利用固定体积可视高压釜测量出的在323 K~353 K温度范围内的CO2与2-丁醇二元体系在高压下的汽液相平衡数据,根据Krichevsky-Kasarnovsky方程建立了CO2在液相中的溶解度模型,得到了该二元体系在高压下的亨利系数和CO2在无限稀释溶液中的偏摩尔体积等性质.同时根据偏摩尔体积性质和Peng-Robinson状态方程及Van der Waals-2混合规则来计算该体系在平衡状态下的气、液相的偏摩尔体积.结果表明CO2在2-丁醇中的亨利系数和CO2在无限稀释溶液中的偏摩尔体积均为温度的函数,CO2在2-丁醇中的亨利系数随温度的升高而降低.CO2在无限稀释溶液中的偏摩尔体积(V)1

  7. [Surgery of lower third molars and lesions of the lingual nerve].

    Science.gov (United States)

    Chiapasco, M; Pedrinazzi, M; Motta, J; Crescentini, M; Ramundo, G

    1996-11-01

    The authors describe a technical expedient applied during the removal of totally or partially impacted lower third molars, in order to prevent lingual nerve damage. EXPERIMENTAL ASSAY: Retrospective study. The sample includes 1835 extractions of totally or partially impacted lower third molars, performed on 1030 patients, 493 males and 537 females, aging between 12 and 72 years. All the operations were carried out under local anaesthesia with standardization of the surgical protocol. A mucoperiosteal paramarginal flap was used in case of germectomy, whereas a mucoperiosteal marginal flap with mesial releasing incision was used in case of fully mature teeth. Ostectomy and tooth sectioning were performed using a round and fissure bur respectively, assembled on a straight low-speed handpiece and under irrigation with sterile saline. The authors reported only one case of transient lingual nerve paresthesia (0.05%) which occurred in a 19-years old female presenting a totally impacted third molar mesial-lingual inclination. Symptoms disappeared spontaneously one week postoperatively. Therefore the overall incidence of permanent nerve damage was equal to 0%. The data reported in literature show a lingual nerve lesion incidence ranging between 0% and 22%. With this simple surgical expedient the incidence of permanent lingual damage was 0%. Thus, it is the authors' opinion that this simple expedient should be applied in all cases of impacted third molar removal.

  8. Treatment of ectopically erupting maxillary permanent first molars with a distal extended stainless steel crown.

    Science.gov (United States)

    Roberts, M W

    1986-01-01

    The exaggerated mesial eruption of the permanent first molar can result in the tooth becoming impacted, or the premature atypical resorption and exfoliation of the primary molar, with a resultant loss of space. A stainless steel crown with a distal guide plane was placed on a primary molar to correct the aberrant eruption angle of the permanent tooth. This procedure can be used successfully for both partially and totally tissue-impacted teeth, and is described in this report.

  9. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  10. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar [Deenbandhu Chhotu Ram University of Science and Technology, Murthal (India); Lee, Inkyu; Moon, Il [Yonsei University, Seoul (Korea, Republic of)

    2015-01-15

    Excess molar volumes (V{sub m}{sup E} ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V{sub m}{sup E} values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V{sub m}{sup E} data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V{sub m}{sup E} values for systems with s-shaped V{sub m}{sup E} versus x{sub 1} graph, the V{sub m}{sup E} values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures.

  11. Apparent molar volumes and compressibilities of alkaline earth metal ions in methanol and dimethylsulfoxide

    International Nuclear Information System (INIS)

    Warminska, Dorota; Wawer, Jaroslaw; Grzybkowski, Waclaw

    2010-01-01

    Temperature dependencies of density of magnesium (II), calcium (II), strontium (II), barium (II) perchlorates as well as beryllium (II), and sodium trifluoromethanesulfonates in methanol and dimethylsulfoxide have been determined over the composition range studied. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of alkaline earth metal perchlorates and beryllium (II) and sodium triflates in methanol and DMSO have been calculated from sound speed data obtained at T = 298.15 K.

  12. Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

    Institute of Scientific and Technical Information of China (English)

    Chao Ji; Jing Wang; Liulin Cao; Qibing Jin

    2014-01-01

    Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.

  13. Relative Entropy, Interaction Energy and the Nature of Dissipation

    Directory of Open Access Journals (Sweden)

    Bernard Gaveau

    2014-06-01

    Full Text Available Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence. The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.

  14. 293.15 K到333.15 K温度下一些氨基酸及其相应基团水溶液中的偏摩尔体积研究%Studies on Partial Molar Volumes of Some Amino Acids and Their Groups in Aqueous Solutions from 293.15 K to 333.15 K

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生; 夏淑倩

    2004-01-01

    Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine,L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.15 K to 333.15K. These data are used to calculate the apparent molar volume V and infinite dilution apparent molar volume V0 (partial molar volume). Data of five amino acids are used to correlate partial molar volume V0 using group contribution method to estimate the contributions of the zwitterionic end groups (NH3+,COO-) and CH2group, OH group, CNHNHNH2 group and C6H5(phenyl) group of amino acids. The results show that V0 values for all kinds of groups of amino acids studied increase with increase of temperature except those for CH2 group,which are almost constant within the studied temperature range. Data of other amino acids, L-valine, L-isoleucine and L-threonine, are chosen for comparison with the predicted partial molar volume V0 using the group additivity parameters obtained. The results confirm that this group additivity method has excellent predictive utility.

  15. Molar concentration-depth profiles at the solution surface of a cationic surfactant reconstructed with angle resolved X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wang Chuangye; Morgner, Harald

    2011-01-01

    In the current work, we first reconstructed the molar fraction-depth profiles of cation and anion near the surface of tetrabutylammonium iodide dissolved in formamide by a refined calculation procedure, based on angle resolved X-ray photoelectron spectroscopy experiments. In this calculation procedure, both the transmission functions of the core levels and the inelastic mean free paths of the photoelectrons have been taken into account. We have evaluated the partial molar volumes of surfactant and solvent by the densities of such solutions with different bulk concentrations. With those partial molar volumes, the molar concentration-depth profiles of tetrabutylammonium ion and iodide ion were determined. The surface excesses of both surfactant ions were then achieved directly by integrating these depth profiles. The anionic molar concentration-depth profiles and surface excesses have been compared with their counterparts determined by neutral impact ion scattering spectroscopy. The comparisons exhibit good agreements. Being capable of determining molar concentration-depth profiles of surfactant ions by core levels with different kinetic energies may extend the applicable range of ARXPS in investigating solution surfaces.

  16. MOLAR UPRIGHTING

    Directory of Open Access Journals (Sweden)

    Eka Erwansyah

    2006-04-01

    Full Text Available The mesial tipping of molar is frequently found in orthodontic cases. This molar malposition must be corrected since it may cause periodontal disorders, occlusal interferences, and temporomandibular joint dysfunction, and is often needed in planning a fixed bridge. This paper is a literature study to discuss about appliance designs, indication, and contraindications, and complication and treatment protocols of molar uprighting by fixed orthodontic appliances. By knowing the techniques of molar uprighting, the moments mentioned above can be avoided.

  17. Entropy Coherent and Entropy Convex Measures of Risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.A.

    2011-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. We prove that convex, entropy convex and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic and multiple priors preferences,

  18. Intrusion of an overerupted molar using orthodontic miniscrew implant: A preprosthodontic therapy

    Directory of Open Access Journals (Sweden)

    Indumathi Sivakumar

    2014-01-01

    Full Text Available The purpose of this case report is to demonstrate the use of orthodontic miniscrew implant in the intrusion of overerupted molar as a preprosthodontic therapy. A 37-year-old woman with an overerupted maxillary right first molar encroaching on the opposing mandibular edentulous space was successfully intruded using a single miniscrew implant and partial fixed orthodontic appliance. The prosthodontic clinician may adopt this conservative and cost-effective strategy in their routine practice and avoid clinical crown reduction.

  19. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, Roger; Stadje, M.A.

    2010-01-01

    We introduce entropy coherent and entropy convex measures of risk and prove a collection of axiomatic characterization and duality results. We show in particular that entropy coherent and entropy convex measures of risk emerge as negative certainty equivalents in (the regular and a generalized

  20. Fusión de un tercer molar mandibular con un cuarto molar supernumerario Fusion of mandibular third molar with supernumerary fourth molar

    Directory of Open Access Journals (Sweden)

    C. López Carriches

    2008-10-01

    Full Text Available La fusión dental es la unión de dos gérmenes dentales normalmente separados, mientras que la geminación se define como el intento de división de un único germen dental. La fusión y geminación de molares es poco frecuente en la dentición permanente. Describimos un caso clínico de un tercer molar inferior derecho fusionado a un cuarto molar supernumerario en un paciente varón de 36 años que ha presentado repetidos episodios de pericoronaritis. Tras el estudio radiológico se realiza la exodoncia del cordal semiincluido bajo anestesia local. Llevamos a cabo una revisión bibliográfica al respecto.Dental fusion is the union of two tooth buds that normally are separated, while gemination is defined as an attempt by a single tooth bud to divide. The fusion and gemination of molars is uncommon in permanent teeth. We report a clinical case of a right lower third molar fused to a supernumerary fourth molar in a 36-year-old male patient with repeated episodes of inflammation. After the radiologic study, the semi-impacted third molar was extracted under local anesthesia. The literature was reviewed.

  1. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  2. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  3. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    Science.gov (United States)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  4. Numerical investigation into entropy generation in a transient ...

    Indian Academy of Sciences (India)

    This work investigates the effects of convective cooling on entropy generation in a transient generalized Couette flow of water-based nanofluids containing Copper (Cu) and Alumina (Al2O3) as nanoparticles. Both First and Second Laws of thermodynamics are utilised to analyse the problem. The model partial differential ...

  5. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  6. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  7. Hydrophobic hydration and anomalous excess partial molar volume of tert-butyl alcohol-water mixture studied by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Nakada, Masaru; Maruyama, Kenji; Misawa, Masakatsu; Yamamuro, Osamu

    2007-01-01

    Quasielastic neutron scattering has been used to investigate the hydration of alcohol clusters in tert-butyl alcohol-water mixture. The measurements were made in a range of alcohol concentration, x TBA , from 0.0 to 0.17 in mole fraction at 25degC. Fraction, α, of water molecules hydrated to fractal-surface of alcohol clusters in tert-butyl alcohol-water mixture was obtained as a function of alcohol concentration. Average hydration number N WS of tert-butyl alcohol molecule was derived from the value of α as a function of alcohol concentration. The value of N WS for an isolated alcohol molecule in water was 19-21. The anomalous excess partial molar volume of tert-butyl alcohol-water mixture was interpreted successfully by applying the same model with the same values of volume parameter as used for 1-propanol-water mixture, δ 1 (=-0.36 cm 3 ·mol -1 ) and δ 2 (=0.60 cm 3 ·mol -1 ). (author)

  8. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Javed; Chaudhry, Mansoora Ahmed

    2009-01-01

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10 -3 to 25 . 10 -3 ) mol . kg -1 . The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs

  9. AXIAL MODIFICATIONS OF PERMANENT LOWER MOLARS AFTER PREMATURE LOSSES OF TEMPORARY MOLARS.

    Science.gov (United States)

    Cernei, E R; Mavru, R B; Zetu, Irina Nicoleta

    2016-01-01

    The aim of our study was to determine the impact of premature loss of temporary lower molars upon the longitudinal axis of the first and second permanent molars. The study groups included 61 patients, 6-9 year olds with premature loss of primary molars and a control group of 24 patients with intact temporary teeth. We evaluated the angle between longitudinal axis of first and second lower permanent molars and occlusal plane. It was observed that premature loss of lower second deciduous molar modifies more the vertical axis of first and second permanent molars than the premature loss of first lower primary molar. Reducing space occurs mainly through mesial inclination of molars that separates the edentulous breach. Temporary loss of both lower first molars on the same quadrant causes an accelerated eruption of both premolars increasing the prevalence of eruption sequence: "4-5-3-7". The preservation of the occlusal morpho-functional complex using space maintainers mainly when the premature loss of the second primary molars occurs is the best interceptive treatment option.

  10. Thermodynamic studies of aqueous and CCl4 solutions of 15-crown-5 at 298.15 K: an application of McMillan-Mayer and Kirkwood-Buff theories of solutions.

    Science.gov (United States)

    Dagade, Dilip H; Shetake, Poonam K; Patil, Kesharsingh J

    2007-07-05

    The density and osmotic coefficient data for solutions of 15-crown-5 (15C5) in water and in CCl4 solvent systems at 298.15 K have been reported using techniques of densitometry and vapor pressure osmometry in the concentration range of 0.01-2 mol kg-1. The data are used to obtain apparent molar and partial molar volumes, activity coefficients of the components as a function of 15C5 concentration. Using the literature heat of dilution data for aqueous system, it has become possible to calculate entropy of mixing (DeltaS(mix)), excess entropy of solution (DeltaS(E)), and partial molar entropies of the components at different concentrations. The results of all these are compared to those obtained for aqueous 18-crown-6 solutions reported earlier. It has been observed that the partial molar volume of 15C5 goes through a minimum and that of water goes through a maximum at approximately 1.2 mol kg(-1) in aqueous solutions whereas the opposite is true in CCl4 medium but at approximately 0.5 mol kg(-1). The osmotic and activity coefficients of 15C5 and excess free energy change for solution exhibit distinct differences in the two solvent systems studied. These results have been explained in terms of hydrophobic hydration and interactions in aqueous solution while weak solvophobic association of 15C5 molecules in CCl4 solutions is proposed. The data are further subjected to analysis by applying McMillan-Mayer and Kirkwood-Buff theories of solutions. The analysis shows that osmotic second virial coefficient value for 15C5 is marginally less than that of 18C6 indicating that reduction in ring flexibility does not affect the energetics of the interactions much in aqueous solution while the same gets influenced much in nonpolar solvent CCl4.

  11. The influence of premature loss of temporary upper molars on permanent molars.

    Science.gov (United States)

    Cernei, E R; Maxim, Dana Cristiana; Zetu, Irina Nicoleta

    2015-01-01

    Premature loss of primary molars due to dental caries and their complications has been associated with space loss and eruptive difficulties, especially when the loss occurs early. The aim of our study was to determine the impact of premature loss of temporary upper molars upon the longitudinal axis of the first and second upper permanent molar. The study group included 64 patients 6-9 years old with premature loss of primary molars and a control group of 48 patients with intact temporary teeth. It was evaluated the angle between longitudinal axis of first and second upper permanent molars and occlusal plane. The sofware used is Easy Dent 4 Viewer®.The data were analyzed by using the Statistical Package for the Social Sciences (version 20.0; SPSS, Chicago, III). It was observed that premature loss of upper second deciduous molars modifies greater the vertical axis of the permanent molars than the premature loss of first upper primary molar. First upper primary molar loss cause an acceleration eruption of first premolar, which will produce a distal inclintion of the both permanent molars. The use of space maintainers after premature loss of the second upper temporary molar is a last solution in preventing tridimensional lesions in the dental arch and occlusion.

  12. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  13. ENTROPY FUNCTIONAL FOR CONTINUOUS SYSTEMS OF FINITE ENTROPY

    Institute of Scientific and Technical Information of China (English)

    M. Rahimi A. Riazi

    2012-01-01

    In this article,we introduce the concept of entropy functional for continuous systems on compact metric spaces,and prove some of its properties.We also extract the Kolmogorov entropy from the entropy functional.

  14. Influence of hydrostatic pressure on dynamics and spatial distribution of protein partial molar volume: time-resolved surficial Kirkwood-Buff approach.

    Science.gov (United States)

    Yu, Isseki; Tasaki, Tomohiro; Nakada, Kyoko; Nagaoka, Masataka

    2010-09-30

    The influence of hydrostatic pressure on the partial molar volume (PMV) of the protein apomyoglobin (AMb) was investigated by all-atom molecular dynamics (MD) simulations. Using the time-resolved Kirkwood-Buff (KB) approach, the dynamic behavior of the PMV was identified. The simulated time average value of the PMV and its reduction by 3000 bar pressurization correlated with experimental data. In addition, with the aid of the surficial KB integral method, we obtained the spatial distributions of the components of PMV to elucidate the detailed mechanism of the PMV reduction. New R-dependent PMV profiles identified the regions that increase or decrease the PMV under the high pressure condition. The results indicate that besides the hydration in the vicinity of the protein surface, the outer space of the first hydration layer also significantly influences the total PMV change. These results provide a direct and detailed picture of pressure induced PMV reduction.

  15. Entropy of the Mixture of Sources and Entropy Dimension

    OpenAIRE

    Smieja, Marek; Tabor, Jacek

    2011-01-01

    We investigate the problem of the entropy of the mixture of sources. There is given an estimation of the entropy and entropy dimension of convex combination of measures. The proof is based on our alternative definition of the entropy based on measures instead of partitions.

  16. Interactions of glutamine dipeptides with sodium dodecyl sulfate in aqueous solution measured by volume, conductivity, and fluorescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenning, E-mail: yanzzn@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 (China); Sun Ximeng; Li Weiwei; Li Yu [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 (China); Wang Jianji [Department of Chemistry, Henan Normal University, Xinxiang, Henan 453007 (China)

    2011-10-15

    Highlights: > Ion-ion and ion-polar group interactions are dominant interactions. > The SDS addition and temperature increase cause a dehydration effect on dipeptides. > The addition of dipeptide in water decreases the c{sub cmc} of SDS. > Enthalpy-entropy compensation takes place during micellization. > Micelle aggregation number was decreased by addition of glutamine dipeptides. - Abstract: Densities, conductivities, and fluorescence spectra of {l_brace}sodium dodecyl sulfate (SDS) + glutamine dipeptide + water{r_brace} mixtures were measured as a function of temperature. The density data have been utilized to calculate apparent molar volumes, standard partial molar volumes (V{sub 2,{phi}}{sup o}), standard partial molar volumes of transfer from water to aqueous SDS solutions ({Delta}{sub t}V{sup o}), the hydration number, partial molar expansibility (E{sub {phi}}{sup o}), and Hepler's constant of glutamine dipeptides. The critical micellar concentration (c{sub cmc}) and the degree of counterion dissociation of SDS micelles obtained from electrical conductivity data have been estimated at various concentrations of glutamine dipeptide. Thermodynamic parameters of micellization of SDS in aqueous dipeptide solutions have been determined from c{sub cmc} values and an enthalpy-entropy compensation effect was observed for the ternary systems. The pyrene fluorescence spectra were used to study the change of micropolarity produced by the interaction of SDS with glutamine dipeptide, and the aggregation behavior of SDS. The results have been interpreted in terms of solute-solvent interactions and structural changes in the mixed solutions.

  17. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars*

    Science.gov (United States)

    Liu, Yun-feng; Wang, Russell; Baur, Dale A.; Jiang, Xian-feng

    2018-01-01

    Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. PMID:29308606

  18. Entanglement entropy and differential entropy for massive flavors

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2015-01-01

    In this paper we compute the holographic entanglement entropy for massive flavors in the D3-D7 system, for arbitrary mass and various entangling region geometries. We show that the universal terms in the entanglement entropy exactly match those computed in the dual theory using conformal perturbation theory. We derive holographically the universal terms in the entanglement entropy for a CFT perturbed by a relevant operator, up to second order in the coupling; our results are valid for any entangling region geometry. We present a new method for computing the entanglement entropy of any top-down brane probe system using Kaluza-Klein holography and illustrate our results with massive flavors at finite density. Finally we discuss the differential entropy for brane probe systems, emphasising that the differential entropy captures only the effective lower-dimensional Einstein metric rather than the ten-dimensional geometry.

  19. Exergy of partially coherent thermal radiation

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2012-01-01

    Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.

  20. Bubble Entropy: An Entropy Almost Free of Parameters.

    Science.gov (United States)

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation

  1. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  2. Zero entropy continuous interval maps and MMLS-MMA property

    Science.gov (United States)

    Jiang, Yunping

    2018-06-01

    We prove that the flow generated by any continuous interval map with zero topological entropy is minimally mean-attractable and minimally mean-L-stable. One of the consequences is that any oscillating sequence is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy. In particular, the Möbius function is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy (Sarnak’s conjecture for continuous interval maps). Another consequence is a non-trivial example of a flow having discrete spectrum. We also define a log-uniform oscillating sequence and show a result in ergodic theory for comparison. This material is based upon work supported by the National Science Foundation. It is also partially supported by a collaboration grant from the Simons Foundation (grant number 523341) and PSC-CUNY awards and a grant from NSFC (grant number 11571122).

  3. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Makhanov, Stanislav S.

    2018-06-01

    Entropy analysis in a mixed convection Poiseulle flow of a Molybdenum Disulphide Jeffrey Nanofluid (MDJN) is presented. Mixed convection is caused due to buoyancy force and external pressure gradient. The problem is formulated in terms of a boundary value problem for a system of partial differential equations. An analytical solution for the velocity and the temperature is obtained using the perturbation technique. Entropy generation has been derived as a function of the velocity and temperature gradients. The solutions are displayed graphically and the relevant importance of the input parameters is discussed. A Jeffrey nanofluid (JN) has been compared with a second grade nanofluid (SGN) and Newtonian nanofluid (NN). It is found that the entropy generation decreases when the temperature increases whereas increasing the Brickman number increases entropy generation.

  4. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  5. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mjiqauchem@yahoo.com; Chaudhry, Mansoora Ahmed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-02-15

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10{sup -3} to 25 . 10{sup -3}) mol . kg{sup -1}. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs.

  6. The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems

    KAUST Repository

    Di Francesco, M.

    2008-12-08

    We study the long-time asymptotics of reaction-diffusion-type systems that feature a monotone decaying entropy (Lyapunov, free energy) functional. We consider both bounded domains and confining potentials on the whole space for arbitrary space dimensions. Our aim is to derive quantitative expressions for (or estimates of) the rates of convergence towards an (entropy minimizing) equilibrium state in terms of the constants of diffusion and reaction and with respect to conserved quantities. Our method, the so-called entropy approach, seeks to quantify convergence to equilibrium by using functional inequalities, which relate quantitatively the entropy and its dissipation in time. The entropy approach is well suited to nonlinear problems and known to be quite robust with respect to model variations. It has already been widely applied to scalar diffusion-convection equations, and the main goal of this paper is to study its generalization to systems of partial differential equations that contain diffusion and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of a reaction-diffusion-convection system arising in solid-state physics as a paradigm for general nonlinear systems. © 2008 The Royal Society.

  7. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Songqin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China); Gao, Michael C. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR, 97321 (United States); AECOM, P.O. Box 1959, Albany, OR, 97321 (United States); Yang, Tengfei [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, 100871 (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996 (United States); Zhang, Yong, E-mail: drzhangy@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-11-15

    The microstructures of Al{sub x}CoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  8. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  9. Determinations of enthalpy and partial molar enthalpy in the alloys Bi–Cd–Ga–In–Zn, Bi–Cd–Ga–Zn and Au–Cu–Sn

    International Nuclear Information System (INIS)

    Arslan, Hüseyin

    2015-01-01

    In the present study, the relations of thermodynamic associated with Chou's general solution model (GSM), the models of Muggianu and Toop have been used in order to calculate the mixing enthalpy and partial molar mixing enthalpy of mixing of Bi–Cd–Ga–In–Zn, Bi–Cd–Ga–Zn with equimolar section at a temperature of 730 K and Au–Cu–Sn with the section x Au /x Cu = 1/1 on the entire molar fraction range as a function of alloy composition at a temperature of 900 K. Some negativities are reported in the selected alloys mentioned above, particularly at high temperatures for the human health as well as difficulties in experimental measurement and high costs. Moreover, aim of us is to close the current article gap seen in the literature. In order to close the current gap seen in the literature, the article on the thermodynamic properties of the Bi–Cd–Ga–In–Zn alloys are presented in this study. - Highlights: • Thermodynamic properties of alloys in the study in given conditions were treated. • The activity of Bi seen in all models shows greatly positive deviation from ideality. • The enthalpy of Sn shows small negative values in x Au /x Cu = 1 at 900 K. • The activity of Sn shows negative deviation from ideality in the same conditions

  10. The improvement of Clausius entropy and its application in entropy analysis

    Institute of Scientific and Technical Information of China (English)

    WU Jing; GUO ZengYuan

    2008-01-01

    The defects of Cleusius entropy which Include s premise of reversible process and a process quantlty of heat in Its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state funcllon. Unlike Clausius entropy, the improved deflnltion consists of system properties wlthout premise just like other state functions, for example, pressure p and enthalpy h, etc. it is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved deflnitlon of Clausius entropy provides a clear concept as well as a convenient method for en-tropy change calculation.

  11. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    Science.gov (United States)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar

  12. Endodontic management of a mandibular third molar fused with a fourth molar.

    Science.gov (United States)

    Turell, I L; Zmener, O

    1999-05-01

    Developmental anomalies in permanent molars frequently require surgical intervention. A case of a mandibular third molar fused with a fourth molar which was successfully treated with conservative endodontic therapy is reported.

