WorldWideScience

Sample records for partial melting observed

  1. Melt migration modeling in partially molten upper mantle

    Science.gov (United States)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  2. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    Science.gov (United States)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  3. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    Science.gov (United States)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile

  4. Network topology of olivine-basalt partial melts

    Science.gov (United States)

    Skemer, Philip; Chaney, Molly M.; Emmerich, Adrienne L.; Miller, Kevin J.; Zhu, Wen-lu

    2017-07-01

    The microstructural relationship between melt and solid grains in partially molten rocks influences many physical properties, including permeability, rheology, electrical conductivity and seismic wave speeds. In this study, the connectivity of melt networks in the olivine-basalt system is explored using a systematic survey of 3-D X-ray microtomographic data. Experimentally synthesized samples with 2 and 5 vol.% melt are analysed as a series of melt tubules intersecting at nodes. Each node is characterized by a coordination number (CN), which is the number of melt tubules that intersect at that location. Statistically representative volumes are described by coordination number distributions (CND). Polyhedral grains can be packed in many configurations yielding different CNDs, however widely accepted theory predicts that systems with small dihedral angles, such as olivine-basalt, should exhibit a predominant CN of four. In this study, melt objects are identified with CN = 2-8, however more than 50 per cent are CN = 4, providing experimental verification of this theoretical prediction. A conceptual model that considers the role of heterogeneity in local grain size and melt fraction is proposed to explain the formation of nodes with CN ≠ 4. Correctly identifying the melt network topology is essential to understanding the relationship between permeability and porosity, and hence the transport properties of partial molten mantle rocks.

  5. Timed Testing under Partial Observability

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao

    2009-01-01

    observability of SUT using a set of predicates over the TGA state space, and specify the test purposes in Computation Tree Logic (CTL) formulas. A recently developed partially observable timed game solver is used to generate winning strategies, which are used as test cases. We propose a conformance testing...

  6. Partially melted zone cracking in AA6061 welds

    International Nuclear Information System (INIS)

    Prasad Rao, K.; Ramanaiah, N.; Viswanathan, N.

    2008-01-01

    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043

  7. Partially melted zone cracking in AA6061 welds

    Energy Technology Data Exchange (ETDEWEB)

    Prasad Rao, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: kpr@iitm.ac.in; Ramanaiah, N. [Sri Kalahasteeswara Institute of Technology, Srikalahasti (India); Viswanathan, N. [Defence Research and Development Laboratory, Hyderabad (India)

    2008-07-01

    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043.

  8. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬

  9. Models and observations of Arctic melt ponds

    Science.gov (United States)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  10. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    Science.gov (United States)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  11. Tape casting and partial melting of Bi-2212 thick films

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, D.; Lang, T.; Heeb, B. [Nichtmetallische Werkstoffe, Zuerich (Switzerland)] [and others

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  12. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  13. Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics

    Science.gov (United States)

    Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.

    2014-01-01

    High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.

  14. Spreading paths in partially observed social networks

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  15. Spreading paths in partially observed social networks.

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  16. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  17. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle

    Science.gov (United States)

    Rudra, A.; Hirschmann, M. M.

    2017-12-01

    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  18. A rotating helical sealing joint capable of partially melting

    International Nuclear Information System (INIS)

    Martin, Jean; Ollier, J.-L.; Petit, Paul.

    1973-01-01

    A coagulated rotating helical joint providing gas and liquid tightness along a rotating shaft, comprising: a metal sleeve connected to the wall through which passes the rotating sleeve, an intermediate sleeve made of a fusible material, inert with respect to the fluid to be sealingly retained, and finally the rotating shaft provided with an engraved helical thread in register with the intermediate sleeve. Means are provided for regulating the intermediate sleeve temperature so that a thin melted film is formed on said intermediate sleeve when in contact with the rotating threaded shaft. This can be applied in the nuclear industry, including cases when the intermediate sleeve is constituted by the fluid itself, then in the solid state [fr

  19. Electrical conductivity of partially-molten olivine aggregate and melt interconnectivity in the oceanic upper mantle

    Science.gov (United States)

    Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina

    2016-04-01

    A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.

  20. Monitoring as a partially observable decision problem

    Science.gov (United States)

    Paul L. Fackler; Robert G. Haight

    2014-01-01

    Monitoring is an important and costly activity in resource man-agement problems such as containing invasive species, protectingendangered species, preventing soil erosion, and regulating con-tracts for environmental services. Recent studies have viewedoptimal monitoring as a Partially Observable Markov Decision Pro-cess (POMDP), which provides a framework for...

  1. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1

    Science.gov (United States)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard

    2018-02-01

    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  2. Spreading paths in partially observed social networks

    OpenAIRE

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-01-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, s...

  3. Partial melting of UHP calc-gneiss from the Dabie Mountains

    Science.gov (United States)

    Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin

    2014-04-01

    Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.

  4. Attenuation and Velocity Structure in Spain and Morocco: Distinguishing Between Water, Temperature, and Partial Melt

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E.

    2014-12-01

    Temperature, melt fraction, and water content affect seismic velocity and attenuation differently. Both are sensitive to temperature, but velocity is more sensitive to melt fraction and attenuation is thought to be more sensitive to water content. For these reasons, combining attenuation measurements with tomographic imaging of velocity structure can help untangle these fields and better resolve lithospheric structure and physical state. We map variations in attenuation beneath Spain and northern Morocco using teleseismic data generated by more than a dozen teleseismic deep-focus earthquakes recorded on a dense array of stations. For each event, we first estimate the source from the best quality recordings. We then apply an attenuation operator to the source estimate, using a range of t* values, to match the record at each station. We invert for a smooth map of t* from the ensemble of measurements. The spatial patterns in t* correlate very well with the tectonic domains in Spain and Morocco. In particular, areas in Spain that resisted deformation during the Variscan and Alpine orogenies produce very little attenuation. Comparing the attenuation map with seismic velocity structure we find that, in Morocco, some areas with strong low-velocity anomalies and recent volcanism do not cause high attenuation. These observations suggest that water content is a more likely cause for seismic attenuation in the study area than temperature, and that the non-attenuative low-velocity anomalies in Morocco are produced by partial mel.

  5. Petrology and Wavespeeds in Central Tibet Indicate a Partially Melted Mica-Bearing Crust

    Science.gov (United States)

    Hacker, B. R.; Ritzwoller, M. H.; Xie, J.

    2013-12-01

    S-wave speeds and Vp/Vs ratios in the middle to deep crust of Tibet are best explained by a partially melted, mica-bearing middle to lower crust with a subhorizontal to gently dipping foliation. Surface-wave tomography [e.g., Yang et al., 2012; Xie et al., 2013] shows that the central Tibetan Plateau (the Qiangtang block) is characterized by i) slow S-wave speeds of 3.3-3.5 km/s at depths from 20-25 km to 45-50 km, ii) S-wave radial anisotropy of at least 4% (Vsh > Vsv) with stronger anisotropy in the west than the east [Duret et al., 2010], and iii) whole-crust Vp/Vs ratios in the range of 1.73-1.78 [Xu et al., 2013]. The depth of the Curie temperature for magnetite inferred from satellite magnetic measurements [Alsdorf and Nelson, 1999], the depth of the α-β quartz transition inferred from Vp/Vs ratios [Mechie et al., 2004], and the equilibration pressures and temperatures of xenoliths erupted from the mid-deep crust [Hacker et al., 2000] indicate that the thermal gradient in Qiangtang is steep, reaching 1000°C at 30-40 km depth. This thermal gradient crosses the dehydration-melting solidi for crustal rocks at 20-30 km depth, implying the presence or former presence of melt in the mid-deep crust. These temperatures do not require the wholesale breakdown of mica at these depths, because F and Ti can stabilize mica to at least 1300°C [Dooley and Patino Douce, 1996]. Petrology suggests, then, that the Qiangtang middle to deep crust consists of a mica-bearing residue from which melt has been extracted or is being extracted. Wavespeeds calculated for mica-bearing rocks with a subhorizontal to gently dipping foliation and minor silicate melt are the best match to the wavespeeds and anisotropy observed by seismology. Alsdorf, D., and D. Nelson, The Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?, Geology, 27, 943-946, 1999. Dooley, D.F., and A.F. Patino Douce, Fluid-absent melting of F-rich phlogopite + rutile +quartz, American

  6. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  7. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  8. Design, fabrication, and evaluation of a partially melted ice particle cloud facility

    Science.gov (United States)

    Soltis, Jared T.

    High altitude ice crystal clouds created by highly convective storm cells are dangerous to jet transport aircraft because the crystals are ingested into the compressor section, partially melt, accrete, and cause roll back or flame out. Current facilities to test engine particle icing are not ideal for fundamental mixed-phase ice accretion experiments or do not generate frozen droplet clouds under representative conditions. The goal of this research was to develop a novel facility capable of testing fundamental partially melted ice particle icing physics and to collect ice accretion data related to mixed-phase ice accretion. The Penn State Icing Tunnel (PSIT) has been designed and fabricated to conduct partially melted ice particle cloud accretion. The PSIT generated a cloud with air assisted atomizing nozzles. The water droplets cool from the 60psi pressure drop as the water exited the nozzle and fully glaciate while flowing in the -11.0°C tunnel air flow. The glaciated cloud flowed through a duct in the center of the tunnel where hot air was introduced. The temperature of the duct was regulated from 3.3°C to 24°C which melted particle the frozen particle from 0% to 90%. The partially melted particle cloud impinged on a temperature controlled flat plate. Ice accretion data was taken for a range of duct temperature from 3.3°C to 24°C and plate temperature from -4.5°C to 7.0°C. The particle median volumetric diameter was 23mum, the total water content was 4.5 g/m 3, the specific humidity was 1.12g/kg, and the wet bulb temperature ranged from 1.0°C to 7.0°C depending on the duct temperature. The boundaries between ice particle bounce off, ice accretion, and water run off were determined. When the particle were totally frozen and the plate surface was below freezing, the ice particle bounced off as expected. Ice accretion was seen for all percent melts tested, but the plate temperature boundary between water runoff and ice accretion increased from 0°C at 8

  9. Observation of melting conditions in selective laser melting of metals (SLM)

    Science.gov (United States)

    Thombansen, U.; Abels, Peter

    2016-03-01

    Process observation in 3D printing of metals currently is one of the central challenges. Many companies strive to employ this additive manufacturing process in their production chains in order to gain competitive advantages through added flexibility in product design and embedded features. The new degrees of freedom are accompanied with the challenge to manufacture every detail of the product to the predefined specifications. Products with filigree internal structures for example require a perfect build to deliver the performance that was designed into these structures. Melting conditions determine properties such as grain structure and density of the finished part before it is sent to post processing steps. Monitoring of such melting conditions is still a challenge where the use of photodiodes, pyrometry and camera systems contribute to an overall picture that might identify errors or deviations during the build process. Additional considerations must be made to decide if these sensors are applied coaxially or from a lateral perspective. Furthermore, setting parameters of focal plane array (FPA) sensors are discussed and events that are seen in the machine vision image are compared against the pyrometry data. The resume of the experiments suggests the application of multiple sensors to the selective laser melting process (SLM) as they jointly contribute to an identification of events. These events need to be understood in order to establish cause effect relationships in the future.

  10. Partial observation control in an anticipating environment

    International Nuclear Information System (INIS)

    Oeksendal, B; Sulem, A

    2004-01-01

    A study is made of a controlled stochastic system whose state X(t) at time t is described by a stochastic differential equation driven by Levy processes with filtration {F t } telementof[0,T] . The system is assumed to be anticipating, in the sense that the coefficients are assumed to be adapted to a filtration {G t } t≥0 with F t subset of equal G t for all t element of [0,T]. The corresponding anticipating stochastic differential equation is interpreted in the sense of forward integrals, which naturally generalize semimartingale integrals. The admissible controls are assumed to be adapted to a filtration {E t } telementof[0,T] such that E t subset of equal F t for all t element of [0,T]. The general problem is to maximize a given performance functional of this system over all admissible controls. This is a partial observation stochastic control problem in an anticipating environment. Examples of applications include stochastic volatity models in finance, insider influenced financial markets, and stochastic control of systems with delayed noise effects. Some particular cases in finance, involving optimal portfolios with logarithmic utility, are solved explicitly

  11. Electro-physical properties of superconducting ceramic thick film prepared by partial melting method.

    Science.gov (United States)

    Lee, Sang Heon

    2013-05-01

    BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.

  12. Melting temperatures of MgO under high pressure determined by micro-texture observation

    Science.gov (United States)

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2016-12-01

    Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected

  13. CO partial pressure dependence of the kinetics of melting of HbS aggregates studied in high concentration phosphate buffer

    Science.gov (United States)

    Aroutiounian, Svetlana

    2002-10-01

    Deoxygenated sickle cell hemoglobin (HbS) monomers enter the polymer phase either by incorporation into a critical nucleus, through heterogeneous nucleation and or through linear growth of the polymers when the concentration of monomers exceeds the solubility. CO-bound, R-state HbS monomers do not polymerize. Thus, polymer melting is enhanced by binding of carbon monoxide (CO) to HbS polymerized monomers. In our study, the melting of HbS aggregates mediated by dilution and CO binding to polymerized monomers is observed with time-resolved extinction spectroscopy. The CO partial pressure (pCO) dependence of the kinetics of melting is studied for pCO = 0, 0.25, 0.5, 0.75, 1 atm with difference progress curves. A phenomenological description with slow and fast relaxation modes reveals a variable relaxation time near the pCO=0.5 due to competition of kinetic mechanisms. The slow component increases with increasing pCO. It has a positive intercept due to the combined action of dilution of the sample and CO-ligation. The pCO dependence is near linear due to non-cooperative CO binding. Significant slowing down of aged samples, most likely due to gelation, is observed. As possible mechanism for variable relaxation time near pCO=0.5atm the fractional percolation threshold is discussed. This work was supported by NIH grant HL58091 (awarded to Daniel. B. Kim-Shapiro).

  14. Partial enthalpies of Bi and Te in Bi-Te melts and of In and Te in In-Te melts

    International Nuclear Information System (INIS)

    Yassin, Abeer; Amzil, Abdelhamid; Castanet, Robert

    2000-01-01

    Full text.Calorimetric measurement are reported which allow the enthalpic behaviour of Bi-Te melts to be established. Further work is required, however, to supplement results obtained for In-Te melts. The partial enthalpies of bismuth and tellurium in the Bi-Te melts at 755K and those of indium and tellurium in the In-Te melts at 1010 and 987K were measured at high dilution by direct reaction calorimetry (drop method) with the help of a Tian-Calvet calorimeter. The limiting partial enthalpies of the components were deduced by extrapolation at infinite dilution: Δh f,∞ B i(755K)/KJ.mol -1 = -34.0 and Δh f,∞ Te(755K) /KJ·mol -1 = -24.1 in the Bi-Te melts Δh f,∞ In(1010K) /KJ·mol -1 = -75.9 and Δh f,∞ Te(1010K) /KJ·mol -1 = -47.8 in the In-Te melts Δh f,∞ In(987K) /KJ·mol -1 = -75.2 and Δh f,∞ Te(987K) /KJ·mol -1 = -48.0 in the In-Te melts

  15. Evidence for partial melting of eclogite from the Moldanubian Zone of the Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Miyazaki, T.; Nakamura, D.; Tamura, A.; Svojtka, Martin; Arai, S.; Hirajima, T.

    2016-01-01

    Roč. 111, č. 6 (2016), s. 405-419 ISSN 1345-6296 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100131203 Program:Program interní podpory projektů mezinárodní spolupráce AV ČR Institutional support: RVO:67985831 Keywords : partial melting * eclogite * leucocratic pockets * Bohemian Massif * Moldanubian Zone Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.409, year: 2016

  16. A genetic model of progressively partial melting for uranium-bearing granites in south China

    International Nuclear Information System (INIS)

    Zhai Jianping.

    1989-01-01

    A genetic model of progressively partial and enrichment mechanism of uranium during partial melting of the sources of material studied and the significance of the genetic model in search of uranium deposits is elaborated. This model accounts better for some geological and geochemical features of uranium-bearing granties and suspects the traditional idea that igneous uranium-bearing granites were formed by fusion of U-rich strata surrounding these granites. Finally this paper points out that the infuence of U-rich strata of wall rocks of granites over uranium-bearing granites depends on variation of water solubility in the magma and assimilation of magma to wall rocks during its ascending and crystallization

  17. Gravity Effects Observed In Partially Premixed Flames

    Science.gov (United States)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  18. Reasoning about Strategies under Partial Observability and Fairness Constraints

    Directory of Open Access Journals (Sweden)

    Simon Busard

    2013-03-01

    Full Text Available A number of extensions exist for Alternating-time Temporal Logic; some of these mix strategies and partial observability but, to the best of our knowledge, no work provides a unified framework for strategies, partial observability and fairness constraints. In this paper we propose ATLK^F_po, a logic mixing strategies under partial observability and epistemic properties of agents in a system with fairness constraints on states, and we provide a model checking algorithm for it.

  19. Geochemistry of Ua Huka basalts (Marquesas): partial melting variations and mantle source heterogeneity

    International Nuclear Information System (INIS)

    Ielsch, G.; Caroff, M.; Maury, R.C.; Cotten, J.; Barsczus, H.G.; Guillou, H.

    1998-01-01

    The main shield volcano of Ua Huka Island (Marquesas Archipelago) was emplaced between 2.2 and 2.4 Ma, and then affected by two caldera collapse events. After a 0.9 Ma-long gap, volcanic activity resumed with the emplacement of two smaller volcanoes in the southwest part of the island, between 1.5 and 0.75 Ma. The geochemical characteristics of Ua Huka mafic lavas, which range from olivine tholeiites to alkali basalts and basanites, are consistent with a temporal decrease in partial melting degrees of a heterogeneous mantle source. The associated temporal variation of the isotopic signatures of Ua Huka basalts implies a more important contribution of a Depleted MORB Mantle (DMM) end-member during the genesis of the youngest basanitic lavas. Such a variation was not previously documented in the Marquesas Archipelago. (authors)

  20. Observable consequences of partially degenerate leptogenesis

    CERN Document Server

    Ellis, Jonathan Richard; Yanagida, T; Ellis, John; Raidal, Martti

    2002-01-01

    In the context of the seesaw mechanism, it is natural that the large solar and atmospheric neutrino mixing angles originate separately from large 2 by 2 mixings in the neutrino and charged-lepton sectors, respectively, and large mixing in the neutrino couplings is in turn more plausible if two of the heavy singlet neutrinos are nearly degenerate. We study the phenomenology of this scenario, calculating leptogenesis by solving numerically the set of coupled Boltzmann equations for out-of-equilibrium heavy singlet neutrino decays in the minimal supersymmetric seesaw model. The near-degenerate neutrinos may weigh < 10^8 GeV, avoiding the cosmological gravitino problem. This scenario predicts that Br(mu to e gamma) should be strongly suppressed, because of the small singlet neutrino masses, whilst Br(tau to mu gamma) may be large enough to be observable in B-factory or LHC experiments. If the light neutrino masses are hierarchical, we predict that the neutrinoless double-beta decay parameter m_{ee} is approxim...

  1. Evidence for partial melt in the crust beneath Mt. Paektu (Changbaishan), Democratic People’s Republic of Korea and China

    Science.gov (United States)

    Kyong-Song, Ri; Hammond, James O. S.; Chol-Nam, Ko; Hyok, Kim; Yong-Gun, Yun; Gil-Jong, Pak; Chong-Song, Ri; Oppenheimer, Clive; Liu, Kosima W.; Iacovino, Kayla D.; Kum-Ran, Ryu

    2016-01-01

    Mt. Paektu (also known as Changbaishan) is an enigmatic volcano on the border between the Democratic People’s Republic of Korea (DPRK) and China. Despite being responsible for one of the largest eruptions in history, comparatively little is known about its magmatic evolution, geochronology, or underlying structure. We present receiver function results from an unprecedented seismic deployment in the DPRK. These are the first estimates of the crustal structure on the DPRK side of the volcano and, indeed, for anywhere beneath the DPRK. The crust 60 km from the volcano has a thickness of 35 km and a bulk VP/VS of 1.76, similar to that of the Sino-Korean craton. The VP/VS ratio increases ~20 km from the volcano, rising to >1.87 directly beneath the volcano. This shows that a large region of the crust has been modified by magmatism associated with the volcanism. Such high values of VP/VS suggest that partial melt is present in the crust beneath Mt. Paektu. This region of melt represents a potential source for magmas erupted in the last few thousand years and may be associated with an episode of volcanic unrest observed between 2002 and 2005.

  2. Influence of the oxygen partial pressure on the phase evolution during Bi-2212 wire melt processing

    CERN Document Server

    Scheuerlein, C.; Rikel, M.O.; Kadar, J.; Doerrer, C.; Di Michiel, M.; Ballarino, A.; Bottura, L.; Jiang, J.; Kametani, F.; Hellstrom, E.E.; Larbalestier, D.C.

    2016-01-01

    We have studied the influence of the oxygen partial pressure pO2 up to 5.5 bar on the phase changes that occur during melt processing of a state-of-the-art Bi-2212 multifilamentary wire. Phase changes have been monitored in situ by high energy synchrotron X-ray diffraction (XRD). We found that the stability of Bi-2212 phase is reduced with increasing pO2. For pO2>1 bar a significant amount of Bi-2212 phase decomposes upon heating in the range 400 to 650 °C. The extent of decomposition strongly increases with increasing pO2, and at pO2=5.5 bar Bi-2212 decomposes completely in the solid state. Textured Bi-2212 can be formed during solidification when pO2 is reduced to 0.45 bar when the precursor is molten. Since the formation of current limiting second phases is very sensitive to pO2 when it exceeds 1 bar, we recommend to reduce the oxygen partial pressure below the commonly used pO2=1 bar, in order to increase the pO2 margins and to make the overpressure process more robust.

  3. Process observation in fiber laser-based selective laser melting

    Science.gov (United States)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  4. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust

    Science.gov (United States)

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.

    2005-01-01

    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  5. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    Science.gov (United States)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  6. Evidence for magmatic underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions

    Science.gov (United States)

    Lodge, A.; Nippress, S. E. J.; Rietbrock, A.; García-Yeguas, A.; Ibáñez, J. M.

    2012-12-01

    In recent years, an increasing number of studies have focussed on resolving the internal structure of ocean island volcanoes. Traditionally, active source seismic experiments have been used to image the volcano edifice. Here we present results using the analysis of compressional to shear (P to S) converted seismic phases from teleseismic events, recorded by stations involved in an active source experiment "TOM-TEIDEVS" (Ibáñez et al., 2008), on the island of Tenerife, Canary Islands. We supplement this data with receiver function (RF) analysis of seismograms from the Canary Islands of Lanzarote and La Palma, applying the extended-time multitaper frequency domain cross-correlation estimation method (Helffrich, 2006). We use the neighbourhood inversion approach of Sambridge (1999a,b) to model the RFs and our results indicate magmatic underplating exists beneath all three islands, ranging from 2 to 8 km, but showing no clear correlation with the age of the island. Beneath both La Palma and Tenerife, we find localized low velocity zones (LVZs), which we interpret as due to partial melt, supported by their correlation with the location of historical earthquakes (La Palma) and recent earthquakes (Tenerife). For Lanzarote, we do not sample the most recently volcanically active region and find no evidence for a LVZ. Instead, we find a simple gradational velocity structure, with discontinuities at ˜4, 10 and 18 km depth, in line with previous studies.

  7. Mantle ingredients for making the fingerprint of Etna alkaline magmas: implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily

    Science.gov (United States)

    Viccaro, Marco; Zuccarello, Francesco

    2017-09-01

    able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.

  8. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    Science.gov (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  9. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    International Nuclear Information System (INIS)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-01-01

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the α-Mg/β-Mg 17 Al 12 phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, α-Mg re-solidified with a cellular growth, resulting in a serrated interface between α-Mg and α-Mg/β-Mg 17 Al 12 in the weld sample and between α-Mg and β-Mg 17 Al 12 (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained

  10. Observation of melting in 30 angstrom diameter CdS nanocrystals

    International Nuclear Information System (INIS)

    Goldstein, A.N.; Colvin, V.L.; Alivisatos, A.P.

    1991-01-01

    In this paper temperature dependent electron diffraction studies on 30 Angstrom diameter CdS nanocrystals are described. The linear thermal expansion coefficient of the nanocrystals is 2.75 * 10 -5 Angstrom/K, and the melting point is 575 K. These data are in contrast to bulk CdS which has a melting point of 1750 K and a linear expansion coefficient of 5.5 * 10 -6 Angstrom/K. The observed depression in the melting point of these semiconductor clusters is similar to effects observed in metals and molecular crystals, indicating that the phenomenon of reduced melting point in small systems is a general one regardless of the type of material. The observation of melting point depression in these clusters also has far reaching implications for the preparation of highly crystalline clusters of CdS, as well as for the use of these nanocrystals as precursors to thin films

  11. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    Science.gov (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  12. Greenland iceberg melt variability from high-resolution satellite observations

    Directory of Open Access Journals (Sweden)

    E. M. Enderlin

    2018-02-01

    Full Text Available Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011–2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  13. Nash Equilibria in Symmetric Graph Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2017-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria for qualitative objectives in this game model....