  13. Entropy exchange and entanglement in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Boukobza, E.; Tannor, D.J.

    2005-01-01

    The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix

  14. Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure states

    International Nuclear Information System (INIS)

    Hertz, Anaelle; Jabbour, Michael G; Cerf, Nicolas J

    2017-01-01

    We show that a proper expression of the uncertainty relation for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the entropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we give a partial proof of a tighter form of the entropy-power uncertainty relation taking correlations into account and provide extensive numerical evidence of its validity. Interestingly, it implies the generalized (rotation-invariant) Schrödinger–Robertson uncertainty relation exactly as the original entropy-power uncertainty relation implies Heisenberg relation. It is saturated for all Gaussian pure states, in contrast with hitherto known entropic formulations of the uncertainty principle. (paper)

  15. [A phd completed 10. Implant-supported removable partial -dentures in a Kennedy Class I-situation in the mandible].

    Science.gov (United States)

    Jensen-Louwerse, C

    2017-06-01

    Implant-supported removable partial dentures in the mandible often cause problems, which means that patients wear their dentures seldom if at all. A solution is to place implants that the dentures can be snapped onto. There is, however, no consensus about the best position of the implants in the mandible yet. In addition, it is worthwhile to balance the cost of treatment with its effectiveness. In a randomised cross-over clinical trial involving 30 patients with a shortened dental arch, the implant-supported removable partial denture in the mandible was evaluated based on the experience of the patient, mean time of wearing, chewing ability and the clinical and radiographic parameters in relation to 2 different implant positions: 2 in the pre-molar region or 2 in the molar region. The cost-effectiveness of both treatments was also evaluated. From the patient's point of view, the implant-supported removable partial dentures are best supported by implants placed in the molar region. The research also revealed, however, that significantly more bleeding occurred around implants placed in the molar region and from a clinical perspective placement in the pre-molar region would have preference. The cost-effectiveness of the treatment with an implant-supported removable partial denture depends on the choice of outcome measurement and monetary threshold.

  16. Entropy and information

    CERN Document Server

    Volkenstein, Mikhail V

    2009-01-01

    The book "Entropy and Information" deals with the thermodynamical concept of entropy and its relationship to information theory. It is successful in explaining the universality of the term "Entropy" not only as a physical phenomenon, but reveals its existence also in other domains. E.g., Volkenstein discusses the "meaning" of entropy in a biological context and shows how entropy is related to artistic activities. Written by the renowned Russian bio-physicist Mikhail V. Volkenstein, this book on "Entropy and Information" surely serves as a timely introduction to understand entropy from a thermodynamic perspective and is definitely an inspiring and thought-provoking book that should be read by every physicist, information-theorist, biologist, and even artist.

  17. Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C211H17NO(s)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Wang Da-Qi; Shi Quan; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been mea- sured by a precision automated adiabatic calorimeter over the temperature range from T=78 K to T=400 K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342- 364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol preci- sion oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.

  18. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    OpenAIRE

    Gupta; Srivastava

    2010-01-01

    Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian est...

  19. Apparent and standard molar volumes and heat capacities of aqueous Ni(ClO4)2 from 25 to 85oC

    International Nuclear Information System (INIS)

    Pan, P.; Campbell, A.B.

    1997-01-01

    Apparent molar heat capacities and volumes of aqueous Ni(ClO 4 ) 2 were measured from 25 to 85 o C over a concentration range of 0.02 to 0.8 mol-kg -1 using a Picker flow microcalorimeter and a Picker vibrating-tube densimeter. An extended Debye-Huckel equation was fitted to the experimental data to obtain expressions for the apparent molar properties as functions of ionic strength for Ni(ClO 4 ) 2 (aq). The standard-state partial molar properties for Ni(ClO 4 ) 2 (aq) in the temperature range 25 to 85 o C were obtained and can be expressed by empirical equations. The standard partial molar heat capacities and volumes for Ni 2+ (aq) from 25 to 86 o C were obtained by using the additivity rule and data for ClO - 4 (aq) in the literature. These values were extrapolated to 300 o C by employing the Helgeson-Kirkham-Flower (HKF) equations, amended to include a standard-state correction term. (author)

  20. Does horizon entropy satisfy a quantum null energy conjecture?

    Science.gov (United States)

    Fu, Zicao; Marolf, Donald

    2016-12-01

    A modern version of the idea that the area of event horizons gives 4G times an entropy is the Hubeny-Rangamani causal holographic information (CHI) proposal for holographic field theories. Given a region R of a holographic QFTs, CHI computes A/4G on a certain cut of an event horizon in the gravitational dual. The result is naturally interpreted as a coarse-grained entropy for the QFT. CHI is known to be finitely greater than the fine-grained Hubeny-Rangamani-Takayanagi (HRT) entropy when \\partial R lies on a Killing horizon of the QFT spacetime, and in this context satisfies other non-trivial properties expected of an entropy. Here we present evidence that it also satisfies the quantum null energy condition (QNEC), which bounds the second derivative of the entropy of a quantum field theory on one side of a non-expanding null surface by the flux of stress-energy across the surface. In particular, we show CHI to satisfy the QNEC in 1  +  1 holographic CFTs when evaluated in states dual to conical defects in AdS3. This surprising result further supports the idea that CHI defines a useful notion of coarse-grained holographic entropy, and suggests unprecedented bounds on the rate at which bulk horizon generators emerge from a caustic. To supplement our motivation, we include an appendix deriving a corresponding coarse-grained generalized second law for 1  +  1 holographic CFTs perturbatively coupled to dilaton gravity.

  1. Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine–Flory–Patterson theory

    International Nuclear Information System (INIS)

    Kermanpour, F.; Niakan, H.Z.

    2012-01-01

    Highlights: ► Density and viscosity of binary mixtures of propanol derivatives were measured at T = (293.15 to 333.15) K. ► The excess molar properties were calculated from these experimental data and correlated by Redlich–Kister equation. ► The PFP model was applied for correlating the excess molar volumes. - Abstract: Density and viscosity of binary mixtures of (x 1 3-amino-1-propanol + x 2 isobutanol) and (x 1 3-amino-1-propanol + x 2 2-propanol) were measured over the entire composition range and from temperatures (293.15 to 333.15) K at ambient pressure. The excess molar volumes and viscosity deviations were calculated and correlated by the Redlich–Kister (RK) equation. The thermal expansion coefficient and its excess value, isothermal coefficient of excess molar enthalpy, and excess partial molar volumes were determined by using the experimental values of density and are described as a function of composition and temperature. The excess molar volumes are negative over the entire mole fraction range for both mixtures and increase with increasing temperature. The excess molar volumes obtained were correlated by the Prigogine–Flory–Patterson (PFP) model. The viscosity deviations of the binary mixtures are negative over the entire composition range and decrease with increasing temperature.

  2. Can the maximum entropy principle be explained as a consistency requirement?

    NARCIS (Netherlands)

    Uffink, J.

    1997-01-01

    The principle of maximum entropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in

  3. The improvement of Clausius entropy and its application in entropy analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The defects of Clausius entropy which include a premise of reversible process and a process quantity of heat in its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state function. Unlike Clausius entropy, the improved definition consists of system properties without premise just like other state functions, for example, pressure p and enthalpy h, etc. It is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved definition of Clausius entropy provides a clear concept as well as a convenient method for en- tropy change calculation.

  4. Quantum dynamical entropy revisited

    International Nuclear Information System (INIS)

    Hudetz, T.

    1996-10-01

    We define a new quantum dynamical entropy, which is a 'hybrid' of the closely related, physically oriented entropy introduced by Alicki and Fannes in 1994, and of the mathematically well-developed, single-argument entropy introduced by Connes, Narnhofer and Thirring in 1987. We show that this new quantum dynamical entropy has many properties similar to the ones of the Alicki-Fannes entropy, and also inherits some additional properties from the CNT entropy. In particular, the 'hybrid' entropy interpolates between the two different ways in which both the AF and the CNT entropy of the shift automorphism on the quantum spin chain agree with the usual quantum entropy density, resulting in even better agreement. Also, the new quantum dynamical entropy generalizes the classical dynamical entropy of Kolmogorov and Sinai in the same way as does the AF entropy. Finally, we estimate the 'hybrid' entropy both for the Powers-Price shift systems and for the noncommutative Arnold map on the irrational rotation C * -algebra, leaving some interesting open problems. (author)

  5. Measurement of the molar heat capacities of MoO2 and MoO3 from 350 to 950 K

    International Nuclear Information System (INIS)

    Inaba, H.; Miyahara, K.; Naito, K.

    1984-01-01

    Molar heat capacities of MoO 2 and MoO 3 were measured in the range between 350 and 950 K by means of adiabatic scanning calorimetry. For MoO 2 , a sharp heat-capacity anomaly with a molar enthalpy change of (178 +- 24) J.mol -1 and a molar entropy change of (0.207 +- 0.028) J.K -1 .mol -1 was observed at 865 K, which had not been detected by drop calorimetry. For MoO 3 , two heat-capacity anomalies with molar enthalpy changes of (88 +- 21) and (60 +- 36) J.mol -1 were found at 808 K and 857 K, respectively; neither anomaly had been detected by the drop method. The lattice molar heat capacities of MoO 2 and MoO 3 are estimated as Csub(l,m)(MoO 2 ) = D(469 K/T) + E(578 K/T) + E(876 K/T) and Csub(l,m)(MoO 3 ) = D(208 K/T) + 2E(488 K/T) + E(1170 K/T), where D(x) and E(x) are the Debye and Einstein functions, respectively. The temperature coefficient of the electronic molar heat capacity of MoO 2 is estimated as (6.0 +- 0.5) mJ.K -2 .mol -1 . The excess heat capacity in MoO 3 found at higher temperatures is interpreted as being due to vacancy formation with a molar activation energy of (98 +-5) kJ.mol -1 . The origin of the heat-capacity anomalies is inferred as arising from the slight movement of distorted MoO 6 octahedra in the MoO 2 and MoO 3 structures. (author)

  6. Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.

    Science.gov (United States)

    Asay, David B; Kim, Seong H

    2007-11-20

    The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.

  7. Information Entropy Measures for Stand Structural Diversity:Joint Entropy

    Institute of Scientific and Technical Information of China (English)

    Lei Xiangdong; Lu Yuanchang

    2004-01-01

    Structural diversity is the key attribute of a stand. A set of biodiversity measures in ecology was introduced in forest management for describing stand structure, of which Shannon information entropy (Shannon index) has been the most widely used measure of species diversity. It is generally thought that tree size diversity could serve as a good proxy for height diversity. However, tree size diversity and height diversity for stand structure is not completely consistent. Stand diameter cannot reflect height information completely. Either tree size diversity or height diversity is one-dimensional information entropy measure. This paper discussed the method of multiple-dimensional information entropy measure with the concept of joint entropy. It is suggested that joint entropy is a good measure for describing overall stand structural diversity.

  8. Quantum chaos: entropy signatures

    International Nuclear Information System (INIS)

    Miller, P.A.; Sarkar, S.; Zarum, R.

    1998-01-01

    A definition of quantum chaos is given in terms of entropy production rates for a quantum system coupled weakly to a reservoir. This allows the treatment of classical and quantum chaos on the same footing. In the quantum theory the entropy considered is the von Neumann entropy and in classical systems it is the Gibbs entropy. The rate of change of the coarse-grained Gibbs entropy of the classical system with time is given by the Kolmogorov-Sinai (KS) entropy. The relation between KS entropy and the rate of change of von Neumann entropy is investigated for the kicked rotator. For a system which is classically chaotic there is a linear relationship between these two entropies. Moreover it is possible to construct contour plots for the local KS entropy and compare it with the corresponding plots for the rate of change of von Neumann entropy. The quantitative and qualitative similarities of these plots are discussed for the standard map (kicked rotor) and the generalised cat maps. (author)

  9. Entropy Constraints in the Ground State Formation of Magnetically Frustrated Systems

    Science.gov (United States)

    Sereni, Julian G.

    2018-01-01

    A systematic modification of the entropy trajectory (S_m(T)) is observed at very low temperature in magnetically frustrated systems as a consequence of the constraint (S_mg 0) imposed by the Nernst postulate. The lack of magnetic order allows to explore and compare new thermodynamic properties by tracing the specific heat (C_m) behavior down to the sub-Kelvin range. Some of the most relevant findings are: (i) a common C_m/T|_{T→ 0} ≈ 7 J/mol K^2 `plateau' in at least five Yb-based very-heavy-fermions (VHF) compounds; (ii) quantitative and qualitative differences between VHF and standard non-Fermi-liquids; (iii) entropy bottlenecks governing the change of S_m(T) trajectories in a continuous transition into alternative ground states. A comparative analysis of S_m(T→ 0) dependencies is performed in compounds suitable for adiabatic demagnetization processes according to their partial ^2 S_m/partial T^2 derivatives.

  10. Fusion of mandibular third molar with supernumerary fourth molar

    OpenAIRE

    López Carriches, C.; Leco Berrocal, I.; Baca Pérez-Bryan, R.

    2008-01-01

    La fusión dental es la unión de dos gérmenes dentales normalmente separados, mientras que la geminación se define como el intento de división de un único germen dental. La fusión y geminación de molares es poco frecuente en la dentición permanente. Describimos un caso clínico de un tercer molar inferior derecho fusionado a un cuarto molar supernumerario en un paciente varón de 36 años que ha presentado repetidos episodios de pericoronaritis. Tras el estudio radiológico se realiza la exodoncia...

  11. Comparative analysis of unilateral removable partial denture and classical removable partial denture by using finite element method

    Directory of Open Access Journals (Sweden)

    Radović Katarina

    2010-01-01

    Full Text Available Introduction. Various mobile devices are used in the therapy of unilateral free-end saddle. Unilateral dentures with precise connectivity elements are not used frequently. In this paper the problem of applying and functionality of unilateral freeend saddle denture without major connector was taken into consideration. Objective. The aim was to analyze and compare a unilateral RPD (removable partial denture and a classical RPD by calculating and analyzing stresses under different loads. Methods. 3D models of unilateral removable partial denture and classical removable partial denture with casted clasps were made by using computer program CATIA V5 (abutment teeth, canine and first premolar, with crowns and abutment tissues were also made. The models were built in full-scale. Stress analyses for both models were performed by applying a force of 300 N on the second premolar, a force of 500 N on the first molar and a force of 700 N on the second molar. Results. The Fault Model Extractor (FME analysis and calculation showed the complete behavior of unilateral removable partial denture and abutments (canine and first premolar, as well as the behavior of RPD under identical loading conditions. Applied forces with extreme values caused high stress levels on both models and their abutments within physiological limits. Conclusion. Having analyzed stresses under same conditions, we concluded that the unilateral RPD and classical RPD have similar physiological values.

  12. Thermodynamics of proton dissociation from aqueous bicarbonate: apparent molar volumes and apparent molar heat capacities of potassium carbonate and potassium bicarbonate at T=(278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sorenson, E.C.; Woolley, E.M.

    2004-01-01

    We have determined the apparent molar volumes V phi and apparent molar heat capacities C p,phi of aqueous potassium carbonate and potassium bicarbonate solutions in the ranges (0.014≤m/(mol · kg -1 )≤0.51) and (278.15≤T/K≤393.15) at the pressure p=0.35 MPa. Corrections for speciation due to hydrolysis and disproportionation in solution were applied using Young's rule, and semi-empirical equations representing (V phi ,m,T) and (C p,phi ,m,T) for the species {2K + , CO 3 2- (aq)} and {K + , HCO 3 - (aq)} were fitted to the experimental results. We have used these equations to estimate the change in volume Δ r V m , change in heat capacity Δ r C p,m , enthalpy change Δ r H m , entropy change Δ r S m , and equilibrium molality quotient pQ for the second proton dissociation reaction from aqueous carbonic acid

  13. [Correlation between the lower first permanent molar axis and the premature loss of temporary molars].

    Science.gov (United States)

    Petcu, Ana; Maxim, A; Haba, Danisia

    2009-01-01

    The aim of our study was to determine the impact of premature loss of temporary molars upon the longitudinal axis of the first permanent molar. The study sample was formed by 94 orthopanthomografies of child patients with premature loss of lower temporary molars (first or second) after clinical eruption of the first permanent molar. All panoramic radiographs have been realized with the same panoramic unit with 1.4% magnification coefficient and were analyzed using a standardized technique of tracing the images of teeth and bone on matte acetate paper. It was evaluated the angle between longitudinal axis of first permanent lower molar and occlusal plane. It was observed that premature loss of lower second deciduous molar modifies greater the vertical axis of first permanent molar (between 61 degrees and 79 degrees) then premature loss of first lower primary molar. This is perhaps because the loss of space in the case of premature exfoliation of first primary molar is due more to distal drift of canine then mesial drift of molars. The drift to mesial of first permanent molar is more accentuated proportional with the age at which appeared premature loss and so it is loss of leeway space.

  14. [Hyperthyroidism in molar pregnancy].

    Science.gov (United States)

    Boufettal, H; Mahdoui, S; Noun, M; Hermas, S; Samouh, N

    2014-03-01

    Hyperthyroidism is a rare complication of molar pregnancy. We report a 39-year-old woman who presented a thyrotoxic syndrome accompanying a molar pregnancy. Serum thyroid hormones were elevated and returned to normal level after uterine evacuation of a molar pregnancy. The authors detail the role of thyroid stimulating property of human gonadotropin chorionic hormone and its structural changes during the gestational trophoblastic diseases. These changes give the latter the thyroid stimulating properties and signs of hyperthyroidism. Molar pregnancy may be a cause of hyperthyroidism. The diagnosis of molar pregnancy should be a mention to thyrotoxicosique syndrome in a woman of childbearing age. Copyright © 2013. Published by Elsevier SAS.

  15. Pathological (late) fractures of the mandibular angle after lower third molar removal: a case series.

    Science.gov (United States)

    Cutilli, Tommaso; Bourelaki, Theodora; Scarsella, Secondo; Fabio, Desiderio Di; Pontecorvi, Emanuele; Cargini, Pasqualino; Junquera, Luis

    2013-04-30

    Pathological (late) fracture of the mandibular angle after third molar surgery is very rare (0.005% of third molar removals). There are 94 cases reported in the literature; cases associated with osseous pathologies such as osteomyelitis or any local and systemic diseases that may compromise mandibular bone strength have not been included. We describe three new cases of pathological (late) fracture of the mandibular angle after third molar surgery. The first patient was a 27-year-old Caucasian man who had undergone surgical removal of a 3.8, mesioangular variety, class II-C third molar 20 days before admission to our clinic. The fracture of his left mandibular angle, complete and composed, occurred during chewing. The second patient was a 32-year-old Caucasian man. He had undergone surgical removal of a 3.8, mesioangular variety, class II-B third molar 22 days before his admission. The fracture, which occurred during mastication, was studied by computed tomography that showed reparative tissue in the fracture site. The third patient was a 36-year-old Caucasian man who had undergone surgical removal of a 3.8, vertical variety, class II-C third molar 25 days before the observation. In this case the fracture of his mandibular angle was oblique (unfavorable), complete and composed. The fracture had occurred during chewing. We studied the fracture by optical projection tomography and computed tomography.All of the surgical removals of the 3.8 third molars, performed by the patients' dentists who had more than 10 years of experience, were difficult. We treated the fractures with open surgical reduction, internal fixation by titanium miniplates and intermaxillary elastic fixation removed after 6 weeks. The literature indicates that the risk of pathological (late) fracture of the mandibular angle after third molar surgery for total inclusions (class II-III, type C) is twice that of partial inclusions due to the necessity of ostectomies more generous than those for partial

  16. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  17. Quantum key distribution with finite resources: Smooth Min entropy vs. Smooth Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, Markus; Abruzzo, Silvestre; Bratzik, Sylvia; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Duesseldorf (Germany)

    2010-07-01

    We consider different entropy measures that play an important role in the analysis of the security of QKD with finite resources. The smooth min entropy leads to an optimal bound for the length of a secure key. Another bound on the secure key length was derived by using Renyi entropies. Unfortunately, it is very hard or even impossible to calculate these entropies for realistic QKD scenarios. To estimate the security rate it becomes important to find computable bounds on these entropies. Here, we compare a lower bound for the smooth min entropy with a bound using Renyi entropies. We compare these entropies for the six-state protocol with symmetric attacks.

  18. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl-) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities

    International Nuclear Information System (INIS)

    Hawrylak, B.; Palepu, R.; Tremaine, Peter R.

    2006-01-01

    Apparent molar volumes of aqueous methyldiethanolamine and its salt were determined with platinum vibrating tube densitometers over a range of temperatures from 283K= o , heat capacities C p o , and isothermal compressibilities κ T o . The standard partial molar volumes V o for the neutral amine and its salt show increasingly positive and negative values, respectively, at high temperatures and pressures, as predicted by corresponding states and group additivity arguments. The density model and the revised Helgeson-Kirkham-Flowers (HKF) model have been used to represent the temperature and pressure dependence of the standard partial molar properties to yield a full thermodynamic description of the system

  19. SECOND MOLAR UPRIGHTING AFTER PREMATURE LOSS OF MANDIBULAR FIRST PERMANENT MOLAR--CASE REPORT.

    Science.gov (United States)

    Cernei, E R; Mavru, R B; Zetui, Irina Nicoleta

    2015-01-01

    Uprighting a tipped molar by using an uprighting spring is a fundamental orthodontic treatment technique. Following a weak anchorage done only by the anterior teeth the permanent lower second molar will rotate around its center of resistance, and besides the distalizing movement will occur its extrusion. Following the reaction, the mandibular anterior teeth will have a movement of intrusion. All these elements will lead to anterior open bite. Correction of vertical problems has become easier with the advent of mini-implants. U.I patient aged 24 years presenting for aesthetic and functional disorders. Clinical examination reveals intraoral Class I molar malocclusion on the right sight, upper narrowing arch with a slight overbite, and the both permanent first molars on the left side lost prematurely. The tooth 37 is inclined at 600 degrees to the plane of occlusion. To avoid front opening occlusion we used an orthodontic miniscrew inserted between the canine and the first premolar on the same side to achieve the second molar up righting. Lower second molar uprighting was achieved without unwanted movements in anterior mandibular region and without molar extrusion. Using mini implants in uprighting a tipped molar will achieve the desired tooth movement and will reduce the number of unwanted side effects and eventually to improve patient's esthetics.

  20. Partial Transposition on Bipartite System

    International Nuclear Information System (INIS)

    Xi-Jun, Ren; Yong-Jian, Han; Yu-Chun, Wu; Guang-Can, Guo

    2008-01-01

    Many properties of partial transposition are unclear as yet. Here we carefully consider the number of the negative eigenvalues of ρ T (ρ's partial transposition) when ρ is a two-partite state. There is strong evidence to show that the number of negative eigenvalues of ρ T is N(N − 1)/2 at most when ρ is a state in Hilbert space C N C N . For the special case, the 2 × 2 system, we use this result to give a partial proof of the conjecture |ρ T | T ≥ 0. We find that this conjecture is strongly connected with the entanglement of the state corresponding to the negative eigenvalue of ρ T or the negative entropy of ρ

  1. Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics

    Science.gov (United States)

    Abe, Sumiyoshi

    2014-11-01

    The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown, in particular, how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.

  2. Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K

    International Nuclear Information System (INIS)

    Pal, Amalendu; Gaba, Rekha

    2008-01-01

    The densities, ρ and the speeds of sound, u, for {2-(2-hexyloxyethoxy)ethanol (C 6 E 2 ) + methanol, +1-propanol, +1-pentanol, and +1-heptanol} have been measured as a function of composition using an Anton-Paar DSA 5000 densimeter at temperatures (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure over the whole concentration range. The ρ and u values were used to calculate excess molar volumes, V E , and excess molar isentropic compressibility, K S,m E , respectively. Also, thermal expansivity, α, partial molar volume, V-bar i , and partial molar volume of the components at infinite dilution, V-bar i 0 , have been calculated. The variation of these properties with composition and temperature of the mixtures are discussed in terms of molecular interactions

  3. Apparent molar volumes and apparent molar heat capacities of aqueous D-lactose · H2O at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sargent, J.D.; Niederhauser, T.L.; Woolley, E.M.

    2004-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi were determined for aqueous solutions of D-lactose · H 2 O at molalities (0.01 to 0.34) mol · kg -1 at temperatures (278.15 to 393.15) K, and at the pressure 0.35 MPa. Our V phi values were calculated from densities obtained using a vibrating tube densimeter, and our C p,phi values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results for D-lactose(aq) and for D-lactcose · H 2 O were fitted to functions of m and T and compared with the literature results for aqueous D-glucose and D-galactose solutions. Infinite dilution partial molar volumes V 2 compfn and heat capacities C p,2 compfn are given over the range of temperatures

  4. A New Thermodynamic Calculation Method for Binary Alloys: Part I: Statistical Calculation of Excess Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.

  5. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Maya Gupta

    2010-04-01

    Full Text Available Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian estimates, depend on the accuracy of the prior parameters, but example simulations show that the performance can be substantially improved compared to maximum likelihood or state-of-the-art nonparametric estimators.