  14. Nash Equilibria in Symmetric Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2014-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria (for qualitative objectives) in this game model....

  15. Evaluation of total and partial structure factors, self-diffusion coefficients, and compressibilities of the cadmium-gallium melt

    International Nuclear Information System (INIS)

    Gopala Rao, R.V.; Das, R.

    1988-01-01

    The three partial structure factors S/sub 11/(K), S/sub 22/(K), and S/sub 12/(K) defined by Ashcroft and Langreth are computed with a square-well potential as a perturbation over a hard-sphere potential for different atomic fractions or concentrations of cadmium for Cd-Ga melt at 296 0 C. Also, the number-number, concentration-concentration, and the cross-term number-concentration structure factors due to Bhatia-Thornton have been calculated for the seven concentrations of Cd-Ga melt at that temperature. From these partial structure factors total structure factors are computed and are compared with the experimental results. The total structure factors so computed are found to be in excellent agreement with the measured values except in the long-wavelength limit of S(0). Using the partial structure factors in the long-wavelength limit the isothermal compressibilities have been calculated. From these partial structure factors and by using the linear-trajectory approximation of Helfand, the self-diffusion coefficients D/sub i/'s have also been calculated for various atomic fractions of Cd for Cd-Ga alloy at 296 0 C. From these D/sub i/'s, an estimate of the mutual diffusion coefficients has been made to a good approximation

  16. A Partially Observed Markov Decision Process for Dynamic Pricing

    OpenAIRE

    Yossi Aviv; Amit Pazgal

    2005-01-01

    In this paper, we develop a stylized partially observed Markov decision process (POMDP) framework to study a dynamic pricing problem faced by sellers of fashion-like goods. We consider a retailer that plans to sell a given stock of items during a finite sales season. The objective of the retailer is to dynamically price the product in a way that maximizes expected revenues. Our model brings together various types of uncertainties about the demand, some of which are resolvable through sales ob...

  17. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting (SLM manufacturing of removable partial dentures (RPD

    Directory of Open Access Journals (Sweden)

    D. Jevremovic

    2012-04-01

    Full Text Available The presented work discusses the applicability of the selective laser melting technique (SLM in manufacture of removable partial denture (RPD frameworks with the emphasis on material properties. The paper presents initial results of a conducted test of the mechanical properties of the F75 Co-Cr dental alloy used with selective laser melting.

  18. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    Science.gov (United States)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  19. Observation of melt surface depressions during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    Depths of depressed surface of liquid gadolinium, cerium and copper during electron beam evaporation were measured by triangulation method using a CCD camera. The depression depths estimated from the balance of the vapor pressure and the hydrostatic pressure at the evaporation surface agreed with the measured values. The periodic fluctuation of atomic beam was observed when the depression of 3∼4 mm in depth was formed at the evaporation spot. (author)

  20. Observation of mass flux through hcp 4He off the melting curve

    International Nuclear Information System (INIS)

    Ray, M W; Hallock, R B

    2009-01-01

    Solid hcp 4 He has been created off the melting curve using two growth techniques. In an effort to observe the flow of 4 He through the solid, rather than squeezing the solid directly, the experimental apparatus allows injection of 4 He atoms from superfluid in porous Vycor directly into the solid. We will describe the apparatus and our observations. Evidence for the transport of mass through a sample cell filled with hcp solid 4 He off the melting curve is found. The temperature and pressure dependence of this behavior will be presented.

  1. Partial reactive crystallization of variable CO2-bearing siliceous MORB-eclogite-derived melt in fertile peridotite and genesis of alkalic basalts with signatures of crustal recycling

    Science.gov (United States)

    Mallik, A.; Dasgupta, R.

    2013-12-01

    The presence of heterogeneity in the form of recycled altered oceanic crust (MORB-eclogite) has been proposed in the source of HIMU ocean island basalts (OIBs) [1]. Partial melts of recycled oceanic crust, however, are siliceous and Mg-poor and thus do not resemble the major element compositions of alkalic OIBs that are silica-poor and Mg-rich. In an upwelling heterogenous mantle, MORB-eclogite undergoes melting deeper than volatile-free peridotite, hence, andesitic partial melt derived from eclogite will react with subsolidus peridotite. We have examined the effect of such a melt-rock reaction under volatile-free conditions at 1375 °C, 3 GPa by varying the melt-rock ratio from 8 to 50 wt.% [2]. We concluded that the reacted melts reproduce certain major element characteristics of oceanic basanites, but not nephelinites. Also, the melt-rock reaction produces olivine and garnet-bearing websteritic residue. Because presence of CO2 has been invoked in the source of many HIMU ocean islands, the effect of CO2 on such a melt-rock reaction needs to be evaluated. Accordingly, we performed reaction experiments on mixtures of 25% and 33% CO2-bearing andesitic partial melt and peridotite at 1375 °C, 3 GPa by varying the dissolved CO2 content of the reacting melts from 1 to 5 wt.% (bulk CO2 from 0.25 to 1.6 wt.%) [3, this study]. Owing to melt-rock reaction, with increasing CO2 in the bulk mixture, (a) modes of olivine and cpx decrease while melt, opx and garnet increase, (b) reacted melts evolve to greater degree of Si-undersaturation (from andesite through basanite to nephelinite), (c) enhanced crystallization of garnet take place with higher CO2 in the melt, reducing alumina content of the reacted melts, and (d) CaO and MgO content of the reacted melts increase, without affecting FeO* and Na2O contents (indicating greater propensity of Ca2+ and Mg2+ over Fe2+ and Na+ to enter silicate melt as carbonate). For a given melt-MgO, the CO2-bearing reacted melts are a better

  2. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    Science.gov (United States)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb 1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few

  3. The energy efficiency paradox revisited through a partial observability approach

    International Nuclear Information System (INIS)

    Kounetas, Kostas; Tsekouras, Kostas

    2008-01-01

    The present paper examines the energy efficiency paradox demonstrated in Greek manufacturing firms through a partial observability approach. The data set used has resulted from a survey carried out among 161 energy-saving technology firm adopters. Maximum likelihood estimates that arise from an incidental truncation model reveal that the adoption of the energy-saving technologies is indeed strongly correlated to the returns of assets that are required in order to undertake the corresponding investments. The source of the energy efficiency paradox lies within a wide range of factors. Policy schemes that aim to increase the adoption rate of energy-saving technologies within the field of manufacturing are significantly affected by differences in the size of firms. Finally, mixed policies seem to be more effective than policies that are only capital subsidy or regulation oriented

  4. Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model

    Science.gov (United States)

    Von Davier, Matthias; Yamamoto, Kentaro

    2004-01-01

    The generalized partial-credit model (GPCM) is used frequently in educational testing and in large-scale assessments for analyzing polytomous data. Special cases of the generalized partial-credit model are the partial-credit model--or Rasch model for ordinal data--and the two parameter logistic (2PL) model. This article extends the GPCM to the…

  5. Microstructure of Semi-Solid 6063 Alloy Fabricated by Radial Forging Combined with Unidirectional Compression Recrystallization and Partial Melting Process

    Directory of Open Access Journals (Sweden)

    Wang Yongfei

    2017-01-01

    Full Text Available Radial forging combined with unidirectional compression (RFCUM is introduced in recrystallization and partial melting (RAP to fabricate semi-solid 6063 aluminum alloy, which can be defined as a process of RFCUM-RAP. In this study, the microstructures of semi-solid 6063 alloy prepared by semi-solid isothermal treatment (SSIT and RFCUM-RAP processes are investigated. The results show that, the solid grains of semi-solid alloy prepared by SSIT are large and irregular. However, solid grains of semi-solid billet prepared by RFCUC-RAP are fine and spherical. Additionally, during RFCUC-RAP process, with the increase of isothermal holding time, the shape of solid grain is more and more spherical, but the size of solid grain is gradually increased. To obtain ideal semi-solid microstructure, the optimal isothermal holding temperature and time are 630 °C and 5~10 min, respectively.

  6. Robust Dynamics and Control of a Partially Observed Markov Chain

    International Nuclear Information System (INIS)

    Elliott, R. J.; Malcolm, W. P.; Moore, J. P.

    2007-01-01

    In a seminal paper, Martin Clark (Communications Systems and Random Process Theory, Darlington, 1977, pp. 721-734, 1978) showed how the filtered dynamics giving the optimal estimate of a Markov chain observed in Gaussian noise can be expressed using an ordinary differential equation. These results offer substantial benefits in filtering and in control, often simplifying the analysis and an in some settings providing numerical benefits, see, for example Malcolm et al. (J. Appl. Math. Stoch. Anal., 2007, to appear).Clark's method uses a gauge transformation and, in effect, solves the Wonham-Zakai equation using variation of constants. In this article, we consider the optimal control of a partially observed Markov chain. This problem is discussed in Elliott et al. (Hidden Markov Models Estimation and Control, Applications of Mathematics Series, vol. 29, 1995). The innovation in our results is that the robust dynamics of Clark are used to compute forward in time dynamics for a simplified adjoint process. A stochastic minimum principle is established

  7. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  8. Simulation on the Effects of Surfactants and Observed Thermocapillary Motion for Laser Melting Physics

    Science.gov (United States)

    Nourgaliev, Robert; Barney, Rebecca; Weston, Brian; Delplanque, Jean-Pierre; McCallen, Rose

    2017-11-01

    A newly developed, robust, high-order in space and time, Newton-Krylov based reconstructed discontinuous Galerkin (rDG) method is used to model and analyze thermocapillary convection in melt pools. The application of interest is selective laser melting (SLM) which is an Additive Manufacturing (AM, 3D metal laser printing) process. These surface tension driven flows are influenced by temperature gradients and surfactants (impurities), and are known as the Marangoni flow. They have been experimentally observed in melt pools for welding applications, and are thought to influence the microstructure of the re-solidified material. We study the effects of the laser source configuration (power, beam size and scanning speed), as well as surfactant concentrations. Results indicate that the surfactant concentration influences the critical temperature, which governs the direction of the surface thermocapillary traction. When the surface tension traction changes sign, very complex flow patterns emerge, inducing hydrodynamic instability under certain conditions. These in turn would affect the melt pool size (depth) and shape, influencing the resulting microstructure, properties, and performance of a finished product part produced using 3D metal laser printing technologies. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-735908.

  9. Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase

    International Nuclear Information System (INIS)

    Chen, K.; Kaplan, T.; Mostoller, M.

    1995-01-01

    Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young

  10. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  11. Experimental determination of dissolved CO2 content in nominally anhydrous andesitic melts at graphite/diamond saturation - Remobilization of deeply subducted reduced carbon via partial melts of MORB-like eclogite

    Science.gov (United States)

    Eguchi, J.; Dasgupta, R.

    2015-12-01

    Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions

  12. Quantifying the surface energy fluxes in South Greenland during the 2012 high melt episodes using in-situ observations

    Directory of Open Access Journals (Sweden)

    Robert S. Fausto

    2016-09-01

    Full Text Available Two high melt episodes occurred on the Greenland ice sheet in July 2012, during which nearly the entire ice sheet surface experienced melting. Observations from an automatic weather station (AWS in the lower ablation area in South Greenland reveal the largest daily melt rates (up to 28 cm d-1 ice equivalent ever recorded on the ice sheet. The two melt episodes lasted 6 days, equivalent to 6% of the June-August melt period, but contributed 14 % to the total annual ablation of 8.5 m ice equivalent. We employ a surface energy balance model driven by AWS data to quantify the relative importance of the energy budget components contributing to melt through the melt season. During the days with largest daily melt rates, surface turbulent heat input peaked at 552 Wm-2, 77 % of the surface melt energy, which is otherwise typically dominated by absorbed solar radiation. We find that rain contributed ca. 7 % to melt during these episodes.

  13. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    Science.gov (United States)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  14. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and

  15. Partial Linearization of Mechanical Systems with Application to Observer Design

    NARCIS (Netherlands)

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der

    2008-01-01

    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  16. [A preliminary study on the forming quality of titanium alloy removable partial denture frameworks fabricated by selective laser melting].

    Science.gov (United States)

    Liu, Y F; Yu, H; Wang, W N; Gao, B

    2017-06-09

    Objective: To evaluate the processing accuracy, internal quality and suitability of the titanium alloy frameworks of removable partial denture (RPD) fabricated by selective laser melting (SLM) technique, and to provide reference for clinical application. Methods: The plaster model of one clinical patient was used as the working model, and was scanned and reconstructed into a digital working model. A RPD framework was designed on it. Then, eight corresponding RPD frameworks were fabricated using SLM technique. Three-dimensional (3D) optical scanner was used to scan and obtain the 3D data of the frameworks and the data was compared with the original computer aided design (CAD) model to evaluate their processing precision. The traditional casting pure titanium frameworks was used as the control group, and the internal quality was analyzed by X-ray examination. Finally, the fitness of the frameworks was examined on the plaster model. Results: The overall average deviation of the titanium alloy RPD framework fabricated by SLM technology was (0.089±0.076) mm, the root mean square error was 0.103 mm. No visible pores, cracks and other internal defects was detected in the frameworks. The framework fits on the plaster model completely, and its tissue surface fitted on the plaster model well. There was no obvious movement. Conclusions: The titanium alloy RPD framework fabricated by SLM technology is of good quality.

  17. Consistent estimate of ocean warming, land ice melt and sea level rise from Observations

    Science.gov (United States)

    Blazquez, Alejandro; Meyssignac, Benoît; Lemoine, Jean Michel

    2016-04-01

    Based on the sea level budget closure approach, this study investigates the consistency of observed Global Mean Sea Level (GMSL) estimates from satellite altimetry, observed Ocean Thermal Expansion (OTE) estimates from in-situ hydrographic data (based on Argo for depth above 2000m and oceanic cruises below) and GRACE observations of land water storage and land ice melt for the period January 2004 to December 2014. The consistency between these datasets is a key issue if we want to constrain missing contributions to sea level rise such as the deep ocean contribution. Numerous previous studies have addressed this question by summing up the different contributions to sea level rise and comparing it to satellite altimetry observations (see for example Llovel et al. 2015, Dieng et al. 2015). Here we propose a novel approach which consists in correcting GRACE solutions over the ocean (essentially corrections of stripes and leakage from ice caps) with mass observations deduced from the difference between satellite altimetry GMSL and in-situ hydrographic data OTE estimates. We check that the resulting GRACE corrected solutions are consistent with original GRACE estimates of the geoid spherical harmonic coefficients within error bars and we compare the resulting GRACE estimates of land water storage and land ice melt with independent results from the literature. This method provides a new mass redistribution from GRACE consistent with observations from Altimetry and OTE. We test the sensibility of this method to the deep ocean contribution and the GIA models and propose best estimates.

  18. Development of Bulk Bi2+xSr3-yCa yCu 2O8+delta Superconductors by Partial-Melting Route for Fault Current Limiters Application

    Directory of Open Access Journals (Sweden)

    Bojan A. Marinkovic

    2002-06-01

    Full Text Available The production of bulk Bi2+xSr3-yCa yCu 2O8+delta (Bi-2212 superconductors for fault current limiter application was developed via a partial-melting route. Aiming high Ic (critical current, which is the essential superconducting characteristic for application of this material in the construction of Fault Current Limiters (FCL, the produced blocks have predominance of Bi-2212 phase (83 wt%, which characterizes with high values of zero and onset transport critical temperature of 92K and 97.5K, respectively. A relatively low transition width, deltaT, from the superconducting to the normal state of 5.5K, revealed a good intergrain connectivity. Consequently, current measurements on the blocks of Bi-2212 show promising Ic values of 230A and 850A for direct and alternate current, respectively. It is expected that further increases in the Ic values will depend on the elimination of an observed amorphous phase and further reduction of amount and grain sizes of secondary phases, still present in the blocks obtained by the proposed partial-melting route. This may be achieved by a further optimization of the partial-melting processing parameters.

  19. Low-degree partial melting of metapelites - another possible implement for selective concentration of uranium: Example from the Rozna uranium deposit, Bohemian Massif

    International Nuclear Information System (INIS)

    Leichmann, J.; Matula, M.; Broska, I.; Holeczy, D.

    2002-01-01

    Monazite, as the main carrier of U and Th in host biotite gneiss at the Rozna uranium deposit, was replaced by allanite during the process of partial melting. The transformation was accompanied by a release of U, and to a lesser extent of Th, from the monazite lattice. The liberated U and Th crystallized in the extracted granitic melt mainly in the form of thorogummite or cheralite. The granites are depleted in HFS and LREE. Garnet-poor granites are depleted in HREE as well, whereas garnet-rich types are enriched in HREE. (author)

  20. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    Science.gov (United States)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  1. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  2. An observation of a partially albinistic zenaida macroura (Mourning Dove)

    Science.gov (United States)

    Berdeen, James; Otis, D.L.

    2011-01-01

    Abstract Three of the 4 forms of albinism that occur in avifauna have been detected in Zenaida macroura (Mourning Dove). Albinism is rare in this species, and the incidence rate of each age and sex cohort is not well known. Consequently, we examined the pigmentation of Mourning Doves encountered in the Coastal Plain of South Carolina, and classified the age and sex of all individuals. One adult male Mourning Dove had unusually light coloration of some feathers and the upper mandible. This pigmentation is consistent with partial albinism. This was the only individual out of 10,749 examined that appeared to be albinistic. This low incidence rate of albinism supports the conclusion that this condition is relatively rare in Mourning Doves (Mirarchi 1993).

  3. A conceptual model for the asthenosphere: redox melting in the C-O-H-bearing mantle vs. geophysical observations

    Science.gov (United States)

    Gaillard, Fabrice; Tarits, Pascal; Massuyeau, Malcolm; David, Sifre; Leila, Hashim; Emmanuel, Gardes

    2013-04-01

    The asthenosphere has classically been considered as a convective layer, with its viscosity decreased by the presence of 100's ppm water in olivine, and being overtopped by a rigid and dry lithosphere. It, however, needs a new conceptual definition as the presence of water seems not able to affect the rheology of olivine; furthermore, properties such as electrical conductivity and seismic wave's velocity are not sensibly affected by water content in olivine, leaving the geophysical features of the asthenosphere unexplained. An asthenosphere impregnated by low melt fractions is consistent with constraints on melting behavior of C-O-H-bearing peridotites and may also better explain electrical conductivity and seismic features. The challenge is therefore to confront and reconcile the complexity of mantle melting in the C-O-H system with geophysical observations. This work reviews and discusses several key properties of the asthenosphere and relates their vertical and lateral heterogeneities to geodynamic processes. The first discussion is about the top of the Lithosphere-Asthenosphere boundary in the oceanic mantle. The discontinuity identified by seismic and electrical surveys is located at an average depth of 65km and is weakly influenced by the age, and therefore, the temperature of the lithosphere. This puzzling observation is shown here to be in perfect line the onset of peridotite melting in presence of both H2O and CO2. Mantle melting is therefore expected at 65 km depth, where the melt is essentially carbonatitic, inducing weakening and imposing transition in the regime of thermal transfer. Deeper, the melt evolve to silica-richer compositions. Twenty years of petrological investigations on processes that control mantle redox state unanimously concur on an increasingly reduced mantle with increasing depth. The conventional wisdom defines garnet as being increasingly abundant and increasingly able to concentrate ferric iron with increasing depth. Such oxygen

  4. In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2014-02-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important

  5. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    Science.gov (United States)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  6. Fully automated gamma spectrometry gauge observing possible radioactive contamination of melting-shop samples

    International Nuclear Information System (INIS)

    Kroos, J.; Westkaemper, G.; Stein, J.

    1999-01-01

    At Salzgitter AG, several monitoring systems have been installed to check the scrap transport by rail and by car. At the moment, the scrap transport by ship is reloaded onto wagons for monitoring afterwards. In the future, a detection system will be mounted onto a crane for a direct check on scrap upon the departure of ship. Furthermore, at Salzgitter AG Central Chemical Laboratory, a fully automated gamma spectrometry gauge is installed in order to observe a possible radioactive contamination of the products. The gamma spectrometer is integrated into the automated OE spectrometry line for testing melting shop samples after performing the OE spectrometry. With this technique the specific activity of selected nuclides and dose rate will be determined. The activity observation is part of the release procedure. The corresponding measurement data are stored in a database for quality management reasons. (author)

  7. Observational Evidence of EHP Effects on the Melting of Snowpack over the Tibetan Plateau

    Science.gov (United States)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Lee, Woo-Seop

    2012-01-01

    Observational evidences are presented showing that the Indo-Gangetic Plain (IGP) regions, bounded by the high altitude Himalayan mountains, are subject to heavy loading of absorbing aerosols, i.e., black carbon and dust, which can lead to widespread enhancement warming over the Tibetan Plateau and accelerated snowmelt in the western Tibetan Plateau (WTP) and Himalayas. The two pre-monsoon seasons of 2004 and 2005 were strikingly contrasting in terms of the aerosol loading over IGP. The warming of the TP in 2004 relative to 2005 was widespread, covering most of the WTP and Himalayas. This warming is closely linked to patterns of the snow melt. Consistent with the Elevated Heat Pump hypothesis, we find that increased loading of absorbing aerosols over IGP in the pre-monsoon season is associated with increased heating of the upper troposphere by dynamical feedback induced by aerosol heating, and enhances the rate of snowmelt over Himalayas and the WTP in April-May. Composite analysis with more contrasting years also shows that the heating of the troposphere by elevated dust and black carbon aerosols in the boreal spring can lead to widespread enhanced land-atmosphere warming, and accelerated snow melt in the Himalayas and Tibetan Plateau.

  8. Polynomial Time Decidability of Weighted Synchronization under Partial Observability

    DEFF Research Database (Denmark)

    Kretínsky, Jan; Larsen, Kim Guldstrand; Laursen, Simon

    2015-01-01

    We consider weighted automata with both positive and negative integer weights on edges and study the problem of synchronization using adaptive strategies that may only observe whether the current weight-level is negative or nonnegative. We show that the synchronization problem is decidable...

  9. Likelihood based inference for partially observed renewal processes

    NARCIS (Netherlands)

    van Lieshout, Maria Nicolette Margaretha

    2016-01-01

    This paper is concerned with inference for renewal processes on the real line that are observed in a broken interval. For such processes, the classic history-based approach cannot be used. Instead, we adapt tools from sequential spatial point process theory to propose a Monte Carlo maximum

  10. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, Shuta [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2007-08-22

    Neutron and high-energy x-ray diffraction analyses of molten AgI have been performed and the partial structures are discussed in detail with the aid of the structural modelling procedure of the reverse Monte Carlo (RMC) technique by comparison with those of molten CuI and AgCl. It is well known that AgI and CuI have a superionic solid phase below the melting point, in which the cations favour a tetrahedral configuration, while solid AgCl has a rock-salt structure with an octahedral environment around both Ag and Cl atoms. Even in the molten states, there is a significant difference between superionic and non-superionic melts. The cation is located on the triangular plain formed by three iodine ions in molten AgCl and CuI, while molten AgCl favours a 90 deg. Cl-Ag-Cl bond angle, which is understood to maintain a similar local environment to that in the solid state. The atomic configurations of the RMC model suggest that the cation distributions in superionic melts of CuI and AgI exhibit large fluctuations, while Ag ions in the non-superionic melts of AgCl are distributed much more uniformly.

  11. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  12. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust

    Science.gov (United States)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming

    2018-06-01

    The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional

  13. Flux line lattice melting transition in YBa2Cu3O6.94 observed in specific heat experiments

    International Nuclear Information System (INIS)

    Roulin, M.; Junod, A.; Walker, E.

    1996-01-01

    When a magnetic field penetrates a type II superconductor, it forms a lattice of thin quantized filaments called magnetic vortices. Resistance, magnetization, and neutron diffraction experiments have shown that the vortex lattice of high-temperature superconductors can melt along a line in the field-temperature plane. The calorimetric signature of melting on this line was observed in a high-accuracy adiabatic specific heat experiment performed on YBa 2 Cu 3 O 6.94 . The specific heat of the vortex liquid was greater than that of the vortex solid. 17 refs., 3 figs

  14. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway

    Science.gov (United States)

    Laurent, Antonin T.; Bingen, Bernard; Duchene, Stephanie; Whitehouse, Martin J.; Seydoux-Guillaume, Anne-magali; Bosse, Valerie

    2018-04-01

    This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T > 900 °C) granulite facies metamorphism. New U-Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α g-1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91 ± 0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040-990 Ma; M2: 940-930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U-Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040-930 Ma) in the UHT zone, 85 My (ca. 1040-955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040-1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.

  15. Segmentation and fragmentation of melt jets due to generation of large-scale structures. Observation in low subcooling conditions

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro; Yamada, Tsuyoshi

    1999-01-01

    In order to clarify a mechanism of melt-jet breakup and fragmentation entirely different from the mechanism of stripping, a series of experiments were carried out by using molten tin jets of 100 grams with initial temperatures from 250degC to 900degC. Molten tin jets with a small kinematic viscosity and a large thermal diffusivity were used to observe breakup and fragmentation of melt jets enhanced thermally and hydrodynamically. We observed jet columns with second-stage large-scale structures generated by the coalescence of large-scale structures recognized in the field of fluid mechanics. At a greater depth, the segmentation of jet columns between second-stage large-scale structures and the fragmentation of the segmented jet columns were observed. It is reasonable to consider that the segmentation and the fragmentation of jet columns are caused by the boiling of water hydrodynamically entrained within second-stage large-scale structures. (author)

  16. Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure

    International Nuclear Information System (INIS)

    Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.

    2009-01-01

    Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 μm. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.

  17. Direct observation of the transition from free to constrained single segment motion in entangled polymer melts

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Wischnewski, A.; Willner, L.; Richter, D.

    2004-01-01

    Incoherent neutron-spin-echo spectroscopy (NSE) has been employed to directly determine the time-dependent mean-squared segment displacement 2 > of a polymer chain in the melt covering the transition from free to constraint Rouse relaxation along the virtual tube of the reptation model. The predicted transition of the time dependence of 2 > from 2 >∝t 1/2 to ∝t 1/4 is clearly corroborated by the incoherent NSE results

  18. An Explicit Example Of Optimal Portfolio-Consumption Choices With Habit Formation And Partial Observations

    OpenAIRE

    Yu, Xiang

    2011-01-01

    We consider a model of optimal investment and consumption with both habit formation and partial observations in incomplete It\\^{o} processes market. The investor chooses his consumption under the addictive habits constraint while only observing the market stock prices but not the instantaneous rate of return. Applying the Kalman-Bucy filtering theorem and the Dynamic Programming arguments, we solve the associated Hamilton-Jacobi-Bellman (HJB) equation explicitly for the path dependent stochas...

  19. A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes

    OpenAIRE

    Zhang, Nevin Lianwen; Lee, Stephen S.; Zhang, Weihong

    2013-01-01

    We present a technique for speeding up the convergence of value iteration for partially observable Markov decisions processes (POMDPs). The underlying idea is similar to that behind modified policy iteration for fully observable Markov decision processes (MDPs). The technique can be easily incorporated into any existing POMDP value iteration algorithms. Experiments have been conducted on several test problems with one POMDP value iteration algorithm called incremental pruning. We find that th...

  20. Thermal Conductive Heat Transfer and Partial Melting of Volatiles in Icy Moons, Asteroids, and Kuiper Belt Objects (Invited)

    Science.gov (United States)

    Kargel, J. S.; Furfaro, R.

    2013-12-01

    Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of

  1. Melting of the flux line lattice observed by specific heat experiments in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Roulin, M.; Junod, A.; Erb, A.; Walker, E.

    1996-01-01

    High resolution adiabatic specific heat experiments on YBa 2 Cu 3 O 7-δ (0≤δ≤0.05) are performed in magnetic fields from 0 to 14 T (B parallel c and B perpendicular c). In a 0.3 gram, twinned crystal with strong pinning, a step is consistently observed at the melting temperature T m of the vortex solid up to a critical point that depends on δ. The field B m and step temperature T m obey the relation B m =B m0 (δ)(1-T m /T c ) ∼4/3 . The anisotropy of B m and that of the upper critical field B c2 are found to be equal. Alternatively, in a 18 mg, twinned crystal of high purity with low pinning, first-order-like specific heat peaks are observed on the melting line from 8 to 14 T. The entropy under these peaks is ∼0.5 k B /vortex/bilayer. These characteristic features are attributed to the melting of a vortex glass in the former case and that of a vortex lattice in the latter case

  2. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  3. Growth and structural characterization of single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) obtained by the partial melting technique

    Science.gov (United States)

    Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.

    2018-05-01

    In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.

  4. Feasibility study of partial observability in H∞ filtering for robot localization and mapping problem

    OpenAIRE

    Ahmad, Hamzah; Namerikawa, Toru

    2010-01-01

    This paper presents H∞ Filter SLAM, which is also known as the minimax filter to estimate the robot and landmarks location with the analysis on partial observability. Some convergence conditions are also presented to aid the analysis. Due to SLAM is a controllable but unobservable problem, it's difficult to estimate the position of robot and landmarks even though the control inputs are given to the system. As a result, Covariance Inflation which is a method of adding a pseudo positive semidef...

  5. Filtering a statistically exactly solvable test model for turbulent tracers from partial observations

    International Nuclear Information System (INIS)

    Gershgorin, B.; Majda, A.J.

    2011-01-01

    A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.

  6. First observations of partially neutralized and quasineutral plasmas in the Columbia Non-neutral Torus

    Science.gov (United States)

    Sarasola, Xabier; Brenner, Paul; Hahn, Michael; Pedersen, Thomas

    2009-11-01

    The Columbia Non-neutral Torus (CNT) is the first stellarator devoted to the study of pure electron, partially neutralized and positron-electron plasmas. To date, CNT usually operates with electron rich plasmas (with negligible ion density) [1], but a stellarator can also confine plasmas of arbitrary degree of neutralization. In CNT the accumulation of ions alters the equilibrium of electron plasmas and a global instability has been observed when the ion fraction exceeds 10 %. A characterization of this instability is presented in [2], analyzing its parameter dependence and spatial structure (non- resonant with rational surfaces). A new set of experiments is currently underway studying plasmas of arbitrary degree of neutralization, ranging from pure electron to quasineutral plasmas. Basic observations show that the plasma potential decouples from emitter bias when we increase the degree of the neutralization of our plasmas. Partially neutralized plasmas are also characterized by multiple mode behavior with dominant modes between 20 and 200 kHz. When the plasma becomes quasineutral, it reverts to single mode behavior. The first results on partially neutralized plasmas confined on magnetic surfaces will be presented. [1] J. Kremer, PRL 97, (2006) 095003 [2] Q. Marksteiner, PRL 100 (2008) 065002

  7. An Optimal Medium Access Control with Partial Observations for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Servetto Sergio D

    2005-01-01

    Full Text Available We consider medium access control (MAC in multihop sensor networks, where only partial information about the shared medium is available to the transmitter. We model our setting as a queuing problem in which the service rate of a queue is a function of a partially observed Markov chain representing the available bandwidth, and in which the arrivals are controlled based on the partial observations so as to keep the system in a desirable mildly unstable regime. The optimal controller for this problem satisfies a separation property: we first compute a probability measure on the state space of the chain, namely the information state, then use this measure as the new state on which the control decisions are based. We give a formal description of the system considered and of its dynamics, we formalize and solve an optimal control problem, and we show numerical simulations to illustrate with concrete examples properties of the optimal control law. We show how the ergodic behavior of our queuing model is characterized by an invariant measure over all possible information states, and we construct that measure. Our results can be specifically applied for designing efficient and stable algorithms for medium access control in multiple-accessed systems, in particular for sensor networks.

  8. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    Science.gov (United States)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  9. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  10. Screening for a Chronic Disease: A Multiple Stage Duration Model with Partial Observability.

    Science.gov (United States)

    Mroz, Thomas A; Picone, Gabriel; Sloan, Frank; Yashkin, Arseniy P

    2016-08-01

    We estimate a dynamic multi-stage duration model to investigate how early detection of diabetes can delay the onset of lower extremity complications and death. We allow for partial observability of the disease stage, unmeasured heterogeneity, and endogenous timing of diabetes screening. Timely diagnosis appears important. We evaluate the effectiveness of two potential policies to reduce the monetary costs of frequent screening in terms of lost longevity. Compared to the status quo, the more restrictive policy yields an implicit value for an additional year of life of about $50,000, while the less restrictive policy implies a value of about $120,000.

  11. Partial Variance of Increments Method in Solar Wind Observations and Plasma Simulations

    Science.gov (United States)

    Greco, A.; Matthaeus, W. H.; Perri, S.; Osman, K. T.; Servidio, S.; Wan, M.; Dmitruk, P.

    2018-02-01

    The method called "PVI" (Partial Variance of Increments) has been increasingly used in analysis of spacecraft and numerical simulation data since its inception in 2008. The purpose of the method is to study the kinematics and formation of coherent structures in space plasmas, a topic that has gained considerable attention, leading the development of identification methods, observations, and associated theoretical research based on numerical simulations. This review paper will summarize key features of the method and provide a synopsis of the main results obtained by various groups using the method. This will enable new users or those considering methods of this type to find details and background collected in one place.

  12. MULTIWAVELENGTH OBSERVATIONS OF A PARTIALLY ERUPTIVE FILAMENT ON 2011 SEPTEMBER 8

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. M.; Ning, Z. J.; Zhou, T. H.; Ji, H. S.; Feng, L. [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Guo, Y.; Cheng, X. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wiegelmann, T., E-mail: zhangqm@pmo.ac.cn [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg-3, D-37077 Göttingen (Germany)

    2015-05-20

    In this paper, we report our multiwavelength observations of a partial filament eruption event in NOAA active region (AR) 11283 on 8 September 2011. A magnetic null point and the corresponding spine and separatrix surface are found in the AR. Beneath the null point, a sheared arcade supports the filament along the highly complex and fragmented polarity inversion line. After being activated, the sigmoidal filament erupted and split into two parts. The major part rose at speeds of 90–150 km s{sup −1} before reaching the maximum apparent height of ∼115 Mm. Afterward, it returned to the solar surface in a bumpy way at speeds of 20–80 km s{sup −1}. The rising and falling motions were clearly observed in the extreme-ultraviolet, UV, and Hα wavelengths. The failed eruption of the main part was associated with an M6.7 flare with a single hard X-ray source. The runaway part of the filament, however, separated from and rotated around the major part for ∼1 turn at the eastern leg before escaping from the corona, probably along large-scale open magnetic field lines. The ejection of the runaway part resulted in a very faint coronal mass ejection that propagated at an apparent speed of 214 km s{sup −1} in the outer corona. The filament eruption also triggered a transverse kink-mode oscillation of the adjacent coronal loops in the same AR. The amplitude and period of the oscillation were 1.6 Mm and 225 s. Our results are important for understanding the mechanisms of partial filament eruptions, and provide new constraints to theoretical models. The multiwavelength observations also shed light on space weather prediction.

  13. Observation and modeling of snow melt and superimposed ice formation on sea ice

    OpenAIRE

    Nicolaus, Marcel; Haas, Christian

    2004-01-01

    Sea ice plays a key role within the global climate system. It covers some 7% of earths surface and processes a strong seasonal cycle. Snow on sea ice even amplifies the importance of sea ice in the coupled atmosphere-ice-ocean system, because it dominates surface properties and energy balance (incl. albedo).Several quantitative observations of summer sea ice and its snow cover show the formation of superimposed ice and a gap layer underneath, which was found to be associated to high standing ...

  14. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  15. Is partially automated driving a bad idea? Observations from an on-road study.

    Science.gov (United States)

    Banks, Victoria A; Eriksson, Alexander; O'Donoghue, Jim; Stanton, Neville A

    2018-04-01

    The automation of longitudinal and lateral control has enabled drivers to become "hands and feet free" but they are required to remain in an active monitoring state with a requirement to resume manual control if required. This represents the single largest allocation of system function problem with vehicle automation as the literature suggests that humans are notoriously inefficient at completing prolonged monitoring tasks. To further explore whether partially automated driving solutions can appropriately support the driver in completing their new monitoring role, video observations were collected as part of an on-road study using a Tesla Model S being operated in Autopilot mode. A thematic analysis of video data suggests that drivers are not being properly supported in adhering to their new monitoring responsibilities and instead demonstrate behaviour indicative of complacency and over-trust. These attributes may encourage drivers to take more risks whilst out on the road. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

    Science.gov (United States)

    Hauskrecht, M; Fraser, H

    1998-01-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.

  17. Planning treatment of ischemic heart disease with partially observable Markov decision processes.

    Science.gov (United States)

    Hauskrecht, M; Fraser, H

    2000-03-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead, they are very often dependent and interleaved over time. This is mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of partially observable Markov decision processes (POMDPs) developed and used in the operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In this paper, we show how the POMDP framework can be used to model and solve the problem of the management of patients with ischemic heart disease (IHD), and demonstrate the modeling advantages of the framework over standard decision formalisms.

  18. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  19. Low-field dc magnetization investigations in a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystal: observation of a magnetic phase transition at the vortex melting line

    Energy Technology Data Exchange (ETDEWEB)

    Revaz, B. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Triscone, G. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Fabrega, L. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Junod, A. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Muller, J. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee

    1996-03-20

    The mixed-state magnetization M(H parallel c, T) of a Bi-2212 single crystal has been investigated with high resolution using a SQUID magnetometer. In the high-temperature region (50 K < T < T{sub c} = 80.2 K), we found that the slope {partial_derivative}M/{partial_derivative}H vertical stroke {sub T} vs. H shows a positive step at H{sub trans}(T) {approx} H{sub 0} x (1 - T/T{sub c}){sup n} with H{sub 0} = 2340 Oe and n = 1.28. This observation is compatible with a first-order phase transition with a distribution of internal fields, and is attributed to the melting of the 3D vortex lattice. The estimated entropy jump is 1 k{sub B}/vortex/layer CuO. However, when T is lower than 50 K, we observe radical changes in M(H); the 3D melting line divides into a decoupling line at a temperature-independent field and the onset of the irreversibility. (orig.).

  20. Radiative Impacts of Further Arctic Sea Ice Melt: Using past Observations to Inform Future Climate Impacts

    Science.gov (United States)

    Pistone, K.; Eisenman, I.; Ramanathan, V.

    2017-01-01

    The Arctic region has seen dramatic changes over the past several decades, from polar amplification of global temperature rise to ecosystem changes to the decline of the sea ice. While there has been much speculation as to when the world will see an ice-free Arctic, the radiative impacts of an eventual disappearance of the Arctic sea ice are likely to be significant regardless of the timing. Using CERES radiation and microwave satellite sea ice data, Pistone et al (2014) estimated the radiative forcing due to albedo changes associated with the Arctic sea ice retreat over the 30 years of the satellite data record. In this study, we found that the Arctic Ocean saw a decrease in all-sky albedo of 4% (from 52% to 48%), for an estimated increase in solar heating of 6.4 W/m(exp 2) between 1979 and 2011, or 0.21 W/m(exp 2) when averaged over the globe. This value is substantial--approximately 25% as large as the forcing due to the change in CO2 during the same period. Here we update and expand upon this previous work and use the CERES broadband shortwave observations to explore the radiative impacts of a transition to completely ice-free Arctic Ocean. We estimate the annually-averaged Arctic Ocean planetary albedo under ice-free and cloud-free conditions to be 14% over the region, or approximately 25% lower in absolute terms than the Arctic Ocean cloud-free albedo in 1979. However, the question of all-sky conditions (i.e. including the effects of clouds) introduces a new level of complexity. We explore several cloud scenarios and the resultant impact on albedo. In each of these cases, the estimated forcing is not uniformly distributed throughout the year. We describe the relative contributions of ice loss by month as well as the spatial distributions of the resulting changes in absorbed solar energy. The seasonal timing and location—in addition to magnitude—of the altered solar absorption may have significant implications for atmospheric and ocean dynamics in the

  1. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  2. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    Science.gov (United States)

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  3. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Oka, Mitsuo; Saint-Hilaire, Pascal; Krucker, Säm [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Glesener, Lindsay, E-mail: feffen@stanford.edu, E-mail: frubio@stanford.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  4. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.

    Science.gov (United States)

    Matsuda, Futoshi; Sobajima, Takamasa; Irie, Satoshi; Sasaki, Takashi

    2016-04-01

    In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5 μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate.

  5. Real-time characterization of partially observed epidemics using surrogate models.

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin; Ray, Jaideep; Lefantzi, Sophia; Crary, David (Applied Research Associates, Arlington, VA); Sargsyan, Khachik; Cheng, Karen (Applied Research Associates, Arlington, VA)

    2011-09-01

    We present a statistical method, predicated on the use of surrogate models, for the 'real-time' characterization of partially observed epidemics. Observations consist of counts of symptomatic patients, diagnosed with the disease, that may be available in the early epoch of an ongoing outbreak. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information on the dynamics of the etiologic agent in the affected population e.g., the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and epidemiological parameters are estimated as distributions using a Markov chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. In some cases, the inverse problem can be computationally expensive, primarily due to the epidemic simulator used inside the inversion algorithm. We present a method, based on replacing the epidemiological model with computationally inexpensive surrogates, that can reduce the computational time to minutes, without a significant loss of accuracy. The surrogates are created by projecting the output of an epidemiological model on a set of polynomial chaos bases; thereafter, computations involving the surrogate model reduce to evaluations of a polynomial. We find that the epidemic characterizations obtained with the surrogate models is very close to that obtained with the original model. We also find that the number of projections required to construct a surrogate model is O(10)-O(10{sup 2}) less than the number of samples required by the MCMC to construct a stationary posterior distribution; thus, depending upon the epidemiological models in question, it may be possible to omit the offline creation and caching of surrogate models, prior to their use in an inverse problem. The technique is demonstrated on synthetic data as well as

  6. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications

    Science.gov (United States)

    Guilmette, C.; Indares, A.; Hébert, R.

    2011-05-01

    Rare kyanite-bearing anatectic paragneisses are found as boudins within sillimanite-bearing paragneisses of the core of the Namche Barwa Antiform, Tibet. In the present study, we document an occurrence from the NW side of the Yarlung Zangbo River. These rocks mainly consist of the assemblage garnet + K-feldspar + kyanite ± biotite + quartz + rutile ± plagioclase with kyanite locally pseudomorphed by sillimanite. The documented textures are consistent with the rocks having undergone biotite-dehydration melting in the kyanite stability field, under high-P granulite facies conditions, and having experienced melt extraction. However textures related to melt crystallization are ubiquitous both in polymineralic inclusions in garnet and in the matrix, suggesting that a melt fraction had remained in these rocks. Phase equilibria modelling was undertaken in the NCKFMASTHO system with THERMOCALC. P-T pseudosections built with the bulk compositions of one aluminous and one sub-aluminous paragneiss samples predict a biotite-kyanite-garnet-quartz-plagioclase-K-feldspar-liquid-rutile ± ilmenite field, in which biotite-dehydration melting occurs, located in the P-T range of ~ 800-875 °C and ~ 10-17 kbar. In addition, the topologies of these pseudosections are consistent with substantial melt loss during prograde metamorphism. A second set of P-T pseudosections with melt-reintegrated model bulk compositions were thus constructed to evaluate the effect of melt loss. The integration of textural information, precise mineral modes, mineral chemistry, and phase equilibria modelling allowed to constrain a P-T path where the rocks are buried to lower crustal depths at peak P-T conditions higher than 14 kbar and 825 °C, possibly in the order of 15-16 kbar and 850 °C, followed by decompression and cooling to P-T conditions of around 9 kbar and 810 °C, under which the remaining melt was solidified. The implications for granite production at the NBA and for Himalayan tectonic models

  7. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  8. Stochastic simulations of conditional states of partially observed systems, quantum and classical

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H M

    2005-01-01

    In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed, even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρ r (t), and if classical, the conditional state will be given by a probability distribution P r (x,t), where r is the result of the measurement. Thus to determine the evolution of this conditional state, under continuous-in-time monitoring, requires a numerically expensive calculation. In this paper we demonstrate a numerical technique based on linear measurement theory that allows us to determine the conditional state using only pure states. That is, our technique reduces the problem size by a factor of N, the number of basis states for the system. Furthermore we show that our method can be applied to joint classical and quantum systems such as arise in modelling realistic (finite bandwidth, noisy) measurement

  9. [Utilization of carbamazepine and oxcarbazepine in pediatric patients with partial epilepsy in Spain. An observational study].

    Science.gov (United States)

    Rufo Campos, M; Carreño, M

    2009-01-01

    It is important to conduct studies on the utilization of new antiepileptic drugs in order to improve their use. Our objective is to describe the use patterns of carbamazepine and oxcarbazepine. Observational, cross-sectional, national study with 58 investigators that included 185 pediatric patients with partial epilepsy. We recorded prescription patterns, quality of life (QoL) using the QoL scale in childhood epilepsy (CAVE) and use of resources. 134 patients were under treatment with oxcarbazepine (72.4 %), with a mean dose of 22.3 mg/kg/day; standard deviation (SD): 8.04; 95 % confidence interval (CI): 20.9 to 23.7, and 51 (27.6%) with carbamazepine, mean dose of 14 mg/kg/day; SD: 6.2; 95 % CI: 12.3 to 15.8. A total of 19.4% and 21.6 %, respectively, followed multiple drug treatment. The mean scores on functional dimensions of CAVE were (out of 5): school attendance: 4.5; SD: 0.7; social relationships: 4.1; SD: 0.9, and autonomy: 3.9; SD: 1.9. Patients receiving multiple drug therapy had worse results in quality of life (p used in lower doses than recommended and the dosing is not adjusted for weight. Underdosing may lead to regimes of multiple drug therapy that should be reviewed individually.

  10. Mixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.

    Science.gov (United States)

    Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul

    2012-01-01

    Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.

  11. Migration of the deforming zone during seismic shear and implications for field observations, dynamic weakening, and the onset of melting

    Science.gov (United States)

    Platt, J. D.; Rice, J. R.

    2013-12-01

    diffusivity. Similarly, regions of high reactant mass fraction allow more vigorous thermal decomposition and thus attract straining. The migration outlined above has three important consequences: (1) Migration must be taken into account when inferring the width of the deforming zone from field observations. Even when the zone of localized straining is only a few tens of microns wide, migration can lead to a final strain profile with a zone of roughly uniform strain on the order of a millimeter wide. (2) For thermal pressurization the width of the deforming zone largely controls the initial weakening of the fault. A pre-existing zone of low hydraulic diffusivity localizes straining more efficiently leading to faster weakening. Thus, dynamic weakening may be controlled by the gouge properties in the region most susceptible to strain rate localization. (3) Migration of the localized zone distributes frictional heating over a broader region, leading to a much lower temperature rise when compared with a stationary shear zone. Our results rarely show temperatures above the melting temperature, providing a plausible explanation for the fact that melt signatures are rarely observed on mature faults active at shallower crustal depths.

  12. Decision Making under Uncertainty: A Neural Model based on Partially Observable Markov Decision Processes

    Directory of Open Access Journals (Sweden)

    Rajesh P N Rao

    2010-11-01

    Full Text Available A fundamental problem faced by animals is learning to select actions based on noisy sensory information and incomplete knowledge of the world. It has been suggested that the brain engages in Bayesian inference during perception but how such probabilistic representations are used to select actions has remained unclear. Here we propose a neural model of action selection and decision making based on the theory of partially observable Markov decision processes (POMDPs. Actions are selected based not on a single optimal estimate of state but on the posterior distribution over states (the belief state. We show how such a model provides a unified framework for explaining experimental results in decision making that involve both information gathering and overt actions. The model utilizes temporal difference (TD learning for maximizing expected reward. The resulting neural architecture posits an active role for the neocortex in belief computation while ascribing a role to the basal ganglia in belief representation, value computation, and action selection. When applied to the random dots motion discrimination task, model neurons representing belief exhibit responses similar to those of LIP neurons in primate neocortex. The appropriate threshold for switching from information gathering to overt actions emerges naturally during reward maximization. Additionally, the time course of reward prediction error in the model shares similarities with dopaminergic responses in the basal ganglia during the random dots task. For tasks with a deadline, the model learns a decision making strategy that changes with elapsed time, predicting a collapsing decision threshold consistent with some experimental studies. The model provides a new framework for understanding neural decision making and suggests an important role for interactions between the neocortex and the basal ganglia in learning the mapping between probabilistic sensory representations and actions that maximize

  13. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  14. Consequences of the genetic treshold model for observing partial migration under climate change scenarios

    NARCIS (Netherlands)

    Cobben, M.M.P.; Van Noordwijk, A.J.