  6. Entropy? Honest!

    Directory of Open Access Journals (Sweden)

    Tommaso Toffoli

    2016-06-01

    Full Text Available Here we deconstruct, and then in a reasoned way reconstruct, the concept of “entropy of a system”, paying particular attention to where the randomness may be coming from. We start with the core concept of entropy as a count associated with a description; this count (traditionally expressed in logarithmic form for a number of good reasons is in essence the number of possibilities—specific instances or “scenarios”—that match that description. Very natural (and virtually inescapable generalizations of the idea of description are the probability distribution and its quantum mechanical counterpart, the density operator. We track the process of dynamically updating entropy as a system evolves. Three factors may cause entropy to change: (1 the system’s internal dynamics; (2 unsolicited external influences on it; and (3 the approximations one has to make when one tries to predict the system’s future state. The latter task is usually hampered by hard-to-quantify aspects of the original description, limited data storage and processing resource, and possibly algorithmic inadequacy. Factors 2 and 3 introduce randomness—often huge amounts of it—into one’s predictions and accordingly degrade them. When forecasting, as long as the entropy bookkeping is conducted in an honest fashion, this degradation will always lead to an entropy increase. To clarify the above point we introduce the notion of honest entropy, which coalesces much of what is of course already done, often tacitly, in responsible entropy-bookkeping practice. This notion—we believe—will help to fill an expressivity gap in scientific discourse. With its help, we shall prove that any dynamical system—not just our physical universe—strictly obeys Clausius’s original formulation of the second law of thermodynamics if and only if it is invertible. Thus this law is a tautological property of invertible systems!

  7. EEG entropy measures in anesthesia

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  8. Towards Operational Definition of Postictal Stage: Spectral Entropy as a Marker of Seizure Ending

    Directory of Open Access Journals (Sweden)

    Ancor Sanz-García

    2017-02-01

    Full Text Available The postictal period is characterized by several neurological alterations, but its exact limits are clinically or even electroencephalographically hard to determine in most cases. We aim to provide quantitative functions or conditions with a clearly distinguishable behavior during the ictal-postictal transition. Spectral methods were used to analyze foramen ovale electrodes (FOE recordings during the ictal/postictal transition in 31 seizures of 15 patients with strictly unilateral drug resistant temporal lobe epilepsy. In particular, density of links, spectral entropy, and relative spectral power were analyzed. Partial simple seizures are accompanied by an ipsilateral increase in the relative Delta power and a decrease in synchronization in a 66% and 91% of the cases, respectively, after seizures offset. Complex partial seizures showed a decrease in the spectral entropy in 94% of cases, both ipsilateral and contralateral sides (100% and 73%, respectively mainly due to an increase of relative Delta activity. Seizure offset is defined as the moment at which the “seizure termination mechanisms” actually end, which is quantified in the spectral entropy value. We propose as a definition for the postictal start the time when the ipsilateral SE reaches the first global minimum.

  9. Infinite Shannon entropy

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2013-01-01

    Even if a probability distribution is properly normalizable, its associated Shannon (or von Neumann) entropy can easily be infinite. We carefully analyze conditions under which this phenomenon can occur. Roughly speaking, this happens when arbitrarily small amounts of probability are dispersed into an infinite number of states; we shall quantify this observation and make it precise. We develop several particularly simple, elementary, and useful bounds, and also provide some asymptotic estimates, leading to necessary and sufficient conditions for the occurrence of infinite Shannon entropy. We go to some effort to keep technical computations as simple and conceptually clear as possible. In particular, we shall see that large entropies cannot be localized in state space; large entropies can only be supported on an exponentially large number of states. We are for the time being interested in single-channel Shannon entropy in the information theoretic sense, not entropy in a stochastic field theory or quantum field theory defined over some configuration space, on the grounds that this simple problem is a necessary precursor to understanding infinite entropy in a field theoretic context. (paper)

  10. Relation Entropy and Transferable Entropy Think of Aggregation on Group Decision Making

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi-yue; QIU Wan-hua; LIU Xiao-feng

    2002-01-01

    In this paper, aggregation question based on group decision making and a single decision making is studied. The theory of entropy is applied to the sets pair analysis. The system of relation entropy and the transferable entropy notion are put. The character is studied. An potential by the relation entropy and transferable entropy are defined. It is the consistency measure on the group between a single decision making. We gained a new aggregation effective definition on the group misjudge.

  11. Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C14H12O)

    International Nuclear Information System (INIS)

    Di, You-Ying; Tan, Zhi-Cheng.; Sun, Xiao-Hong; Wang, Mei-Han; Xu, Fen; Liu, Yuan-Fa; Sun, Li-Xian; Zhang, Hong-Tao

    2004-01-01

    Low-temperature heat capacities of the 9-fluorenemethanol (C 14 H 12 O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid-liquid phase transition of the compound has been observed to be T fus =(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Δ fus H m =(26.273±0.013) kJ · mol -1 and Δ fus S m =(69.770±0.035) J · K -1 · mol -1 . The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Δ c U(C 14 H 12 O, s)=-(7125.56 ± 4.62) kJ · mol -1 and Δ c H m compfn (C 14 H 12 O, s)=-(7131.76 ± 4.62) kJ · mol -1 , by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, Δ f H m compfn (C 14 H 12 O,s)=-(92.36 ± 0.97) kJ · mol -1 , from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle

  12. The density process of the minimal entropy Martingale measure in a ...

    African Journals Online (AJOL)

    In a stochastic volatility market the Radon-Nikodym density of the minimal entropy martingale measure can be expressed in terms of the solution of a semilinear partial differential equation (PDE). This fact has been explored and illustrated for the time-homogeneous case in a recent paper by Benth and Karlsen [3]. However ...

  13. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  14. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  15. Removable molar power arm

    Directory of Open Access Journals (Sweden)

    Raj Kumar Verma

    2013-01-01

    Full Text Available Attachment of force elements from the gingival hook of maxillary molar tubes during the retraction of the anterior teeth is very common in orthodontic practice. As the line of force passes below the center of resistance (CR of molar, it results its mesial tipping and also anchorage loss. To overcome this problem, the line of force should pass along the CR of molar. This article highlights a method to overcome this problem by attaching a removable power arm to the headgear tube of molar tube during the retraction of the anterior teeth.

  16. Application of Prigogine-Flory-Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone

    International Nuclear Information System (INIS)

    Qi Feng; Wang Haijun

    2009-01-01

    The densities of two binary mixtures formed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF 4 ] and 1-butyl-3-methy limidazolium hexafluorophosphate [bmim][PF 6 ] with compound N-methyl-2-pyrrolidinone have been determined over the full range of composition and range of temperature from (298.15 to 313.15) K and at atmospheric pressure using a vibrating-tube densimeter (DMA4500). Excess molar volumes, V m E , have been obtained from these experimental results, and been fitted by the fourth-order Redlich-Kister equation. From the experimental results, partial molar volumes, apparent molar volume and partial molar volumes at infinite dilution were calculated over the whole composition range. Our results show that V m E decreases slightly when temperature increases in the systems studied. The experimental results have been used to test the applicability of the Prigogine-Flory-Patterson (PFP) theory. The results have been interpreted in terms of ion-dipole interactions and structural factors of the ionic liquid and these organic molecular liquids

  17. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    Science.gov (United States)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  18. Twinning of Polymer Crystals Suppressed by Entropy

    Directory of Open Access Journals (Sweden)

    Nikos Ch. Karayiannis

    2014-09-01

    Full Text Available We propose an entropic argument as partial explanation of the observed scarcity of twinned structures in crystalline samples of synthetic organic polymeric materials. Polymeric molecules possess a much larger number of conformational degrees of freedom than low molecular weight substances. The preferred conformations of polymer chains in the bulk of a single crystal are often incompatible with the conformations imposed by the symmetry of a growth twin, both at the composition surfaces and in the twin axis. We calculate the differences in conformational entropy between chains in single crystals and chains in twinned crystals, and find that the reduction in chain conformational entropy in the twin is sufficient to make the single crystal the stable thermodynamic phase. The formation of cyclic twins in molecular dynamics simulations of chains of hard spheres must thus be attributed to kinetic factors. In more realistic polymers this entropic contribution to the free energy can be canceled or dominated by nonbonded and torsional energetics.

  19. Determination of thermodynamic properties of poly(cyclohexyl methacrylate)by inverse gas chromatography

    Institute of Scientific and Technical Information of China (English)

    Ismet KAYA; Cigdem Yigit PALA

    2014-01-01

    In this work,some thermodynamic properties of poly( cyclohexyl methacrylate)were studied by inverse gas chromatography( IGC). For this purpose,the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times(tr)of the probes were determined from the interactions of poly(cyclohexyl methacrylate)with n-pentane,n-hexane,n-heptane,n-octane,n-decane, methanol,ethanol,2-propanol,butanol,acetone,ethyl methyl ketone,benzene,toluene and o-xylene by IGC technique. Then,the specific volume(V0g)was determined for each probe molecule. By using(1/T;lnV0g) graphics,the glass transition temperature of poly( cyclohexyl methacrylate)was found to be 373 K. The adsorp-tion heat under the glass transition temperature(ΔH a ),and partial molar heat of sorption above the glass tran-sition(ΔHS1 ),partial molar free energy of sorption(ΔGS1 )and partial molar entropy of sorption(ΔSS1 )belong-ing to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution(ΔH∞1 ), partial molar free energy of mixing at infinite dilution(ΔG∞1 ),Flory-Huggins interaction parameter(χ∞12 )and weight fraction activity coefficient(a1/w1)∞ values of polymer-solute systems were calculated at different col-umn temperatures. The solubility parameters(δ2 )of the polymer were obtained by IGC technique.

  20. Determination of thermodynamic properties of poly (cyclohexyl methacrylate) by inverse gas chromatography.

    Science.gov (United States)

    Kaya, Ismet; Pala, Cigdem Yigit

    2014-07-01

    In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique.

  1. EEG entropy measures in anesthesia

    Directory of Open Access Journals (Sweden)

    Zhenhu eLiang

    2015-02-01

    Full Text Available Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs’ effect is lacking. In this study, we compare the capability of twelve entropy indices for monitoring depth of anesthesia (DoA and detecting the burst suppression pattern (BSP, in anesthesia induced by GA-BAergic agents.Methods: Twelve indices were investigated, namely Response Entropy (RE and State entropy (SE, three wavelet entropy (WE measures (Shannon WE (SWE, Tsallis WE (TWE and Renyi WE (RWE, Hilbert-Huang spectral entropy (HHSE, approximate entropy (ApEn, sample entropy (SampEn, Fuzzy entropy, and three permutation entropy (PE measures (Shannon PE (SPE, Tsallis PE (TPE and Renyi PE (RPE. Two EEG data sets from sevoflurane-induced and isoflu-rane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, phar-macokinetic / pharmacodynamic (PK/PD modeling and prediction probability analysis were applied. The multifractal detrended fluctuation analysis (MDFA as a non-entropy measure was compared.Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline vari-ability, higher coefficient of determination and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an ad-vantage in computation efficiency compared with MDFA.Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure.Significance: Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA.

  2. Maxillary second molar impaction in the adjacent ectopic third molar: Report of five rare cases

    Science.gov (United States)

    Souki, Bernardo Q.; Cheib, Paula L.; de Brito, Gabriela M.; Pinto, Larissa S. M. C.

    2015-01-01

    Maxillary second molar impaction in the adjacent ectopic third molar is a rare condition that practitioners might face in the field of pediatric dentistry and orthodontics. The early diagnosis and extraction of the adjacent ectopic third molar have been advocated, and prior research has reported a high rate of spontaneous eruption following third molar removal. However, some challenges in the daily practice are that the early diagnosis of this type of tooth impaction is difficult with conventional radiographic examination, and sometimes the early surgical removal of the maxillary third molar must be postponed because of the risks of damaging the second molar. The objective of this study is to report a case series of five young patients with maxillary second molar impaction and to discuss the difficulty of early diagnosis with the conventional radiographic examination, and unpredictability of self-correction. PMID:26321848

  3. Maxillary second molar impaction in the adjacent ectopic third molar: Report of five rare cases

    Directory of Open Access Journals (Sweden)

    Bernardo Q Souki

    2015-01-01

    Full Text Available Maxillary second molar impaction in the adjacent ectopic third molar is a rare condition that practitioners might face in the field of pediatric dentistry and orthodontics. The early diagnosis and extraction of the adjacent ectopic third molar have been advocated, and prior research has reported a high rate of spontaneous eruption following third molar removal. However, some challenges in the daily practice are that the early diagnosis of this type of tooth impaction is difficult with conventional radiographic examination, and sometimes the early surgical removal of the maxillary third molar must be postponed because of the risks of damaging the second molar. The objective of this study is to report a case series of five young patients with maxillary second molar impaction and to discuss the difficulty of early diagnosis with the conventional radiographic examination, and unpredictability of self-correction.

  4. The premature loss of primary first molars: space loss to molar occlusal relationships and facial patterns.

    Science.gov (United States)

    Alexander, Stanley A; Askari, Marjan; Lewis, Patricia

    2015-03-01

    To investigate space changes with the premature loss of primary first molars and their relationship to permanent molar occlusion and facial forms. Two hundred twenty-six participants (ranging in age from 7 years 8 months to 8 years 2 months; 135 female, 91 male) met all inclusion criteria designed to study space loss as a result of the premature loss of the primary first molar. After 9 months, space loss was evaluated in relationship to molar occlusion and facial form. Statistical evaluation was performed with the paired t-test and with a two-way analysis of variance for independent groups. Patients with leptoprosopic facial form and end-on molar occlusions all exhibited a statistically significant difference when compared to controls in terms of space loss (P molar occlusion displayed space loss as well (P molar occlusion displayed space loss in the maxilla (P molar occlusions showed no significant difference in space loss. The relationship between the first permanent molar occlusion and facial form of the child has an influence on the loss of space at the primary first molar site.

  5. Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle

    Science.gov (United States)

    Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf

    2017-09-01

    There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.

  6. An innovative technique to distalize maxillary molar using microimplant supported rapid molar distalizer

    Directory of Open Access Journals (Sweden)

    Meenu Goel

    2013-01-01

    Full Text Available Introduction: In recent years, enhancements in implants have made their use possible as a mode of absolute anchorage in orthodontic patients. In this paper, the authors have introduced an innovative technique to unilaterally distalize the upper left 1 st molar to obtain an ideal Class I molar relationship from a Class II existing molar relationship with an indigenous designed distalizer. Clinical Innovation: For effective unilateral diatalization of molar, a novel cantilever sliding jig assembly was utilized with coil spring supported by a buccally placed single micro implant. The results showed 3 mm of bodily distalization with 1 mm of intrusion and 2° of distal tipping of upper left 1 st molar in 1.5 months. Discussion: This appliance is relatively easy to insert, well-tolerated, and requires minimal patient cooperation compared to other present techniques of molar distalization. Moreover, it is particularly useful in cases that are Class II on one side and Class I on the other, with a minor midline discrepancy and nominal overjet. Patient acceptance level was reported to be within patients physiological and comfort limits.

  7. Are Hypomineralized Primary Molars and Canines Associated with Molar-Incisor Hypomineralization?

    Science.gov (United States)

    da Silva Figueiredo Sé, Maria Jose; Ribeiro, Ana Paula Dias; Dos Santos-Pinto, Lourdes Aparecida Martins; de Cassia Loiola Cordeiro, Rita; Cabral, Renata Nunes; Leal, Soraya Coelho

    2017-11-01

    The purpose of this study was to evaluate the prevalence of and relationship between hypomineralized second primary molars (HSPM) and hypomineralized primary canines (HPC) with molar-incisor hypomineralization (MIH) in 1,963 schoolchildren. The European Academy of Paediatric Dentistry (EAPD) criterion was used for scoring HSPM/HPC and MIH. Only children with four permanent first molars and eight incisors were considered in calculating MIH prevalence (n equals 858); for HSPM/HPC prevalence, only children with four primary second molars (n equals 1,590) and four primary canines (n equals 1,442) were considered. To evaluate the relationship between MIH/HSPM, only children meeting both criteria cited were considered (n equals 534), as was true of MIH/HPC (n equals 408) and HSPM/HPC (n equals 360; chi-square test and logistic regression). The prevalence of MIH was 14.69 percent (126 of 858 children). For HSPM and HPC, the prevalence was 6.48 percent (103 of 1,592) and 2.22 percent (32 of 1,442), respectively. A significant relationship was observed between MIH and both HSPM/HPC (PMIH based on HSPM was 6.31 (95 percent confidence interval [CI] equals 2.59 to 15.13) and for HPC was 6.02 (95 percent CI equals 1.08 to 33.05). The results led to the conclusion that both hypomineralized second primary molars and hypomineralized primary canines are associated with molar-incisor hypomineralization, because children with HSPM/HPC are six times more likely to develop MIH.

  8. The concept of entropy. Relation between action and entropy

    Directory of Open Access Journals (Sweden)

    J.-P.Badiali

    2005-01-01

    Full Text Available The Boltzmann expression for entropy represents the traditional link between thermodynamics and statistical mechanics. New theoretical developments like the Unruh effect or the black hole theory suggest a new definition of entropy. In this paper we consider the thermodynamics of black holes as seriously founded and we try to see what we can learn from it in the case of ordinary systems for which a pre-relativistic description is sufficient. We introduce a space-time model and a new definition of entropy considering the thermal equilibrium from a dynamic point of view. Then we show that for black hole and ordinary systems we have the same relation relating a change of entropy to a change of action.

  9. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from T=(0 to 400) K

    International Nuclear Information System (INIS)

    Stevens, Rebecca; Linford, Jessica; Woodfield, Brian F.; Boerio-Goates, Juliana.; Lind, Cora; Wilkinson, Angus P.; Kowach, Glen

    2003-01-01

    The molar heat capacities of crystalline cubic α-ZrW 2 O 8 and cubic ZrMo 2 O 8 have been measured at temperatures from (0.6 to 400) K. At T=298.15 K, the standard molar heat capacities are (207.01±0.21) J·K -1 ·mol -1 for the tungstate and (210.06±0.42) J·K -1 ·mol -1 for the molybdate. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropies for the tungstate and molybdate are (257.96±0.50) J·K -1 ·mol -1 and (254.3±1) J·K -1 ·mol -1 , respectively. The uncertainty of the entropy of the cubic ZrMo 2 O 8 is larger due to the presence of small chemical and phase impurities whose effects cannot be corrected for at this time. The heat capacities of the negative thermal expansion materials have been compared to the weighted sums of their constituent binary oxides. Both negative thermal expansion materials have heat capacities which are significantly greater than the sum of the binary oxides over the entire temperature region

  10. Nonequilibrium entropies

    International Nuclear Information System (INIS)

    Maes, Christian

    2012-01-01

    In contrast to the quite unique entropy concept useful for systems in (local) thermodynamic equilibrium, there is a variety of quite distinct nonequilibrium entropies, reflecting different physical points. We disentangle these entropies as they relate to heat, fluctuations, response, time asymmetry, variational principles, monotonicity, volume contraction or statistical forces. However, not all of those extensions yield state quantities as understood thermodynamically. At the end we sketch how aspects of dynamical activity can take over for obtaining an extended Clausius relation.

  11. Mini implant supported molar tubes: A novel method for attaching the molar tubes

    Directory of Open Access Journals (Sweden)

    Nitin V Muralidhar

    2017-01-01

    Full Text Available Banding or bonding procedures have been the only means of attaching molar tubes onto the permanent molar teeth till date in the field of orthodontics. This clinical innovation aims to include the use of mini implant for the purpose of attaching the molar tubes thereby eliminating the iatrogenic effects of banding and bonding of the teeth.

  12. Molar Incisor Hypomineralization, Prevalence, and Etiology

    Directory of Open Access Journals (Sweden)

    Sulaiman Mohammed Allazzam

    2014-01-01

    Full Text Available Aim. To evaluate the prevalence and possible etiological factors associated with molar incisor hypomineralization (MIH among a group of children in Jeddah, Saudi Arabia. Methods. A group of 8-12-year-old children were recruited (n=267  from the Pediatric Dental Clinics at the Faculty of Dentistry, King Abdulaziz University. Children had at least one first permanent molar (FPM, erupted or partially erupted. Demographic information, children’s medical history, and pregnancy-related data were obtained. The crowns of the FPM and permanent incisors were examined for demarcated opacities, posteruptive breakdown (PEB, atypical restorations, and extracted FPMs. Children were considered to have MIH if one or more FPM with or without involvement of incisors met the diagnostic criteria. Results. MIH showed a prevalence of 8.6%. Demarcated opacities were the most common form. Maxillary central incisors were more affected than mandibular (P=0.01. The condition was more prevalent in children with history of illnesses during the first four years of life including tonsillitis (P=0.001, adenoiditis (P=0.001, asthma (P=0.001, fever (P=0.014, and antibiotics intake (P=0.001. Conclusions. The prevalence of MIH is significantly associated with childhood illnesses during the first four years of life including asthma, adenoid infections, tonsillitis, fever, and antibiotics intake.

  13. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    Science.gov (United States)

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The holographic entropy cone

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  15. The holographic entropy cone

    International Nuclear Information System (INIS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-01-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  16. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    Science.gov (United States)

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific

  17. Molecular theory of partial molar volume and its applications to biomolecular systems

    Directory of Open Access Journals (Sweden)

    T.Imai

    2007-09-01

    Full Text Available The paial molar volume (PMV is a thermodynamic quantity which contains important information about the solute-solvent interactions as well as the solute structure in solution.Additionally, the PMV is the most essential quantity in the analysis of the pressure effect on chemical reactions. This aicle reviews the recent developments in molecular theories of the PMV, especially the reference interaction site model (RISMtheory of molecular liquids and its three-dimensional generalization version (3D-RISM, which are combined with the Kirkwood-Buff solution theory to calculate the PMV. This aicle also introduces our recent applications of the theory to some interesting issues concerning the PMV of biomolecules. In addition, theoretical representations of the effects of intramolecular fluctuation on the PMV, which are significant for biomacromolecules, are briefly discussed.

  18. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    Science.gov (United States)

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  19. On the Conditional Rényi Entropy

    NARCIS (Netherlands)

    S. Fehr (Serge); S. Berens (Stefan)

    2014-01-01

    htmlabstractThe Rényi entropy of general order unifies the well-known Shannon entropy with several other entropy notions, like the min-entropy or the collision entropy. In contrast to the Shannon entropy, there seems to be no commonly accepted definition for the conditional Rényi entropy: several

  20. Interactions of Proline in Non-aqueous Anionic, Cationic and Nonionic Surfactants at Different Temperatures%不同温度下脯氨酸在非水阴离子、阳离子及非离子型表面活性剂中的作用

    Institute of Scientific and Technical Information of China (English)

    ALI Anwar; SHAHJAHAN

    2008-01-01

    Density and viscosity data of proline (Pro) in sodium dodecyl sulfate/cetyltrimethylammonium bromide/poly (oxyethylene) isooctyl phenyl ether in formamide were measured at 298.15, 303.15, 308.15, and 313.15K and 0.1MPa. The density data were utilized to evaluate standard partial molar volumes (φ0V) and partial molar isobaric expansibility (φ0E). The viscosity data were used to evaluate A-and B-coefficients, free energy of activation of viscous flow (⊿μ0*1) and (⊿μ0*2), per mole of solvent and solute respectively, enthalpy (⊿H*) and entropy (⊿S*) of activation of viscous flow. The results obtained were utilized in the qualitative elucidation of the Pro-surfactant/formamide and Pro-Pro interactions in the present systems.

  1. Extrações de molares na Ortodontia Molar extractions in orthodontics

    Directory of Open Access Journals (Sweden)

    Marco Antônio Schroeder

    2011-12-01

    Full Text Available O tratamento ortodôntico com extração de molares em pacientes adultos é tecnicamente mais complexo, devido a inúmeros fatores. Em geral, o espaço a ser fechado é maior do que o espaço dos pré-molares e, por isso, a ancoragem é crítica e o tempo de tratamento mais longo. É comum esses casos apresentarem algum grau de comprometimento periodontal por causa da idade dos pacientes e, portanto, necessitam de maior controle da mecânica ortodôntica para reduzir os efeitos colaterais do fechamento do espaço. Por isso, bons resultados de finalização são mais difíceis de ser alcançados. Sendo assim, este artigo tem como objetivo apresentar as razões para a indicação de extração de molares nos tratamentos ortodônticos, as contraindicações, as diferentes fases da mecânica ortodôntica, esclarecer os fatores envolvidos nesse tipo de planejamento e tratamento e apresentar casos clínicos tratados com extração de molares.Orthodontic treatment with extraction of molars in adult patients is technically more complex due to a number of factors. In general, the space to be closed is greater than premolar spaces rendering critical anchorage and longer treatment time. Often such cases exhibit some degree of periodontal involvement due to patient age. Hence, the need for greater control over orthodontic mechanics to reduce the side effects of space closure. Therefore, good finishing results can be more difficult to achieve. Thus, the purpose of this article is to determine the reasons for molar extraction indications, describe different stages of orthodontic mechanics, and explain the issues involved in this kind of planning and treatment. Additionally, it aims at describing some treatments with molar extractions.