    2017-01-01

    Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been

  15. Routing policies for a partially observable two-server queueing system

    NARCIS (Netherlands)

    Ellens, W.; Kovács, P.; Núñez-Queija, R.; Berg, H. van den

    2015-01-01

    We consider a queueing system controlled by decisions based on partial state information. The motivation for this work stems from road traffic, in which drivers may, or may not, be subscribed to a smartphone application for dynamic route planning. Our model consists of two queues with independent

  16. Routing policies for a partially observable two-server queueing system

    NARCIS (Netherlands)

    W. Ellens; P. Kovacs; J.L. van den Berg (Hans); R. Núñez Queija (Rudesindo); A. Busic; M. Gribaudo; P. Reinecke

    2015-01-01

    htmlabstractWe consider a queueing system controlled by decisions based on partial state information. The motivation for this work stems from road traffic, in which drivers may, or may not, be subscribed to a smartphone application for dynamic route planning. Our model consists of two queues

  17. Target volume delineation in external beam partial breast irradiation: Less inter-observer variation with preoperative- compared to postoperative delineation

    International Nuclear Information System (INIS)

    Leij, Femke van der; Elkhuizen, Paula H.M.; Janssen, Tomas M.; Poortmans, Philip; Sangen, Maurice van der; Scholten, Astrid N.; Vliet-Vroegindeweij, Corine van; Boersma, Liesbeth J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of twenty-four breast cancer patients

  18. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation

    NARCIS (Netherlands)

    Leij, F. van der; Elkhuizen, P.H.M.; Janssen, T.M.; Poortmans, P.M.P.; Sangen, M. van der; Scholten, A.N.; Vliet-Vroegindeweij, C. van; Boersma, L.J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of

  19. Consequences of the genetic threshold model for observing partial migration under climate change scenarios.

    Science.gov (United States)

    Cobben, Marleen M P; van Noordwijk, Arie J

    2017-10-01

    Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been debated. The inheritance of migratory activity is currently best described by the threshold model of quantitative genetics. The inclusion of such a genetic threshold model for migratory behavior leads to a stable zone in time and space of partially migratory populations under a wide range of demographic parameter values, when assuming stable environmental conditions and unlimited genetic diversity. Migratory species are expected to be particularly sensitive to global warming, as arrival at the breeding grounds might be increasingly mistimed as a result of the uncoupling of long-used cues and actual environmental conditions, with decreasing reproduction as a consequence. Here, we investigate the consequences for migratory behavior and the stability of partially migratory populations under five climate change scenarios and the assumption of a genetic threshold value for migratory behavior in an individual-based model. The results show a spatially and temporally stable zone of partially migratory populations after different lengths of time in all scenarios. In the scenarios in which the species expands its range from a particular set of starting populations, the genetic diversity and location at initialization determine the species' colonization speed across the zone of partial migration and therefore across the entire landscape. Abruptly changing environmental conditions after model initialization never caused a qualitative change in phenotype distributions, or complete extinction. This suggests that climate change-induced shifts in species' ranges as well as changes in survival probabilities and reproductive success can be met with flexibility in migratory behavior at the

  20. Fall Detection for Elderly from Partially Observed Depth-Map Video Sequences Based on View-Invariant Human Activity Representation

    Directory of Open Access Journals (Sweden)

    Rami Alazrai

    2017-03-01

    Full Text Available This paper presents a new approach for fall detection from partially-observed depth-map video sequences. The proposed approach utilizes the 3D skeletal joint positions obtained from the Microsoft Kinect sensor to build a view-invariant descriptor for human activity representation, called the motion-pose geometric descriptor (MPGD. Furthermore, we have developed a histogram-based representation (HBR based on the MPGD to construct a length-independent representation of the observed video subsequences. Using the constructed HBR, we formulate the fall detection problem as a posterior-maximization problem in which the posteriori probability for each observed video subsequence is estimated using a multi-class SVM (support vector machine classifier. Then, we combine the computed posteriori probabilities from all of the observed subsequences to obtain an overall class posteriori probability of the entire partially-observed depth-map video sequence. To evaluate the performance of the proposed approach, we have utilized the Kinect sensor to record a dataset of depth-map video sequences that simulates four fall-related activities of elderly people, including: walking, sitting, falling form standing and falling from sitting. Then, using the collected dataset, we have developed three evaluation scenarios based on the number of unobserved video subsequences in the testing videos, including: fully-observed video sequence scenario, single unobserved video subsequence of random lengths scenarios and two unobserved video subsequences of random lengths scenarios. Experimental results show that the proposed approach achieved an average recognition accuracy of 93 . 6 % , 77 . 6 % and 65 . 1 % , in recognizing the activities during the first, second and third evaluation scenario, respectively. These results demonstrate the feasibility of the proposed approach to detect falls from partially-observed videos.

  1. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni–Al–TiC composites

    International Nuclear Information System (INIS)

    Karantzalis, A.E.; Lekatou, A.; Tsirka, K.

    2012-01-01

    Monolithic Ni 3 Al and Ni–25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution–reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt–particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni 3 Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) material detachment and d) debris–counter surfaces interactions. - Highlights: ► Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. ► Solidification phenomena examination. ► TiC crystal formation and growth mechanisms. ► Sliding wear examination.

  2. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  3. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  4. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    Science.gov (United States)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  5. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-01

    the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time

  6. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng

    2016-01-01

    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  7. Autonomous Navigation in Partially Observable Environments Using Hierarchical Q-Learning

    NARCIS (Netherlands)

    Zhou, Y.; van Kampen, E.; Chu, Q.

    2016-01-01

    Flapping-wing MAVs represent an attractive alternative to conventional designs with rotary wings, since they promise a much higher efficiency in forward flight. However, further insight into the flapping-wing aerodynamics is still needed to get closer to the flight performance observed in natural

  8. A partial ensemble Kalman filtering approach to enable use of range limited observations

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Madsen, Henrik

    2015-01-01

    The ensemble Kalman filter (EnKF) relies on the assumption that an observed quantity can be regarded as a stochastic variable that is Gaussian distributed with mean and variance that equals the measurement and the measurement noise, respectively. When a gauge has a minimum and/or maximum detection...

  9. Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments

    Science.gov (United States)

    Murphy, J. Brendan; Shellnutt, J. Gregory; Collins, William J.

    2018-03-01

    Avalonian rocks in northern mainland Nova Scotia are characterized by voluminous 640-600 Ma calc-alkalic to tholeiitic mafic to felsic magmas produced in a volcanic arc. However, after the cessation of arc activity, repeated episodes of felsic magmatism between ca. 580 Ma and 350 Ma are dominated by A-type geochemical characteristics. Sm-Nd isotopic data, combined with zircon saturation temperature estimates, indicate that these magmas were formed by high temperature (800-1050 °C) melting of the same anhydrous crustal source. Regional tectonic considerations indicate that A-type felsic magmatism was produced (1) at 580 Ma in a San Andreas-type strike slip setting, (2) at 495 Ma as Avalonia rifted off Gondwana, (3) at 465 and 455 in an ensialic island arc environment and (4) at 360-350 Ma during post-collisional, intra-continental strike-slip activity as Avalonia was translated dextrally along the Laurentian margin. These results attest to the importance of crustal source, rather than tectonic setting, in the generation of these A-type magmas and are an example of how additional insights are provided by comparing the geochemical and isotopic characteristics of igneous suites of different ages within the same terrane. They also suggest that the shallow crustal rocks in northern mainland Nova Scotia were not significantly detached from their lower crustal source between ca. 620 Ma and 350 Ma, a time interval that includes the separation of Avalonia from Gondwana, its drift and accretion to Laurentia as well as post-accretionary strike-slip displacement.

  10. Rate estimation in partially observed Markov jump processes with measurement errors

    OpenAIRE

    Amrein, Michael; Kuensch, Hans R.

    2010-01-01

    We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced, which allow sampling from the posterior distribution of t...

  11. A note on identification in discrete choice models with partial observability

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Ranjan, Abhishek

    2017-01-01

    This note establishes a new identification result for additive random utility discrete choice models. A decision-maker associates a random utility Uj+ mj to each alternative in a finite set j∈ {1 , … , J} , where U= {U1, … , UJ} is unobserved by the researcher and random with an unknown joint dis...... for applications where choices are observed aggregated into groups while prices and attributes vary at the level of individual alternatives....

  12. Layered graphene-mica substrates induce melting of DNA origami

    Science.gov (United States)

    Green, Nathaniel S.; Pham, Phi H. Q.; Crow, Daniel T.; Burke, Peter J.; Norton, Michael L.

    2018-04-01

    Monolayer graphene supported on mica substrates induce melting of cross-shaped DNA origami. This behavior can be contrasted with the case of origami on graphene on graphite, where an expansion or partially re-organized structure is observed. On mica, only well-formed structures are observed. Comparison of the morphological differences observed for these probes after adsorption on these substrates provides insights into the sensitivity of DNA based nanostructures to the properties of the graphene monolayer, as modified by its substrate.

  13. [Efficacy observation on application of negative pressure therapy in the treatment of superficial partial-thickness scald wound in children].

    Science.gov (United States)

    Shen, Chuan-an; Chai, Jia-ke; Tuo, Xiao-ye; Cai, Jian-hua; Li, Dong-jie; Zhang, Lin; Zhu, Hua; Cai, Jin-dong

    2013-02-01

    To observe the effect of negative pressure therapy in the treatment of superficial partial-thickness scald in children. Three hundred and seven children with superficial partial-thickness scald hospitalized from August 2009 to May 2012 were divided into negative pressure therapy group (NPT, n = 145) and control group (C, n = 162) according to the random number table. Patients in group NPT were treated with negative pressure from within post injury day (PID) 3 to PID 9 (with -16 kPa pressure), while traditional occlusive dressing method was used in group C. Changes in body temperature, wound healing condition, frequency of dressing change were compared between group NPT and group C. Bacterial culture results of wounds were compared before and after treatment in group NPT. Volume of drained transudate per one percent of wound area was recorded in group NPT on PID 1 to PID 3. Data were processed with t test or chi-square test. The incidence of high fever was significantly lower in group NPT (26.9%, 39/145) than in group C (63.6%, 103/162, χ(2) = 41.419, P partial-thickness scald.

  14. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    Science.gov (United States)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  15. Partial Adaptation of Obtained and Observed Value Signals Preserves Information about Gains and Losses.

    Science.gov (United States)

    Burke, Christopher J; Baddeley, Michelle; Tobler, Philippe N; Schultz, Wolfram

    2016-09-28

    Given that the range of rewarding and punishing outcomes of actions is large but neural coding capacity is limited, efficient processing of outcomes by the brain is necessary. One mechanism to increase efficiency is to rescale neural output to the range of outcomes expected in the current context, and process only experienced deviations from this expectation. However, this mechanism comes at the cost of not being able to discriminate between unexpectedly low losses when times are bad versus unexpectedly high gains when times are good. Thus, too much adaptation would result in disregarding information about the nature and absolute magnitude of outcomes, preventing learning about the longer-term value structure of the environment. Here we investigate the degree of adaptation in outcome coding brain regions in humans, for directly experienced outcomes and observed outcomes. We scanned participants while they performed a social learning task in gain and loss blocks. Multivariate pattern analysis showed two distinct networks of brain regions adapt to the most likely outcomes within a block. Frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal regions adapted to observed social outcomes. Critically, in both cases, adaptation was incomplete and information about whether the outcomes arose in a gain block or a loss block was retained. Univariate analysis confirmed incomplete adaptive coding in these regions but also detected nonadapting outcome signals. Thus, although neural areas rescale their responses to outcomes for efficient coding, they adapt incompletely and keep track of the longer-term incentives available in the environment. Optimal value-based choice requires that the brain precisely and efficiently represents positive and negative outcomes. One way to increase efficiency is to adapt responding to the most likely outcomes in a given context. However, too strong adaptation would result in loss of precise

  16. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2015-10-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing aluminum alloy components. Repair process on the Al alloy sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminum alloy component repair by turbulence flow casting. The model is designed based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that analytical modeling has good agreement with the experimental result.

  17. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2017-03-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing Aluminium Alloy components. Repair process on the Aluminium sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminium component repair by Turbulence Flow Casting. The model built is based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that anaytical modeling has good agreement with the experimental result

  18. The missing link: Predicting connectomes from noisy and partially observed tract tracing data

    DEFF Research Database (Denmark)

    Hinne, Max; Meijers, Annet; Bakker, Rembrandt

    2017-01-01

    a high chance of being connected, while regions far apart are most likely disconnected in the connectome. After learning the latent embedding from the connections that we did observe, the latent space allows us to predict connections that have not been probed previously. We apply the methodology to two....... In this paper, we suggest that instead of probing all possible connections, hitherto unknown connections may be predicted from the data that is already available. Our approach uses a 'latent space model' that embeds the connectivity in an abstract physical space. Regions that are close in the latent space have...... connectivity data sets of the macaque, where we demonstrate that the latent space model is successful in predicting unobserved connectivity, outperforming two baselines and an alternative model in nearly all cases. Furthermore, we show how the latent spatial embedding may be used to integrate multimodal...

  19. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  20. SLOW RISE AND PARTIAL ERUPTION OF A DOUBLE-DECKER FILAMENT. I. OBSERVATIONS AND INTERPRETATION

    International Nuclear Information System (INIS)

    Liu Rui; Kliem, Bernhard; Török, Tibor; Titov, Viacheslav S.; Lionello, Roberto; Linker, Jon A.; Liu Chang; Wang Haimin

    2012-01-01

    We study an active-region dextral filament that was composed of two branches separated in height by about 13 Mm, as inferred from three-dimensional reconstruction by combining SDO and STEREO-B observations. This 'double-decker' configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. (1) During the hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. (2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. (3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. (4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. (5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. (6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade.

  1. Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners.

    Science.gov (United States)

    Litvak, Leonid M; Spahr, Anthony J; Emadi, Gulam

    2007-08-01

    Most cochlear implant strategies utilize monopolar stimulation, likely inducing relatively broad activation of the auditory neurons. The spread of activity may be narrowed with a tripolar stimulation scheme, wherein compensating current of opposite polarity is simultaneously delivered to two adjacent electrodes. In this study, a model and cochlear implant subjects were used to examine loudness growth for varying amounts of tripolar compensation, parameterized by a coefficient sigma, ranging from 0 (monopolar) to 1 (full tripolar). In both the model and the subjects, current required for threshold activation could be approximated by I(sigma)=Ithr(0)(1-sigmaK), with fitted constants Ithr(0) and K. Three of the subjects had a "positioner," intended to place their electrode arrays closer to their neural tissue. The values of K were smaller for the positioner users and for a "close" electrode-to-tissue distance in the model. Above threshold, equal-loudness contours for some subjects deviated significantly from a linear scale-up of the threshold approximations. The patterns of deviation were similar to those observed in the model for conditions in which most of the neurons near the center electrode were excited.

  2. Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Y.; Afzal, F.; Thiel, A.; Beck, R. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2017-05-15

    This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum L{sub max} needed to achieve a good fit is determined. Then, recent polarization measurements for γp → π{sup 0}p from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel γp → π{sup 0}p, those are the N(1680)(5)/(2){sup +} and Δ(1950)(7)/(2){sup +}, contributing to the F-waves. (orig.)

  3. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions.

    Science.gov (United States)

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M

    2015-01-01

    Seeing others performing an action induces the observers' motor cortex to "resonate" with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor effort. However, it is unclear whether such encoding requires direct observation or whether force requirements can be inferred when the moving body part is partially occluded. To address this issue, we presented participants with videos of a right hand lifting a box of three different weights and asked them to estimate its weight. During each trial we delivered one transcranial magnetic stimulation (TMS) pulse over the left primary motor cortex of the observer and recorded the motor evoked potentials (MEPs) from three muscles of the right hand (first dorsal interosseous, FDI, abductor digiti minimi, ADM, and brachioradialis, BR). Importantly, because the hand shown in the videos was hidden behind a screen, only the contractions in the actor's BR muscle under the bare skin were observable during the entire videos, while the contractions in the actor's FDI and ADM muscles were hidden during the grasp and actual lift. The amplitudes of the MEPs recorded from the BR (observable) and FDI (hidden) muscle increased with the weight of the box. These findings indicate that the modulation of motor excitability induced by action observation extends to the cortical representation of muscles with contractions that could not be observed. Thus, motor resonance appears to reflect force requirements of observed lifting actions even when the moving body part is occluded from view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Spring in the boreal environment: observations on pre- and post-melt energy and CO{sub 2} fluxes in two central Siberian ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A. [Dept. of Physical Geography and Ecosystems Analysis, Lund Univ., Lund (Sweden); Lloyd, J. [Scool of Geography, Leeds Univ., Leeds (United Kingdom); Shibistova, O. [V.N. Sukachev Forest Inst., Akademgorodok, Krasnoyarsk (Russian Federation); Sogachev, A. [Dept. of Physical Sciences, Helsinki Univ. (Finland); Kolle, O. [Max Planck Inst. for Biogeochemistry, Jena (Germany)

    2006-07-01

    A range of observations points towards earlier onset of spring in northern high latitudes. However, despite the profound effects this may have on vegetation-atmosphere exchange of carbon (NEE), vegetation-atmosphere physical coupling, or the location of the tundra-taiga interface, the number of studies that investigate winter-spring transition fluxes in contrasting northern vegetation types is limited. Here, we examine spring ecosystem-atmosphere energy and carbon exchange in a Siberian pine forest and mire. Divergent surface albedo before and during snow-melt resulted in daytime net radiation (R{sub n}) above the forest exceeding R{sub n} above the mire by up to 10 MJ m{sup -2}. Until stomata could open, absorbed radiation by the green pine canopy caused substantial daytime sensible heat fluxes (H > 10MJ m{sup -2}). H above the mire was very low, even negative (< -2 MJ m{sup -2}), during that same period. Physiological activity in both ecosystems responded rapidly to warming temperatures and snow-melt, which is essential for survival in Siberia with its very short summers. On days with above-zero temperatures, before melt was complete, low rates of forest photosynthesis (1-2 {mu}mol m{sup -2} s{sup -1}) were discernible. Forest and mire NEE became negative the same day, or shortly after, photosynthesis commenced. The mire lagged by about two weeks behind the forest and regained its full carbon uptake capacity at a slower rate. Our data provide empirical evidence for the importance the timing of spring and the relative proportion of forest vs. mire has for late winter/spring boundary-layer growth, and production and surface-atmosphere mixing of trace gases. Models that seek to investigate effects of increasingly earlier spring in high latitudes must correctly account for contrasting physical and biogeochemical ecosystem-atmosphere exchange in heterogeneous landscapes. (orig.)

  5. Latest Cretaceous "A2-type" granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Aydin, Faruk; Uysal, Ibrahim; Dokuz, Abdurrahman; Kumral, Mustafa; Kandemir, Raif; Budakoglu, Murat; Ketenci, Murat

    2018-03-01

    An integrated study of comprehensive geochronological, geochemical, and Sr-Nd-Hf isotopic data was undertaken for the A-type Topcam pluton that intruded within the Sakarya Zone (NE Turkey) with the aims of elucidating its origin and tectonic significance and gaining new insights into the generation of aluminous A-type granites. New LA-ICP-MS zircon U-Pb crystallization ages of 72 and 73 Ma indicate emplacement in the Late Cretaceous time, just after extensive metaluminous I-type magmatism in the area. The pluton consists mainly of alkali feldspar, quartz, plagioclase, amphibole, and biotite with accessory minerals such as magnetite, apatite, and zircon. The outcrop is composed of granite, syenite, monzonite, and quartz monzonite and possesses a wide range of SiO2 content (57-70 wt%) with elevated Ga/Al ratios and low Mg# (mostly negative Eu (Eu/Eu* = 0.31 to 0.86) anomalies on the chondrite-normalized REE diagram. The rocks are enriched in some large ion lithophile elements (e.g., Rb, Th and Ba), and spidergrams show a relative depletion in Nb, Ti, and Sr. The granitic rocks of the pluton have identical 87Sr/86Sr(i) ratios ranging from 0.70518 to 0.70716, relatively low εNd (t) values varying from - 5.5 to - 0.4, and TDM ages (0.82-1.19 Ga). In situ zircon analyses show that the rocks have variable negative and positive εHf (t) values (- 5.5 to 5.9) and Hf two-stage model ages (742 to 1468 Ma), which are indicative of minor addition of juvenile material. Sr-Nd isotope modelling suggests mixing of 70-90% of lower crustal-derived melt with 10-30% of mantle-derived melt at lower crust depths. The heat source for partial melting is provided by upwelling of hot asthenosphere triggered by slab roll-back events. Geochemical and isotopic data reveal that metaluminous A2-type granites were derived from partial melting of the Paleozoic lower continental crust dominated by mafic rocks in amphibolitic composition, with minor input of subcontinental lithospheric mantle

  6. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.

    Science.gov (United States)

    Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M

    2017-11-25

    Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression

  7. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  8. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    International Nuclear Information System (INIS)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis; Peck, Kyung K.; Hsu, Meier; Holodny, Andrei

    2010-01-01

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p ≤ 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  9. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    Energy Technology Data Exchange (ETDEWEB)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis [Memorial Sloan-Kettering Cancer Center, Head and Neck Surgery, New York, NY (United States); Peck, Kyung K. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Medical Physics, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Medical Physics and Radiology, New York, NY (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Holodny, Andrei [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2010-12-15

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p {<=} 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  10. Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed by the Expendable Ice Tracker

    NARCIS (Netherlands)

    Carlson, D.F.; Boone, W.; Meire, L.; Abermann, J.; Rysgaard, S.

    2017-01-01

    Icebergs and bergy bits makes up a significant component of the total freshwater flux from the Greenland Ice Sheet to the ocean. Observations of iceberg trajectories are biased toward larger icebergs and, as a result, the drift characteristics of smaller icebergs and bergy bits are poorly

  11. Experimental test of the viscous anisotropy hypothesis for partially molten rocks.

    Science.gov (United States)

    Qi, Chao; Kohlstedt, David L; Katz, Richard F; Takei, Yasuko

    2015-10-13

    Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the center of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory.

  12. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    Science.gov (United States)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  13. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2016-03-01

    Full Text Available We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10–40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500–2000-year timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6–9 m with evidence of extreme storms

  14. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. I. Experimental observations

    Science.gov (United States)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2017-04-01

    This is the first part of a two-part study on a partially miscible liquid-liquid flow (liquid carbon dioxide and deionized water) which is highly pressurized and confined in a microfluidic T-junction. Our main focuses are to understand the flow regimes as a result of varying flow conditions and investigate the characteristics of drop flow distinct from coflow, with a capillary number, C ac , that is calculated based on the continuous liquid, ranging from 10-3 to 10-2 (10-4 for coflow). Here in part I, we present our experimental observation of drop formation cycle by tracking drop length, spacing, frequency, and after-generation speed using high-speed video and image analysis. The drop flow is chronologically composed of a stagnating and filling stage, an elongating and squeezing stage, and a truncating stage. The common "necking" time during the elongating and squeezing stage (with C ac˜10-3 ) for the truncation of the dispersed liquid stream is extended, and the truncation point is subsequently shifted downstream from the T-junction corner. This temporal postponement effect modifies the scaling function reported in the literature for droplet formation with two immiscible fluids. Our experimental measurements also demonstrate the drop speed immediately following their generations can be approximated by the mean velocity from averaging the total flow rate over the channel cross section. Further justifications of the quantitative analysis by considering the mass transfer at the interface of the two partially miscible fluids are provided in part II.

  15. Observation of motorcycle helmet use rates in Michigan after partial repeal of the universal motorcycle helmet law.

    Science.gov (United States)

    Buckley, Lisa; Bingham, C Raymond; Flannagan, Carol A; Carter, Patrick M; Almani, Farideh; Cicchino, Jessica B

    2016-10-01

    Motorcycle crashes result in a significant health burden, including many fatal injuries and serious non-fatal head injuries. Helmets are highly effective in preventing such trauma, and jurisdictions that require helmet use of all motorcyclists have higher rates of helmet use and lower rates of head injuries among motorcyclists. The current study examines helmet use and characteristics of helmeted operators and their riding conditions in Michigan, following a weakening of the state's universal motorcycle helmet use law in April 2012. Data on police-reported crashes occurring during 2012-14 and from a stratified roadside observational survey undertaken in Southeast Michigan during May-September 2014 were used to estimate statewide helmet use rates. Observed helmet use was more common among operators of sports motorcycles, on freeways, and in the morning, and least common among operators of cruisers, on minor arterials, and in the afternoon. The rate of helmet use across the state was estimated at 75%, adjusted for roadway type, motorcycle class, and time of day. Similarly, the helmet use rate found from examination of crash records was 73%. In the observation survey, 47% of operators wore jackets, 94% wore long pants, 54% wore boots, and 80% wore gloves. Protective clothing of jackets and gloves was most often worn by sport motorcycle operators and long pants and boots most often by riders of touring motorcycles. Findings highlight the much lower rate of helmet use in Michigan compared with states that have a universal helmet use law, although the rate is higher than observed in many states with partial helmet laws. Targeted interventions aimed at specific groups of motorcyclists and situations where helmet use rates are particularly low should be considered to increase helmet use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC

    Science.gov (United States)

    Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko

    2018-04-01

    We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.

  17. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?

    Science.gov (United States)

    Song, Chunqiao; Ke, Linghong; Huang, Bo; Richards, Keith S.

    2015-01-01

    The southeast Tibetan Plateau (SETP) includes the majority of monsoonal temperate glaciers in High Mountain Asia (HMA), which is an important source of water for the upper reaches of several large Asian river systems. Climatic change and variability has substantial impacts on cryosphere and hydrological processes in the SETP. The Gravity Recovery and Climate Experiment (GRACE) gravimetry observations between 2003 and 2009 suggest that there was an average mass loss rate of - 5.99 ± 2.78 Gigatonnes (Gt)/yr in this region. Meanwhile, the hydrological data by model calculations from the GLDAS/Noah and CPC are used to estimate terrestrial water storage (TWS) changes with a slight negative trend of about - 0.3 Gt/yr. The recent studies (Kääb et al., 2012; Gardner et al., 2013) reported the thinning rates of mountain glaciers in HMA based on the satellite laser altimetry, and an approximate estimation of the glacier mass budget in the SETP was 4.69 ± 2.03 Gt/yr during 2003-2009. This estimate accounted for a large proportion ( 78.3%) of the difference between the GRACE TWS and model-calculated TWS changes. To better understand the cause of sharp mass loss existing in the SETP, the correlations between key climatic variables (precipitation and temperature) and the GRACE TWS changes are examined at different timescales between 2003 and 2011. The results show that precipitation is the leading factors of abrupt, seasonal and multi-year undulating signals of GRACE TWS anomaly time series, but with weak correlations with the inter-annual trend and annual mass budget of GRACE TWS. In contrast, the annual mean temperature is tightly associated with the annual net mass budget (r = 0.81, p < 0.01), which indirectly suggests that the GRACE-observed mass loss in the SETP may be highly related to glacial processes.

  18. South-Tibetan partially molten batholiths: geophysical characterization and petrological assessment of their origin

    Science.gov (United States)

    Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.