  2. Tsallis-like entropies in quantum scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    1998-01-01

    In this work, the following entropies in quantum scattering are defined: the informational angular entropy, S θ ; Tsallis-like angular entropies, S q (θ); the angular momentum entropy, S L ; the Tsallis-like angular momentum entropies, S q (L); the angle-angular momentum entropy, S θL . These entropies are defined as natural measures of the uncertainties corresponding to the distribution probabilities. If we are interested in obtaining a measure of uncertainty of the simultaneous realization of the probability distributions, than, we have to calculate the entropy corresponding to these distributions. The expression of angle-angular momentum entropy is given. The relation between the Tsallis entropies and the angle-angular momentum entropy is derived

  3. Molar volume of eutectic solvents as a function of molar composition and temperature☆

    Institute of Scientific and Technical Information of China (English)

    Farouq S. Mjalli

    2016-01-01

    The conventional Rackett model for predicting liquid molar volume has been modified to cater for the effect of molar composition of the Deep Eutectic Solvents (DES). The experimental molar volume data for a group of commonly used DES has been used for optimizing the improved model. The data involved different molar compositions of each DES. The validation of the new model was performed on another set of DESs. The average relative deviation of the model on the training and validation datasets was approximately 0.1%while the Rackett model gave a relative deviation of more than 1.6%. The modified model deals with variations in DES molar com-position and temperature in a more consistent way than the original Rackett model which exhibits monotonic performance degradation as temperature moves away from reference conditions. Having the composition of the DES as a model variable enhances the practical utilization of the predicting model in diverse design and process simulation applications.

  4. Differential Expression of p63 in Hydropic and Molar Gestations

    International Nuclear Information System (INIS)

    Masood, S.; Kehar, S. I.; Shawana, S.; Aamir, I.

    2015-01-01

    Objective:To observe the differential expression of p63 in hydropic and molar gestation. Study Design: Cross-sectional analytical study. Place and Duration of Study: Department of Pathology, Basic Medical Sciences Institute, Jinnah Postgraduate and Medical Centre, Karachi, from January 2006 to June 2013. Methodology: Ninety placental biopsies including 30 cases each of hydropic abortions, partial hydatidiform mole and complete hydatidiform mole were analyzed for morphological features and results of immunohistochemical staining. Results were described as frequency. Significance was determined using test of proportions with significance at p < 0.05. Results: Out of 30 cases of hydropic abortion, 6 were negative, 15 were weak, 4 were moderate and 5 showed strong degree of intensity for p63. Out of 30 cases of partial hydatidiform mole, 3 were negative, 2 showed weak, 4 showed moderate and 21 cases showed strong degree of intensity for p63. All 30 cases of complete hydatidiform mole strongly stained for p63. Conclusion: The intensity of staining of p63 was stronger in cases of molar pregnancy as compared to hydropic abortion. There was loss of p63 expression in cytotrophoblastic cells in all abortions. In limited resources settings, where facilities for PCR/FISH and DNA ploidy analysis is not available, the authors advocate p63 in routine clinical practice to provide the most refined diagnosis of hydatidiform moles. (author)

  5. Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate

    Directory of Open Access Journals (Sweden)

    Tehseen Abbas

    2016-06-01

    Full Text Available In this article, entropy generation on viscous nanofluid through a horizontal Riga plate has been examined. The present flow problem consists of continuity, linear momentum, thermal energy, and nanoparticle concentration equation which are simplified with the help of Oberbeck-Boussinesq approximation. The resulting highly nonlinear coupled partial differential equations are solved numerically by means of the shooting method (SM. The expression of local Nusselt number and local Sherwood number are also taken into account and discussed with the help of table. The physical influence of all the emerging parameters such as Brownian motion parameter, thermophoresis parameter, Brinkmann number, Richardson number, nanoparticle flux parameter, Lewis number and suction parameter are demonstrated graphically. In particular, we conferred their influence on velocity profile, temperature profile, nanoparticle concentration profile and Entropy profile.

  6. Entropy for Mechanically Vibrating Systems

    Science.gov (United States)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators

  7. Application of the PFV EoS correlation to excess molar volumes of (1-ethyl-3-methylimidazolium ethylsulfate + alkanols) at different temperatures

    International Nuclear Information System (INIS)

    Deenadayalu, N.; Sen, S.; Sibiya, P.N.

    2009-01-01

    The experimental densities for the binary systems of an ionic liquid and an alkanol {1-ethyl-3-methylimidazolium ethylsulfate [EMIM] + [EtSO 4 ] - + methanol or 1-propanol or 2-propanol} were determined at T = (298.15, 303.15, and 313.15) K. The excess molar volumes for the above systems were then calculated from the experimental density values for each temperature. The Redlich-Kister smoothing polynomial was used to fit the experimental results and the partial molar volumes were determined from the Redlich-Kister coefficients. For all the systems studied, the excess molar volume results were negative over the entire composition range for all the temperatures. The excess molar volumes were correlated with the pentic four parameter virial (PFV) equation of state (EoS) model

  8. Entropy Generation Due to Natural Convection in a Partially Heated Cavity by Local RBF-DQ Method

    DEFF Research Database (Denmark)

    Soleimani, S.; Qajarjazi, A.; Bararnia, H.

    2011-01-01

    The Local Radial Basis Function-Differential Quadrature (RBF-DQ) method is applied to twodimensional incompressible Navier-Stokes equations in primitive form. Numerical results of heatlines and entropy generation due to heat transfer and fluid friction have been obtained for laminar natural...

  9. Entropy of the electroencephalogram as applied in the M-Entropy S ...

    African Journals Online (AJOL)

    Background: It has been suggested that spectral entropy of the electroencephalogram as applied in the M-Entropy S/5TM Module (GE Healthcare) does not detect the effects of nitrous oxide (N2O). The aim of this study was to investigate the effect on entropy by graded increases in N2O concentrations in the presence of a ...

  10. Entropy of Baker's Transformation

    Institute of Scientific and Technical Information of China (English)

    栾长福

    2003-01-01

    Four theorems about four different kinds of entropies for Baker's transformation are presented. The Kolmogorov entropy of Baker's transformation is sensitive to the initial flips by the time. The topological entropy of Baker's transformation is found to be log k. The conditions for the state of Baker's transformation to be forbidden are also derived. The relations among the Shanonn, Kolmogorov, topological and Boltzmann entropies are discussed in details.

  11. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space.

    Science.gov (United States)

    Towse, Clare-Louise; Akke, Mikael; Daggett, Valerie

    2017-04-27

    Molecular dynamics (MD) simulations contain considerable information with regard to the motions and fluctuations of a protein, the magnitude of which can be used to estimate conformational entropy. Here we survey conformational entropy across protein fold space using the Dynameomics database, which represents the largest existing data set of protein MD simulations for representatives of essentially all known protein folds. We provide an overview of MD-derived entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. Although different side chains might be expected to impose varying restrictions on the conformational space that the backbone can sample, we found that the backbone entropy and side chain size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dictionary, the contents of which have been compared with entropies derived by other theoretical approaches and experiment. As might be expected, the conformational entropies scale linearly with the number of residues, demonstrating that conformational entropy is an extensive property of proteins. The calculated conformational entropies of folding agree well with previous estimates. Detailed analysis of specific cases identifies deviations in conformational entropy from the average values that highlight how conformational entropy varies with sequence, secondary structure, and tertiary fold. Notably, α-helices have lower entropy on average than do β-sheets, and both are lower than coil regions.

  12. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    Science.gov (United States)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  13. Part 2: Limiting apparent molar volume of organic and inorganic 1:1 electrolytes in (water + ethylammonium nitrate) mixtures at 298 K - Thermodynamic approach using Bahe-Varela pseudo-lattice theory

    International Nuclear Information System (INIS)

    Bouguerra, Sabbah; Bou Malham, Ibrahim; Letellier, Pierre; Mayaffre, Alain; Turmine, Mireille

    2008-01-01

    Values of partial molar volumes at infinite dilution of 9 inorganic and 4 organic 1:1 electrolytes have been determined in (water + ethylammonium nitrate) (EAN) binary at 298.15 K throughout the composition scale. Our theoretical analysis shows that the values of partial molar volumes at infinite dilution of a solute in a binary are linked to those of the partial molar volumes of the components of mixed solvent. This applies to mixtures of molecular solvents as well as (water + ionic liquid) media. The use of the 'pseudo-lattice theory' of Bahe recently supplemented Varela can be used for calculations and to obtain information about the interactions between 1:1 electrolytes as solutes at infinite dilution and their concentrated saline environment. We show that the 'pseudo-lattice theory' allows accurate description of the behaviours of symmetrical tetraalkylammoniums bromide between the infinitely dilute state and concentrations higher than 2 mol . L -1

  14. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

    Institute of Scientific and Technical Information of China (English)

    Liao-fu LUO

    2009-01-01

    The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and low- intensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently re- verse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the bio- logical tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful infor- marion from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

  15. The different paths to entropy

    International Nuclear Information System (INIS)

    Benguigui, L

    2013-01-01

    In order to understand how the complex concept of entropy emerged, we propose a trip into the past, reviewing the works of Clausius, Boltzmann, Gibbs and Planck. In particular, since Gibbs's work is not very well known we present a detailed analysis, recalling the three definitions of entropy that Gibbs gives. The introduction of entropy in quantum mechanics gives in a compact form all the classical definitions of entropy. Perhaps one of the most important aspects of entropy is to see it as a thermodynamic potential like the others proposed by Callen. The calculation of fluctuations in thermodynamic quantities is thus naturally related to entropy. We close with some remarks on entropy and irreversibility. (paper)

  16. ENTROPY - OUR BEST FRIEND

    Directory of Open Access Journals (Sweden)

    Urban Kordes

    2005-10-01

    Full Text Available The paper tries to tackle the question of connection between entropy and the living. Definitions of life as the phenomenon that defies entropy are overviewed and the conclusion is reached that life is in a way dependant on entropy - it couldn't exist without it. Entropy is a sort of medium, a fertile soil, that gives life possibility to blossom. Paper ends with presenting some consequences for the field of artificial intelligence.

  17. Editorial: Entropy in Landscape Ecology

    Directory of Open Access Journals (Sweden)

    Samuel A. Cushman

    2018-04-01

    Full Text Available Entropy and the second law of thermodynamics are the central organizing principles of nature, but the ideas and implications of the second law are poorly developed in landscape ecology. The purpose of this Special Issue “Entropy in Landscape Ecology” in Entropy is to bring together current research on applications of thermodynamics in landscape ecology, to consolidate current knowledge and identify key areas for future research. The special issue contains six articles, which cover a broad range of topics including relationships between entropy and evolution, connections between fractal geometry and entropy, new approaches to calculate configurational entropy of landscapes, example analyses of computing entropy of landscapes, and using entropy in the context of optimal landscape planning. Collectively these papers provide a broad range of contributions to the nascent field of ecological thermodynamics. Formalizing the connections between entropy and ecology are in a very early stage, and that this special issue contains papers that address several centrally important ideas, and provides seminal work that will be a foundation for the future development of ecological and evolutionary thermodynamics.

  18. Prevalent of root resorption of second molar adjustment the impacted third molar in prepiacal and panoramic radiographs

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahimi Saravi

    2013-10-01

    Full Text Available   Background and Aims: Impacted third molar reduces the bone level in the distal aspect of second molar, and sometimes it can lead to root resorption of the adjacent tooth. The purpose of this study was to determine this resorption using panoramic and periapical radiographs.   Materials and Methods: In this cross-sectional descriptive study 54 patient (28 men, 26 women above 15 years old with the average of 22 years in Oral and Maxillofacial Department of Tehran University were studied. A periapical radiography from the third molar and a panoramic radiograph were taken from each patient (Because of their routine use and evaluation of accuracy of panoramic compared with periapical, and the magnitude of the root resorption for the second molar was determined by 2 observers and written in a questionnaire. Data were analyzed using Fisher test.   Results: The prevalence of the root resorption of the second molar adjacent to the impacted third molar in the panoramic and the periapical radiographies, with respect to the limitation of the sample size were 46.3% and 31.5%, respectively, with 95% confidence(P>0.05. Most of these resorptions were in the cervical third of the second molar roots and in cases in which the third molars were mesially oriented or horizontal. There was also no significant difference between panoramic and periapical radiographs.   Conclusion: Due to the increased risk of the resorption of the second molar adjacent to the third molar, extraction of the impacted third molars, especiall y mesially oriented or horizontal ones are recommended.

  19. Probabilistic inference of fatigue damage propagation with limited and partial information

    Directory of Open Access Journals (Sweden)

    Huang Min

    2015-08-01

    Full Text Available A general method of probabilistic fatigue damage prognostics using limited and partial information is developed. Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis. In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy (MaxEnt using the limited and partial information as constraints. The posterior distribution is formulated using the principle of maximum relative entropy (MRE to perform probability updating when new information is available and reduces uncertainty in prognosis results. It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements. A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution. Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo (MCMC simulations. Fatigue crack prognosis problems with experimental data are presented for demonstration and validation.

  20. Spectral maximum entropy hydrodynamics of fermionic radiation: a three-moment system for one-dimensional flows

    International Nuclear Information System (INIS)

    Banach, Zbigniew; Larecki, Wieslaw

    2013-01-01

    The spectral formulation of the nine-moment radiation hydrodynamics resulting from using the Boltzmann entropy maximization procedure is considered. The analysis is restricted to the one-dimensional flows of a gas of massless fermions. The objective of the paper is to demonstrate that, for such flows, the spectral nine-moment maximum entropy hydrodynamics of fermionic radiation is not a purely formal theory. We first determine the domains of admissible values of the spectral moments and of the Lagrange multipliers corresponding to them. We then prove the existence of a solution to the constrained entropy optimization problem. Due to the strict concavity of the entropy functional defined on the space of distribution functions, there exists a one-to-one correspondence between the Lagrange multipliers and the moments. The maximum entropy closure of moment equations results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers. However, this system can be transformed into the equivalent system of conservation equations for the moments. These two systems are consistent with the additional conservation equation interpreted as the balance of entropy. Exploiting the above facts, we arrive at the differential relations satisfied by the entropy function and the additional function required to close the system of moment equations. We refer to this additional function as the moment closure function. In general, the moment closure and entropy–entropy flux functions cannot be explicitly calculated in terms of the moments determining the state of a gas. Therefore, we develop a perturbation method of calculating these functions. Some additional analytical (and also numerical) results are obtained, assuming that the maximum entropy distribution function tends to the Maxwell–Boltzmann limit. (paper)

  1. On quantum Rényi entropies

    DEFF Research Database (Denmark)

    Müller-Lennert, Martin; Dupont-Dupuis, Fréderic; Szehr, Oleg

    2013-01-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in in...

  2. Entanglement entropy of ABJM theory and entropy of topological black hole

    Science.gov (United States)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  3. Entropy-Stabilized Oxides

    Science.gov (United States)

    2015-09-29

    antiferroelectrics. Phys. Rev. Lett. 110, 017603 (2013). 22. Cantor , B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic...Science 345, 1153–1158 (2014). 24. Gali, A. & George , E. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013). 25...148–153 (2014). 26. Otto, F., Yang, Y., Bei, H. & George , E. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy

  4. Transplanckian entanglement entropy

    International Nuclear Information System (INIS)

    Chang, Darwin; Chu, C.-S.; Lin Fengli

    2004-01-01

    The entanglement entropy of the event horizon is known to be plagued by the UV divergence due to the infinitely blue-shifted near horizon modes. In this Letter we calculate the entanglement entropy using the transplanckian dispersion relation, which has been proposed to model the quantum gravity effects. We show that, very generally, the entropy is rendered UV finite due to the suppression of high energy modes effected by the transplanckian dispersion relation

  5. Entanglement entropy and the colored Jones polynomial

    Science.gov (United States)

    Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar

    2018-05-01

    We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.

  6. Ceramic onlay for endodontically treated mandibular molar

    Directory of Open Access Journals (Sweden)

    Roopadevi Garlapati

    2014-01-01

    Full Text Available Restoration of endodontically treated teeth is important for the success of endodontic treatment. In full coverage restorations, maximum amount of tooth structure is compromised, so as to conserve the amount of tooth structure partial coverage restorations, can be preferred. This case report is on fabrication of a conservative tooth colored restoration for an endodontically treated posterior tooth. A 22-year-old male patient presented with pain in the mandibular left first molar. After endodontic treatment, composite material was used as postendodontic restoration. The tooth was then prepared to receive a ceramic onlay and bonded with self-adhesive universal resin cement. Ceramic onlay restoration was periodically examined up to 2 years.

  7. Excess molar volumes and refractive indices of (methoxybenzene+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T=(288.15 to 303.15)K

    International Nuclear Information System (INIS)

    Al-Kandary, Jasem A.; Al-Jimaz, Adel S.; Abdul-Latif, Abdul-Haq M.

    2006-01-01

    Densities ρ and refractive indices n D for (anisole+benzene, or toluene, or o-xylene, or m-xylene or p-xylene or mesitylene) binary mixtures over the entire range of mole fraction, at temperatures (288.15, 293.15, 298.15, and 303.15)K and atmospheric pressure, have been measured. The excess molar volume V E and molar refraction deviation ΔR m , have been calculated and fitted to the Redlich-Kister polynomial relation to estimate the binary coefficients and standard errors. The excess molar volumes are positive for (anisole+mesitylene) binary mixtures and negative for (anisole+benzene, or toluene, or xylene isomers) binary mixtures at various temperatures. Partial molar volumes V-bar i and partial excess molar volumes V-bar i E have been also derived from the experimental data. The calculated values have been used to explain the dependency of intermolecular interaction between the mixing components on the alkyl substitution on benzene ring

  8. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    Science.gov (United States)

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  9. Thermostatistical aspects of generalized entropies

    International Nuclear Information System (INIS)

    Fa, K.S.; Lenzi, E.K.

    2004-01-01

    We investigate the properties concerning a class of generalized entropies given by S q,r =k{1-[Σ i p i q ] r }/[r(q-1)] which include Tsallis' entropy (r=1), the usual Boltzmann-Gibbs entropy (q=1), Renyi's entropy (r=0) and normalized Tsallis' entropy (r=-1). In order to obtain the generalized thermodynamic relations we use the laws of thermodynamics and considering the hypothesis that the joint probability of two independent systems is given by p ij A c upB =p i A p j B . We show that the transmutation which occurs from Tsallis' entropy to Renyi's entropy also occur with S q,r . In this scenario, we also analyze the generalized variance, covariance and correlation coefficient of a non-interacting system by using extended optimal Lagrange multiplier approach. We show that the correlation coefficient tends to zero in the thermodynamic limit. However, Renyi's entropy related to this non-interacting system presents a certain degree of non-extensivity

  10. Apparent molar volumes and apparent molar heat capacities of aqueous magnesium nitrate, strontium nitrate, and manganese nitrate at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Jones, J.S.; Ziemer, S.P.; Brown, B.R.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ and apparent molar heat capacities C p,φ were determined at the pressure 0.35 MPa for aqueous solutions of magnesium nitrate Mg(NO 3 ) 2 at molalities m = (0.02 to 1.0) mol . kg -1 , strontium nitrate Sr(NO 3 ) 2 at m = (0.05 to 3.0) mol . kg -1 , and manganese nitrate Mn(NO 3 ) 2 at m = (0.01 to 0.5) mol . kg -1 . Our V φ values were calculated from solution densities obtained at T = (278.15 to 368.15) K using a vibrating-tube densimeter, and our C p,φ values were calculated from solution heat capacities obtained at T = (278.15 to 393.15) K using a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results, and standard state partial molar volumes and heat capacities were obtained over the ranges of T investigated

  11. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  12. Some remarks on conditional entropy

    NARCIS (Netherlands)

    Nijst, A.G.P.M.

    1969-01-01

    Using a definition of conditional entropy given by Hanen and Neveu [5, 10, 11] we discuss in this paper some properties of conditional entropy and mean entropy, in particular an integral representation of conditional entropy (§ 2), and the decomposition theorem of the KolmogorovSina¯i invariant (§

  13. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  14. Relations Among Some Fuzzy Entropy Formulae

    Institute of Scientific and Technical Information of China (English)

    卿铭

    2004-01-01

    Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.

  15. Entropy and Digital Installation

    Directory of Open Access Journals (Sweden)

    Susan Ballard

    2005-01-01

    Full Text Available This paper examines entropy as a process which introduces ideas of distributed materiality to digital installation. Beginning from an analysis of entropy as both force and probability measure within information theory and it’s extension in Ruldof Arnheim’s text ‘Entropy and Art” it develops an argument for the positive rather thannegative forces of entropy. The paper centres on a discussion of two recent works by New Zealand artists Ronnie van Hout (“On the Run”, Wellington City Gallery, NZ, 2004 and Alex Monteith (“Invisible Cities”, Physics Room Contemporary Art Space, Christchurch, NZ, 2004. Ballard suggests that entropy, rather than being a hindrance to understanding or a random chaotic force, discloses a necessary and material politics of noise present in digital installation.

  16. Human dental age estimation combining third molar(s) development and tooth morphological age predictors.

    Science.gov (United States)

    Thevissen, P W; Galiti, D; Willems, G

    2012-11-01

    In the subadult age group, third molar development, as well as age-related morphological tooth information can be observed on panoramic radiographs. The aim of present study was to combine, in subadults, panoramic radiographic data based on developmental stages of third molar(s) and morphological measurements from permanent teeth, in order to evaluate its added age-predicting performances. In the age range between 15 and 23 years, 25 gender-specific radiographs were collected within each age category of 1 year. Third molar development was classified and registered according the 10-point staging and scoring technique proposed by Gleiser and Hunt (1955), modified by Köhler (1994). The Kvaal (1995) measuring technique was applied on the indicated teeth from the individuals' left side. Linear regression models with age as response and third molar-scored stages as explanatory variables were developed, and morphological measurements from permanent teeth were added. From the models, determination coefficients (R (2)) and root-mean-square errors (RMSE) were calculated. Maximal-added age information was reported as a 6 % R² increase and a 0.10-year decrease of RMSE. Forensic dental age estimations on panoramic radiographic data in the subadult group (15-23 year) should only be based on third molar development.

  17. Misuse of thermodynamic entropy in economics

    International Nuclear Information System (INIS)

    Kovalev, Andrey V.

    2016-01-01

    The direct relationship between thermodynamic entropy and economic scarcity is only valid for a thermodynamically isolated economy. References to the second law of thermodynamics in economics within the context of scarcity ignore the fact that the earth is not an isolated system. The earth interacts with external sources and sinks of entropy and the resulting total entropy fluctuates around a constant. Even if the mankind finally proves unable to recycle industrial waste and close the technological cycle, the economic disruption caused by the depletion of natural resources may happen while the total thermodynamic entropy of the ecosystem remains essentially at the present level, because the transfer of chemically refined products may not increase significantly the total entropy, but it may decrease their recyclability. The inutility of industrial waste is not connected with its entropy, which may be exemplified with the case of alumina production. The case also demonstrates that industrially generated entropy is discharged into surroundings without being accumulated in ‘thermodynamically unavailable matter’. Material entropy, as a measure of complexity and economic dispersal of resources, can be a recyclability metric, but it is not a thermodynamic parameter, and its growth is not equivalent to the growth of thermodynamic entropy. - Highlights: • Entropy cannot be used as a measure of economic scarcity. • There is no anthropogenic entropy separate from the entropy produced naturally. • Inutility of industrial waste is not connected with its thermodynamic entropy. • Industrially generated entropy may or may not be accumulated in industrial waste. • Recyclability is more important than thermodynamic entropy of a product.

  18. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    Science.gov (United States)

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  19. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    CERN Document Server

    Zhu, C

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  20. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    International Nuclear Information System (INIS)

    Zhu, Changjiang; Duan, Renjun

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation

  1. Entropy: Order or Information

    Science.gov (United States)

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  2. Isotope effects in aqueous systems. Excess thermodynamic properties of 1,3-dimethylurea solutions in H2O and D2O

    International Nuclear Information System (INIS)

    Jakli, G.; Hook, W.A. Van

    1997-01-01

    The osmotic coefficients of 1,3-dimethylurea-h 2 (DMUh 2 )/H 2 O and 1,3-dimethylurea-d 2 (DMUd 2 )/D 2 O solutions (1, 2, 4, 12, and 20 m aq , 15 < t/degree C < 80) were obtained from differential vapor pressure measurements. Excess partial molar free energies, enthalpies, and entropies for the solvent and their isotope effects were calculated from the temperature derivatives of the osmotic coefficients. New partial molar volume data are reported at 25 C at low and intermediate concentrations. The thermodynamic properties of solution are compared with those of urea and discussed using the cage model of hydrophobic hydration. The results support the mixed (polar-apolar) character of this compound and show that its structural effect on water changes with temperature and concentration

  3. Entropy-based financial asset pricing.

    Directory of Open Access Journals (Sweden)

    Mihály Ormos

    Full Text Available We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  4. Entropy-based financial asset pricing.

    Science.gov (United States)

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  5. Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

    International Nuclear Information System (INIS)

    Freire, Mara G.; Carvalho, Pedro J.; Santos, Luis M.N.B.F.; Gomes, Ligia R.; Marrucho, Isabel M.; Coutinho, Joao A.P.

    2010-01-01

    This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.

  6. Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies

    Directory of Open Access Journals (Sweden)

    Christian Corda

    2018-01-01

    Full Text Available In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a black hole are created by the metric entropies of the functions, created by the black hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of topological entropy for general iterated function systems based on a new kind of the inverse of covers. Then the notion of metric entropy for an Iterated Function System ( I F S is considered, and we prove that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of topological entropy keeps some properties which are hold by the classic definition of topological entropy for a continuous map. We also consider average entropy as another type of topological entropy for an I F S which is based on the topological entropies of its elements and it is also an invariant object under topological conjugacy. The relation between Axiom A and the average entropy is investigated.

  7. Quantum thermodynamics: Microscopic foundations of entropy and of entropy generation by irreversibility

    Directory of Open Access Journals (Sweden)

    Beretta, Gian Paolo

    2008-02-01

    Full Text Available What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? Most physicists still accept and teach that the rationalization of these fundamental questions is given by Statistical Mechanics. Indeed, for everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by Schrodinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory, that we call Quantum Thermodynamics, that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior and maximal-entropy-generation nonequilibrium dynamics. In this paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation of motion and the main general results. Our objective is to show in a not-too-technical manner that this theory provides indeed a

  8. Holographic charged Rényi entropies

    Science.gov (United States)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  9. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  10. A three-dimensional finite element analysis of molar distalization with a palatal plate, pendulum, and headgear according to molar eruption stage

    Science.gov (United States)

    Kang, Ju-Man; Park, Jae Hyun; Bayome, Mohamed; Oh, Moonbee; Park, Chong Ook; Mo, Sung-Seo

    2016-01-01

    Objective This study aimed to (1) evaluate the effects of maxillary second and third molar eruption status on the distalization of first molars with a modified palatal anchorage plate (MPAP), and (2) compare the results to the outcomes of the use of a pendulum and that of a headgear using three-dimensional finite element analysis. Methods Three eruption stages were established: an erupting second molar at the cervical one-third of the first molar root (Stage 1), a fully erupted second molar (Stage 2), and an erupting third molar at the cervical one-third of the second molar root (Stage 3). Retraction forces were applied via three anchorage appliance models: an MPAP with bracket and archwire, a bone-anchored pendulum appliance, and cervical-pull headgear. Results An MPAP showed greater root movement of the first molar than crown movement, and this was more noticeable in Stages 2 and 3. With the other devices, the first molar showed distal tipping. Transversely, the first molar had mesial-out rotation with headgear and mesial-in rotation with the other devices. Vertically, the first molar was intruded with an MPAP, and extruded with the other appliances. Conclusions The second molar eruption stage had an effect on molar distalization, but the third molar follicle had no effect. The application of an MPAP may be an effective treatment option for maxillary molar distalization. PMID:27668192

  11. Possible extended forms of thermodynamic entropy

    International Nuclear Information System (INIS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy. (paper)

  12. MANAGEMENT OF MANDIBULAR THIRD MOLAR SURGERY TO PRESERVE PERIODONTAL HEALTH OF SECOND MOLAR

    Directory of Open Access Journals (Sweden)

    Elitsa G. Deliverska

    2017-06-01

    Full Text Available Background: Extraction of impacted third molar violates surrounding soft and bony tissues. Various surgical approaches and surgical technics have an important impact on the periodontal health of the adjacent second molar. Purpose: The aim of this review is to analyse the causes that can affect postoperative periodontal outcomes for the mandibular second molars (LM2 adjacent to the impacted/ semi impacted mandibular third molars (LM3. Material and Methods: Electronic searches were conducted through the MEDLINE (PubMed, Scopus, etc. databases to screen all relevant articles published from inception to April 2017. Results: Different flap techniques had no significant impact on the probing depth reduction or on the clinical attachment level of LM2. Szmyd and paramarginal flap designs may be the most effective in reducing the probing depth after third molar surgery, and the envelope flap may be the least effective. Use of bone substitutes and guided tissue regeneration therapy has been proposed, to eliminate or prevent these periodontal defects, but there is still no consensus on their predictability or clinical benefit. Higher costs and the risk of postoperative inflammatory complications should also be taken into proper account, as with any surgical procedure. “Orthodontic extraction” is indicated for that impacted M3 that present a high risk of postoperative periodontal defects at the distal aspect of adjacent M2. Conclusion: Risk factors associated with bone loss following lower third molar extraction includes age, the direction of the eruption, preoperative bone defects, and resorbtion of the LM2 root surface. Prevention of such periodontal defects continues to challenge clinicians.

  13. Monotonicity of the von Neumann entropy expressed as a function of R\\'enyi entropies

    OpenAIRE

    Fannes, Mark

    2013-01-01

    The von Neumann entropy of a density matrix of dimension d, expressed in terms of the first d-1 integer order R\\'enyi entropies, is monotonically increasing in R\\'enyi entropies of even order and decreasing in those of odd order.

  14. Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Chen, Jiayi; Chen, Lingxiao; Xu, Yingjie

    2015-01-01

    Highlights: • Densities and viscosities of [TMG]IM + alcohol mixtures were measured. • Coefficient of thermal expansion, molecular volume, standard entropy, and lattice energy were obtained. • Excess molar volumes and viscosity deviations were calculated and fitted to Redlich–Kister equation. • Other volumetric properties and excess Gibbs free energy of activation for viscous flow were deduced. • The intermolecular interactions between [TMG]IM and alcohols were analyzed. - Abstract: Densities and viscosities of the pure ionic liquid 1,1,3,3-tetramethylguanidine imidazole ([TMG]IM) and its binary mixtures with methanol, ethanol, 1-propanol, and 1-butanol were measured at temperatures from T = (293.15 to 313.15) K. The thermal expansion coefficient, molecular volume, standard entropy, and lattice energy of [TMG]IM were obtained from the experimental density value. The temperature dependence of the viscosity of [TMG]IM was fitted to the fluidity equation. Excess molar volumes V E and viscosity deviations Δη of the binary mixtures were calculated and fitted to the Redlich–Kister equation with satisfactory results. The result shows that the V E values of the binary mixtures are negative over the whole composition range, while Δη values have an S-shape deviation. Temperature has little effect on the V E of the systems, but it has significant effect on the Δη. Furthermore, the absolute values of V E for {[TMG]IM (1) + alcohol (2)} systems at the same temperature decrease with increasing carbon alkyl chain of the primary alcohol. Other derived properties, such as the apparent molar volumes, partial molar volumes, excess partial molar volumes, Gibbs free energy of activation for viscous flow, and excess Gibbs free energy of activation for viscous flow of the above-mentioned systems were also calculated

  15. More dimensions: Less entropy

    International Nuclear Information System (INIS)

    Kolb, E.W.; Lindley, D.; Seckel, D.

    1984-01-01

    For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions

  16. Incidence of root canal treatment of second molars following adjacent impacted third molar extraction

    Directory of Open Access Journals (Sweden)

    Yener Oguz

    2016-03-01

    Conclusion: Although the incidence is minimal, iatrogenic subluxation injuries occurring during the surgical removal of impacted third molars can lead to pulpal complications and a requirement for root canal treatment of adjacent second molars.

  17. Densities and apparent molar volumes of aqueous LiI solutions at temperatures from (296 to 600) K and at pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2004-01-01

    Densities of five aqueous LiI solutions (0.0906, 0.2832, 0.6621, 1.6046, and 3.0886) mol . kg -1 H 2 O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made along various isotherms between (296.95 and 600.25) K. The range of pressure was (0.1 to 30) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements was estimated to be less than 0.06%, 0.05%, 15 mK, and 0.014%, respectively. To check and confirm the accuracy of the measurements, (p,V m ,T,x) data were taken for pure water at selected temperatures and pressures. Experimental and calculated (IAPWS formulation) densities for pure water show excellent agreement within their experimental uncertainties (average absolute deviation is 0.02%). Values of saturated densities were determined by extrapolating experimental p - ρ data to the vapour pressure at fixed temperature and composition using a linear interpolating equation. Apparent molar volumes were derived using measured values of density for solutions and pure water. The apparent molar volumes were extrapolated to zero concentration (m → 0) to yield partial molar volumes of electrolyte (LiI) at infinite dilution. The temperature, pressure, and concentration dependence of apparent and partial molar volumes was studied. The measured values of density, apparent and partial molar volume were compared with data reported in the literature by other authors. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method using the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.065%

  18. Apparent molar volumes and apparent molar heat capacities of dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Origlia-Luster, M.L.; Woolley, E.M.

    2003-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi have been determined for dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. The molalities investigated ranged from 0.05 mol·kg -1 to 1.0 mol·kg -1 . We used a vibrating tube densimeter (DMA 512P, Anton PAAR, Austria) to determine the densities and volumetric properties. Heat capacities were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA). The results were fit by regression to equations that describe the surfaces (V phi ,T,m) and (C p,phi ,T,m). Infinite dilution partial molar volumes V 2 0 and heat capacities C 0 p,2 were obtained over the range of temperatures by extrapolation of these surfaces to m=0 mol·kg -1

  19. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  20. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2017-12-09

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  1. Entropy generation analysis of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid in a porous medium

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The similar solution on the equations of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid through a porous medium gives (using an analytical method, a system of non-linear partial differential equations which are solved by optimal homotopy analysis method. Effects of various drastic parameters on the fluid and heat transfer characteristics have been analyzed. A very good agreement is observed between the obtained results and the numerical ones. The entropy generation has been derived and a comprehensive parametric analysis on that has been done. Each component of the entropy generation has been analyzed separately and the contribution of each one on the total value of entropy generation has been determined. It is found that the entropy generation as an important aspect of the industrial applications has been affected by various parameters which should be controlled to minimize the entropy generation.

  2. Entropy-Corrected Holographic Dark Energy

    International Nuclear Information System (INIS)

    Wei Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)

  3. Variations mechanism in entropy of wave height field and its relation with thermodynamic entropy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper gives a brief description of annual period and seasonal variation in the wave height field entropy in the northeastern Pacific. A calculation of the quantity of the, received by lithosphere systems in the northern hemisphere is introduced. The wave heat field entropy is compared with the difference in the quantity of the sun's radiation heat. Analysis on the transfer method, period and lag of this seasonal variation led to the conclusion that the annual period and seasonal variation in the entropy of the wave height field in the Northwestern Pacific is due to the seasonal variation of the sun's radiation heat. Furthermore, the inconsistency between thermodynamic entropy and information entropy was studied.

  4. On unified-entropy characterization of quantum channels

    International Nuclear Information System (INIS)

    Rastegin, A E

    2012-01-01

    We consider properties of quantum channels with the use of unified entropies. Extremal unravelings of quantum channel with respect to these entropies are examined. The concept of map entropy is extended in terms of the unified entropies. The map (q, s)-entropy is naturally defined as the unified (q, s)-entropy of a rescaled dynamical matrix of given quantum channel. Inequalities of Fannes type are obtained for introduced entropies in terms of both the trace and Frobenius norms of difference between corresponding dynamical matrices. Additivity properties of introduced map entropies are discussed. The known inequality of Lindblad with the entropy exchange is generalized to many of the unified entropies. For the tensor product of a pair of quantum channels, we derive a two-sided estimate on the output entropy of a maximally entangled input state. (paper)

  5. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  6. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    Science.gov (United States)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  7. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.

    Science.gov (United States)

    Pasturel, A; Jakse, N

    2016-12-07

    It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.

  8. Compressibility and rarefaction effects on entropy and entropy generation in micro/nano Couette flow using DSMC

    International Nuclear Information System (INIS)

    Ejtehadi, Omid; Esfahani, Javad Abolfazli; Roohi, Ehsan

    2012-01-01

    In the present work, compressible flow of argon gas in the famous problem of Couette flow in micro/nano-scale is considered and numerically analyzed using the direct simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on entropy and entropy generation in terms of viscous dissipation and thermal diffusion are studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. In this regard, we computed entropy by using its kinetic theory formulation in a microscopic way while the entropy generation distribution is achieved by applying a semi-microscopic approach and thoroughly free from equilibrium assumptions. The results of our simulations demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also illustrated that the increase of Mach number will result in non-uniform entropy profiles with increase in the vicinity of the central regions of the channel. Moreover, generation of entropy in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number has inverse effects such as: uniform entropy profiles and a falling off in entropy generation amount throughout the channel.

  9. Entropy in Biology

    Indian Academy of Sciences (India)

    During the process of ageing, the balance shifts in the direction of anarchy. Death is ... tion of life and the laws of statistieal physics and entropy, both of which ... capable of doing work. ... defined by Ludwig Boltzmann in 1877, the entropy of the.

  10. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    Science.gov (United States)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  11. Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization

    Science.gov (United States)

    Negre-Barber, A.; Montiel-Company, J. M.; Boronat-Catalá, M.; Catalá-Pizarro, M.; Almerich-Silla, J. M.

    2016-01-01

    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9–86.6) and the negative predictive value 84.7% (80.6–88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9–17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47–0.68). The odds ratio was 18.2 (9.39–35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479

  12. Preimage entropy dimension of topological dynamical systems

    OpenAIRE

    Liu, Lei; Zhou, Xiaomin; Zhou, Xiaoyao

    2014-01-01

    We propose a new definition of preimage entropy dimension for continuous maps on compact metric spaces, investigate fundamental properties of the preimage entropy dimension, and compare the preimage entropy dimension with the topological entropy dimension. The defined preimage entropy dimension holds various basic properties of topological entropy dimension, for example, the preimage entropy dimension of a subsystem is bounded by that of the original system and topologically conjugated system...

  13. On S-mixing entropy of quantum channels

    Science.gov (United States)

    Mukhamedov, Farrukh; Watanabe, Noboru

    2018-06-01

    In this paper, an S-mixing entropy of quantum channels is introduced as a generalization of Ohya's S-mixing entropy. We investigate several properties of the introduced entropy. Moreover, certain relations between the S-mixing entropy and the existing map and output entropies of quantum channels are investigated as well. These relations allowed us to find certain connections between separable states and the introduced entropy. Hence, there is a sufficient condition to detect entangled states. Moreover, several properties of the introduced entropy are investigated. Besides, entropies of qubit and phase-damping channels are calculated.

  14. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  15. Entropy: From Thermodynamics to Hydrology

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2014-02-01

    Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

  16. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part II Irreversibility, norms and entropies

    Science.gov (United States)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    In this second part, we analyze the dissipation properties of generalized Poisson-Kac (GPK) processes, considering the decay of suitable L 2-norms and the definition of entropy functions. In both cases, consistent energy dissipation and entropy functions depend on the whole system of primitive statistical variables, the partial probability density functions \\{ p_α({x}, t) \\}α=1N , while the corresponding energy dissipation and entropy functions based on the overall probability density p({x}, t) do not satisfy monotonicity requirements as a function of time. These results provide new insights on the theory of Markov operators associated with irreversible stochastic dynamics. Examples from chaotic advection (standard map coupled to stochastic GPK processes) illustrate this phenomenon. Some complementary physical issues are also addressed: the ergodicity breaking in the presence of attractive potentials, and the use of GPK perturbations to mollify stochastic field equations.

  17. All Inequalities for the Relative Entropy

    Science.gov (United States)

    Ibinson, Ben; Linden, Noah; Winter, Andreas

    2007-01-01

    The relative entropy of two n-party quantum states is an important quantity exhibiting, for example, the extent to which the two states are different. The relative entropy of the states formed by reducing two n-party states to a smaller number m of parties is always less than or equal to the relative entropy of the two original n-party states. This is the monotonicity of relative entropy. Using techniques from convex geometry, we prove that monotonicity under restrictions is the only general inequality satisfied by quantum relative entropies. In doing so we make a connection to secret sharing schemes with general access structures: indeed, it turns out that the extremal rays of the cone defined by monotonicity are populated by classical secret sharing schemes. A surprising outcome is that the structure of allowed relative entropy values of subsets of multiparty states is much simpler than the structure of allowed entropy values. And the structure of allowed relative entropy values (unlike that of entropies) is the same for classical probability distributions and quantum states.

  18. Algebraic entropy for algebraic maps

    International Nuclear Information System (INIS)

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico

    2016-01-01

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  19. Occlusion and Temporomandibular Function among Subjects with Mandibular Distal Extension Removable Partial Dentures

    Science.gov (United States)

    Creugers, N. H. J.; Witter, D. J.; Van 't Spijker, A.; Gerritsen, A. E.; Kreulen, C. M.

    2010-01-01

    Objective. To quantify effects on occlusion and temporomandibular function of mandibular distal extension removable partial dentures in shortened dental arches. Methods. Subjects wearing mandibular extension removable partial dentures (n = 25) were compared with subjects with shortened dental arches without extension (n = 74) and with subjects who had worn a mandibular extension removable partial denture in the past (n = 19). Subjects with complete dentitions (n = 72) were controls. Data were collected at baseline and at 3-, 6-, and 9-year observations. Results. Occlusal activity in terms of reported awareness of bruxism and occlusal tooth wear of lower anterior teeth did not differ significantly between the groups. In contrast, occlusal tooth wear of premolars in shortened dental arches with or without extension dentures was significantly higher than in the controls. Differences amongst groups with respect to signs and symptoms related to temporomandibular disorders were not found. Occlusal support of the dentures did not influence anterior spatial relationship. Occlusal contacts of the denture teeth decreased from 70% for second premolars via 50% for first molars, to 30% for second molars. Conclusions. Mandibular distal extension removable partial dentures in moderate shortened dental arches had no effects on occlusion and temporomandibular function. PMID:20671961

  20. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaixuan, E-mail: kaixuanxubjtu@yeah.net; Wang, Jun

    2017-02-26

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  1. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    International Nuclear Information System (INIS)

    Xu, Kaixuan; Wang, Jun

    2017-01-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  2. Nonsymmetric entropy I: basic concepts and results

    OpenAIRE

    Liu, Chengshi

    2006-01-01

    A new concept named nonsymmetric entropy which generalizes the concepts of Boltzman's entropy and shannon's entropy, was introduced. Maximal nonsymmetric entropy principle was proven. Some important distribution laws were derived naturally from maximal nonsymmetric entropy principle.

  3. Statistical mechanical theory of liquid entropy

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1993-01-01

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n≥3, is significant in only a few liquid metals, and its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature

  4. Entropy and equilibrium via games of complexity

    Science.gov (United States)

    Topsøe, Flemming

    2004-09-01

    It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.

  5. Enthalpy–entropy compensation

    Indian Academy of Sciences (India)

    Enthalpy–entropy compensation is the name given to the correlation sometimes observed between the estimates of the enthalpy and entropy of a reaction obtained from temperature-dependence data. Although the mainly artefactual nature of this correlation has been known for many years, the subject enjoys periodical ...

  6. Multivariate refined composite multiscale entropy analysis

    International Nuclear Information System (INIS)

    Humeau-Heurtier, Anne

    2016-01-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  7. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  8. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2008-06-01

    Full Text Available The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB and Centers for Disease Control and Prevention (CDC, which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years. From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  9. Entropy and cosmology.

    Science.gov (United States)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  10. Entropy maximization

    Indian Academy of Sciences (India)

    Abstract. It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy. ∫ fhi dμ = λi for i = 1, 2,...,...k the maximizer of entropy is an f0 that is pro- portional to exp(. ∑ ci hi ) for some choice of ci . An extension of this to a continuum of.

  11. CANINE ECTOPIC TREATMENT WITH FIRST MOLAR EXTRACTION

    Directory of Open Access Journals (Sweden)

    Angelica Margo

    2015-06-01

    Full Text Available Decision to extract or not and the type of tooth must be analyzed carefully in orthodontic treatment. Preferable tooth to be extracted was the tooth with large caries or restoration. Usually the type of tooth to be extracted was second molar (if the third molar appears, incisor, first molar, and combination of several teeth. Orthodontic treatment with molar extraction is more difficult to treat and the result is usually compromise. There are several considerations in extracting first molar such as tooth with large caries or restoration, hypoplasia, periapical disease, large discrepancy, high maxilla-mandibular plane angle, and cases with anterior open bite. Nowadays, orthodontic cases with molar extraction do not prolong the treatment time compared to premolar extraction case, but the anchorage system must be considered carefully. The present case was treated with extraction of first molar to solve anterior crowding with maximum anchorage at the upper jaw and using Nance Holding Appliance.

  12. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  13. Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-11-25

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  14. Molar Incisiv Hypomineralisasjon - MIH Litteraturstudie

    OpenAIRE

    Khan, Aisha Farnaz

    2017-01-01

    Introduksjon: MIH er definert som emaljehypomineralisering av systemisk opprinnelse der 1 til 4 av første permanente molarer er rammet. Incisiver er også ofte affiserte. Hensikten med denne litteraturstudien er å lage en oversikt over, og vurdere tilgjengelig litteratur om MIH, og bruke litteraturen som bakgrunn for å utarbeide en informasjonsbrosjyre om MIH. Materiale og metode: Det ble utført et elektronisk søk i PubMed med søkestrengene ”Molar incisor hypomineralization MIH” og ”Molar inci...

  15. Entropy of self-gravitating radiation

    International Nuclear Information System (INIS)

    Sorkin, R.D.; Wald, R.M.; Jiu, Z.Z.

    1981-01-01

    The entropy of self-gravitating radiation confined to a spherical box of radius R is examined in the context of general relativity. It is expected that configurations (i.e., initial data) which extremize total entropy will be spherically symmetric, time symmetric distributions of radiation in local thermodynamic equilibrium. Assuming this is the case, it is proved that extrema of S coincide precisely with static equilibrium configurations of the radiation fluid. Furthermore, dynamically stable equilibrium configurations are shown to coincide with local maxima of S. The equilibrium configurations and their entropies are calculated and their properties are discussed. However, it is shown that entropies higher than these local extrema can be achieved and, indeed, arbitrarily high entropies can be attained by configurations inside of or outside but arbitrarily near their own Schwarzschild radius. However, consideration is limited to configurations which are outside their own Schwarzschild radius by at least one radiation wavelength, then the entropy is bounded and it is found Ssub(max) < is approximately equal to MR, where M is the total mass. This supports the validity for self-gravitating systems of the Bekenstein upper limit on the entropy to energy ratio of material bodies. (author)

  16. Expressly fabricated molar tube bases: enhanced adhesion.

    Science.gov (United States)

    Sharma, Tarun; Phull, Tarun Singh; Rana, Tarun; Kumar, Varun

    2014-06-01

    Clinicians, Orthodontists and their patients' parents often expect the best results in the shortest time span possible. Orthodontic bonding of molar tubes has been an acceptable risk in a modern era of refined biomaterials and instrumentation. Although many orthodontists still prefer banding to bonding, it is the failure rate of the tubes on molars which accounts to an impedance in molar bonding. One of the reasons for molar attachment failures is attributed to improper adaptation of the buccal tube base with or without increased thickness of composite. Merits of banding the second molars especially when these are the terminal teeth for anchorage have been overemphasized in the literature. The present article presents a simple and relatively less time consuming technique of preparing molar tubes to be bonded on tooth surfaces which may be quite difficult to isolate especially for bonding, for example, mandibular second molars. The increased surface area of the composite scaffold helps not only in enhanced bond strength but also serves to reduce the incidence of plaque accumulation given the dexterity of invitro preparation. The removal of the occlusal part of the molar tube scaffold helps in prevention of open / raised bite tendencies. The present innovation, therefore, is not merely serendipity but a structured technique to overcome a common dilemma for the clinical orthodontist. The present dictum of banding being superior to molar tube bonding may prove to be futile with trendsetting molar attachments. It is also an established fact that bonding proves to be a lesser expensive modality when compared to banding procedures.

  17. Permanent molars: Delayed development and eruption

    Directory of Open Access Journals (Sweden)

    Arathi R

    2006-05-01

    Full Text Available Delayed development and eruption of all the permanent molars is a rare phenomenon, which can cause disturbance in the developing occlusion. The eruption of permanent first and second molars is very important for the coordination of facial growth and for providing sufficient occlusal support for undisturbed mastication. In the case described, the first permanent molars were delayed in their development and were seen erupting at the age of nine and a half years. Severe disparity between the left and the right side of the dentition with respect to the rate of development of molars were also present.

  18. Minimization of entropy production in separate and connected process units

    Energy Technology Data Exchange (ETDEWEB)

    Roesjorde, Audun

    2004-08-01

    reducing the recycle stream, increasing the pressure of the separation section, and increasing the conversion and selectivity of the reactor, a large reduction in the entropy production of the process was obtained. The results showed that the most inefficient units were the reactor, partial condenser and the two distillation columns, even after the optimization was carried out. This may motivate further work along these lines in the chemical process industry. (author)

  19. Má oclusão de Classe I com biprotrusão e ausência dos primeiros molares inferiores Angle Class I malocclusion with bimaxillary dental protrusion and missing mandibular first molars

    Directory of Open Access Journals (Sweden)

    Aldino Puppin Filho

    2011-12-01

    Full Text Available O presente relato de caso descreve o tratamento ortodôntico de uma paciente de 24 anos de idade, portadora de má oclusão de Classe I de Angle, com protrusão dos incisivos superiores e inferiores, além de perda recente dos primeiros molares inferiores. O tratamento idealizado envolveu a exodontia dos primeiros pré-molares superiores, aliada ao fechamento dos espaços presentes na arcada inferior. O resultado obtido demonstra a necessidade de planos de tratamento individualizados e a importância dos conceitos biomecânicos para movimentar adequadamente os dentes. Esse caso clínico foi apresentado à Diretoria do Board Brasileiro de Ortodontia e Ortopedia Facial (BBO, representando a categoria livre escolha, como parte dos requisitos para obtenção do título de Diplomado pelo BBO.This case report describes the orthodontic treatment of a 24-year-old patient presenting with Angle Class I malocclusion, bimaxillary dental protrusion and recent loss of mandibular molars. Treatment involved extraction of the maxillary first premolars and closing of mandibular first molar spaces. Treatment outcomes demonstrate the need for individualized treatment planning and highlight the key role played by biomechanical concepts in achieving proper orthodontic tooth movement. This case was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO as representative of the free choice category in partial fulfillment of the requirements for obtaining the BBO Diploma.