    2017-12-01

    Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (features of the geodynamic evolution. Their transience excludes both long-distance and long-lasting channel flow transport in Tibet.

  19. Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland Observed by the Expendable Ice Tracker

    Directory of Open Access Journals (Sweden)

    Daniel F. Carlson

    2017-08-01

    Full Text Available Icebergs and bergy bits makes up a significant component of the total freshwater flux from the Greenland Ice Sheet to the ocean. Observations of iceberg trajectories are biased toward larger icebergs and, as a result, the drift characteristics of smaller icebergs and bergy bits are poorly understood. In an attempt to fill this critical knowledge gap, we developed the open-source EXpendable Ice TrackEr (EXITE. EXITE is a low-cost, satellite-tracked GPS beacon capable of high-resolution temporal measurements over extended deployment periods (30 days or more. Furthermore, EXITE can transform to a surface drifter when its host iceberg capsizes or fragments. Here we describe basic construction of an EXITE beacon and present results from a deployment in Godthåbsfjord (SW Greenland in August 2016. Overall, EXITE trajectories show out-fjord surface transport, in agreement with a simple estuarine circulation paradigm. However, eddies and abrupt wind-driven reversals reveal complex surface transport pathways at time scales of hours to days.

  20. An experimental study of pressure shadows in partially molten rocks

    Science.gov (United States)

    Qi, Chao; Zhao, Yong-Hong; Kohlstedt, David L.

    2013-11-01

    As a two-phase, solid-melt material flows around rigid particles, melt-depleted and melt-enriched regions (i.e., pressure shadows) develop due to the coupled fluxes of melt and solid driven by pressure gradients around the particles. To study this compaction-decompaction process, samples composed of fine-grained San Carlos olivine plus mid-ocean ridge basalt containing dispersed sub-millimeter-sized, single crystal beads of olivine were deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa. Indicated by melt distribution maps obtained from reflected-light optical and backscattered electron microscopy, melt-enriched and melt-depleted regions around the beads became observable at a local shear strain of γ≈1 in samples with an initially homogeneously distributed melt fraction of ϕ≈0.05. The melt-enriched regions (ϕbarhigh≈0.06 to 0.10) and the melt-depleted regions (ϕbarlow≈0.02 to 0.04), extending as far as one radius of the bead, were symmetrically distributed around the bead. The flow field of the olivine matrix determined from crystallographic preferred orientations agrees with theoretical predictions based on two-phase flow analysis. These experiments are the first to produce pressure shadows in partially molten rocks. One implication of this study is that it will be possible to constrain the ratio of bulk to shear viscosity, which is inferred from the distribution of melt using a combination of experimental observations and numerical simulations.

  1. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  2. A Simple Checking Algorithm with Perturb and Observe Maximum Power Point Tracking for Partially Shaded Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Rozana Alik

    2016-03-01

    Full Text Available This paper presents a simple checking algorithm for maximum power point tracking (MPPT technique for Photovoltaic (PV system using Perturb and Observe (P&O algorithm. The main benefit of this checking algorithm is the simplicity and efficiency of the system whose duty cycle produced by the MPPT is smoother and changes faster according to maximum power point (MPP. This checking algorithm can determine the maximum power first before the P&O algorithm takes place to identify the voltage at MPP (VMPP, which is needed to calculate the duty cycle for the boost converter. To test the effectiveness of the algorithm, a simulation model of PV system has been carried out using MATLAB/Simulink under different level of irradiation; or in other words partially shaded condition of PV array. The results from the system using the proposed approach prove to have faster response and low ripple. Besides, the results are close to the desired outputs and exhibit an approximately 98.25% of the system efficiency. On the other hand, the system with conventional P&O MPPT seems to be unstable and has higher percentage of error. In summary, the proposed method is useful under varying level of irradiation with higher efficiency of the system.

  3. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-09-01

    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  4. [Dual insertion paths design characteristics and short-term clinical observation of rotational path removable partial dentures].

    Science.gov (United States)

    Li, Jian; Jiang, Ting; Li, Sai; Chen, Wei

    2013-02-18

    To investigate design methods of dual insertion paths and observe a short-term clinic overview of rotational path removable partial dentures (RPDs). In the study, 40 patients with partial edentulous arches were included and divided into two groups. The patients in group one were restored with rotational path RPDs (10 Kennedy class III and 10 Kennedy class IV respectively). The patients in group two (20 patients), whose edentulous area was matched with the patients' in group one, were restored with the linear path RPDs. After surveying and simulative preparation on diagnostic casts, the basic laws of designing rotational path RPDs were summarized. The oral preparation was accurately performed under the guidance of indices made on diagnostic casts after simulative preparation. The 40 dentures were recalled two weeks and one year after the insertion. The evaluations of the clinic outcome, including retention, stability, mastication function, esthetics and wearing convenience, were marked out as good, acceptable, and poor. The comparison of the evaluation results was performed between the two groups. In the rotational path design for Kennedy class III or IV RPDs, the angles (α) of dual insertion paths should be designed within a scope, approximate 10°-15°.When the angle (α) became larger, the denture retention turned to be better, but accordingly the posterior abutments needed more preparation. In the clinical application, the first insertions of the 40 dentures were all favorably accomplished. When the rotational path RPDs were compared to linear path RPDs, the time consuming on first insertion had no statistical difference[(32±8) min and (33±8) min respectively, P>0.05]. Recalled two weeks and one year after the insertion, in the esthetics evaluation, 20 rotational path RPDs were all evaluated as "A", but only 7(two weeks after) and 6 (one year after) linear path RPDs were evaluated as "A"(P<0.05). There was no significant difference in other evaluation results

  5. Features of melting of indium monohalides

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V S; Smirniv, V A [AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela

    1980-12-01

    The character of InCl, InBr and InI melting is investigated by the methods of DTA, calorimetry, conductometry and chemical analysis. Partial decomposition of monohalogenides during melting according to the reactions of disproportionation is shown. The presence of disproportionation products (In/sup 0/ and In/sup 3 +/) is manifested in the properties of solid monohalogenides, prepared by the crystallization from melt, in their photosensitivity and electroconductivity.

  6. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ samples showing the paramagnetic Meissner effect

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Garcia, E.L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C.P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J.J.

    2016-01-01

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ (Y123) samples with 30 wt% of Y_2Ba_1Cu_1O_5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  7. Tin in granitic melts: The role of melting temperature and protolith composition

    Science.gov (United States)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  8. Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting

    International Nuclear Information System (INIS)

    Hu, X.G.; Zhu, Q.; Lu, H.X.; Zhang, F.; Li, D.Q.; Midson, S.P.

    2015-01-01

    The aim of this paper is to characterize both microstructural evolution and thixoformability during partial melting of semi-solid 319s alloy. The thixoformability criteria of 319s was initially investigated by thermodynamic analysis. In-situ observation of partial re-melting was performed by a Confocal Laser Scanning Microscope to determine the effect of heating rate on melting characteristics. Meanwhile, the microstructural evolution of 319s alloy at extremely low heating rate was also investigated in order to understand the mechanism of re-melting process. The studies demonstrated that 319s alloy is suitable for thixocasting because of the controllable liquid fraction in the operating window of 15 °C. The process window was effected by both temperature and heating time. The primary particles evolution in 319s alloy can be divided into four stages, and the coarsening rate during isothermal test is 227 μm 3 /s. The effective method to obtain desirable microstructure is to manage the time in the semi-solid state by controlling heating rate and soaking time. - Highlights: • The thixoformability of 319s is discussed by using SPSC and thermodynamic analysis. • The re-melting processes at different heating rate are in-situ observed. • We identified the four stages of microstructural evolution during re-melting. • The coarsening rate K for 319s during isothermal test is identified. • The variation tendency of Si particle size with increasing time is reported

  9. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    Science.gov (United States)

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.

  10. Magnetic resonance arthrography including ABER view in diagnosing partial-thickness tears of the rotator cuff: Accuracy, and inter- and intra-observer agreements

    International Nuclear Information System (INIS)

    Jung, Joon-Yong; Jee, Won-Hee; Chun, Ho Jong; Ahn, Myeong Im; Kim, Yang-Soo

    2010-01-01

    Background: Partial-thickness tear of the rotator cuff is a common cause of shoulder pain. Magnetic resonance (MR) arthrography has been described as a useful measure to diagnose rotator cuff abnormalities. Purpose: To determine the reliability and accuracy of MR arthrography with abduction and external rotation (ABER) view for the diagnosis of partial-thickness tears of the rotator cuff. Material and Methods: Among patients who underwent MR arthrographies, 22 patients (12 men, 10 women; mean age 45 years) who had either partial-thickness tear or normal tendon on arthroscopy were included. MR images were independently scored by two observers for partial-thickness tears of the rotator cuff. Interobserver and intraobserver agreements for detection of partial-thickness tears of the rotator cuff were calculated by using κ coefficients. The differences in areas under the receiver operating characteristic (ROC) curves were assessed with a univariate Z-score test. Differences in sensitivity and specificity for interpretations based on different imaging series were tested for significance using the McNemar statistic. Results: Sensitivity, specificity, and accuracy of each reader on MR imaging without ABER view were 83%, 90%, and 86%, and 83%, 80%, and 82%, respectively, whereas on overall interpretation including ABER view, the sensitivity, specificity, and accuracy of each reader were 92%, 70%, and 82%, and 92%, 80%, and 86%, respectively. Including ABER view, interobserver agreement for partial-thickness tear increased from κ=0.55 to κ=0.68. Likewise, intraobserver agreements increased from κ=0.79 and 0.53 to κ=0.81 and 0.70 for each reader, respectively. The areas under the ROC curves for each reader were 0.96 and 0.90, which were not significantly different. Conclusion: Including ABER view in routine sequences of MR arthrography increases the sensitivity, and inter- and intraobserver agreements for detecting partial-thickness tear of rotator cuff tendon

  11. Magnetic resonance arthrography including ABER view in diagnosing partial-thickness tears of the rotator cuff: Accuracy, and inter- and intra-observer agreements

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joon-Yong; Jee, Won-Hee; Chun, Ho Jong; Ahn, Myeong Im (Dept. of Radiology, Seoul St. Mary' s Hospital, School of Medicine, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Kim, Yang-Soo (Dept. of Orthopedic Surgery, Seoul St. Mary' s Hospital, School of Medicine, Catholic Univ. of Korea, Seoul (Korea))

    2010-03-15

    Background: Partial-thickness tear of the rotator cuff is a common cause of shoulder pain. Magnetic resonance (MR) arthrography has been described as a useful measure to diagnose rotator cuff abnormalities. Purpose: To determine the reliability and accuracy of MR arthrography with abduction and external rotation (ABER) view for the diagnosis of partial-thickness tears of the rotator cuff. Material and Methods: Among patients who underwent MR arthrographies, 22 patients (12 men, 10 women; mean age 45 years) who had either partial-thickness tear or normal tendon on arthroscopy were included. MR images were independently scored by two observers for partial-thickness tears of the rotator cuff. Interobserver and intraobserver agreements for detection of partial-thickness tears of the rotator cuff were calculated by using kappa coefficients. The differences in areas under the receiver operating characteristic (ROC) curves were assessed with a univariate Z-score test. Differences in sensitivity and specificity for interpretations based on different imaging series were tested for significance using the McNemar statistic. Results: Sensitivity, specificity, and accuracy of each reader on MR imaging without ABER view were 83%, 90%, and 86%, and 83%, 80%, and 82%, respectively, whereas on overall interpretation including ABER view, the sensitivity, specificity, and accuracy of each reader were 92%, 70%, and 82%, and 92%, 80%, and 86%, respectively. Including ABER view, interobserver agreement for partial-thickness tear increased from kappa=0.55 to kappa=0.68. Likewise, intraobserver agreements increased from kappa=0.79 and 0.53 to kappa=0.81 and 0.70 for each reader, respectively. The areas under the ROC curves for each reader were 0.96 and 0.90, which were not significantly different. Conclusion: Including ABER view in routine sequences of MR arthrography increases the sensitivity, and inter- and intraobserver agreements for detecting partial-thickness tear of rotator cuff

  12. Extreme incompatibility of helium during mantle melting: Evidence from undegassed mid-ocean ridge basalts

    Science.gov (United States)

    Graham, David W.; Michael, Peter J.; Shea, Thomas

    2016-11-01

    We report total helium concentrations (vesicles + glass) for a suite of thirteen ultradepleted mid-ocean ridge basalts (UD-MORBs) that were previously studied for volatile contents (CO2, H2O) plus major and trace elements. The selected basalts are undersaturated in CO2 + H2O at their depths of eruption and represent rare cases of undegassed MORBs. Sample localities from the Atlantic (2), Indian (1) and Pacific (7) Oceans collectively show excellent linear correlations (r2 = 0.75- 0.92) between the concentrations of helium and the highly incompatible elements C, K, Rb, Ba, Nb, Th and U. Three basalts from Gakkel Ridge in the Arctic were also studied but show anomalous behavior marked by excess lithophile trace element abundances. In the Atlantic-Pacific-Indian suite, incompatible element concentrations vary by factors of 3-4.3, while helium concentration varies by a factor of 13. The strong correlations between the concentrations of helium and incompatible elements are explained by helium behavior as the most incompatible element during mantle melting. Partial melting of an ultradepleted mantle source, formed as a residue of earlier melt extraction, accounts for the observed concentrations. The earlier melting event involved removal of a small degree melt (∼1%) at low but non-zero porosity (0.01-0.5%), leading to a small amount of melt retention that strongly leveraged the incompatible element budget of the ultradepleted mantle source. Equilibrium melting models that produce the range of trace element and helium concentrations from this source require a bulk solid/melt distribution coefficient for helium that is lower than that for other incompatible elements by about a factor of ten. Alternatively, the bulk solid/melt distribution coefficient for helium could be similar to or even larger than that for other incompatible elements, but the much larger diffusivity of helium in peridotite leads to its more effective incompatibility and efficient extraction from a

  13. Observations of crystallization and melting in poly(ethylene oxide)/poly(methyl methacrylate) blends by hot-stage atomic-force microscopy

    NARCIS (Netherlands)

    Pearce, R.; Vancso, Gyula J.

    1998-01-01

    The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to

  14. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Nitsch, Karel

    2015-01-01

    Roč. 427, Oct (2015), 7-15 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : single crystal growth * temperature field measurements * crystal/melt interface * lead chloride * vertical Bridgman method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2015

  15. Partial splenic embolization combined with vincristine infusion for the treatment of refractory idiopathic thrombocytopenic purpura and Evans syndrome: observation of its long-term efficacy

    International Nuclear Information System (INIS)

    Chen Shibing

    2011-01-01

    Objective: To observe the long-term efficacy of partial spleen embolization combined with vincristine infusion in treating refractory idiopathic thrombocytopenic purpura (ITP) and Evans syndrome. Methods: During the period of 2000-2007, partial spleen embolization together with vincristine infusion was carried out in 30 patients with refractory idiopathic thrombocytopenic purpura (n=24) or Evans syndrome (n=6). Vincristine infusion (2 mg) via splenic artery was performed before partial spleen embolization procedure. The long-term effectiveness was observed and analyzed. Results: One week after the treatment, the platelet count was increased from preoperative (10.23±8.28) × 10 9 /L to (140.28±85.45) × 10 9 /L in patients with ITP, while the platelet count was increased from preoperative (12±8) × 10 9 /L to (210±60) × 10 9 /L in patients with Evans syndrome. Meanwhile, the hemoglobin level showed an increase in different degrees, from preoperative (63.00±13.62) g/L to postoperative (123.00±13.14) g/L. The therapeutic effectiveness was 100%. During the follow-up time lasting for 3-5 years, recurrence was seen in 11 patients (36.7%) and the overall efficacy rate was 63.3%. Conclusion: For the treatment of refractory idiopathic thrombocytopenic purpura and Evans syndrome, partial spleen embolization combined with vincristine infusion carries reliable long-term efficacy. (author)

  16. Transient fuel melting

    International Nuclear Information System (INIS)

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  17. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions

    NARCIS (Netherlands)

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M.

    Seeing others performing an action induces the observers' motor cortex to "resonate" with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor

  18. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions

    NARCIS (Netherlands)

    Valchev, N.; Zijdewind, I.; Keysers, C.; Gazzola, V.; Avenanti, A.; Maurits, N.M.

    2015-01-01

    Seeing others performing an action induces the observers' motor cortex to "resonate" with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor

  19. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  20. Tantrums, Emotion Reactions and Their EEG Correlates in Childhood Benign Rolandic Epilepsy vs. Complex Partial Seizures: Exploratory Observations.

    Science.gov (United States)

    Potegal, Michael; Drewel, Elena H; MacDonald, John T

    2018-01-01

    We explored associations between EEG pathophysiology and emotional/behavioral (E/B) problems of children with two types of epilepsy using standard parent questionnaires and two new indicators: tantrums recorded by parents at home and brief, emotion-eliciting situations in the laboratory. Children with Benign Rolandic epilepsy (BRE, N = 6) reportedly had shorter, more angry tantrums from which they recovered quickly. Children with Complex Partial Seizures (CPS, N = 13) had longer, sadder tantrums often followed by bad moods. More generally, BRE correlated with anger and aggression; CPS with sadness and withdrawal. Scores of a composite group of siblings ( N = 11) were generally intermediate between the BRE and CPS groups. Across all children, high voltage theta and/or interictal epileptiform discharges (IEDs) correlated with negative emotional reactions. Such EEG abnormalities in left hemisphere correlated with greater social fear, right hemisphere EEG abnormalities with greater anger. Right hemisphere localization in CPS was also associated with parent-reported problems at home. If epilepsy alters neural circuitry thereby increasing negative emotions, additional assessment of anti-epileptic drug treatment of epilepsy-related E/B problems would be warranted.

  1. Tantrums, Emotion Reactions and Their EEG Correlates in Childhood Benign Rolandic Epilepsy vs. Complex Partial Seizures: Exploratory Observations

    Directory of Open Access Journals (Sweden)

    Michael Potegal

    2018-03-01

    Full Text Available We explored associations between EEG pathophysiology and emotional/behavioral (E/B problems of children with two types of epilepsy using standard parent questionnaires and two new indicators: tantrums recorded by parents at home and brief, emotion-eliciting situations in the laboratory. Children with Benign Rolandic epilepsy (BRE, N = 6 reportedly had shorter, more angry tantrums from which they recovered quickly. Children with Complex Partial Seizures (CPS, N = 13 had longer, sadder tantrums often followed by bad moods. More generally, BRE correlated with anger and aggression; CPS with sadness and withdrawal. Scores of a composite group of siblings (N = 11 were generally intermediate between the BRE and CPS groups. Across all children, high voltage theta and/or interictal epileptiform discharges (IEDs correlated with negative emotional reactions. Such EEG abnormalities in left hemisphere correlated with greater social fear, right hemisphere EEG abnormalities with greater anger. Right hemisphere localization in CPS was also associated with parent-reported problems at home. If epilepsy alters neural circuitry thereby increasing negative emotions, additional assessment of anti-epileptic drug treatment of epilepsy-related E/B problems would be warranted.

  2. Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2014-01-01

    Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophys...

  3. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    Science.gov (United States)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  4. Evidence of shallow positron traps in ion-implanted InP observed by maximum entropy reconstruction of positron lifetime distribution: a test of MELT

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Wang, S.J.

    1999-01-01

    A newly developed maximum entropy method, which was realized by the computer program MELT introduced by Shukla et al., was used to analyze positron lifetime spectra measured in semiconductors. Several simulation studies were done to test the performance of this algorithm. Reliable reconstruction of positron lifetime distributions can be extracted at relatively lower counts, which shows the applicability and superiority of this method. Two positron lifetime spectra measured in ion-implanted p-InP(Zn) at 140 and 280 K, respectively were analyzed by this program. The lifetime distribution differed greatly for the two temperatures, giving direct evidence of the existence of shallow positron traps at low temperature

  5. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites

    Science.gov (United States)

    Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.

    2012-09-01

    We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.

  6. Complex structural hierarchies observed in Y2O3–Al2O3–SiO2 eutectic ceramics prepared by laser melting

    Directory of Open Access Journals (Sweden)

    Dian-Zheng Wang

    2015-03-01

    Full Text Available Amorphous Y2O3–Al2O3–SiO2 beads were directly melted by a Nd:YAG laser. The structural features in multi-scale of the samples after solidification were investigated. The results showed that the cooling speed in the applied processing conditions was not high enough to retain the amorphous nature of ceramic beads into the consolidated bulks. In addition to an amorphous phase two crystalline phases, YAG and α-Al2O3, were formed yielding the formation of complex structural hierarchies.

  7. Efficacy and safety of eslicarbazepine acetate monotherapy for partial-onset seizures: Experience from a multicenter, observational study.

    Science.gov (United States)

    Toledano, Rafael; Jovel, Camilo Espinosa; Jiménez-Huete, Adolfo; Bayarri, Pau Giner; Campos, Dulce; Gomariz, Elena López; Giráldez, Beatriz González; García-Morales, Irene; Falip, Mercé; Agredano, Paula Martínez; Palao, Susana; Prior, María José Aguilar Amat; Pascual, María Rosa Querol; Navacerrada, Francisco José; González, Francisco Javier López; Ojeda, Joaquín; Sáez, Aránzazu Alfaro; Bermejo, Pedro Emilio; Gil-Nagel, Antonio

    2017-08-01

    Eslicarbazepine acetate (ESL, Aptiom™) is a once-daily anticonvulsant, approved as adjunctive treatment of partial-onset seizures (POS). Historical-controlled trials investigating the use of ESL as monotherapy have demonstrated a favorable efficacy and tolerability profile in patients with POS. This prospective, non-interventional study recruited POS patients in 17 hospitals in Spain. After a 3-month baseline period, ESL therapy was initiated as 400mg QD and up-titrated to an optimal maintenance dose based on clinical response and tolerance. The incidence of seizures was assessed via seizure calendars and the nature and severity of adverse events (AEs) were also recorded. A total of 117 patients (aged 9-87years) enrolled in the study and were treated with ESL at either 400mg/day (3.4% patients), 800mg/day (61% patients), 1200mg/day (27.1% patients) or 1600mg/day (8.5% patients). At 3months, 82.0% (n=72) of patients achieved a ≥50% reduction in seizure frequency, compared to 79.7% (n=67) of patients at 6months and 83.0% (n=49) at 12months. Patients who suffered secondary generalized tonic-clonic (SGTC) seizures had seizure-free rates of 71% (n=27), 69.6% (n=29), and 72.7% (n=16) at 3, 6, and 12months, respectively. Overall, 18 patients (15.3%) reported AEs of instability and dizziness (n=9), somnolence (n=3), mild hyponatremia (n=3), headache (n=1), hypertriglyceridemia (n=1), and allergic reaction (n=1), which caused ESL discontinuation of ESL treatment. ESL is effective and well tolerated as monotherapy for patients with POS, which supports previous findings. Early use is supported by its frequent use as monotherapy in this study and lack of severe side effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Near-surface elastic changes in the Ross Ice Shelf arising from transient storm and melt forcing observed with high-frequency ambient seismic noise

    Science.gov (United States)

    Chaput, J.; Aster, R. C.; Baker, M. G.; Gerstoft, P.; Bromirski, P. D.; Nyblade, A.; Stephen, R. A.; Wiens, D.

    2017-12-01

    Ice shelf collapse can herald subsequent grounded ice instability. However, robust understanding of external mechanisms capable of triggering rapid changes remains elusive. Improved understanding therefore requires improved remote and in-situ measurements of ice shelf properties. Using nearly three years of continuous data from a recently deployed 34-station broadband seismic array on the Ross Ice Shelf, we analyze persistent temporally varying, anisotropic near-surface resonant wave modes at frequencies above 1 Hz that are highly sensitive to small changes in elastic shelf properties to depths of tens of m. We further find that these modes exhibit both progressive (on the scale of months) and rapid (on the scale of hours) changes in frequency content. The largest and most rapid excursions are associated with forcing from local storms, and with a large regional ice shelf melt event in January 2016. We hypothesize that temporally variable behavior of the resonance features arises from wind slab formation during storms and/or to porosity changes, and to the formation of percolation-related refrozen layers and thinning in the case of surface melting. These resonance variations can be reproduced and inverted for structural changes using numerical wave propagation models, and thus present an opportunity for 4-D structural monitoring of shallow ice shelf elasticity and structure using long-duration seismic recordings.

  9. Reactive transport in a partially molten system with binary solid solution

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the

  10. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  11. Eutectic melting temperature of the lowermost Earth's mantle

    Science.gov (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  12. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    Science.gov (United States)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  13. Depth and degree of melting of komatiites

    Science.gov (United States)

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  14. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites

    Science.gov (United States)

    Peng, Q.; Liang, Y.

    2008-12-01

    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  15. Sea Ice Melt Pond Data from the Canadian Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  16. Melting of superheated molecular crystals

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  17. Improved capacitive melting curve measurements

    International Nuclear Information System (INIS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  18. Survival of inlays and partial crowns made of IPS empress after a 10-year observation period and in relation to various treatment parameters.