  20. Entropy in molecular recognition by proteins.

    Science.gov (United States)

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  1. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    International Nuclear Information System (INIS)

    Zhang, K B; Fu, Z Y; Zhang, J Y; Wang, W M; Lee, S W; Niihara, K

    2011-01-01

    Novel CoCrFeNiTiAl x (x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 deg. C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al 1.0 . Only simple BCC solid solution structure appears in the as-annealed Al 1.5 and Al 2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al 0.5 alloys shows the highest compressive strength while the Al 0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAl x high-entropy alloys possess integrated high temperature mechanical property as well.

  2. q-entropy for symbolic dynamical systems

    International Nuclear Information System (INIS)

    Zhao, Yun; Pesin, Yakov

    2015-01-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems. (paper)

  3. Entropy Maximization

    Indian Academy of Sciences (India)

    It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy ∫ f h i d = i for i = 1 , 2 , … , … k the maximizer of entropy is an f 0 that is proportional to exp ⁡ ( ∑ c i h i ) for some choice of c i . An extension of this to a continuum of ...

  4. Another short and elementary proof of strong subadditivity of quantum entropy

    Science.gov (United States)

    Ruskai, Mary Beth

    2007-08-01

    A short and elementary proof of the joint convexity of relative entropy is presented, using nothing beyond linear algebra. The key ingredients are an easily verified integral representation and the strategy used to prove the Cauchy-Schwarz inequality in elementary courses. Several consequences are proved in a way which allows an elementary proof of strong subadditivity in a few more lines. Some expository material on Schwarz inequalities for operators and the Holevo bound for partial measurements is also included.

  5. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  6. Entropy and transverse section reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-01-01

    A new approach to the reconstruction of a transverse section using projection data from multiple views incorporates the concept of maximum entropy. The principle of maximizing information entropy embodies the assurance of minimizing bias or prejudice in the reconstruction. Using maximum entropy is a necessary condition for the reconstructed image. This entropy criterion is most appropriate for 3-D reconstruction of objects from projections where the system is underdetermined or the data are limited statistically. This is the case in nuclear medicine time limitations in patient studies do not yield sufficient projections

  7. Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures

    International Nuclear Information System (INIS)

    Sibiya, P.N.; Deenadayalu, N.

    2008-01-01

    This paper reports measurements of densities for the binary systems of an ionic liquid and an alkanol at T = (298.15, 303.15, and 313.15) K. The IL is trioctylmethylammonium bis(trifluoromethylsulfonyl)imide [OMA] + [Tf 2 N] - and the alkanols are methanol, or ethanol, or 1-propanol. The speed of sound at T = 298.15 K for the same binary systems was also measured. The excess molar volumes and the isentropic compressibilities for the above systems were then calculated from the experimental densities and the speed of sound, respectively. Redlich-Kister smoothing polynomial equation was used to fit the excess molar volume and the deviation in isentropic compressibility data. The partial molar volumes were determined from the Redlich-Kister coefficients. For all the systems studied, the excess molar volumes have both negative and positive values, while the deviations in isentropic compressibility are negative over the entire composition range

  8. The determination of molar volumes of uranous nitrate and nitric acid in systems of U(NO3)4-HNO3-H2O and U(NO3)4-HNO3-30% TBP kerosene

    International Nuclear Information System (INIS)

    Tao Chengying

    1986-01-01

    The data of molar volumes of uranous nitrate and nitric acid are necessary for the calculation of the changes in phase volume during the extraction in U(NO 3 ) 4 -HNO 3 /30%TBP-kerosene system. However, the data of the partial molar volume of U(NO 3 ) 4 are not available in literature. In the present work, the molar volumes of U(NO 3 ) 4 and HNO 3 are calculated by linear fitting of the experimental data. The result of the molar volume of HNO 3 is consistent with those in literature

  9. Correlation of the thermodynamic properties of the ideal gases Ar, CO, H2, N2, O2, CO2, H2O, CH4, and C2H4

    International Nuclear Information System (INIS)

    Sievers, U.; Schulz, S.; Dortmund Univ.

    1981-01-01

    The thermodynamic properties of pure substances in the state of the ideal gases serve as reference quantity for the calculation of the caloric quantities of real fluid pure substances and mixtures. All caloric quantities of pure ideal gases can be calculated as a function of temperature and density if the molar enthalpy and the molar entropy are known for a reference point and also the temperature dependence of the molar isochoric heat capacity exists. In this article the molar enthalpy, the molar entropy and the molar isochoric heat capacity are investigated more detailed. (RDE)

  10. Dynamical entropy for infinite quantum systems

    International Nuclear Information System (INIS)

    Hudetz, T.

    1990-01-01

    We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)

  11. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  12. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał

    2012-01-01

    Highlights: The and KL for 61 solutes in the ionic liquid [COC2mPIP][NTf2] were determined by IGC at different temperatures. ► The partial molar excess Gibbs energies, enthalpies and entropies at infinite dilution were calculated. ► The selectivities for selected compounds which form azeotropic mixtures were calculated and compared to other ILs. ► LFER system constants as a function of temperature for [COC2mPIP][NTf2] were calculated. - Abstract: The activity coefficients at infinite dilution, γ ∞ and gas–liquid partition coefficients, K L for 61 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, esters, 1-nitropropane, butanal, acetonitrile, and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide were determined by inverse gas chromatography at the temperatures from (318.15 to 368.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ ∞ values obtained over the temperature range. The selectivities for selected compounds, which form azeotropic mixtures, were calculated from the γ ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion.

  13. Topological entropy of continuous functions on topological spaces

    International Nuclear Information System (INIS)

    Liu Lei; Wang Yangeng; Wei Guo

    2009-01-01

    Adler, Konheim and McAndrew introduced the concept of topological entropy of a continuous mapping for compact dynamical systems. Bowen generalized the concept to non-compact metric spaces, but Walters indicated that Bowen's entropy is metric-dependent. We propose a new definition of topological entropy for continuous mappings on arbitrary topological spaces (compactness, metrizability, even axioms of separation not necessarily required), investigate fundamental properties of the new entropy, and compare the new entropy with the existing ones. The defined entropy generates that of Adler, Konheim and McAndrew and is metric-independent for metrizable spaces. Yet, it holds various basic properties of Adler, Konheim and McAndrew's entropy, e.g., the entropy of a subsystem is bounded by that of the original system, topologically conjugated systems have a same entropy, the entropy of the induced hyperspace system is larger than or equal to that of the original system, and in particular this new entropy coincides with Adler, Konheim and McAndrew's entropy for compact systems

  14. Problems in black-hole entropy interpretation

    International Nuclear Information System (INIS)

    Liberati, S.

    1997-01-01

    In this work some proposals for black-hole entropy interpretation are exposed and investigated. In particular, the author will firstly consider the so-called 'entanglement entropy' interpretation, in the framework of the brick wall model and the divergence problem arising in the one-loop calculations of various thermodynamical quantities, like entropy, internal energy and heat capacity. It is shown that the assumption of equality of entanglement entropy and Bekenstein-Hawking one appears to give inconsistent results. These will be a starting point for a different interpretation of black.hole entropy based on peculiar topological structures of manifolds with 'intrinsic' thermodynamical features. It is possible to show an exact relation between black-hole gravitational entropy and topology of these Euclidean space-times. the expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for entropy for gravitational instantons are proposed in a form which makes the relation between these self-evident. Using this relation he propose a generalization of the Bekenstein-Hawking entropy in which the former and Euler characteristic are related in the equation S = χA / 8. Finally, he try to expose some conclusions and hypotheses about possible further development of this research

  15. Mini-implant-supported Molar Distalization

    Directory of Open Access Journals (Sweden)

    Amit Goyal

    2012-01-01

    Full Text Available Temporary anchorage devices popularly called mini-implants or miniscrews are the latest addition to an orthodontist′s armamentarium. The following case report describes the treatment of a 16-year-old girl with a pleasant profile, moderate crowding and Angle′s Class II molar relationship. Maxillary molar distalization was planned and mini-implants were used to preserve the anterior anchorage. After 13 months of treatment, Class I molar and canine relation was achieved bilaterally and there was no anterior proclination. Thus, mini-implants provide a viable option to the clinician to carry out difficult tooth movements without any side effects.

  16. PERBEDAAN TOPICAL FLUORIDE APPLICATION DAN FISSURE SEALANT DALAM MENCEGAH KARIES PADAGIGI MOLAR SATU

    Directory of Open Access Journals (Sweden)

    Pawarti Pawarti

    2017-07-01

    Full Text Available Abstract: Topical Fluoride Application And Fissure Sealant To Prevent Dental Caries Permanent First Molars. Anatomy pits and fissures of teeth are caries initiation vulnerable areas of the permanent molars that grow at the age of 6 years where children can not perform oral hygiene. Caries prevention can be done by closing the pits and fissures or application of fluoride (topical fluoride application on the surface of the teeth. The purpose of this study was to analyze the difference fissure sealants and topical application of fluoride to prevent dental caries of first permanent molars. This study was a quasi-experimental study with time series, a sample was taken by purposive 117-second grade students of SDN District of North Pontianak. Data were analyzed using t-test. The result showed that fissure sealant more effective in caries prevention of first permanent molar than topical fluoride application where there were none caries teeth after and month fissure sealant, 25% sealant partially off and 11% fully off. Teeth that have done fluoride after 6 months of 3.9% of dental caries, the eighth month of 5.4% of dental caries. There was a significant difference between the effectiveness of fissure sealants with topical application of fluoride to prevent dental caries in first permanent molars p-value < 0.05, after 6-month p-value: 0.004 and after 8-month p-value: 0.001. Abstrak: Topical Fluoride Application Dan Fissure Sealant Untuk Mencegah Karies Pada Gigi Molar Satu Permanen. Anatomi pit dan fisura gigi merupakan daerah rentan inisiasi karies gigi molar satu permanen yang tumbuh pada usia 6 tahun anak belum bisa melakukan kebersihan mulutnya. Pencegahan karies dapat dilakukan dengan cara menutup pit dan fissure atau pengolesan fluor (topical fluoride application pada permukaan gigi. Tujuan penelitian ini untuk menganalisis perbedaan efektivitas fissure sealant dan topical fluoride application untuk mencegah karies gigi molar satu permanen anak

  17. Gravitational entropies in LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A; Larena, Julien

    2014-01-01

    We consider generic Lemaître–Tolman–Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann–Lemaître–Robertson–Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes. (paper)

  18. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    Directory of Open Access Journals (Sweden)

    Rodrigo Cofré

    2018-01-01

    Full Text Available The spiking activity of neuronal networks follows laws that are not time-reversal symmetric; the notion of pre-synaptic and post-synaptic neurons, stimulus correlations and noise correlations have a clear time order. Therefore, a biologically realistic statistical model for the spiking activity should be able to capture some degree of time irreversibility. We use the thermodynamic formalism to build a framework in the context maximum entropy models to quantify the degree of time irreversibility, providing an explicit formula for the information entropy production of the inferred maximum entropy Markov chain. We provide examples to illustrate our results and discuss the importance of time irreversibility for modeling the spike train statistics.

  19. Enthalpy-entropy compensation in protein unfolding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Enthalpy-entropy compensation was found to be a universal law in protein unfolding based on over 3 000 experimental data. Water molecular reorganization accompanying the protein unfolding was suggested as the origin of the enthalpy-entropy compensation in protein unfolding. It is indicated that the enthalpy-entropy compensation constitutes the physical foundation that satisfies the biological need of the small free energy changes in protein unfolding, without the sacrifice of the bio-diversity of proteins. The enthalpy-entropy compensation theory proposed herein also provides valuable insights into the Privalov's puzzle of enthalpy and entropy convergence in protein unfolding.

  20. Influence of unilateral maxillary first molar extraction treatment on second and third molar inclination in Class II subdivision patients

    NARCIS (Netherlands)

    Livas, Christos; Pandis, Nikolaos; Booij, Johan Willem; Halazonetis, Demetrios J.; Katsaros, Christos; Ren, Yijin

    Objective: To assess the maxillary second molar (M2) and third molar (M3) inclination following orthodontic treatment of Class II subdivision malocclusion with unilateral maxillary first molar (M1) extraction. Materials and Methods: Panoramic radiographs of 21 Class II subdivision adolescents (eight

  1. Entropy inequalities from reflection positivity

    International Nuclear Information System (INIS)

    Casini, H

    2010-01-01

    We investigate the question of whether the entropy and the Renyi entropies of the vacuum state reduced to a region of space can be represented in terms of correlators in quantum field theory. In this case, the positivity relations for the correlators are mapped into inequalities for the entropies. We write them using a real-time version of reflection positivity, which can be generalized to general quantum systems. Using this generalization we can prove an infinite sequence of inequalities which are obeyed by the Renyi entropies of integer index. There is one independent inequality involving any number of different subsystems. In quantum field theory the inequalities acquire a simple geometrical form and are consistent with the integer index Renyi entropies being given by vacuum expectation values of twisting operators in the Euclidean formulation. Several possible generalizations and specific examples are analyzed

  2. The Entropy of Co-Compact Open Covers

    Directory of Open Access Journals (Sweden)

    Steven Bourquin

    2013-06-01

    Full Text Available Co-compact entropy is introduced as an invariant of topological conjugation for perfect mappings defined on any Hausdorff space (compactness and metrizability are not necessarily required. This is achieved through the consideration of co-compact covers of the space. The advantages of co-compact entropy include: (1 it does not require the space to be compact and, thus, generalizes Adler, Konheim and McAndrew’s topological entropy of continuous mappings on compact dynamical systems; and (2 it is an invariant of topological conjugation, compared to Bowen’s entropy, which is metric-dependent. Other properties of co-compact entropy are investigated, e.g., the co-compact entropy of a subsystem does not exceed that of the whole system. For the linear system, (R; f, defined by f(x = 2x, the co-compact entropy is zero, while Bowen’s entropy for this system is at least log 2. More generally, it is found that co-compact entropy is a lower bound of Bowen’s entropies, and the proof of this result also generates the Lebesgue Covering Theorem to co-compact open covers of non-compact metric spaces.

  3. Relationship between partial and average atomic volumes of components in Au-Ni alloys%Au-Ni合金中组元的平均原子体积和偏摩尔体积的关系

    Institute of Scientific and Technical Information of China (English)

    谢佑卿

    2011-01-01

    在系统合金科学框架中建立有关无序合金的平均摩尔性质(体积和势能)的函数.通过对这些函数进行推导,可以得到平均摩尔体积函数、偏摩尔体积函数及派生出与成分相关的函数.在组元的偏摩尔性质和平均摩尔性质之间的普适方程、差分方程、在偏摩尔性质和平均摩尔性质之间不同参数的约束方程和普适的Gibbs-Duhem公式.可以证明从合金平均摩尔性质的不同函数计算的偏摩尔性质是相等的,但总体来说偏摩尔性质不等于给定组元的平均摩尔性质,即偏摩尔性质不能代表相应组元的摩尔性质.通过计算Au-Ni系中组元的偏摩尔体积和平均原子体积以及合金的平均原子体积,证明所建立的公式和函数的正确性.%In the framework of systematic science of alloys,the average molar property (volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.

  4. On Thermodynamic Interpretation of Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Don C. Price

    2013-02-01

    Full Text Available We propose a thermodynamic interpretation of transfer entropy near equilibrium, using a specialised Boltzmann’s principle. The approach relates conditional probabilities to the probabilities of the corresponding state transitions. This in turn characterises transfer entropy as a difference of two entropy rates: the rate for a resultant transition and another rate for a possibly irreversible transition within the system affected by an additional source. We then show that this difference, the local transfer entropy, is proportional to the external entropy production, possibly due to irreversibility. Near equilibrium, transfer entropy is also interpreted as the difference in equilibrium stabilities with respect to two scenarios: a default case and the case with an additional source. Finally, we demonstrated that such a thermodynamic treatment is not applicable to information flow, a measure of causal effect.

  5. Entropy type complexity of quantum processes

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2014-01-01

    von Neumann entropy represents the amount of information in the quantum state, and this was extended by Ohya for general quantum systems [10]. Umegaki first defined the quantum relative entropy for σ-finite von Neumann algebras, which was extended by Araki, and Uhlmann, for general von Neumann algebras and *-algebras, respectively. In 1983 Ohya introduced the quantum mutual entropy by using compound states; this describes the amount of information correctly transmitted through the quantum channel, which was also extended by Ohya for general quantum systems. In this paper, we briefly explain Ohya's S-mixing entropy and the quantum mutual entropy for general quantum systems. By using structure equivalent class, we will introduce entropy type functionals based on quantum information theory to improve treatment for the Gaussian communication process. (paper)

  6. Notes on entanglement entropy in string theory

    International Nuclear Information System (INIS)

    He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2015-01-01

    In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.

  7. Occlusion and Temporomandibular Function among Subjects with Mandibular Distal Extension Removable Partial Dentures

    Directory of Open Access Journals (Sweden)

    N. H. J. Creugers

    2010-01-01

    Full Text Available Objective. To quantify effects on occlusion and temporomandibular function of mandibular distal extension removable partial dentures in shortened dental arches. Methods. Subjects wearing mandibular extension removable partial dentures (n=25 were compared with subjects with shortened dental arches without extension (n=74 and with subjects who had worn a mandibular extension removable partial denture in the past (n=19. Subjects with complete dentitions (n=72 were controls. Data were collected at baseline and at 3-, 6-, and 9-year observations. Results. Occlusal activity in terms of reported awareness of bruxism and occlusal tooth wear of lower anterior teeth did not differ significantly between the groups. In contrast, occlusal tooth wear of premolars in shortened dental arches with or without extension dentures was significantly higher than in the controls. Differences amongst groups with respect to signs and symptoms related to temporomandibular disorders were not found. Occlusal support of the dentures did not influence anterior spatial relationship. Occlusal contacts of the denture teeth decreased from 70% for second premolars via 50% for first molars, to 30% for second molars. Conclusions. Mandibular distal extension removable partial dentures in moderate shortened dental arches had no effects on occlusion and temporomandibular function.

  8. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2013-03-01

    Full Text Available Persistent misconceptions existing for dozens of years and influencing progress in various fields of science are sometimes encountered in the scientific and especially, the popular-science literature. The present brief review deals with two such interrelated misconceptions (misunderstandings. The first misunderstanding: entropy is a measure of disorder. This is an old and very common opinion. The second misconception is that the entropy production minimizes in the evolution of nonequilibrium systems. However, as it has recently become clear, evolution (progress in Nature demonstrates the opposite, i.e., maximization of the entropy production. The principal questions connected with this maximization are considered herein. The two misconceptions mentioned above can lead to the apparent contradiction between the conclusions of modern thermodynamics and the basic conceptions of evolution existing in biology. In this regard, the analysis of these issues seems extremely important and timely as it contributes to the deeper understanding of the laws of development of the surrounding World and the place of humans in it.

  9. Morphologic study of the maxillary molars. Part II: Internal anatomy.

    Science.gov (United States)

    Pécora, J D; Woelfel, J B; Sousa Neto, M D; Issa, E P

    1992-01-01

    The internal anatomy of three hundred and seventy (370) decalcified and cleared human maxillary molars was studied. Seventy-five percent of the first molars, 58% of the second molars and 68% of the third molars studied presented three (3) root canals and 25% of the first molars, 42% of the second molars and 32% of the third molars presented four (4) root canals. The authors observed that the incidence of two root canals in the mesiobuccal root was higher in second maxillary molars than in first maxillary molars.

  10. Pulpectomy procedures in primary molar teeth

    OpenAIRE

    Hany Mohamed Aly Ahmed

    2014-01-01

    Premature loss of primary molars can cause a number of undesirable consequences including loss of arch length, insufficient space for erupting premolars and mesial tipping of the permanent molars. Pulpectomy of primary molar teeth is considered as a reasonable treatment approach to ensure either normal shedding or a long-term survival in instances of retention. Despite being a more conservative treatment option than extraction, efficient pulpectomy of bizarre and tortuous root canals encased ...

  11. A Note on Quantum Entropy

    International Nuclear Information System (INIS)

    Hansen, Frank

    2016-01-01

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  12. A Note on Quantum Entropy

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Frank, E-mail: frank.hansen@m.tohoku.ac.jp [Tohoku University, Institute for Excellence in Higher Education (Japan)

    2016-06-15

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  13. Entropy function and universality of entropy-area relation for small black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Chen, C.-M.; Maeda, Kei-ichi; Ohta, Nobuyoshi; Pang Dawei

    2008-01-01

    We discuss the entropy-area relation for the small black holes with higher curvature corrections by using the entropy function formalism and field redefinition method. We show that the entropy S BH of the small black hole is proportional to its horizon area A. In particular, we find a universal result that S BH =A/2G, the ratio is 2 times of Bekenstein-Hawking entropy-area formula in many cases of physical interest. In four dimensions, the universal relation is always true irrespective of the coefficients of the higher-order terms if the dilaton couplings are the same, which is the case for string effective theory, while in five dimensions, the relation again holds irrespective of the overall coefficient if the higher-order corrections are in the GB combination. We also discuss how this result generalizes to known physically interesting cases with Lovelock correction terms in various dimensions, and possible implications of the universal relation.

  14. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  15. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic {alpha}-ZrW{sub 2}O{sub 8} and cubic ZrMo{sub 2}O{sub 8}, from T=(0 to 400) K

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Rebecca; Linford, Jessica; Woodfield, Brian F.; Boerio-Goates, Juliana. E-mail: boerio-goates@byu.edu; Lind, Cora; Wilkinson, Angus P.; Kowach, Glen

    2003-06-01

    The molar heat capacities of crystalline cubic {alpha}-ZrW{sub 2}O{sub 8} and cubic ZrMo{sub 2}O{sub 8} have been measured at temperatures from (0.6 to 400) K. At T=298.15 K, the standard molar heat capacities are (207.01{+-}0.21) J{center_dot}K{sup -1}{center_dot}mol{sup -1} for the tungstate and (210.06{+-}0.42) J{center_dot}K{sup -1}{center_dot}mol{sup -1} for the molybdate. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropies for the tungstate and molybdate are (257.96{+-}0.50) J{center_dot}K{sup -1}{center_dot}mol{sup -1} and (254.3{+-}1) J{center_dot}K{sup -1}{center_dot}mol{sup -1}, respectively. The uncertainty of the entropy of the cubic ZrMo{sub 2}O{sub 8} is larger due to the presence of small chemical and phase impurities whose effects cannot be corrected for at this time. The heat capacities of the negative thermal expansion materials have been compared to the weighted sums of their constituent binary oxides. Both negative thermal expansion materials have heat capacities which are significantly greater than the sum of the binary oxides over the entire temperature region.

  16. Weak entropy inequalities and entropic convergence

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.

  17. Relative entropy and the RG flow

    Energy Technology Data Exchange (ETDEWEB)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo [Centro Atómico Bariloche and CONICET,S.C. de Bariloche, Río Negro, R8402AGP (Argentina)

    2017-03-16

    We consider the relative entropy between vacuum states of two different theories: a conformal field theory (CFT), and the CFT perturbed by a relevant operator. By restricting both states to the null Cauchy surface in the causal domain of a sphere, we make the relative entropy equal to the difference of entanglement entropies. As a result, this difference has the positivity and monotonicity properties of relative entropy. From this it follows a simple alternative proof of the c-theorem in d=2 space-time dimensions and, for d>2, the proof that the coefficient of the area term in the entanglement entropy decreases along the renormalization group (RG) flow between fixed points. We comment on the regimes of convergence of relative entropy, depending on the space-time dimensions and the conformal dimension Δ of the perturbation that triggers the RG flow.

  18. Large Field Inflation and Gravitational Entropy

    DEFF Research Database (Denmark)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion

    2016-01-01

    species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....

  19. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  20. Dental lesions and restorative treatment in molars

    Directory of Open Access Journals (Sweden)

    Gheorghiu Irina-Maria

    2017-08-01

    Full Text Available This article review specific clinical issues of the molar teeth, as well as the therapeutic approach of their pathology. The dental pathology we face in the group of molars is related to: dental caries, dental trauma (crown and crown-root fractures, dental wear phenomena. The therapeutic approach of the molar teeth is represented by: restoration of the loss of hard dental tissues; endodontic treatments of pulpal and periapical complications; surgical treatment. The restorative treatments in molars are: direct restorations, with or without supplementary anchorage for obturations; inlay, onlay; prosthetic crown.

  1. The dynamical entropy of quantum systems

    International Nuclear Information System (INIS)

    Connes, A.; Narnhofer, H.; Thirring, W.

    1987-01-01

    The definition of the dynamical entropy for automorphisms of C * - algebras is represented. Several properties are discussed; especially it is argued that the entropy of the shift can be shown in special cases to be equal with the entropy density. (Author)

  2. Spontaneous entropy decrease and its statistical formula

    OpenAIRE

    Xing, Xiu-San

    2007-01-01

    Why can the world resist the law of entropy increase and produce self-organizing structure? Does the entropy of an isolated system always only increase and never decrease? Can be thermodymamic degradation and self-organizing evolution united? How to unite? In this paper starting out from nonequilibrium entropy evolution equation we proved that a new entropy decrease could spontaneously emerge in nonequilibrium system with internal attractive interaction. This new entropy decrease coexists wit...

  3. Using entropy measures to characterize human locomotion.

    Science.gov (United States)

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  4. Application of some geometrical and empirical models to excess molar volume for the multi-component mixtures at T = 298.15 K

    International Nuclear Information System (INIS)

    Iloukhani, H.; Khanlarzadeh, K.

    2012-01-01

    Highlights: ► Excess molar volume of quartenary mixtures of 1-chlorobutane, 2-chlorobutane, butylamine, and butylacetate was determined. ► The experimental data were correlated by some empirical and semi empirical models. ► A comparison with PFP theory has been successfully applied from binary data. - Abstract: Densities of the quaternary mixture consisting of {1-chlorobutane (1) + 2-chlorobutane (2) + butylamine (3) + butylacetate (4)} and related ternary mixtures of {1-chlorobutane (1) + 2-chlorobutane (2) + butylamine (3)}, {1-chlorobutane (1) + 2-chlorobutane (2) + butylacetate (4)}, {2-chlorobutane (2) + butylamine (3) + butylacetate (4)}, and binary systems of {1-chlorobutane (1) + 2-chlorobutane (2)}, {2-chlorobutane (2) + butylamine (3)}, were measured over the whole range of composition at T = 298.15 K and ambient pressure. Excess molar volumes, V m E , for the mixtures were derived and correlated as a function of mole fraction by using the Redlich–Kister and the Cibulka equations for binary and ternary mixtures, respectively. From the experimental data, partial molar volumes, V m,i and excess partial molar volumes, V m,i E were also calculated for binary systems. The experimental results of the constituted binary mixtures have been used to test the applicability of the Prigogine–Flory–Paterson (PFP) theory. A number of geometrical and empirical equations were also used to verify their ability to predict ternary and quaternary properties from their lower order mixtures. The experimental data were used to evaluate the nature and type of intermolecular interactions in multi-component mixtures.

  5. Black hole versus cosmological horizon entropy

    International Nuclear Information System (INIS)

    Davis, Tamara M; Davies, P C W; Lineweaver, Charles H

    2003-01-01

    The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds

  6. Autogenous transplantation of maxillary and mandibular molars.

    Science.gov (United States)

    Reich, Peter P

    2008-11-01

    Autogenous tooth transplantation has been used as a predictable surgical approach to correct malocclusion and replace edentulous areas. This article focuses on the surgical approach and technique for molar transplantation. Thirty-two patients aged between 11 and 25 years underwent 44 autogenous molar transplantations. The procedure involved transplantation of impacted or newly erupted third molars into the extraction sockets of nonrestorable molars and surgical removal and replacement of horizontally impacted molars into their proper vertical alignment. Five basic procedural concepts were applied: 1) atraumatic extraction, avoiding disruption of the root sheath and root buds; 2) apical contouring of bone at the transplantation site and maxillary sinus lift via the Summers osteotome technique, when indicated, for maxillary molars; 3) preparation of a 4-wall bony socket; 4) avoidance of premature occlusal interferences; and 5) stabilization of the tooth with placement of a basket suture. All 32 patients successfully underwent the planned procedure. To date, 2 patients have had localized infection that resulted in loss of the transplant. The remaining 42 transplants remain asymptomatic and functioning, with a mean follow-up period of 19 months. No infection, ankylosis, loss of the transplant, or root resorption has been noted. In addition, endodontic therapy has not been necessary on any transplanted teeth. Autogenous tooth transplantation has been discussed and described in the literature previously, with a primary focus on cuspid and bicuspid transplantation. The molar transplant is infrequently discussed in today's literature, possibly because of the preponderance of titanium dental implants. Autogenous molar transplantation is a viable procedure with low morbidity and excellent functional and esthetic outcomes. This report shows the successful transplantation of 42 of 44 molars in 32 patients with a mean follow-up period of 19 months.

  7. Does fixed retention prevent overeruption of unopposed mandibular second molars in maxillary first molar extraction cases?

    NARCIS (Netherlands)

    Livas, Christos; Halazonetis, Demetrios J; Booij, Johan W; Katsaros, Christos; Ren, Yijin

    2016-01-01

    BACKGROUND: The objective of this study was to investigate whether multistranded fixed retainers prevented overeruption of unopposed mandibular second molars in maxillary first molar extraction cases. METHODS: The panoramic radiographs of 65 Class II Division 1 Caucasian Whites (28 females, 37

  8. Entropy of uremia and dialysis technology.

    Science.gov (United States)

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics. Copyright © 2013 S. Karger AG, Basel.

  9. Time Dependence of Entropy Flux and Entropy Production of a Dissipative Dynamical System Driven by Non-Gaussian Noise

    International Nuclear Information System (INIS)

    Guo Yongfeng; Xu Wei; Li Dongxi; Xie Wenxian

    2008-01-01

    A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production

  10. Maxillary molar distalization with first class appliance.

    Science.gov (United States)

    Ramesh, Namitha; Palukunnu, Biswas; Ravindran, Nidhi; Nair, Preeti P

    2014-02-27

    Non-extraction treatment has gained popularity for corrections of mild-to-moderate class II malocclusion over the past few decades. The distalization of maxillary molars is of significant value for treatment of cases with minimal arch discrepancy and mild class II molar relation associated with a normal mandibular arch and acceptable profile. This paper describes our experience with a 16-year-old female patient who reported with irregularly placed upper front teeth and unpleasant smile. The patient was diagnosed to have angles class II malocclusion with moderate maxillary anterior crowding, deep bite of 4 mm on a skeletal class II base with an orthognathic maxilla and retrognathic mandible and normal growth pattern. She presented an ideal profile and so molar distalization was planned with the first-class appliance. Molars were distalised by 8 mm on the right and left quadrants and class I molar relation achieved within 4 months. The space gained was utilised effectively to align the arch and establish a class I molar and canine relation.

  11. Information-theoretical aspects of quantum-mechanical entropy

    International Nuclear Information System (INIS)

    Wehrl, A.

    1990-01-01

    Properties of the quantum ( = von Neumann) entropy S(ρ) -k Trρ lnρ, ρ being a compact operator, are proved first, and differences against the classical case, e.g. the Shannon entropy, are worked out. The main result is on the strong subadditivity of this quantum entropy. Then another entropy, a function not of the state but of the dynamics of the system, is considered as a quantum analogue of the classical Kolmogorov-Sinai-entropy. An attempt in defining such a quantity had only recently sucess in a paper of Connes, Narnhofer and Thirring. A definition of this entropy is given. 34 refs

  12. Algorithmic randomness and physical entropy

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1989-01-01

    Algorithmic randomness provides a rigorous, entropylike measure of disorder of an individual, microscopic, definite state of a physical system. It is defined by the size (in binary digits) of the shortest message specifying the microstate uniquely up to the assumed resolution. Equivalently, algorithmic randomness can be expressed as the number of bits in the smallest program for a universal computer that can reproduce the state in question (for instance, by plotting it with the assumed accuracy). In contrast to the traditional definitions of entropy, algorithmic randomness can be used to measure disorder without any recourse to probabilities. Algorithmic randomness is typically very difficult to calculate exactly but relatively easy to estimate. In large systems, probabilistic ensemble definitions of entropy (e.g., coarse-grained entropy of Gibbs and Boltzmann's entropy H=lnW, as well as Shannon's information-theoretic entropy) provide accurate estimates of the algorithmic entropy of an individual system or its average value for an ensemble. One is thus able to rederive much of thermodynamics and statistical mechanics in a setting very different from the usual. Physical entropy, I suggest, is a sum of (i) the missing information measured by Shannon's formula and (ii) of the algorithmic information content---algorithmic randomness---present in the available data about the system. This definition of entropy is essential in describing the operation of thermodynamic engines from the viewpoint of information gathering and using systems. These Maxwell demon-type entities are capable of acquiring and processing information and therefore can ''decide'' on the basis of the results of their measurements and computations the best strategy for extracting energy from their surroundings. From their internal point of view the outcome of each measurement is definite

  13. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  14. Entropy Production in Stochastics

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2017-10-01

    Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.

  15. Calculation of partial enthalpies in argon-krypton mixtures by NPT molecular dynamics

    NARCIS (Netherlands)

    Sindzingre, P.; Massobrio, C.; Ciccotti, G.; Frenkel, D.

    1989-01-01

    In an earlier paper, we have indicated how, by using a particle-insertion technique, partial molar enthalpies and related quantities can be evaluated from simulations on a single state point. In the present paper we apply this method to a Lennard-Jones argon-krypton mixture. For this particular

  16. Does black-hole entropy make sense

    International Nuclear Information System (INIS)

    Wilkins, D.

    1979-01-01

    Bekenstein and Hawking saved the second law of thermodynamics near a black hole by assigning to the hole an entropy Ssub(h) proportional to the area of its event horizon. It is tempting to assume that Ssub(h) possesses all the features commonly associated with the physical entropy. Kundt has shown, however, that Ssub(h) violates several reasonable physical expectations. This criticism is reviewed, augmenting it as follows: (a) Ssub(h) is a badly behaved state function requiring knowledge of the hole's future history; and (b) close analogs of event horizons in other space-times do not possess an 'entropy'. These questions are also discussed: (c) Is Ssub(h) suitable for all regions of a black-hole space-time. And (b) should Ssub(h) be attributed to the exterior of a white hole. One can retain Ssub(h) for the interior (respectively, exterior) of a black (respectively, white) hole, but is rejected as contrary to the information-theoretic derivation of horizon entropy given by Berkenstein. The total entropy defined by Kundt (all ordinary entropy on space-section cutting through the hole, no horizon term) and that of Bekenstein-Hawking (ordinary entropy outside horizon plus horizon term) appear to be complementary concepts with separate domains of validity. In the most natural choice, an observer inside a black hole will use Kundt's entropy, and one remaining outside that of Bekenstein-Hawking. (author)

  17. Applications of Entropy in Finance: A Review

    Directory of Open Access Journals (Sweden)

    Guanqun Tong

    2013-11-01

    Full Text Available Although the concept of entropy is originated from thermodynamics, its concepts and relevant principles, especially the principles of maximum entropy and minimum cross-entropy, have been extensively applied in finance. In this paper, we review the concepts and principles of entropy, as well as their applications in the field of finance, especially in portfolio selection and asset pricing. Furthermore, we review the effects of the applications of entropy and compare them with other traditional and new methods.

  18. Wavelet entropy characterization of elevated intracranial pressure.

    Science.gov (United States)

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  19. Entropy of international trades

    Science.gov (United States)

    Oh, Chang-Young; Lee, D.-S.

    2017-05-01

    The organization of international trades is highly complex under the collective efforts towards economic profits of participating countries given inhomogeneous resources for production. Considering the trade flux as the probability of exporting a product from a country to another, we evaluate the entropy of the world trades in the period 1950-2000. The trade entropy has increased with time, and we show that it is mainly due to the extension of trade partnership. For a given number of trade partners, the mean trade entropy is about 60% of the maximum possible entropy, independent of time, which can be regarded as a characteristic of the trade fluxes' heterogeneity and is shown to be derived from the scaling and functional behaviors of the universal trade-flux distribution. The correlation and time evolution of the individual countries' gross-domestic products and the number of trade partners show that most countries achieved their economic growth partly by extending their trade relationship.

  20. Association between Peritonsillar Abscess and Molar Caries

    Directory of Open Access Journals (Sweden)

    M Shayani Nasab

    2006-05-01

    Full Text Available Background: Peritonsillar abscess is the most common deep neck infections that are related with periodontal disease which has the same pathogenesis. We determined the relationship between peritonsillar infection and molar caries. Methods: In a cross-sectional study, 33 consecutive patients whom referred to Hamadan university clinic of otolaryngologic for peritonsillar abscess were examined by otolaryngologist and dentist who investigated relationship between peritonsillar infection and molar caries. Results: There were 27 males and 6 females with mean age 26.7+_7 years. The frequency caries on ipsilateral peritonsillar infection sides was in relation to molars caries on opposite sides (conterol group. This corrolation was significant with odds ratio 2.5. Conclusion: Molar caries were seen 2.5 times more likely to have peritonsillar infection compared with normal molar sides. Key Words: Peritonsillar abscess, Infection, Periodontal disease, Dental caries

  1. Curvature Entropy for Curved Profile Generation

    Directory of Open Access Journals (Sweden)

    Koichiro Sato

    2012-03-01

    Full Text Available In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribution, and represents the complexity of a shape (one of the overall shape features. The quadrature curvature entropy is an improvement of the curvature entropy by introducing a Markov process to evaluate the continuity of a curvature and to approximate human cognition of the shape. Additionally, a shape generation method using a genetic algorithm as a calculator and the entropy as a shape generation index is presented. Finally, the applicability of the proposed method is demonstrated using the side view of an automobile as a design example.

  2. Gradient Dynamics and Entropy Production Maximization

    Science.gov (United States)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  3. Prediction of Protein Configurational Entropy (Popcoen).

    Science.gov (United States)

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  4. Entropy is in Flux V3.4

    Science.gov (United States)

    Kadanoff, Leo P.

    2017-05-01

    The science of thermodynamics was put together in the Nineteenth Century to describe large systems in equilibrium. One part of thermodynamics defines entropy for equilibrium systems and demands an ever-increasing entropy for non-equilibrium ones. Since thermodynamics does not define entropy out of equilibrium, pure thermodynamics cannot follow the details of how this increase occurs. However, starting with the work of Ludwig Boltzmann in 1872, and continuing to the present day, various models of non-equilibrium behavior have been put together with the specific aim of generalizing the concept of entropy to non-equilibrium situations. This kind of entropy has been termed kinetic entropy to distinguish it from the thermodynamic variety. Knowledge of kinetic entropy started from Boltzmann's insight about his equation for the time dependence of gaseous systems. In this paper, his result is stated as a definition of kinetic entropy in terms of a local equation for the entropy density. This definition is then applied to Landau's theory of the Fermi liquid thereby giving the kinetic entropy within that theory. The dynamics of many condensed matter systems including Fermi liquids, low temperature superfluids, and ordinary metals lend themselves to the definition of kinetic entropy. In fact, entropy has been defined and used for a wide variety of situations in which a condensed matter system has been allowed to relax for a sufficient period so that the very most rapid fluctuations have been ironed out. One of the broadest applications of non-equilibrium analysis considers quantum degenerate systems using Martin-Schwinger Green's functions (Phys Rev 115:1342-1373, 1959) as generalized Wigner functions, g^({p},ω ,{R},T). This paper describes once again how the quantum kinetic equations for these functions give locally defined conservation laws for mass momentum and energy. In local thermodynamic equilibrium, this kinetic theory enables a reasonable definition of the density

  5. Algebraic entropy for differential-delay equations

    OpenAIRE

    Viallet, Claude M.

    2014-01-01

    We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

  6. The Wehrl entropy has Gaussian optimizers

    DEFF Research Database (Denmark)

    De Palma, Giacomo

    2018-01-01

    We determine the minimum Wehrl entropy among the quantum states with a given von Neumann entropy and prove that it is achieved by thermal Gaussian states. This result determines the relation between the von Neumann and the Wehrl entropies. The key idea is proving that the quantum-classical channel...

  7. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  8. BiEntropy for Python v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-15

    This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."

  9. Nonextensive entropies derived from Gauss' principle

    International Nuclear Information System (INIS)

    Wada, Tatsuaki

    2011-01-01

    Gauss' principle in statistical mechanics is generalized for a q-exponential distribution in nonextensive statistical mechanics. It determines the associated stochastic and statistical nonextensive entropies which satisfy Greene-Callen principle concerning on the equivalence between microcanonical and canonical ensembles. - Highlights: → Nonextensive entropies are derived from Gauss' principle and ensemble equivalence. → Gauss' principle is generalized for a q-exponential distribution. → I have found the condition for satisfying Greene-Callen principle. → The associated statistical q-entropy is found to be normalized Tsallis entropy.

  10. Entanglement entropy in top-down models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Peter A.R.; Taylor, Marika [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)

    2016-08-26

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  11. Entanglement entropy in top-down models

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2016-01-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  12. Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide and N,N-dimethylacetamide

    International Nuclear Information System (INIS)

    Warmińska, Dorota; Fuchs, Anna; Lundberg, Daniel

    2013-01-01

    Highlights: ► In DMF the sequence values of both volumes and compressibilities of Ln 3+ ions are: La 3+ ≈ Gd 3+ > Lu 3+ . ► In DMA the ionic volumes of lanthanoid(III) metal ions are, within error limits, identical. ► Obtained results are the consequence of an ion–solvent bonding nature. -- Abstract: The concentration and temperature dependencies of density of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) have been determined. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in DMF and DMA have been calculated from sound velocity data obtained at 298.15 K. The results have been discussed in terms of ion–solvent interactions

  13. 不同温度下α-氨基酸在咖啡碱水溶液中的体积、粘度及折光率特性%Volumetric, Viscometric and Refractive Index Behaviors of α-Amino Acids in Aqueous Caffeine Solution at Varying Temperatures

    Institute of Scientific and Technical Information of China (English)

    Anwar Ali; S.Sabir; M.Tariq

    2007-01-01

    Measurements of density(ρ), viscosity(η), and refractive index(n), were carried out on α-amino acids, DL-solution at 298.15, 303.15, 308.15, and 313.15 K. These measurements have been carried out to evaluate some important parameters, viz., apparent molar volume (φv), partial molar volume (φv0), transfer volume (φ0v (tr)), viscosity A and B coefficients of Jones-Dole equation, free energies of activation per mole of solvent (△μ0#1) and solute (△μ0#2),enthalpies (△H*) and entropies (△S*) of activation of viscous flow, variation of B with temperature ((a)B/(a)T)P, and molar refractive index (RD). These parameters have been interpreted in terms of solute-solute and solute-solvent interactions and structure making/breaking ability of solutes in the given solution.

  14. Recurrent hydatidiform mole: A case report of six consecutive molar pregnancies complicated by choriocarcinoma, and review of the literature

    Directory of Open Access Journals (Sweden)

    Ahlam A Al-Ghamdi

    2011-01-01

    Full Text Available Hydatidiform mole (HM is the most common form of gestational trophoblastic neoplasia. Recurrence of HM is extremely rare. Here, we report the case of a patient with six consecutive partial HMs without normal pregnancy. A 42-year-old lady who was referred to us at King Fahad Hospital of the University, Al Khobar, initially as a case of 26-year-old with persistent trophoblastic disease after three recurrent molar pregnancies that were confirmed histologically in the referring hospital. She underwent evacuation and curettage and was followed up by serial β-human chorionic gonadotropin levels, and did not require chemotherapy. She then had three more molar pregnancies in 1995, 1996, and 2004; all molar pregnancies were evacuated by suction curettage at her base hospital, but in the last event, she complained of shortness of breath and abdominal pain. Diagnostic workup in our hospital confirmed choriocarcinoma, for which she received multiple regimen chemotherapy and was cured. Unfortunately, she lately presented with symptoms suggestive of premature menopause.

  15. Radiologic study of mandibular third molar of Korean youths

    International Nuclear Information System (INIS)

    Ahn, Hyung Kyu

    1982-01-01

    The author has made a study on the classification of the mandibular 3rd molars of Korean youths through dental radiography by means of Pell and Gregory's classification and on the prevalence of the dental caries of distal surface of the mandibular 2nd molar adjacent to the mandibular 3rd molars turned anteriorly. The results are as follow; 1. It was found that the largest case number was class I (272 cases, 52.9%) in the relation of the tooth to the ramus of the mandible and 2nd molar. 2. The mesio-angular position was the largest number (239 cases, 46.5%) in the relation of the long axis of the impacted mandibular 3rd molar to the long axis of the 2nd molar. 3. The mesio-angular position of class I was the largest number (140 cases, 27.2%) in the relation of the tooth to the ramus of the mandible and 2nd molar and the long axis of the impacted mandibular 3rd moral to the long axis of the 2nd molar. 4. The average angle of the long axis of mandibular 3rd molar in mesioangular position or horizontal position to the occlusal plane was 143 W 5. Mandibular 3rd molar with lesion such as dental cries or pericoronitis was 73 cases (14.2). 6. The caries incidence rate of the distal surface of the 2nd molar was about 3.1%.

  16. Third molar development: measurements versus scores as age predictor.

    Science.gov (United States)

    Thevissen, P W; Fieuws, S; Willems, G

    2011-10-01

    Human third molar development is widely used to predict chronological age of sub adult individuals with unknown or doubted age. For these predictions, classically, the radiologically observed third molar growth and maturation is registered using a staging and related scoring technique. Measures of lengths and widths of the developing wisdom tooth and its adjacent second molar can be considered as an alternative registration. The aim of this study was to verify relations between mandibular third molar developmental stages or measurements of mandibular second molar and third molars and age. Age related performance of stages and measurements were compared to assess if measurements added information to age predictions from third molar formation stage. The sample was 340 orthopantomograms (170 females, 170 males) of individuals homogenously distributed in age between 7 and 24 years. Mandibular lower right, third and second molars, were staged following Gleiser and Hunt, length and width measurements were registered, and various ratios of these measurements were calculated. Univariable regression models with age as response and third molar stage, measurements and ratios of second and third molars as predictors, were considered. Multivariable regression models assessed if measurements or ratios added information to age prediction from third molar stage. Coefficients of determination (R(2)) and root mean squared errors (RMSE) obtained from all regression models were compared. The univariable regression model using stages as predictor yielded most accurate age predictions (males: R(2) 0.85, RMSE between 0.85 and 1.22 year; females: R(2) 0.77, RMSE between 1.19 and 2.11 year) compared to all models including measurements and ratios. The multivariable regression models indicated that measurements and ratios added no clinical relevant information to the age prediction from third molar stage. Ratios and measurements of second and third molars are less accurate age predictors

  17. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  18. Holographic entanglement entropy and cyclic cosmology

    Science.gov (United States)

    Frampton, Paul H.

    2018-06-01

    We discuss a cyclic cosmology in which the visible universe, or introverse, is all that is accessible to an observer while the extroverse represents the total spacetime originating from the time when the dark energy began to dominate. It is argued that entanglement entropy of the introverse is the more appropriate quantity to render infinitely cyclic, rather than the entropy of the total universe. Since vanishing entanglement entropy implies disconnected spacetimes, at the turnaround when the introverse entropy is zero the disconnected extroverse can be jettisoned with impunity.

  19. Entropy as a measure of diffusion

    International Nuclear Information System (INIS)

    Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad

    2013-01-01

    The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.

  20. Entropy as a measure of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir; Fatollahi, Amir H., E-mail: fath@alzahra.ac.ir; Khorrami, Mohammad, E-mail: mamwad@mailaps.org; Shariati, Ahmad, E-mail: shariati@mailaps.org

    2013-10-15

    The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.

  1. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  2. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  3. Towards operational interpretations of generalized entropies

    Science.gov (United States)

    Topsøe, Flemming

    2010-12-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  4. Towards operational interpretations of generalized entropies

    International Nuclear Information System (INIS)

    Topsoee, Flemming

    2010-01-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  5. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  6. Bilateral maxillary fused second and third molars: a rare occurrence.

    Science.gov (United States)

    Liang, Rui-Zhen; Wu, Jin-Tao; Wu, You-Nong; Smales, Roger J; Hu, Ming; Yu, Jin-Hua; Zhang, Guang-Dong

    2012-12-01

    This case report describes the diagnosis and endodontic therapy of maxillary fused second and third molars, using cone-beam computed tomography (CBCT). A 31-year-old Chinese male, with no contributory medical or family/social history, presented with throbbing pain in the maxillary right molar area following an unsuccessful attempted tooth extraction. Clinical examination revealed what appeared initially to be a damaged large extra cusp on the buccal aspect of the distobuccal cusp of the second molar. However, CBCT revealed that a third molar was fused to the second molar. Unexpectedly, the maxillary left third molar also was fused to the second molar, and the crown of an unerupted supernumerary fourth molar was possibly also fused to the apical root region of the second molar. Operative procedures should not be attempted without adequate radiographic investigation. CBCT allowed the precise location of the root canals of the right maxillary fused molar teeth to permit successful endodontic therapy, confirmed after 6 months.

  7. Autotransplantation of Mandibular Third Molar: A Case Report

    Directory of Open Access Journals (Sweden)

    Pabbati Ravi kumar

    2012-01-01

    Full Text Available Autogenous transplantation is a feasible, fast, and economical option for the treatment of nonsalvageable teeth when a suitable donor tooth is available. This paper presents successful autotransplantation of a mature mandibular left third molar (38 without anatomical variances is used to replace a mandibular left second molar (37. The mandibular second molar was nonrestorable due to extensive root caries and resorption of distal root. After extraction of mandibular second and third molars, root canal therapy was done for the third molar extraorally, and the tooth was reimplanted into the extracted socket of second molar site. After one year, clinical and radiographic examination revealed satisfactory outcome with no signs or symptoms suggestive of pathology. In selected cases, autogenous tooth transplantation, even after complete root formation of the donor tooth, may be considered as a practical treatment alternative to conventional prosthetic rehabilitation or implant treatment.