    Science.gov (United States)

    Stoll, Richard; Cappel, I; Jablonski-Momeni, Anahita; Pieper, K; Stachniss, V

    2007-01-01

    This study evaluated the long-term survival of inlays and partial crowns made of IPS Empress. For this purpose, the patient data of a prospective study were examined in retrospect and statistically evaluated. All of the inlays and partial crowns fabricated of IPS-Empress within the Department of Operative Dentistry at the School of Dental Medicine of Philipps University, Marburg, Germany were systematically recorded in a database between 1991 and 2001. The corresponding patient files were revised at the end of 2001. The information gathered in this way was used to evaluate the survival of the restorations using the method described by Kaplan and Meyer. A total of n = 1624 restorations were fabricated of IPS-Empress within the observation period. During this time, n = 53 failures were recorded. The remaining restorations were observed for a mean period of 18.77 months. The failures were mainly attributed to fractures, endodontic problems and cementation errors. The last failure was established after 82 months. At this stage, a cumulative survival probability of p = 0.81 was registered with a standard error of 0.04. At this time, n = 30 restorations were still being observed. Restorations on vital teeth (n = 1588) showed 46 failures, with a cumulative survival probability of p = 0.82. Restorations performed on non-vital teeth (n = 36) showed seven failures, with a cumulative survival probability of p = 0.53. Highly significant differences were found between the two groups (p < 0.0001) in a log-rank test. No significant difference (p = 0.41) was found between the patients treated by students (n = 909) and those treated by qualified dentists (n = 715). Likewise, no difference (p = 0.13) was established between the restorations seated with a high viscosity cement (n = 295) and those placed with a low viscosity cement (n = 1329).

  19. On-line redox sensors in industrial glass melting tanks

    NARCIS (Netherlands)

    Laimböck, P.R.; Beerkens, R.G.C.; Schaaf, van der J.; Kieffer, J.

    2002-01-01

    The oxidation state or partial oxygen pressure (pO2) of the glass melt influences many glass melt and glass product properties such as fining and foaming behavior, radiant heat transfer, forming characteristics via (a color-dependent) cooling rate, and the glass color of the final product. For these

  20. [Observation on changes of oxygen partial pressure in the deep tissues along the large intestine meridian during acupuncture in healthy subjects].

    Science.gov (United States)

    Chen, Ming; Hu, Xiang-long; Wu, Zu-xing

    2010-06-01

    To observe changes of the partial oxygen pressure in the deep tissues along the Large Intestine Meridian (LIM) during acupuncture stimulation, so as to reveal the characteristics of energy metabolism in the tissues along the LIM. Thirty-one healthy volunteer subjects were enlisted in the present study. Partial oxygen pressure (POP) in the tissues (at a depth of about 1.5 cm) of acupoints Binao (LI 14), Shouwuli (LI 13), Shousanli (LI 10), 2 non-acupoints [the midpoints between Quchi (LI 11) and LI 14, and between Yangxi (LI 5) and LI 11) of the LIM, and 10 non-meridian points, 1.5-2.0 cm lateral and medial to each of the tested points of the LIM was detected before, during and after electroacupuncture (EA) stimulation of Hegu (LI 4) by using a tissue oxygen tension needle-like sensor. In normal condition, the POP values in the deep tissues along the LIM were significantly higher than those of the non-meridian control points on its bilateral sides. During and after EA of Hegu (LI 4), the POP levels decreased significantly in the deep tissues along the LIM in comparison with pre-EA (P 0.05). POP is significantly higher in the deep tissues along the LIM of healthy subjects under normal conditions, which can be downregulated by EA of Hegu (LI 4), suggesting an increase of both the utilization rate of oxygen and energy metabolism after EA.

  1. Low-field dc magnetization investigations in a Bi2Sr2CaCu2O8 single crystal: observation of a magnetic phase transition at the vortex melting line

    International Nuclear Information System (INIS)

    Revaz, B.; Triscone, G.; Fabrega, L.; Junod, A.; Muller, J.

    1996-01-01

    The mixed-state magnetization M(H parallel c, T) of a Bi-2212 single crystal has been investigated with high resolution using a SQUID magnetometer. In the high-temperature region (50 K c = 80.2 K), we found that the slope ∂M/∂H vertical stroke T vs. H shows a positive step at H trans (T) ∼ H 0 x (1 - T/T c ) n with H 0 = 2340 Oe and n = 1.28. This observation is compatible with a first-order phase transition with a distribution of internal fields, and is attributed to the melting of the 3D vortex lattice. The estimated entropy jump is 1 k B /vortex/layer CuO. However, when T is lower than 50 K, we observe radical changes in M(H); the 3D melting line divides into a decoupling line at a temperature-independent field and the onset of the irreversibility. (orig.)

  2. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  3. Shape evolution of a melting nonspherical particle

    Science.gov (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  4. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  5. Melting of size-selected gallium clusters with 60-183 atoms.

    Science.gov (United States)

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  6. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume

    Science.gov (United States)

    Takahashi, E.; Gao, S.

    2015-12-01

    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  7. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia)

    Science.gov (United States)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.

    2008-07-01

    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are

  8. Local atomic structure inheritance in Ag50Sn50 melt

    International Nuclear Information System (INIS)

    Bai, Yanwen; Bian, Xiufang; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying

    2014-01-01

    Local structure inheritance signatures were observed during the alloying process of the Ag 50 Sn 50 melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N m around Ag atom is similar in the alloy and in pure Ag melts (N m  ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag 50 Sn 50 is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons

  9. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  10. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  11. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  12. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  13. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor.

    Science.gov (United States)

    Solt, Andras S; Bostock, Mark J; Shrestha, Binesh; Kumar, Prashant; Warne, Tony; Tate, Christopher G; Nietlispach, Daniel

    2017-11-27

    A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., G s and β-arrestin. Using 13 C methyl methionine NMR for the β 1 -adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with G s -mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through ligand-free nanobody-receptor interaction reveals structural differences on the cytoplasmic receptor side compared to the full agonist-bound nanobody-coupled form, suggesting that ligand-induced variations in G-protein interaction underpin partial agonism. Significant differences in receptor dynamics are observed ranging from rigid nanobody-coupled states to extensive μs-to-ms timescale dynamics when bound to a full agonist. We suggest that the mobility of the full agonist-bound form primes the GPCR to couple to IBPs. On formation of the ternary complex, ligand efficacy determines the quality of the interaction between the rigidified receptor and an IBP and consequently the signalling level.

  14. Observation on the availability and tolerance of 0.1% bromfenac sodium hydrate ophthalmic solution in the partial substitution of glucocorticoid after LASEK

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Deng

    2015-12-01

    Full Text Available AIM:To observe the availability and tolerance of 0.1% bromfenac sodium hydrate ophthalmic solution in the partial substitution of glucocorticoid after laser subepithelial keratomileusis(LASEK. METHODS:Totally 180 patients(180 eyesreceived LASEK were selected and divided into study group and control group according to different medications. The study group adopted 0.1% bromfenac sodium hydrate ophthalmic solution combined with glucocorticoid; the control group adopted glucocorticoid. The changes of visual acuity and intraocular pressure(IOPof two groups were recorded before and after surgery and the occurrence of diffuse larnellar kerafitis(DLKafter surgery were observed. RESULTS:After 1mo of surgery, visual acuity of study group was 1.25±0.22 while that of control group was 0.97±0.23(PP>0.05. After 1 and 3mo of surgery, IOP of study group was 12.29±2.71 and 12.67±2.33mmHg while that of control group was 14.26±2.65 and 14.56±2.61mmHg, the difference was statistically significant(PP>0.05. In terms of tolerance, the control group had 4 cases(4 eyestaking the IOP-lowering medication. The study group had no uncomfortable cases. The DLK level of the study group at 0, 1, 2 was 93.33%, 6.67%, 0%, respectively and those in control group was 75.56%, 17.78% and 6.67%, respectively, and the differences were significant(PCONCLUSION:0.1% bromfenac sodium hydrate ophthalmic solution can efficiently stabilize the patient's IOP after LASEK. The patient has a better visual acuity, visual function and fewer complications. The tolerance is also favorable. It is worthy of promotion.

  15. Evaluating the Sensitivity of Glacial Isostatic Adjustment to a Hydrous Melt at 410 km Depth

    Science.gov (United States)

    Hill, A. M.; Milne, G. A.; Ranalli, G.

    2017-12-01

    We present a sensitivity analysis aimed at testing whether observables related to GIA can support or refute the existence of a low viscosity partial melt layer located above the mantle transition zone, as required by the so-called "Transition Zone Water Filter" model (Bercovici and Karato 2003). In total, 400 model runs were performed sampling a range of melt layer thicknesses (1, 10 & 20 km) and viscosities (1015 - 1019 Pas) as well as plausible viscosity values in the upper and lower mantle. Comparing model output of postglacial decay times and j2, 18 of the considered viscosity models were found to be compatible with all of the observational constraints. Amongst these, only three `background' upper and lower mantle viscosities are permitted regardless of the properties of the melt layer: an upper mantle value of 3×1020 Pas and lower mantle values of 1022, 3×1022 and 5×1022 Pas. Concerning the properties of the melt layer itself, a thin (1 km) layer may have any of the investigated viscosities (1015 to 1019 Pas). For thicker melt layers, the viscosity must be ≥1018 Pas (20 km) or ≥1017 Pas (10 km). Our results indicate clear parameter trade-offs between the properties of the melt layer and the background viscosity structure. Given that the observations permit several values of lower mantle viscosity, we conclude that tightening constraints on this parameter would be valuable for future investigation of the type presented here. Furthermore, while decay times from both locations considered in this investigation (Ångerman River, Sweden; Richmond Gulf, Canada) offer meaningful constraints on viscosity structure, the value for Richmond Gulf is significantly more uncertain and so increasing its precision would likely result in improved viscosity constraints.

  16. Bayesian estimation of core-melt probability

    International Nuclear Information System (INIS)

    Lewis, H.W.

    1984-01-01

    A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease

  17. Melting Behavior and Thermolysis of NaBH4−Mg(BH42 and NaBH4−Ca(BH42 Composites

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-04-01

    Full Text Available The physical properties and the hydrogen release of NaBH4–Mg(BH42 and NaBH4−Ca(BH42 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, xNaBH4–(1 − xMg(BH42, x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydride composites. In the xNaBH4–(1 − xCa(BH42 system, eutectic melting is not observed. Interestingly, eutectic melting in metal borohydrides systems leads to partial thermolysis and hydrogen release at lower temperatures and the control of sample melting may open new routes for obtaining high-capacity hydrogen storage materials.

  18. Eclogite-associated potassic silicate melts and chloride-rich fluids in the mantle: a possible connection

    Science.gov (United States)

    Safonov, O.; Butvina, V.

    2009-04-01

    Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high

  19. Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015

    Science.gov (United States)

    Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.

    2018-06-01

    Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected

  20. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  1. Dynamic fragmentation of laser shock-melted tin: experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Resseguier, T. [CNRS ENSMA, Lab Combust and Deton, F-86961 Futuroscope (France); Signor, L.; Dragon, A. [CNRS ENSMA, Mecan and Phys Mat Lab, F-86961 Futuroscope (France); Signor, L.; Roy, G. [CEA Valduc, 21 - Is-sur-Tille (France)

    2010-07-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the 'micro-spall' process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the un-spalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydro-code including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal. (authors)

  2. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field

    Science.gov (United States)

    Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier

    2017-06-01

    In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.

  3. Basic experimental study with visual observation on elimination of the re-criticality issue using the MELT-II facility. Simulated fuel-escape behavior through a coolant channel

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Imahori, Shinji; Isozaki, Mikio

    2004-11-01

    In a core disruptive accident of fast reactors, fuel escape from the reactor core is a key phenomenon for prevention of re-criticality with significant mechanical-energy release subsequent to formation of a large-scale fuel pool with high mobility. Therefore, it is effective to study possibility of early fuel escape through probable escape paths such as a control-rod-guide-tube space well before high-mobility-pool formation. The purpose of the present basic experimental study is to clarify the mechanism of fuel-escape under a condition expected in the reactor situation, in which some amount of coolant may be entrapped into the molten-fuel pool. The following results have been obtained through basic experiments in which molten Wood's metal (components: 60wt%Bi-20wt%Sn-20wt%In, density at the room temperature: 8700 kg/m 3 , melting point: 78.8degC) is ejected into an coolant channel filled with water. (1) In the course of melt ejection, a small quantity of coolant is forced to be entrapped into the melt pool as a result of thermal interactions leading to high-pressure rise within the coolant channel. (2) Melt ejection is accelerated by pressure build-up which results from vapor pressure of entrapped coolant within the melt pool. (3) Average melt-ejection rate tends to increase in lower coolant-subcooling conditions, in which pressure build-up within the melt pool is enhanced. These results indicate a probability of a phenomenon in which melt ejection is accelerated by entrapment of coolant within a melt pool. Through application of the mechanism of confirmed phenomenon into the reactor condition, it is suggested that fuel escape is enhanced by entrapment of coolant within a fuel pool. (author)

  4. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  5. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} samples showing the paramagnetic Meissner effect

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T., E-mail: fabio.dias@ufpel.edu.br [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Vieira, V.N.; Garcia, E.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden (Germany); Gouvêa, C.P. [National Institute of Metrology, Quality and Technology (Inmetro), Material Metrology Division, 25250-020, Duque de Caxias, Rio de Janeiro (Brazil); Schaf, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193, Bellaterra (Spain); Roa, J.J. [Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028, Barcelona (Spain)

    2016-10-15

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) samples with 30 wt% of Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  6. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  7. Multiwavelength Lidar Observation of the Atmospheric Response to the 20th March 2015 Partial Solar Eclipse in Rome Tor Vergata: Preliminary Results.

    Directory of Open Access Journals (Sweden)

    Liberti Gian Luigi

    2016-01-01

    Full Text Available This study reports some preliminary analyses of multichannel lidar measurements taken in Rome Tor Vergata (Italy during the 20th March 2015 partial solar eclipse. The objective is assessing the capability of the instrument to document the effect of the eclipse in the lower troposphere, with a particular emphasis on the information content at relatively small temporal and spatial scales.

  8. Multiwavelength Lidar Observation of the Atmospheric Response to the 20th March 2015 Partial Solar Eclipse in Rome Tor Vergata: Preliminary Results.

    Science.gov (United States)

    Liberti, Gian Luigi; Dionisi, Davide; Federico, Stefano; Congeduti, Fernando

    2016-06-01

    This study reports some preliminary analyses of multichannel lidar measurements taken in Rome Tor Vergata (Italy) during the 20th March 2015 partial solar eclipse. The objective is assessing the capability of the instrument to document the effect of the eclipse in the lower troposphere, with a particular emphasis on the information content at relatively small temporal and spatial scales.

  9. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    Science.gov (United States)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  10. The density, compressibility and seismic velocity of hydrous melts at crustal and upper mantle conditions

    Science.gov (United States)

    Ueki, K.; Iwamori, H.

    2015-12-01

    Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.

  11. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Sudeep Verma

    2018-02-05

    Feb 5, 2018 ... the effect of centrifugal and coriolis forces were included in the momentum equations [4]. The PANS technique is highly sensitive to the type of discretization scheme used and may induce spurious oscillations in the solution, which can be easily confused with more resolved fluctuations. Hence the equations ...

  12. Partial melting of metavolcanics in amphibolite facies regional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Department of Geology and Geography, University of Massachusetts,. Amherst), pp 275. Hollocher K 1991 Prograde amphibole dehydration reac- tions during high grade regional metamorphism, Central. Massachusetts, U.S.A.; Am. Mineral.

  13. Melting of gold microclusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  14. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  15. Partial gigantism

    Directory of Open Access Journals (Sweden)

    М.М. Karimova

    2017-05-01

    Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.

  16. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  17. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    Science.gov (United States)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  18. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.

    2014-01-01

    Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting...... a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond...

  19. Theoretical study of melting curves on Ta, Mo, and W at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Xi Feng [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang (China)], E-mail: hawk_0816@yahoo.com.cn; Cai Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang (China)

    2008-06-01

    The melting curves of tantalum (Ta), molybdenum (Mo), and tungsten (W) are calculated using a dislocation-mediated melting model. The calculated melting curves are in good agreement with shock-wave data, and partially in agreement with wire explosion and piston-cylinder data, but show large discrepancies with diamond-anvil cell (DAC) data. We propose that the melting mechanism caused by shock-wave and laser-heated DAC techniques are probably different, and that a systematic difference exists in the two melting processes.

  20. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  1. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  2. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  3. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  4. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  5. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  6. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  7. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    Science.gov (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  8. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  9. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  10. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  11. Influence of gas-generation on melt/concrete interaction

    International Nuclear Information System (INIS)

    Powers, D.A.

    1979-01-01

    Gases formed during the interaction of a high-temperature melt with concrete are shown to stem from the thermal dehydration and decarboxylation of the concrete. The kinetics of these decomposition reactions are described. Gases within the melt cause an apparent swelling of the melt. The observed swelling is not easily correlated to the rate of gas evolution. Metallic melts cause CO 2 /CO and H 2 O liberated from the melt to be reduced to CO and hydrogen. When these gases escape from the melt they assist in aerosol formation. As the gases cool they react along a pathway whose oxygen fugacity is apparently buffered by the iron-Wuestite equilibrium. Methane is a product of the gas-phase reaction. (orig./HP) [de

  12. 230Th-238U disequilibrium and the melting processes beneath ridge axes

    International Nuclear Information System (INIS)

    McKenzie, D.

    1985-01-01

    The activity ratio ( 230 Th/ 238 U) is calculated for a simple model of melting, for which the melt fraction in chemical and radioactive equilibrium with the solid residium remains constant as melting proceeds. The activity ratio in the melt is only significantly different from unity if the melting is slow compared with the half-life of 230 Th and if the melt fraction present at any time does not exceed a few percent. The observation that ( 230 Th/ 238 U) is about 1.25 for many ocean ridge basalts is therefore most easily explained if the melt fraction in the source region is less than 2% and if the melting occurs in a broad region more than 100 km wide beneath the ridge axis. These results are compatible with other geophysical observations. Measurements of ( 226 Ra/ 238 U) might provide useful constraints on the time required to reach chemical equilibrium between the melt and the matrix. (orig.)

  13. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  14. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  15. Selective Laser Melting of Pure Copper

    Science.gov (United States)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  16. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  17. Deformation mechanisms and melt nano-structures in experimentally deformed olivine-orthopyroxene rocks with low melt fractions

    NARCIS (Netherlands)

    Kloe, P.A. de

    2001-01-01

    The major part of the Earth’s upper mantle is thought to be solid, with some regions in the mantle where the rocks contain a small melt fraction These partially molten rocks are associated with important geological processes such as magma production beneath mid-oceanic ridges and may also play an

  18. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  19. Evolved Rocks in Ocean Islands Formed by Melting of Metasomatized Mantle

    Science.gov (United States)

    Ashwal, L. D.; Torsvik, T. H.; Horvath, P.; Harris, C.; Webb, S. J.; Werner, S. C.; Corfu, F.

    2015-12-01

    Evolved rocks like trachyte occur as minor components of many plume-related basaltic ocean islands (e.g. Hawaii, Gran Canaria, Azores, Réunion), and are typically interpreted as products of extreme fractional crystallization from broadly basaltic magmas. Trachytes from Mauritius (Indian Ocean) suggest otherwise. Here, 6.8 Ma nepheline-bearing trachytes (SiO2 ~63%, Na2O + K2O ~12%) are enriched in all incompatible elements except Ba, Sr and Eu, which show prominent negative anomalies. Initial eNd values cluster at 4.03 ± 0.15 (n = 13), near the lower end of the range for Mauritian basalts (eNd = 3.70 - 5.75), but initial Sr is highly variable (ISr = 0.70408 - 0.71034) suggesting secondary deuteric alteration. Fractional crystallization models starting with a basaltic parent fail, because when plagioclase joins olivine in the crystallizing assemblage, residual liquids become depleted in Al2O3, produce no nepheline, and do not approach trachytic compositions. Mauritian basalts and trachytes do not fall near the ends of known miscibility gaps, eliminating liquid immiscibility processes. Partial melting of extant gabbroic bodies, either from the oceanic crust or from Réunion plume-related magmas should yield quartz-saturated melts different from the critically undersaturated Mauritian trachytes. A remaining possibility is that the trachytes represent direct, small-degree partial melts of fertile, perhaps metasomatized mantle. This is supported by the presence of trachytic glasses in many mantle xenoliths, and experimental results show that low-degree trachytic melts can be produced from mantle peridotites even under anhydrous conditions. If some feldspar is left behind as a residual phase, this would account for the negative Ba, Sr and Eu anomalies observed in Mauritian trachytes. Two trachyte samples that are less depleted in these elements contain xenocrysts of anorthoclase, Al-rich cpx and Cl-rich kaersutite that are out of equilibrium with host trachyte magmas

  20. Differential melt scaling for oblique impacts on terrestrial planets

    Science.gov (United States)

    Abramov, Oleg; Wong, Stephanie M. Wong; Kring, David A. Kring

    2012-01-01

    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ∼1.6 times less melt volume than a vertical impact, and ∼1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous–Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  1. The ROME (Retrospective Observational Multicenter study on Eslicarbazepine) study: Efficacy and behavioural effects of Eslicarbazepine acetate as adjunctive therapy for adults with partial onset seizures in real life.

    Science.gov (United States)

    Assenza, G; Mecarelli, O; Lanzone, J; Assenza, F; Tombini, M; Di Lazzaro, V; Pulitano, P

    2018-05-01

    Eslicarbazepine acetate (ESL) is a third-generation member of the dibenzazepine family approved in 2009 by the European Medicines Agency with the indication of adjunctive therapy in adult people with partial-onset seizures (PPOS). We aimed at assessing the ESL impact on seizure frequency and quality of life in PPOS with a particular attention to sleepiness and depression. We evaluated 50 adult PPOS (>18 years; 48 ± 14 years-old; 23 males) treated with adjunctive ESL for ≥2months with a retrospective multi-centric design. Clinical files of the last 2 years were reviewed checking for monthly seizure frequency, treatment retention rate, adverse drug reactions (ADRs), concomitant anti-epileptic drugs and behavioural scales for sleepiness (Stanford Sleepiness Scale, SSS, and Epworth Sleepiness Scale, ESS), depression (Beck Depression Inventory-II, BDI) and overall quality of life (QOLIE-31). At the end of 96 ± 28 days of ESL treatment, the mean seizure reduction was 56%; 60% of patients had seizure reduction above 50%, with a 31% of the whole population becoming seizure free. We reported 16 ADRs with 4 hyponatremia. Retention rate was 76%. Patient reported less sleepiness after ESL (SSS, p = 0.031; ESS, p = 0.0000002). Before ESL, 38% of patients had pathologic BDI scores, which normalized in most of them (73%) after ESL (BDI improvement, p = 0.000012). These scores resulted in an amelioration of quality of life (QOLIE-31, p = 0.000002). ESL is a safe and effective anti-epileptic drug in a real life scenario, with an excellent behavioural profile for the overall quality of life and, in particular, for sleepiness and depression. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  2. Melt processing of Yb-123 tapes

    International Nuclear Information System (INIS)

    Athur, S. P.; Balachandran, U.; Salama, K.

    2000-01-01

    The innovation of a simple, scalable process for manufacturing long-length conductors of HTS is essential to potential commercial applications such as power cables, magnets, and transformers. In this paper the authors demonstrate that melt processing of Yb-123 tapes made by the PIT route is an alternative to the coated conductor and Bi-2223 PIT tape fabrication techniques. Ag-clad Yb-123 tapes were fabricated by groove rolling and subsequently, melt processed in different oxygen partial pressures in a zone-melting furnace with a gradient of 140 C/cm. The transition temperatures measured were found to be around 81 K undermost processing conditions. EPMA of the tapes processed under different conditions show the 123 phase to be Ba deficient and Cu and Yb rich. Critical current was measured at various temperatures from 77 K to 4.2 K. The J c increased with decrease in pO 2 . The highest I c obtained was 52 A at 4.2 K

  3. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    Science.gov (United States)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  4. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  5. Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)

    Science.gov (United States)

    Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.

    2017-02-01

    -heating (producing partial melting) during the formation of this special horizon; these are best explained by alternating cycles of vertical AML migration. Since the investigated outcrop shows many characteristic lithological and petrographic features that are well-known from the uppermost gabbros drilled at Site 1256 by the Integrated Ocean Drilling Program (IODP) in the equatorial Eastern Pacific, our results based on 3-D observation in the field help to elucidate the geological observations obtained from the 1-D drill core.

  6. Erythritol: crystal growth from the melt.

    Science.gov (United States)

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  8. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  9. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  10. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  11. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    Science.gov (United States)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  12. Deep Crustal Melting and the Survival of Continental Crust

    Science.gov (United States)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.

  13. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  14. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  15. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  16. Volume dependence of the melting temperature for alkali metals with Debye's model

    International Nuclear Information System (INIS)

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  17. Partial structures in molten AgBr

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroki [Department of Condensed Matter Chemistry and Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)], E-mail: ueno@gemini.rc.kyushu-u.ac.jp; Tahara, Shuta [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Science, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)

    2009-02-21

    The structure of molten AgBr has been studied by means of neutron and X-ray diffractions with the aid of structural modeling. It is confirmed that the Ag-Ag correlation has a small but well-defined first peak in the partial pair distribution function whose tail penetrates into the Ag-Br nearest neighbor distribution. This feature on the Ag-Ag correlation is intermediate between that of molten AgCl (non-superionic melt) and that of molten AgI (superionic melt). The analysis of Br-Ag-Br bond angle reveals that molten AgBr preserves a rocksalt type local ordering in the solid phase, suggesting that molten AgBr is clarified as non-superionic melt like molten AgCl.

  18. Modeling the impact of melt on seismic properties during mountain building

    Science.gov (United States)

    Lee, Amicia L.; Walker, Andrew M.; Lloyd, Geoffrey E.; Torvela, Taija

    2017-03-01

    Initiation of partial melting in the mid/lower crust causes a decrease in P wave and S wave velocities; recent studies imply that the relationship between these velocities and melt is not simple. We have developed a modeling approach to assess the combined impact of various melt and solid phase properties on seismic velocities and anisotropy. The modeling is based on crystallographic preferred orientation (CPO) data measured from migmatite samples, allowing quantification of the variation of seismic velocities with varying melt volumes, shapes, orientations, and matrix anisotropy. The results show nonlinear behavior of seismic properties as a result of the interaction of all of these physical properties, which in turn depend on lithology, stress regime, strain rate, preexisting rock fabrics, and pressure-temperature conditions. This nonlinear behavior is evident when applied to a suite of samples from a traverse across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. Critically, changes in solid phase composition and CPO, and melt shape and orientation with respect to the wave propagation direction can result in huge variations in the same seismic property even if the melt fraction remains the same. A comparison with surface wave interpretations from tectonically active regions highlights the issues in current models used to predict melt percentages or partially molten regions. Interpretation of seismic data to infer melt percentages or extent of melting should, therefore, always be underpinned by robust modeling of the underlying geological parameters combined with examination of multiple seismic properties in order to reduce uncertainty of the interpretation.

  19. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  20. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  1. Retention, dosing, tolerability and patient reported seizure outcome of Zonisamide as only add-on treatment under real-life conditions in adult patients with partial onset seizures: Results of the observational study ZOOM.

    Science.gov (United States)

    Hamer, Hajo; Baulac, Michel; McMurray, Rob; Kockelmann, Edgar

    2016-01-01

    Zonisamide is licensed for adjunctive therapy for partial-onset seizures with or without secondary generalisation in patients 6 years and older and as monotherapy for the treatment of partial seizures in adult patients with newly diagnosed epilepsy, and shows a favourable pharmacokinetic profile with low interaction potential with other drugs. The aim of the present study was to gather real-life data on retention and modalities of zonisamide use when administered as only add-on treatment to a current AED monotherapy in adult patients with partial-onset seizures. This multicenter observational study was performed in 4 European countries and comprised three visits: baseline, and after 3 and 6 months. Data on patients' retention, reported efficacy, tolerability and safety, and quality of life was collected. Of 100 included patients, 93 could be evaluated. After 6 months, the retention rate of zonisamide add-on therapy was 82.8%. At this time, a reduction of seizure frequency of at least 50% was observed in 79.7% of patients, with 43.6% reporting seizure freedom over the last 3 months of the study period. Adverse events were reported by 19.4% of patients, with fatigue, agitation, dizziness, and headache being most frequent. Approximately 25% of patients were older than 60 years, many of whom suffered from late-onset epilepsy. Compared to younger patients, these patients showed considerable differences with regard to their antiepileptic drug regimen at baseline, and slightly higher responder and retention rates at 6 months. Despite limitations due to the non-interventional open-label design and the low sample size, the results show that zonisamide as only add-on therapy is well retained, indicating effectiveness in the majority of patients under real-life conditions. Copyright © 2015. Published by Elsevier Ltd.

  2. The extreme melt across the Greenland ice sheet in 2012

    Science.gov (United States)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  3. Recent results in characterization of melt-grown and quench-melt- grown YBCO superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Poeppel, R.B.; Gangopadhyay, A.K.

    1992-02-01

    From the standpoint of applications, melt-grown (MG) and quench-melt-grown (QMG) bulk YBCO superconductors are of considerable interest. In this paper, we studied the intragranular critical current density (J c ), the apparent pinning potential (U o ), and the irreversibility temperature (T irr ) of MG and QMG samples and compared the results to those for conventionally sintered YBCO. A systematic increase in U o and a slower drop in J c with temperature indicate a systematic improvement in flux-pinning properties in progressing from the sintered YBCO to QMG and MG samples. Weaker pinning is observed in the QMG YBCO than in the MG samples

  4. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  5. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  6. Endmembers of Ice Shelf Melt

    Science.gov (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  7. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    Science.gov (United States)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  8. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  9. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  10. Melting mode and source lithology inferred from trace element systematic in historical olivine from Lanzarote, Canary Islands

    Science.gov (United States)

    Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.

    2017-04-01

    Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and

  11. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    Science.gov (United States)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  12. A volatile-rich Earth's core inferred from melting temperature of core materials

    Science.gov (United States)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. Mc

  13. Evidence Estimation for Bayesian Partially Observed MRFs

    NARCIS (Netherlands)

    Chen, Y.; Welling, M.

    2013-01-01

    Bayesian estimation in Markov random fields is very hard due to the intractability of the partition function. The introduction of hidden units makes the situation even worse due to the presence of potentially very many modes in the posterior distribution. For the first time we propose a

  14. Statistical Inference for Partially Observed Diffusion Processes

    DEFF Research Database (Denmark)

    Jensen, Anders Christian

    This thesis is concerned with parameter estimation for multivariate diffusion models. It gives a short introduction to diffusion models, and related mathematical concepts. we then introduce the method of prediction-based estimating functions and describe in detail the application for a two......-Uhlenbeck process, while chapter eight describes the detials of an R-package that was developed in relations to the application of the estimationprocedure of chapters five and six....

  15. Logic for specifying partially observable stochastic domains

    CSIR Research Space (South Africa)

    Rens, G

    2011-07-01

    Full Text Available to place it back on the floor. In situations where the oil-can is full, the robot gets 5 units of reward for grabbing the can, and it gets 10 units for a drink action. Otherwise, the robot gets no rewards. Rewards motivate an agent to behave as desired... with notions of probability. It will be shown how stochastic domains can be specified, including new kinds of axioms dealing with perception and a frame solution for the proposed logic. 1 Introduction and Motivation In the physical real world...

  16. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  17. Theoretical melting curve of caesium

    International Nuclear Information System (INIS)

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  18. Melting curves of gammairradiated DNA

    International Nuclear Information System (INIS)

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  19. Pressure melting and ice skating

    Science.gov (United States)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  20. Cast Partial Denture versus Acrylic Partial Denture for Replacement of Missing Teeth in Partially Edentulous Patients

    Directory of Open Access Journals (Sweden)

    Pramita Suwal

    2017-03-01

    Full Text Available Aim: To compare the effects of cast partial denture with conventional all acrylic denture in respect to retention, stability, masticatory efficiency, comfort and periodontal health of abutments. Methods: 50 adult partially edentulous patient seeking for replacement of missing teeth having Kennedy class I and II arches with or without modification areas were selected for the study. Group-A was treated with cast partial denture and Group-B with acrylic partial denture. Data collected during follow-up visit of 3 months, 6 months, and 1 year by evaluating retention, stability, masticatory efficiency, comfort, periodontal health of abutment. Results: Chi-square test was applied to find out differences between the groups at 95% confidence interval where p = 0.05. One year comparison shows that cast partial denture maintained retention and stability better than acrylic partial denture (p< 0.05. The masticatory efficiency was significantly compromising from 3rd month to 1 year in all acrylic partial denture groups (p< 0.05. The comfort of patient with cast partial denture was maintained better during the observation period (p< 0.05. Periodontal health of abutment was gradually deteriorated in all acrylic denture group (p

  1. Melt cooling by bottom flooding: The experiment CometPC-H3. Ex-vessel core melt stabilization research

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Merkel, G.; Schmidt-Stiefel, S.; Tromm, W.; Wenz, T.

    2003-03-01

    The CometPC-H3 experiment was performed to investigate melt cooling by water addition to the bottom of the melt. The experiment was performed with a melt mass of 800 kg, 50% metal and 50% oxide, and 300 kW typical decay heat were simulated in the melt. As this was the first experiment after repair of the induction coil, attention was given to avoid overload of the induction coil and to keep the inductor voltage below critical values. Therefore, the height of the sacrificial concrete layer was reduced to 5 cm only, and the height of the porous concrete layers was also minimized to have a small distance and good coupling between heated melt and induction coil. After quite homogeneous erosion of the upper sacrificial concrete layer, passive bottom flooding started from the porous concrete after 220 s with 1.3 liter water/s. The melt was safely stopped, arrested and cooled. The porous, water filled concrete was only slightly attacked by the hot melt in the upper 25 mm of one sector of the coolant device. The peak cooling rate in the early contact phase of coolant water and melt was 4 MW/m 2 , and exceeded the decay heat by one order of magnitude. The cooling rate remarkably dropped, when the melt was covered by the penetrating water and a surface crust was formed. Volcanic eruptions from the melt during the solidification process were observed from 360 - 510 s and created a volcanic dome some 25 cm high, but had only minor effect on the generation of a porous structure, as the expelled melt solidified mostly with low porosity. Unfortunately, decay heat simulation in the melt was interrupted at 720 s by an incorrect safety signal, which excluded further investigation of the long term cooling processes. At that time, the melt was massively flooded by a layer of water, about 80 cm thick, and coolant water inflow was still 1 l/s. The melt had reached a stable situation: Downward erosion was stopped by the cooling process from the water filled, porous concrete layer. Top

  2. Diffusion of hydrous species in model basaltic melt

    Science.gov (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  3. Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection

    Energy Technology Data Exchange (ETDEWEB)

    Mirzade, F. Kh., E-mail: fmirzade@rambler.ru [Institute on Laser and Information Technology, Russian Academy of Sciences, 1 Svyatoozerskaya Street, Shatura, Moscow Region 140700 (Russian Federation); Niziev, V.G.; Panchenko, V. Ya.; Khomenko, M.D.; Grishaev, R.V. [Institute on Laser and Information Technology, Russian Academy of Sciences, 1 Svyatoozerskaya Street, Shatura, Moscow Region 140700 (Russian Federation); Pityana, S.; Rooyen, Corney van [CSIR-National Laser Centre, Building 46A, Meiring Nauder Road, Brummeria, Pretoria (South Africa)

    2013-08-15

    The numerical model of laser cladding with coaxial powder injection includes the equations for heat transfer, melting and crystallization kinetics. It has been shown that the main parameters influencing the melt pool dynamics and medium maximum temperature are mass feed rate, laser power and scanning velocity. It has been observed that, due to the phase change occurring with superheating/undercooling, the melt zone has the boundary distinguished from melting isotherm. The calculated melt pool dimensions and dilution are in a good agreement with the experimental results for cladding of 431 martensitic stainless steel onto carbon steel substrate.

  4. Deep and persistent melt layer in the Archaean mantle

    Science.gov (United States)

    Andrault, Denis; Pesce, Giacomo; Manthilake, Geeth; Monteux, Julien; Bolfan-Casanova, Nathalie; Chantel, Julien; Novella, Davide; Guignot, Nicolas; King, Andrew; Itié, Jean-Paul; Hennet, Louis

    2018-02-01

    The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth's surface. The origin of this transition could be a change in the dynamic regime of the Earth's interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200-250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200-300 K hotter than today, significant melting is expected at depths from 100-150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.

  5. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  6. Glacial melting in Himalaya

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  7. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Clémence [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Maire, Eric, E-mail: eric.maire@insa-lyon.fr [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Meille, Sylvain; Adrien, Jérôme [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Kurosu, Shingo; Chiba, Akihiko [Institute for Materials Research, Tohoku University, Sendai 980-0812 (Japan)

    2016-06-15

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive buckling of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.

  8. Numerical simulation of fragmentation of hot metal and oxide melts with the computer code IVA3

    International Nuclear Information System (INIS)

    Mussa, S.; Tromm, W.

    1994-01-01

    The phenomena of fragmentation of melts caused by water-inlet from the bottom with the computer code IVA3/11,12,13/ are investigated. With the computer code IVA3 three-component-multiphase flows can be numerically simulated. Two geometrical models are used. Both consist of a cylindrical vessel for water lying beneath a cylindrical vessel for melt. The vessels are connected to each other through a hole. Steel and UO 2 melts are. The following parameters were varied: the type of the melt (steel,UO 2 ), the water supply pressure and the geometry of the hole in the bottom plate through which the water and melt vessels are connected. As results of the numerical simulations temperature and pressure versus time curves are plotted. Additionally the volume flow rates and the volume fractions of the various phases in the vessels and the increase in surface and enthalpy of the melt during the time of simulation are depicted. With steel melts the rate of fragmentation increases with increasing water pressure and melt temperature, whereby stable channels are formed in the melt layer showing a very low flow resistance for steam. With UO 2 the formations of channels are also observed. However, these channels are not so stable that they eventually break apart and lead to the fragmentation of the UO 2 melt in drops. The fragmentation of the steel melt in water vessel is less than that of UO 2 . No essential solidification of the melt is observed in the respective duration of the simulations. However, a small drop in the melt temperature is observed. With a slight or no water pressure the melt flows from the upper vessel into the water vessel via the connecting hole. The processes take place in a very slow manner and with such a low steam production so that despite the occuring pressure peaks no sign of steam explosions could be observed. (orig./HP) [de

  9. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    Science.gov (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  10. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  11. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)

    2016-11-15

    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  12. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  13. Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2017-04-12

    In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.

  14. Automatic Control of Silicon Melt Level

    Science.gov (United States)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  15. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting

    International Nuclear Information System (INIS)

    Saedi, Soheil; Turabi, Ali Sadi; Karaca, Haluk; Andani, Mohsen Taheri; Haberland, Christoph; Elahinia, Mohammad

    2016-01-01

    This study presents the shape memory behavior of as-fabricated and solution annealed Ni 50.8 Ti 49.2 alloys fabricated using the selective laser melting (SLM) technique. Results were compared to the initial ingot that was used to fabricate powders. Optical microscopy was employed to reveal the microstructure. The shape memory effect under constant compressive stress and isothermal compressive stress cycling tests were utilized to investigate the shape memory characteristics of the initial ingot and fabricated alloys. It was revealed that the SLM method and post heat treatments can be used to tailor the microstructure and shape memory response. Partial superelasticity was observed after the SLM process. Solutionizing the fabricated samples increased the strength and improved the superelasticity but slightly decreased the recoverable strain. (paper)

  16. Transient induced tungsten melting at the Joint European Torus (JET)

    Science.gov (United States)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that

  17. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  18. How Greenland melts

    Directory of Open Access Journals (Sweden)

    van den Broeke M.R.

    2010-12-01

    Full Text Available Satellite altimetry and gravimetry show that the Greenland ice sheet has been losing volume and mass since the beginning of this century. However, from these short time series of direct measurements we cannot infer what the causes of the mass loss are, i.e. ice dynamics or surface processes, or that maybe the ice sheet returns to normal after a period of volume increase and mass gain. By modelling and observing the individual components of the ice sheet mass balance, i.e. snowfall, meltwater runoff and iceberg production, we are able to identify the processes that led to the recent mass loss. We conclude that the Greenland ice sheet is significantly out of balance. Acceleration of outlet glaciers and increased runoff have contributed equally to recent Greenland mass loss. The potential for mass loss by surface processes, however, was three times greater than actually observed, due to refreezing and enhanced snowfall.

  19. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  20. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    Science.gov (United States)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  1. Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill

    Science.gov (United States)

    Xu, Min; Stephen, R. A.; Canales, J. Pablo

    2017-12-01

    Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection ( P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to- S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825-829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.

  2. Experiment on the melting pressure of spin polarized He3

    DEFF Research Database (Denmark)

    Chapellier, M.; Olsen, M.; Rasmussen, Finn Berg

    1981-01-01

    In liquid He in a Pomeranchuk cell, the melting curve has been observed to be suppressed, presumably in regions with a strong local spin polarization. In the temperature range 30-50 mK the observed suppression was 60-80 kPa. The corresponding local polarization is estimated, in a crude model...

  3. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  4. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2014-05-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  5. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    International Nuclear Information System (INIS)

    Fat'yanov, O V; Asimow, P D

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ∼800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  6. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  7. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  8. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  9. Fragmentation of low-melting metals by collapsing steam bubbles

    International Nuclear Information System (INIS)

    Benz, R.

    1979-08-01

    When a hot melt meets a vaporable liquid of lower temperature, explosive vaporisation of the cooler liquid may be the result. This is called a steam explosion if a substantial amount of thermal energy is converted into mechanical energy. One important step in understanding about steam explosions is to explain the surface increase of the hot melt. There are several competing fragmentation hypotheses, but so far there has been no model to describe fragmentation criteria as well as the time curve of surface increase on the basis of physical processes. An overall model is now given for one of the possible fragmentation mechanisms, i.e. the division of the melt by collapsing steam bubbles. The model estimates the surface increase of the melt on the basis of heavy supercooled boiling, the heat transfer connected with it, the transfer of mechanical energy during steam bubble collapse, and the solidification of the melt. The results of the calculations have shown that basic experimental observations, e.g. time and extent of fragmentation, are well presented in the model with regard to their order of magnitude. The model presents a qualitatively correct description of the effects of important influencing factors, e.g. supercooling of the coolant or initial temperature of the melt. (orig.) [de

  10. Essays on partial retirement

    NARCIS (Netherlands)

    Kantarci, T.

    2012-01-01

    The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial

  11. Investigation of Partially Crystalline Zr77Ni23 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Amra Salčinović Fetić

    2016-08-01

    Full Text Available This paper presents the results of an extensive research of partially crystalline Zr77Ni23 metallic glass (indicated numbers refer to atomic percentages. The partially crystalline Zr77Ni23 samples were prepared by melt-spinning using a device constructed in the Metal Physics Laboratory, Faculty of Science in Sarajevo. XRD pattern shows crystalline peaks which correspond to an orthorhombic structure of Zr3Ni superimposed on an amorphous pattern. Homogeneity and chemical composition were investigated using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX. Crystallization was studied by differential scanning calorimetry (DSC. DSC analysis indicated a simple thermally activated process. Overall activation energy of the crystallization was calculated using Kissinger's model for nonisothermal process and compared with those given by the Augis-Bennett model. By monitoring of the electrical resistance in the temperature range 80 – 270 K a small and negative thermal coefficient of electrical resistance was observed. This means that electrical resistance varies slightly with temperature and it makes this metallic glass suitable for application in electronic circuits for which this property is an important requirement.

  12. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  13. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  14. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    Science.gov (United States)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  15. Variability of inter-observer agreement on feasibility of partial nephrectomy before and after neoadjuvant axitinib for locally advanced renal cell carcinoma (RCC): independent analysis from a phase II trial.

    Science.gov (United States)

    Karam, Jose A; Devine, Catherine E; Fellman, Bryan M; Urbauer, Diana L; Abel, E Jason; Allaf, Mohamad E; Bex, Axel; Lane, Brian R; Thompson, R Houston; Wood, Christopher G

    2016-04-01

    To evaluate how many patients could have undergone partial nephrectomy (PN) rather than radical nephrectomy (RN) before and after neoadjuvant axitinib therapy, as assessed by five independent urological oncologists, and to study the variability of inter-observer agreement. Pre- and post-systemic treatment computed tomography scans from 22 patients with clear cell renal cell carcinoma in a phase II neoadjuvant axitinib trial were reviewed by five independent urological oncologists. R.E.N.A.L. nephrometry score and κ statistics were calculated. The median R.E.N.A.L. nephrometry score changed from 11 before treatment to 10 after treatment (P = 0.002). Five tumours with moderate complexity before axitinib treatment remained moderate complexity after treatment. Of 17 tumours with high complexity before axitinib treatment, three became moderate complexity after treatment. The overall κ statistic was 0.611. Moderate-complexity κ was 0.611 vs a high-complexity κ of 0.428. Before axitinib treatment the κ was 0.550 vs 0.609 after treatment. After treatment with axitinib, all five reviewers agreed that only five patients required RN (instead of eight before treatment) and that 10 patients could now undergo PN (instead of three before treatment). The odds of PN feasibility were 22.8-times higher after treatment with axitinib. There is considerable variability in inter-observer agreement on the feasibility of PN in patients treated with neoadjuvant targeted therapy. Although more patients were candidates for PN after neoadjuvant axitinib therapy, it remains difficult to identify these patients a priori. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  16. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    Science.gov (United States)

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  17. A model for the latent heat of melting in free standing metal nanoparticles

    International Nuclear Information System (INIS)

    Shin, Jeong-Heon; Deinert, Mark R.

    2014-01-01

    Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum

  18. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri

    2011-08-01

    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  19. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  20. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  1. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  2. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  3. On melting of boron phosphide under pressure

    OpenAIRE

    Solozhenko, Vladimir; Mukhanov, V. A.

    2015-01-01

    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  4. Estimation of structural strength of 38KhN3MFA steel, melted using different methods

    International Nuclear Information System (INIS)

    Kudrya, A.V.; Mochalov, B.V.; Fadeev, Yu.I.

    1982-01-01

    Quantity of steel melted by different methods using criteria of fracture mechanics is evaluated. Three technological variants of the 38KhN3MFA steel melting: acid Martin steel prepared by the duplex-process (melt 1); the main Martin steel melting with deoxidation and alloying in a ladle by liquid alloy and treatment with synthetic slag with argon purging after production (melt 2) and its electroslag remelt - ESP process (melt 3) are investigated. The analysis of the investigated melts has revealed that crack resistances of the acid Martin steel is higher than that of other melts at practically similar standard mechanical properties with 0.35 probability at 0.05 significance level in the low-tempered state; in the tempered state the best crack resistance is observed in the ESP main Martin steel. Metal of the main Martin melting has lower crack resistance as compared with other meltings at both strength levels. The results of the work point out the necessity of applying the criteria of fracture mechanics for obtaining an objective evaluation of the steel quality

  5. Partial Evaluation of the Euclidian Algorithm

    DEFF Research Database (Denmark)

    Danvy, Olivier; Goldberg, Mayer

    1997-01-01

    -like behavior. Each of them presents a challenge for partial evaluation. The Euclidian algorithm is one of them, and in this article, we make it amenable to partial evaluation. We observe that the number of iterations in the Euclidian algorithm is bounded by a number that can be computed given either of the two...... arguments. We thus rephrase this algorithm using bounded recursion. The resulting program is better suited for automatic unfolding and thus for partial evaluation. Its specialization is efficient....

  6. Partial rectangular metric spaces and fixed point theorems.

    Science.gov (United States)

    Shukla, Satish

    2014-01-01

    The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.

  7. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  8. Partial coalescence as a tool to control sensory perception of emulsions

    NARCIS (Netherlands)

    Benjamins, J.; Vingerhoeds, M.H.; Zoet, F.D.; Hoog, de E.H.A.; Aken, van G.A.

    2009-01-01

    This study evaluates the role of partial coalescence of whey protein-stabilized emulsions on sensory perception. The selection of fats was restricted to vegetable fats that are essentially melted at oral temperatures. The sensitivity to partial coalescence was controlled by a variation in the fat

  9. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  10. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T

    2015-01-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  11. Radiation balances of melting snow covers at an open site in the Central Sierra Nevada, California

    International Nuclear Information System (INIS)

    Aguado, E.

    1985-01-01

    The radiation balances of melting snow packs for three seasons at an open site at the Central Sierra Snow Laboratory near Soda Springs, California were examined. The snow covers were examples of below-normal, near-normal and much-above-normal water equivalents. Two of the snow covers melted under generally clear skies in late spring while the other melted under cloudier conditions and at a time when less extraterrestrial radiation was available. Moreover, the snow covers were of very different densities, thereby allowing examination of a possible relationship between that characteristic and albedo. No such relationship was observed. Despite the dissimilarities in the conditions under which melt occurred, the disposition of solar radiation was similar for the three melt seasons. Albedos and their rates of decline through the melt season were similar for the three seasons. Absorbed solar radiation and a cloudiness index were useful predictors for daily net radiation, accounting for 71% of the total variance. (author)

  12. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  13. Supercoil Formation During DNA Melting

    Science.gov (United States)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  14. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Divya, V.D., E-mail: dv272@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Moreno, R.; Messé, O.M.D.M.; Barnard, J.S. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Baker, S.; Illston, T. [Materials Solutions, Unit 8, Great Western Business Park, McKenzie Way, Worcester WR4 9GN (United Kingdom); Stone, H.J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-04-15

    The selective laser melting of high temperature alloys is of great interest to the aerospace industry as it offers the prospect of producing more complex geometries than can be achieved with other manufacturing methods. In this study, the microstructure of the nickel-based superalloy, CM247LC, has been characterised following selective laser melting and after a post deposition heat treatment below the γ′ solvus temperature. In the as-deposited state, scanning electron microscopy with electron backscatter diffraction revealed a fine, cellular microstructure with preferential alignment of 〈001〉 along the build direction. A high dislocation density was seen at the periphery of the cells, indicating substantial localised deformation of the material. Fine primary MC carbides were also observed in the inter-cellular regions. High-resolution transmission electron microscopy identified the occurrence of very fine γ′ precipitates, approximately 5 nm in diameter, dispersed within the gamma phase. After heat treatment, the elongated cell colonies were observed to partially coalesce, accompanied by a decrease in dislocation density, producing columnar grains along the build direction. Cuboidal γ′ precipitates approximately 500 nm in diameter were observed to form in the recrystallised grains, accompanied by larger γ′ precipitates on the grain boundaries.