  8. Arithmetic of quantum entropy function

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2009-01-01

    Quantum entropy function is a proposal for computing the entropy associated with the horizon of a black hole in the extremal limit, and is related via AdS/CFT correspondence to the dimension of the Hilbert space in a dual quantum mechanics. We show that in N = 4 supersymmetric string theories, quantum entropy function formalism naturally explains the origin of the subtle differences between the microscopic degeneracies of quarter BPS dyons carrying different torsion, i.e. different arithmetical properties. These arise from additional saddle points in the path integral - whose existence depends on the arithmetical properties of the black hole charges - constructed as freely acting orbifolds of the original AdS 2 x S 2 near horizon geometry. During this analysis we demonstrate that the quantum entropy function is insensitive to the details of the infrared cutoff used in the computation, and the details of the boundary terms added to the action. We also discuss the role of the asymptotic symmetries of AdS 2 in carrying out the path integral in the definition of quantum entropy function. Finally we show that even though quantum entropy function is expected to compute the absolute degeneracy in a given charge and angular momentum sector, it can also be used to compute the index. This can then be compared with the microscopic computation of the index.

  9. Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Xian; Xu Wei; Cai Li

    2007-01-01

    This paper shows the Fokker-Planck equation of a dynamical system driven by coloured cross-correlated white noises in the absence and presence of a small external force. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the time dependence of entropy flux and entropy production can be calculated. The present results can be used to explain the extremal behaviour of time dependence of entropy flux and entropy production in view of the dissipative parameter γ of the system, coloured cross-correlation time τ and coloured cross-correlation strength λ.

  10. Survival of sealants in molars affected by molar-incisor hypomineralization: 18-month follow-up

    Directory of Open Access Journals (Sweden)

    Camila Maria Bullio FRAGELLI

    2017-04-01

    Full Text Available Abstract The objective of this study was to evaluate the clinical survival of sealants applied in first permanent molars (FPMs affected by molar-incisor hypomineralization (MIH, at 18 months of follow-up. Forty-one first permanent molars were selected from 21 children, 6–8 years of age. MIH was classified by one calibrated examiner (kappa = 0.80 according to EAPD criteria. The inclusion criteria were fully erupted FPMs with MIH or sound FPMs (without MIH for which sealant treatment was indicated. The FPMs were assigned to two groups: CG (control group and HG (MIH group. Both groups were treated with sealant (FluroShield. Clinical follow-up was performed from baseline to 18 months to assess anatomical form, marginal adaptation, retention and presence of caries, according to criteria set by the United States Public Health Service-Modified, and was conducted by a blinded examiner (kappa = 0.80. The actuarial method was used to evaluate the survival of the sealants. The survival rates for the groups were compared using Fisher’s exact test (α = 5%. The cumulative survival rates were 81% at 1 month, 68.8% at 6 months, 68.8% at 12 months, and 62.6% at 18 months for CG, and 88% at 1 month, 84% at 6 months, 76% at 12 months, and 72% at 18 months for HG. No significant difference was found between the groups. The sealants in molars affected by MIH presented a survival rate similar to the sealants in the control, suggesting that sealants may be an adequate approach for preventing carious lesions in MIH-affected molars.

  11. Topological nearly entropy

    Science.gov (United States)

    Gulamsarwar, Syazwani; Salleh, Zabidin

    2017-08-01

    The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.

  12. Quantum Statistical Entropy of Five-Dimensional Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  13. Quantum Statistical Entropy of Five-Dimensional Black Hole

    International Nuclear Information System (INIS)

    Zhao Ren; Zhang Shengli; Wu Yueqin

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  14. Equipartition of entropy production as an approximation to the state of minimum entropy production in diabatic distillation

    International Nuclear Information System (INIS)

    Johannessen, Eivind; Rosjorde, Audun

    2007-01-01

    We show that the theorem of equipartition of entropy production is important for the understanding of the state of minimum entropy production in diabatic distillation. The theorem is not valid in a strictly mathematical sense. We explain why, when and in what sense this theorem is a good approximation to the optimal state in diabatic distillation. In order to make these predictions, we use a hypothesis for the state of minimum entropy production of an optimally controlled system, which was formulated on the basis of results of entropy production minimisation in chemical reactors. The hypothesis says that the state of minimum entropy production is characterised by approximately constant local entropy production and thermodynamic forces, given that there is sufficient freedom in the system. We present numerical results which are in agreement with the predictions. The results show that a column with constant tray entropy production in the stripping section and in the rectifying section is a good approximation to the optimal column, except when the total heat transfer area is low. The agreement between the two columns becomes better and better as the total heat transfer area and the number of trays increase. The fact that the predictions and the numerical results agree very well gives support to the validity of the hypothesis

  15. Escort entropies and divergences and related canonical distribution

    International Nuclear Information System (INIS)

    Bercher, J.-F.

    2011-01-01

    We discuss two families of two-parameter entropies and divergences, derived from the standard Renyi and Tsallis entropies and divergences. These divergences and entropies are found as divergences or entropies of escort distributions. Exploiting the nonnegativity of the divergences, we derive the expression of the canonical distribution associated to the new entropies and a observable given as an escort-mean value. We show that this canonical distribution extends, and smoothly connects, the results obtained in nonextensive thermodynamics for the standard and generalized mean value constraints. -- Highlights: → Two-parameter entropies are derived from q-entropies and escort distributions. → The related canonical distribution is derived. → This connects and extends known results in nonextensive statistics.

  16. Clausius entropy for arbitrary bifurcate null surfaces

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2014-01-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation dS=đQ/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations. (paper)

  17. Holographic entropy inequalities and gapped phases of matter

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Cao, ChunJun [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Walter, Michael [Stanford Institute for Theoretical Physics,Stanford University, Stanford, CA 94305 (United States); Wang, Zitao [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States)

    2015-09-29

    We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

  18. Holographic entropy inequalities and gapped phases of matter

    International Nuclear Information System (INIS)

    Bao, Ning; Cao, ChunJun; Walter, Michael; Wang, Zitao

    2015-01-01

    We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

  19. Examples of Entropy-driven Ordering

    Indian Academy of Sciences (India)

    driven Ordering. Orientational ordering of long objects. Entropy of sliding increases. Freezing in hard-sphere systems. Vibrational entropy increases. Phase separation in hard-sphere binary mixtures with disparate sizes. More room for smaller ...

  20. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  1. Controlling the Shannon Entropy of Quantum Systems

    Science.gov (United States)

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  2. Controlling the Shannon Entropy of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Yifan Xing

    2013-01-01

    Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  3. Managing molar-incisor hypomineralization: A systematic review.

    Science.gov (United States)

    Elhennawy, Karim; Schwendicke, Falk

    2016-12-01

    We systematically reviewed treatment modalities for MIH-affected molars and incisors. Trials on humans with ≥1 MIH molar/incisor reporting on various treatments were included. Two authors independently searched and extracted records. Sample-size-weighted annual failure rates were estimated where appropriate. The risk of bias was assessed using the Newcastle-Ottawa scale. Electronic databases (PubMed, Embase, Cochrane CENTRAL, Google Scholar) were screened, and hand searches and cross-referencing performed. Fourteen (mainly observational) studies were included. Ten trials (381 participants) investigated MIH-molars, four (139) MIH-incisors. For molars, remineralization, restorative or extraction therapies had been assessed. For restorative approaches, mean (SD) annual failure rates were highest for fissure sealants (12[6]%) and glass-ionomer restorations (12[2]%), and lowest for indirect restorations (1[3]%), preformed metal crowns (1.3 [2.1]%) and composite restorations (4[3]%). Ony study assessed extraction of molars in young patients (median age 8.2 years), the majority of them without malocclusions, but third molars in development. Spontaneous alignment of second molars was more frequent in the maxilla (55%) than the mandible (47%). For incisors, desensitizing agents successfully managed hypersensitivity. Micro-abrasion and composite veneers improved aesthetics. Few, mainly moderate to high-risk-studies investigated treatment of MIH. Remineralization or sealants seem suitable for MIH-molars with limited severity and/or hypersensitivity. For severe cases, restorations with composites or indirect restorations or preformed metal crowns seem suitable. Prior to tooth extraction as last resort factors like the presence of a general malocclusion, patients' age and the status of neighboring teeth should be considered. No recommendations can be given for MIH-incisors. Dentists need to consider the specific condition of each tooth and the needs and expectations of

  4. Universal canonical entropy for gravitating systems

    Indian Academy of Sciences (India)

    Similar to this is the case of ref. [12] which also uses the saddle point approximation to express the microcanonical entropy in terms of the canonical entropy [12a]. Recalling that there is at least 'circumstantial' evidence that the microcanonical entropy has a 'universal' form [13–15], identical to that obtained in ref. [6] quoted.

  5. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  6. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  7. Dynamic Cross-Entropy.

    Science.gov (United States)

    Aur, Dorian; Vila-Rodriguez, Fidel

    2017-01-01

    Complexity measures for time series have been used in many applications to quantify the regularity of one dimensional time series, however many dynamical systems are spatially distributed multidimensional systems. We introduced Dynamic Cross-Entropy (DCE) a novel multidimensional complexity measure that quantifies the degree of regularity of EEG signals in selected frequency bands. Time series generated by discrete logistic equations with varying control parameter r are used to test DCE measures. Sliding window DCE analyses are able to reveal specific period doubling bifurcations that lead to chaos. A similar behavior can be observed in seizures triggered by electroconvulsive therapy (ECT). Sample entropy data show the level of signal complexity in different phases of the ictal ECT. The transition to irregular activity is preceded by the occurrence of cyclic regular behavior. A significant increase of DCE values in successive order from high frequencies in gamma to low frequencies in delta band reveals several phase transitions into less ordered states, possible chaos in the human brain. To our knowledge there are no reliable techniques able to reveal the transition to chaos in case of multidimensional times series. In addition, DCE based on sample entropy appears to be robust to EEG artifacts compared to DCE based on Shannon entropy. The applied technique may offer new approaches to better understand nonlinear brain activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Entropy for the Complexity of Physiological Signal Dynamics.

    Science.gov (United States)

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  9. Standard molar Gibbs free energy of formation of URh3(s)

    International Nuclear Information System (INIS)

    Prasad, Rajendra; Sayi, Y.S.; Radhakrishna, J.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.

    1992-01-01

    Equilibrium partial pressures of CO(g) over the system (UO 2 (s) + C(s) + Rh(s) + URh 3 (s)) were measured in the temperature range 1327 - 1438 K. Standard Gibbs molar free energy of formation of URh 3 (Δ f G o m ) in the above temperature range can be expressed as Δ f G o m (URh 3 ,s,T)+-3.0(kJ/mol)= -348.165 + 0.03144 T(K). The second and third law enthalpy of formation, ΔfH o m (URh 3 ,s,298.15 K) are (-318.4 +- 3.0) and (298.3 +- 2.5) kJ/mol respectively. (author). 7 refs., 3 tabs

  10. Taking advantage of an unerupted third molar: a case report

    Directory of Open Access Journals (Sweden)

    Igor Figueiredo Pereira

    Full Text Available ABSTRACT Introduction: Treatments with dental surgery seek to displace tooth to the correct position within the dental arch. Objective: To report a clinical case that took advantage of an unerupted third molar. Case history: A male patient, 18 years of age, was referred by his dentist to evaluate the third molars. The clinical exam revealed no visible lower third molars. The computed tomography (CT exam showed the presence of a supernumerary tooth in the region of the mandibular ramus, on the left side, and impaction of the third molar, which was causing root resorption on the second molar, thus making it impossible to remain in the buccal cavity. The preferred option, therefore, was to remove both second molar and the supernumerary tooth, in addition to attaching a device to the third molar during surgery for further traction. Results: After 12 months, the third molar reached the proper position. Conclusion: When a mandibular second permanent molar shows an atypical root resorption, an impacted third molar can effectively substitute the tooth by using an appropriate orthodontic-surgical approach.

  11. Constant conditional entropy and related hypotheses

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín

    2013-01-01

    Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)

  12. Prevalence of cheese molars in eleven-year-old Dutch children.

    Science.gov (United States)

    Weerheijm, K L; Groen, H J; Beentjes, V E; Poorterman, J H

    2001-01-01

    In the Netherlands, first permanent molars with idiopathic enamel disturbances (IED) are called cheese molars. Though concern is expressed about their prevalence, adequate figures on the subject are missing. The porous enamel of cheese molars can be very sensitive to cold air and can decay rapidly. The aim of the present study was to investigate the prevalence in eleven-year-old Dutch children of cheese molars (IED). During an epidemiological study performed in four cities in the Netherlands, the first permanent molars and central incisors of eleven-year-old children were examined for hypoplasia, opacities, posteruptive enamel loss, premature extraction, and atypical restorations. The observation of a hypoplasia excluded the possibility of cheese molar. A total of 497 children were examined. Six percent (n = 128) of the molars (n = 1988) showed signs of IED (cheese molars), 10 percent of the children had cheese molars of which 8 percent two or more. Incisors (4 percent) with opacities were found in 3 percent in combination with two or more cheese molars. Among the four cities, no significant differences in occurrence were found. The results of this study showed that in 10 percent of the Dutch children eleven years of age, cheese molars (IED) were found. The cause for the phenomenon called cheese molars appears to be child centered. Further studies on prevalence, causes and prevention are mandatory.

  13. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or

  14. On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies

    Directory of Open Access Journals (Sweden)

    Purushottam D. Gujrati

    2015-02-01

    Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.

  15. Black hole entropy in the O(N) model

    International Nuclear Information System (INIS)

    Kabat, D.; Shenker, S.H.; Strassler, M.J.

    1995-01-01

    We consider corrections to the entropy of a black hole from an O(N)-invariant linear σ model. We obtain the entropy from a 1/N expansion of the partition function on a cone. The entropy arises from diagrams which are analogous to those introduced by Susskind and Uglum to explain black hole entropy in string theory. The interpretation of the σ-model entropy depends on scale. At short distances, it has a state counting interpretation, as the entropy of entanglement of the N fields φ a . In the infrared, the effective theory has a single composite field σ∼φ a φ a , and the state counting interpretation of the entropy is lost. copyright 1995 The American Physical Society

  16. Entropy concentration and the empirical coding game

    NARCIS (Netherlands)

    Grünwald, P.D.

    2008-01-01

    We give a characterization of maximum entropy/minimum relative entropy inference by providing two 'strong entropy concentration' theorems. These theorems unify and generalize Jaynes''concentration phenomenon' and Van Campenhout and Cover's 'conditional limit theorem'. The theorems characterize

  17. External and internal anatomy of third molars.

    Science.gov (United States)

    Guerisoli, D M; de Souza, R A; de Sousa Neto, M D; Silva, R G; Pécora, J D

    1998-01-01

    The external and internal anatomy of 269 third molars (155 maxillary and 114 mandibular) were studied. The teeth were measured, classified according to their root number and shape and the internal anatomy was observed by the use of diaphanization. A great anatomical variability was found, with the presence of up to 5 roots in maxillary third molars and 3 roots in mandibular third molars. The number of root canals followed the same pattern.

  18. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  19. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  20. Left-right entanglement entropy of Dp-branes

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Randall Laboratory of Physics,The University of Michigan,450 Church Street, Ann Arbor, MI 48109-1120 (United States); Quiroz, Norma [Departamento de Ciencias Exactas, Tecnología y Metodología,Centro Universitario del Sur, Universidad de Guadalajara,Enrique Arreola Silva 883, C.P. 49000, Cd. Guzmán, Jalisco (Mexico)

    2016-11-04

    We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics; however, we advance a themodynamic argument that seems to favor a particular choice of replica. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.

  1. Shannon versus Kullback-Leibler entropies in nonequilibrium random motion

    International Nuclear Information System (INIS)

    Garbaczewski, Piotr

    2005-01-01

    We analyze dynamical properties of the Shannon information entropy of a continuous probability distribution, which is driven by a standard diffusion process. This entropy choice is confronted with another option, employing the conditional Kullback-Leibler entropy. Both entropies discriminate among various probability distributions, either statically or in the time domain. An asymptotic approach towards equilibrium is typically monotonic in terms of the Kullback entropy. The Shannon entropy time rate needs not to be positive and is a sensitive indicator of the power transfer processes (removal/supply) due to an active environment. In the case of Smoluchowski diffusions, the Kullback entropy time rate coincides with the Shannon entropy 'production' rate

  2. On the way towards a generalized entropy maximization procedure

    International Nuclear Information System (INIS)

    Bagci, G. Baris; Tirnakli, Ugur

    2009-01-01

    We propose a generalized entropy maximization procedure, which takes into account the generalized averaging procedures and information gain definitions underlying the generalized entropies. This novel generalized procedure is then applied to Renyi and Tsallis entropies. The generalized entropy maximization procedure for Renyi entropies results in the exponential stationary distribution asymptotically for q element of (0,1] in contrast to the stationary distribution of the inverse power law obtained through the ordinary entropy maximization procedure. Another result of the generalized entropy maximization procedure is that one can naturally obtain all the possible stationary distributions associated with the Tsallis entropies by employing either ordinary or q-generalized Fourier transforms in the averaging procedure.

  3. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  4. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    Science.gov (United States)

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-07

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  5. ENTROPY FLOW CHARACTERISTICS ANALYSIS OF TYPHOON MATSA (0509)

    Institute of Scientific and Technical Information of China (English)

    XU Hui; LIU Chong-jian

    2008-01-01

    The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the various significant stages of (genesis, development and decaying) during its evolution are diagnosed based on the outputs of the PSU/NCAR mesoscale model (known as MM5). The results show that: (1) the vertical spatial distribution of entropy flow for Matsa is characterized by a predominantly negative entropy flow in a large portion of the troposphere and a positive flow in the upper levels; (2) the fields of entropy flows at the middle troposphere (500 hPa) show that the growth of the typhoon is greatly dependent on the negative entropy flows from its surroundings; and (3) the simulated centres of heavy rainfall associated with the typhoon match well with the zones of large negative entropy flows, suggesting that they may be a significant indicator for severe weather events.

  6. Zero modes and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-04-26

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  7. Entropy Learning in Neural Network

    Directory of Open Access Journals (Sweden)

    Geok See Ng

    2017-12-01

    Full Text Available In this paper, entropy term is used in the learning phase of a neural network.  As learning progresses, more hidden nodes get into saturation.  The early creation of such hidden nodes may impair generalisation.  Hence entropy approach is proposed to dampen the early creation of such nodes.  The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes.  At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.

  8. Shannon's information is not entropy

    International Nuclear Information System (INIS)

    Schiffer, M.

    1990-01-01

    In this letter we clear up the long-standing misidentification of Shannon's Information with Entropy. We show that Information, in contrast to Entropy, is not invariant under unitary transformations and that these quantities are only equivalent for representations consisting of Hamiltonian eigenstates. We illustrate this fact through a toy system consisting of a harmonic oscillator in a coherent state. It is further proved that the representations which maximize the information are those which are energy-eigenstates. This fact sets the entropy as an upper bound for Shannon's Information. (author)

  9. Entanglement entropy and nonabelian gauge symmetry

    International Nuclear Information System (INIS)

    Donnelly, William

    2014-01-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)

  10. Partial molar volumes of organic solutes in water. XXVI. 15-Crown-5 and 18-crown-6 ethers at temperatures (298 to 573) K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2015-01-01

    Highlights: • Density data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Standard molar volumes of two crown ethers in water are presented. • Group contribution method was designed to estimate standard molar volumes of cyclic ethers. - Abstract: Densities of dilute aqueous solutions of two cyclic ethers, viz. 15-crown-5 and 18-crown-6, measured over the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data were combined with those obtained previously for several cyclic ethers and predictions of standard molar volumes based on group contribution approach were tested and analysed

  11. Topological entropy for induced hyperspace maps

    International Nuclear Information System (INIS)

    Canovas Pena, Jose S.; Lopez, Gabriel Soler

    2006-01-01

    Let (X,d) be a compact metric space and let f:X->X be continuous. Let K(X) be the family of compact subsets of X endowed with the Hausdorff metric and define the extension f-bar :K(X)->K(X) by f-bar (K)=f(K) for any K-bar K(X). We prove that the topological entropy of f-bar is greater or equal than the topological entropy of f, and this inequality can be strict. On the other hand, we prove that the topological entropy of f is positive if and only if the topological entropy of f-bar is also positive

  12. Topological entropy for induced hyperspace maps

    Energy Technology Data Exchange (ETDEWEB)

    Canovas Pena, Jose S. [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, 30203 Cartagena, Murcia (Spain)]. E-mail: Jose.canovas@upct.es; Lopez, Gabriel Soler [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, 30203 Cartagena, Murcia (Spain)]. E-mail: Gabriel.soler@upct.es

    2006-05-15

    Let (X,d) be a compact metric space and let f:X->X be continuous. Let K(X) be the family of compact subsets of X endowed with the Hausdorff metric and define the extension f-bar :K(X)->K(X) by f-bar (K)=f(K) for any K-bar K(X). We prove that the topological entropy of f-bar is greater or equal than the topological entropy of f, and this inequality can be strict. On the other hand, we prove that the topological entropy of f is positive if and only if the topological entropy of f-bar is also positive.

  13. Image analysis of the eruptive positions of third molars and adjacent second molars as indicators of age evaluation in Thai patients.

    Science.gov (United States)

    Mahasantipiya, Phattaranant May; Pramojanee, Sakarat; Thaiupathump, Trasapong

    2013-12-01

    This study was performed to determine the relationship between the stage of tooth eruption (both vertical and mesio-angular) and chronological age. Indirect digital panoramic radiographs were used to measure the distances from the dentinoenamel junction (DEJ) of the second molars to the occlusal plane of the second molar teeth and of the adjacent third molars in 264 Thai males and 437 Thai females using ImageJ software. The ratio of those distances was calculated by patient age, and the correlation coefficient of the ratio of the third molar length to the second molar length was calculated. The correlation between the height of the vertically erupted upper third molar teeth and age was at the intermediate level. The age range of ≥15 to age determined from the eruptional height and actual chronological age was statistically significant. The mean age of the female subjects, in which the position of the right upper third molar teeth was at or above the DEJ of the adjacent second molar but below one half of its coronal height was 19.9±2.6 years. That for the left side was 20.2±2.7 years. The mean ages of the male subjects were 20.1±3.3 years and 19.8±2.7 years for the right and left sides, respectively. It might be possible to predict chronological age from the eruption height of the wisdom teeth.

  14. Entropy statistics and information theory

    NARCIS (Netherlands)

    Frenken, K.; Hanusch, H.; Pyka, A.

    2007-01-01

    Entropy measures provide important tools to indicate variety in distributions at particular moments in time (e.g., market shares) and to analyse evolutionary processes over time (e.g., technical change). Importantly, entropy statistics are suitable to decomposition analysis, which renders the

  15. [Orthodontic Management of the Impacted Mandibular Second Molar Tooth].

    Science.gov (United States)

    Mah, Michael; Takada, Kenji

    2016-09-01

    When the mandibular permanent second molar becomes impacted, it is identified as a malocclusion that needs treatment as it often leads to unwanted complications such as caries and periodontitis of the adjacent permanent first molar. Other less common complications include root resorption of the adjacent first molar root or continued root development to be in close proximity to the inferior dental alveolar nerve. This paper seeks to differentiate various levels of severity of impaction and review treatment options that are considered clinically available for the proper management of the impacted mandibular permanent second molar. Treatment options that will be discussed in this article include timing of second molar removal for replacement by the third molar, relief of impaction via second premolar removal, surgical repositioning and the combination of third molar removal, surgical exposure and orthodontic uprighting of the impacted tooth. Depending on the severity of the impaction, most impactions can be easily and predictably corrected with nickel titanium archwires or auxillary open coil springs or uprighting springs. Uncommonly, the mandibular permanent second molar can become severely impacted and in close proximity to the inferior dentoalveolar nerve. In these instances, the use of temporary anchorage devices such as microimplants has shown to be successful in uprighting the severely impacted mandibular permanent second molars. © EDP Sciences, SFODF, 2016.

  16. Epidemiological Status of Third Molars in an Iranian Population

    Directory of Open Access Journals (Sweden)

    Mahnaz Sheikhi

    2016-07-01

    Full Text Available Background Impaction of third molars is a common phenomenon. The incidence of impacted third molars varies in different populations. Objectives The aim of this study is to assess radiographic status (root development degree, angulation, and eruption level of the third molar in Iranian population via panoramic radiographs. Patients and Methods 647 patients, ranging in age from 17 - 25, were selected from three regions of Iran. Based on their panoramic radiographs, their root development degree, angulation, and eruption levels were analyzed. Results The angulation of upper third molars were vertical (44.6%, distoangular (44.1%, mesioangular (10.7%, and horizontal (0.6%. For lower third molars, the angulation was mesioangular (44.5%, vertical (33.8%, distoangular (12.2%, and horizontal (9.5%. The eruption levels of maxillary third molars were C > A> B, and for mandibular third molars they were A > B> C. The order of root development prevalence of the maxillary and mandibular third molars was complete > 2/3 > 1/3. Conclusions The most common status of impaction of the third molars in the maxilla was vertical angulation, level C of eruption, and complete root formation. In the mandible it was mesioangular, level A of eruption, and complete root formation. Since the study sample consists of patients from the north, middle, and south of Iran, the sample can represent the whole population of Iran.

  17. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  18. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  19. Root growth during molar eruption in extant great apes.

    Science.gov (United States)

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  20. Entropies of the automata networks with additive rule

    Institute of Scientific and Technical Information of China (English)

    Guo-qingGU; GeCHEN; 等

    1996-01-01

    The matrix presentation for automata networks with additive rule are described.A set of entropy theorems of additive automata network are proved and an analytic formula of its entropy is built.For example,we proved that the topological entropy is identically equal to metric entropy for an additive antomata network.