  15. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment

    International Nuclear Information System (INIS)

    Divya, V.D.; Muñoz-Moreno, R.; Messé, O.M.D.M.; Barnard, J.S.; Baker, S.; Illston, T.; Stone, H.J.

    2016-01-01

    The selective laser melting of high temperature alloys is of great interest to the aerospace industry as it offers the prospect of producing more complex geometries than can be achieved with other manufacturing methods. In this study, the microstructure of the nickel-based superalloy, CM247LC, has been characterised following selective laser melting and after a post deposition heat treatment below the γ′ solvus temperature. In the as-deposited state, scanning electron microscopy with electron backscatter diffraction revealed a fine, cellular microstructure with preferential alignment of 〈001〉 along the build direction. A high dislocation density was seen at the periphery of the cells, indicating substantial localised deformation of the material. Fine primary MC carbides were also observed in the inter-cellular regions. High-resolution transmission electron microscopy identified the occurrence of very fine γ′ precipitates, approximately 5 nm in diameter, dispersed within the gamma phase. After heat treatment, the elongated cell colonies were observed to partially coalesce, accompanied by a decrease in dislocation density, producing columnar grains along the build direction. Cuboidal γ′ precipitates approximately 500 nm in diameter were observed to form in the recrystallised grains, accompanied by larger γ′ precipitates on the grain boundaries.

  16. The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts

    Science.gov (United States)

    Dickenson, M. P.; Hess, P. C.

    1986-02-01

    melts as both (CaO+K2O)/(CaO+K2O+Al2O3) and K2O/CaO decrease. These qualitative observations imply that minerals exhibiting these exchanges will also be similarly affected as liquid composition changes.

  17. Formal treatment of some low-temperature properties of melting solid helium-3

    International Nuclear Information System (INIS)

    Goldstein, L.

    1979-01-01

    Recent observations of the low-field-strength paramagnetic susceptibility of melting solid 3 He indicate its Curie--Weiss-type behavior at temperatures T> or approx. =5 mK. These require an identical temperature behavior of the magnetic melting-pressure shift over the same temperature range. Melting-pressure-shift measurements should thus independently confirm the observed temperature behavior of the susceptibility and yield, in addition, the curie constant of melting solid 3 He. Using the theoretical value of this constant in the low- or moderate-field-strength melting-pressure-shift formula, the calculated shifts appear to be currently accessible to measurements with acceptable accuracy at T> or approx. =5 mK. The inverse problem of determination of the paramagnetic moment or magnetization of melting solid 3 He from melting-pressure shifts may be solved on the basis of a differential magnetothermodynamic relation without significant limitations on the applied external magnetic field strength or on the temperature range. Helium-3 melting-pressure and temperature measurements in the presence of a constant and uniform magnetic field of known strength should enable, within the above formalism, the determination of the magnetic phase diagram of solid 3 He at melting down to the lowest experimentally accessible temperatures. This approach may supplement other independent methods of magnetic phase-boundary-line determinations of solid 3 He

  18. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  19. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    The melting of butane and hexane monolayers adsorbed on a graphite basal-plane surface has been studied by molecular-dynamics simulations and experimentally by neutron diffraction. The simulation results are qualitatively consistent with the observed diffraction patterns and suggest a general...

  20. Melting-curve extrema from a repulsive ''step'' potential

    International Nuclear Information System (INIS)

    Young, D.A.; Alder, B.J.

    1977-01-01

    Molecular dynamics calculations in two dimensions for particles interacting with a repulsive ''step'' potential show melting-curve maxima and minima as well as solid-solid phase transitions. These features are similar to those observed in the phase diagram of cesium and cerium

  1. Grain-boundary melting: A Monte Carlo study

    DEFF Research Database (Denmark)

    Besold, Gerhard; Mouritsen, Ole G.

    1994-01-01

    Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...... when the temperature approaches T(m) from below. Monte Carlo data over an extended temperature range indicate a logarithmic divergence w(T) approximately - ln(T(m)-T) of the width of the disordered layer w, in agreement with mean-field theory....

  2. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  3. Preparation and melting of uranium from U3O8

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Choi, In-Kyu; Cho, Soo-Haeng; Jeong, Sang-Mun; Seo, Chung-Seok

    2008-01-01

    In this paper, we report on the preparation and melting of uranium in association with a spent nuclear fuel conditioning process. U 3 O 8 powder was electrochemically reduced in a mixture of molten LiCl-Li 2 O (∼3 wt.% of Li 2 O in LiCl) at 650 deg. C resulting in the formation of uranium and Li 2 O with a yield of >99%. When the powder of uranium with a residual LiCl-Li 2 O salt was heated in order to melt the metal, the uranium oxidation to UO 2 due to the reaction with Li 2 O was observed. We were able to synthesize FeU 6 by using a Fe based cathode during the U 3 O 8 reduction procedure. FeU 6 could be melted to below the temperatures where the oxidation of uranium by Li 2 O occurred. The idea of compound formation and melting is applicable to the melting and casting of a spent nuclear fuel which contains oxidative residual salts due to its conditioning in a molten salt

  4. Microstructure analysis of magnesium alloy melted by laser irradiation

    International Nuclear Information System (INIS)

    Liu, S.Y.; Hu, J.D.; Yang, Y.; Guo, Z.X.; Wang, H.Y.

    2005-01-01

    The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg 17 Al 12 and α-Mg as well as some phases unidentified

  5. The thermodynamic activity of ZnO in silicate melts

    Science.gov (United States)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  6. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír

    2014-01-01

    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_02_111.pdf

  7. Deep crustal melt plumbing of Bárðarbunga volcano, Iceland

    Science.gov (United States)

    Hudson, T. S.; White, R. S.; Greenfield, T.; Ágústsdóttir, T.; Brisbourne, A.; Green, R. G.

    2017-09-01

    Understanding magmatic plumbing within the Earth's crust is important for understanding volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga volcano, Iceland, over a 4 year period encompassing the largest Icelandic eruption in 230 years. Microseismicity extends through the usually ductile region of the Earth's crust, from 7 to 22 km depth in a subvertical column. Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent with the deep (>7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The seismically inferred melt path from the mantle source is offset laterally from the center of the Bárðarbunga caldera by 12 km, rather than lying directly beneath it. It is likely that an aseismic melt feed also exists directly beneath the caldera and is aseismic due to elevated temperatures and pervasive partial melt under the caldera.

  8. Holographic measurement of distortion during laser melting: Additive distortion from overlapping pulses

    Science.gov (United States)

    Haglund, Peter; Frostevarg, Jan; Powell, John; Eriksson, Ingemar; Kaplan, Alexander F. H.

    2018-03-01

    Laser - material interactions such as welding, heat treatment and thermal bending generate thermal gradients which give rise to thermal stresses and strains which often result in a permanent distortion of the heated object. This paper investigates the thermal distortion response which results from pulsed laser surface melting of a stainless steel sheet. Pulsed holography has been used to accurately monitor, in real time, the out-of-plane distortion of stainless steel samples melted on one face by with both single and multiple laser pulses. It has been shown that surface melting by additional laser pulses increases the out of plane distortion of the sample without significantly increasing the melt depth. The distortion differences between the primary pulse and subsequent pulses has also been analysed for fully and partially overlapping laser pulses.

  9. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting

    Science.gov (United States)

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.

    2009-03-01

    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  10. Lithosphere erosion and continental breakup : Interaction of extension, plume upwelling and melting

    NARCIS (Netherlands)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-01-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by

  11. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    Science.gov (United States)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the differential collapse of the crater walls during the modification stage, and b) the amount of relative melt volume retained in different parts of the crater floor. These observations provide important documentation of the morphological diversity and better understanding of the emplacement and final distribution of impact melt deposits.

  12. Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains

    International Nuclear Information System (INIS)

    Bishop, M.; Ceperley, D.; Frisch, H.L.; Kalos, M.H.

    1982-01-01

    We report additional results on a simple model of polymers, namely the diffusion in concentrated polymer systems and the static properties of one long chain in a dilute melt of shorter chains. It is found, for the polymer sizes and time scales amenable to our computer calculations, that there is as yet no evidence for a ''reptation'' regime in a melt. There is some indication of reptation in the case of a single chain moving through fixed obstacles. No statistically significant effect of the change, from excluded volume behavior of the long chain to ideal behavior as the shorter chains grow, is observed

  13. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  14. String-like cooperative motion in homogeneous melting.

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  15. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    Science.gov (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  16. Effect of Zr Purity and Oxygen Content on the Structure and Mechanical Properties of Melt-Spun and Suction-Cast Cu46Zr42Al7Y5 Alloy

    Directory of Open Access Journals (Sweden)

    Kozieł T.

    2016-06-01

    Full Text Available The effect of oxygen content in zirconium on the structure and mechanical properties of the Cu46Zr42Al7Y5 alloy, in the form of melt-spun ribbons and suction-cast rods, was investigated. Two types of Zr, rod and crystal bar of different nominal purities and oxygen contents, were used to synthesize the alloy by arc melting. Rapidly solidified ribbons were produced by melt spinning and their amorphous structures were confirmed by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Bulk samples in the form of rods were cast using a special water-cooled suction casting unit attached to the arc melting system. XRD and DSC studies proved the amorphous structure of the bulk alloy synthesized from low-oxygen Zr and partial crystallization of the same alloy for high-oxygen Zr. In both bulk samples, uniformly distributed crystalline particles were identified as yttrium oxides. Higher mean compressive strength of amorphous alloy was observed. The hardness of amorphous phase was close to 500 HV1 in both bulk alloys, while the hardness of crystalline dendritic areas, observed in the alloy synthesized from high oxygen Zr, was lower by about 50 HV1.

  17. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    containing 90.5 - 92.0 mole % forsterite). The rocks which were subjected to significant decrease of mg# of silicates (down to 84) may be difficult to distinguish from cumulates. However, since the alkaline basaltic melts do not precipitate orthopyroxene under lithospheric pressures, their mineral composition is different than that of mantle harzburgites. Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358: 635-641. Tursack E, Liang Y (2012) A comparative study of melt-rock reactions in the mantle: laboratory dissolution experiments and geological field observations. Contributions to Mineralogy and Petrology 163: 861-876

  18. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  19. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: Evidence from mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J. M.; Barczus, H.

    2003-04-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 (2

  20. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: A petrological and microstructural study of mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, A.; Godard, M.

    2002-12-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2

  1. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  2. Successful removable partial dentures.

    Science.gov (United States)

    Lynch, Christopher D

    2012-03-01

    Removable partial dentures (RPDs) remain a mainstay of prosthodontic care for partially dentate patients. Appropriately designed, they can restore masticatory efficiency, improve aesthetics and speech, and help secure overall oral health. However, challenges remain in providing such treatments, including maintaining adequate plaque control, achieving adequate retention, and facilitating patient tolerance. The aim of this paper is to review the successful provision of RPDs. Removable partial dentures are a successful form of treatment for replacing missing teeth, and can be successfully provided with appropriate design and fabrication concepts in mind.

  3. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  4. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    Science.gov (United States)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  5. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  6. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  7. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  8. Partial knee replacement - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  9. Study of melt produced bodies observed at Henbury crater region

    International Nuclear Information System (INIS)

    Hopper, V.D.; Sewell, D.K.B.; Aitken, D.K.

    1989-01-01

    Spherical and non spherical bodies derived from target rock and meteorite components have been found in samples of soil in the Henbury crater region. From a study of the composition of these bodies, the compositions of the meteorite and the target rock, it has been possible to separate the bodies into three groups showing differing degrees of volatilization of various oxides. The composition of a number of the soil samples were measured using X-ray fluorescence. A selected number were then examined by a scanning electron microscope fitted with an energy dispersive X-ray analyzer. Where Ni was definitely identified, it was examined by an electron microprobe X-ray analyzer. A major finding was the depletion of SiO 2 in the production of both Group 1 and Group 3 bodies. Group 3 bodies are not volatilized to the same extent as Group 1. With no reference to the target rock , the general order of volatility appears to be Na 2 O>MgO>K 2 O>TiO 2 , SiO 2 and Al 2 O 3 , the significant change being the place of SiO2. 13 refs., 7 figs., 5 tabs

  10. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste, E-mail: sagui@ncsu.edu; Roland, Christopher, E-mail: cmroland@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

    2016-04-14

    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′){sub 2} sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.

  11. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse

    International Nuclear Information System (INIS)

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste; Roland, Christopher

    2016-01-01

    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′) 2 sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.

  12. Structure and dynamics of a silica melt in neutral confinement

    Science.gov (United States)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2017-04-01

    We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.

  13. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  14. The effect of polycrystalline rod insertion in a low Prandtl number melt for continuous Czochralski system

    Science.gov (United States)

    Nam, Phil-Ouk; Son, Seung-Suk; Yi, Kyung-Woo

    2010-04-01

    The increased wafer size results in greater instabilities and complexities within the silicon melt, and melt flow control through the application of magnetic fields is not adequate to stabilize the melt. Therefore, continuous Czochralski systems are being studied as a solution to these issues, with higher productivity and no change in size. The purpose of this study is to observe the effects of polycrystalline rod insertion on the melt for a continuous Czochralski system. In order to observe flow patterns within the melt both broadly and specifically, we employ experimentation on a model system in tandem with numerical simulation. The rod insertion do not significantly affect near the crystal edge. In the melt height from 0.14 to 0.09 m, an asymmetric temperature distributions arise when the crystal rotation is counterclockwise direction (-15 rpm) and the crucible rotation is clockwise direction (3 rpm). The axis-symmetrical temperature distribution is formed at lower melt heights (0.08 and 0.07 m). When the melt height is 0.07 m, the axis-symmetric temperature distribution is maintained even after the rod insertion.

  15. SAXS study of transient pre-melting in chain-folded alkanes

    International Nuclear Information System (INIS)

    Ungar, G.; Wills, H.H.

    1990-01-01

    A pronounced pre-melting effect is observed in chain-folded crystals of pure monodisperse n-alkane C 246 H 494 . The effect is reversible on a short time scale, but at longer times the once-folded chain crystals are irreversibly lost as slow chain extension proceeds by solid diffusion well below the melting point. The melting process is thus monitored by rapid time-resolved small-angle X-ray (SAXS) measurements, using synchrotron radiation. The results show that the observed pronounced broadening of the DSC melting endotherm for chain-folded crystals is entirely due to genuine pre-melting of lamellar surfaces. Although a significant portion of material is already molten below the final melting point of chain-folded crystals T F , no recrystallization in the chain-extended form can occur until the cores of the crystalline lamellae melt at T F . Pre-melting of extended chain crystals is significantly less pronounced than that of folded chain crystals

  16. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  17. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    Science.gov (United States)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound

  18. Melt extraction during heating and cooling of felsic crystal mushes in shallow volcanic systems: An experimental study

    Science.gov (United States)

    Pistone, M.; Baumgartner, L. P.; Sisson, T. W.; Bloch, E. M.

    2017-12-01

    The dynamics and kinetics of melt extraction in near-solidus, rheologically stalled, felsic crystal mushes (> 50 vol.% crystals) are essential to feeding many volcanic eruptions. At shallow depths (volatile-saturated and may be thermally stable for long time periods (104-107 years). In absence of deformation, residual melt can segregate from the mush's crystalline framework stimulated by: 1) gas injecting from hot mafic magmas into felsic mushes (heating / partial melting scenario), and 2) gas exsolving from the crystallizing mush (cooling / crystallizing scenario). The conditions and efficiency of melt extraction from a mush in the two scenarios are not well understood. Thus, we conducted high-temperature (700 to 850 °C) and -pressure (1.1 kbar) cold seal experiments (8-day duration) on synthetic felsic mushes, composed of water-saturated (4.2 wt.%) rhyodacite melt bearing different proportions of added quartz crystals (60, 70, and 80 vol%; 68 mm average particle size). High-spatial resolution X-ray tomography of run products show: 1) in the heating scenario (> 750 °C) melt has not segregated due to coalescence of vesicles (≤ 23 vol%) and large melt connectivity (> 7 vol% glass) / low pressure gradient for melt movement up to 80 vol% crystals; 2) in the cooling scenario (≤ 750 °C) vesicle (< 11 vol%) coalescence is limited or absent and limited amount of melt (3 to 11 vol%) segregated from sample center to its outer periphery (30 to 100 mm melt-rich lenses), testifying to the efficiency of melt extraction dictated by increasing crystallinity. These results suggest that silicic melt hosted within a crystal-rich mush can accumulate rapidly due to the buildup of modest gas pressures during crystallization at temperatures near the solidus.

  19. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  20. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    International Nuclear Information System (INIS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-01-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  1. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low ( 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  2. Calculation of melting points of oxides

    International Nuclear Information System (INIS)

    Bobkova, O.S.; Voskobojnikov, V.G.; Kozin, A.I.

    1975-01-01

    The correlation between the melting point and thermodynamic parameters characterizing the strength of oxides and compounds is given. Such thermodynamic paramters include the energy and antropy of atomization

  3. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  4. Paleomagnetic evidence for a partially differentiated H chondrite parent planetesimal

    Science.gov (United States)

    Bryson, J. F. J.; Weiss, B. P.; Scholl, A.; Getzin, B. L.; Abrahams, J. N. H.; Nimmo, F.

    2016-12-01

    The texture, composition and ages of chondrites have all been used to argue that the parent bodies of these meteorites did not undergo planetary differentiation. Without a core, these planetesimals could not have generated planetary magnetic fields, hence chondrites are predicted to be unmagnetized. Here, we test this hypothesis by applying synchrotron x-ray microscopy to the metallic melt veins in the metamorphosed H chondrite breccia Portales Valley. We find that tetrataenite nanostructures in these veins are uniformly magnetized, suggesting that the H chondrite parent body generated a stable, 10 µT ancient field. We also performed alternating field (AF) demagnetization on bulk silicate-rich portions of Portales Valley, finding that both the large grain size of the metal in these subsamples and the presence of tetrataenite hinder the reliable interpretation of these measurements. Based on 40Ar/39Ar dating and the metallographic cooling rate, we propose that this field inferred from x-ray microscopy was generated 100 Myr after solar system formation and lasted >5 Myr. These properties are consistent with a dynamo field generated by core solidification, implying that the H chondrite parent body was partially differentiated. This conclusion is supported by our analyses of the H4 chondrite Forest Vale, which show that H chondrite magnetization is unlikely to be a relic signature of early nebular or solar wind fields (Getzin et al., this meeting; Oran et al., this meeting). We propose that partial differentiation could result form prolonged accretion over millions of years, possibly in two stages. In this scenario, the earliest accreted material melted from the radioactive decay of abundant 26Al, forming a core and rocky achondritic mantle, while the later accreted material was less metamorphosed, forming an undifferentiated crust. We demonstrate that, with the inclusion of an insulating regolith, the thermal evolution of such a body is consistent with the measured

  5. High porosity harzburgite and dunite channels for the transport of compositionally heterogeneous melts in the mantle: II. Geochemical consequences

    Science.gov (United States)

    Liang, Y.; Schiemenz, A.; Xia, Y.; Parmentier, E.

    2009-12-01

    channel drives part of the channel melt in the upper part of the dunite channel into the surrounding harzburgite, providing a physical mechanism for shallow level re-fertilization or mantle metasomatism. The presence of compacting waves in and around a dunite-harzburgite channel system further complicates the melt flow field and provides new mechanisms for melt-peridotite interaction in the mantle. In the presence of chemical heterogeneity, the assumption of local equilibrium between the melt and its surrounding crystals results in significant chromatographic fractionation for incompatible trace elements in the melt percolating in region (d), and moderate fractionation for melt flowing through the harzburgite channel. Chemical disequilibrium between the melt and crystals reduces the extent of chromatographic fractionation during melt percolation and may be needed to explain the observed geochemical data. Alternatively, compositionally heterogeneous melts may be extracted through the high porosity melt channels without interaction with the peridotite matrix. [1] Schiemenz et al. submitted to AGU Fall meeting, 2009.

  6. Partial scram incident in FBTR

    International Nuclear Information System (INIS)

    Usha, S.; Pillai, C.P.; Muralikrishna, G.

    1989-01-01

    Evaluation of a partial scram incident occurred at the Fast Breeder Test Reactor at Kalpakkam was carried out. Based on the observations of the experiments it was ascertained that the nonpersistant order was due to superimposed noise component on the channel that was close to the threshold and had resulted in intermittent supply to electro-magnetic (EM) coils. Owing to a larger discharge time and a smaller charge time, the EM coils got progressively discharged. It was confirmed that during the incident, partial scram took place since the charging and discharging patterns of the EM coils are dissimilar and EM coils of rods A, E and F had discharged faster than others for noise component of a particular duty cycle. However, nonlatching of scram order was because of the fact that noise pulse duration was less than latching time. (author)

  7. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    International Nuclear Information System (INIS)

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang

    2016-01-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  8. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  9. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  10. Experimental study of simulant melt stream-water thermal interaction in pool and narrow geometries

    International Nuclear Information System (INIS)

    Narayanan, K.S.; Jasmin Sudha, A.; Murthy, S.S.; Rao, E.H.V.M.; Lydia, G.; Das, S.K.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Small scale experiments were carried out to investigate the thermal interaction characteristics of a few kilograms of Sn Pb, Bi and Zn as hot melt, in the film boiling region of water in an attempt to simulate a coherent fuel coolant interaction during a postulated severe accident in a nuclear reactor. Melt stream solidification and detached debris generation were studied with different melt superheat up to 200 deg. C, at different coolant temperatures of 30 deg. C, 50 deg. C, 70 deg. C, 90 deg. C, in pool geometry and in long narrow coolant column. The material was heated in an Alumina crucible and poured through a hot stainless steel funnel with a nozzle diameter of 7.7 mm, into the coolant. A stainless steel plate was used to collect the solidified mass after the interaction. Temperature monitoring was done in the coolant column close to the melt stream. The melt stream movement inside the coolant was imaged using a video camera at 25 fps. Measured melt stream entry velocity was around 1.5 m/sec. For low melt superheat and low coolant temperature, solidified porous tree like structure extended from the collector plate up to the melt release point. For water temperature of 70 deg. C, the solidified bed height at the center was found to decrease with increase in the melt superheat up to 150 deg. C. Fragmentation was found to occur when the melt superheat exceeded 200 deg. C. Particle size distribution was obtained for the fragmented debris. In 1D geometry, with 50 deg. C superheat, columnar solidification was observed with no fine debris. The paper gives the details of the results obtained in the experiments and highlights the role of Rayleigh-Taylor, Kelvin-Helmholtz instabilities and the melt physical properties on the fragmentation kinetics. (authors)

  11. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  12. High-pressure melting curve of KCl: Evidence against lattice-instability theories of melting

    International Nuclear Information System (INIS)

    Ross, M.; Wolf, G.

    1986-01-01

    We show that the large curvature in the T-P melting curve of KCl is the result of a reordering of the liquid to a more densely packed arrangement. As a result theories of melting, such as the instability model, which do not take into account the structure of the liquid fail to predict the correct pressure dependence of the melting curve

  13. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand

    2015-05-01

    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  14. Uni-axial Elongational Viscosity of Linear and Branched polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    About 40 years ago interest in the measurement of elongational viscosity of polymer melts started to grow. Here we present measurements of transient (and steady) uni-axial elongational viscosity, using the FSR, of the following melts: Four narrow MMD polystyrene (PS) samples with weight......-average molar mass Mw in the range of 50k to 390k. Three different bi-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements.The measurements on the bi-disperse PS...... melts have demonstrated that both the transient and steady elongational viscosity is quite sensitive to polydispersity. Bi-disperse PS resembles the behaviour of mono-disperse melts only at elongational rates larger then the inverse of maximal time constant of the smallest molecule. As observed in Boger...

  15. The study of some physico-chemical properties of melt KCl - NaCl mixture

    Directory of Open Access Journals (Sweden)

    Vojtech Špeťuch

    2013-03-01

    Full Text Available The aim of this paper was to examine the surface tension of the melt mixture of salts NaCl and KCl at temperatures 750, 800 and 850 °C by maximum bubble pressure method. Some difference between measured values of the surface tension as dependence on the method of calculation was observed. This difference results from the diameter of used capillary and does not depend on the temperature. The differences between experimentally measured values of surface tension and literary sources are trivial. The experimental results are in accordance with the literature data confirming unsuitability of maximum bubble pressure method for measurement of the melt density. The experimental result will be used as a base for the study of melt salts ternary systems. On the other side maximum bubble pressure method is the most suitable method for measurement of surface tension of melt salts, but it is unsuitable for measurement of the melt density.

  16. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  17. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  18. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2016-12-15

    The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.

  19. Conjunctival-corneal melt in association with carotid artery stenosis

    Directory of Open Access Journals (Sweden)

    Rosalind MK Stewart

    2008-10-01

    Full Text Available Rosalind MK Stewart1, Say Aun Quah1, Dan Q Nguyen2, Stephen B Kaye11Royal Liverpool University Hospital, Liverpool, UK; 2Bristol Eye Hospital, Bristol, UKPurpose: To report a case of severe conjunctival-corneal melt in association with carotid artery stenosis.Methods: Observational case report.Results: A 76-year-old man with a history of bilateral severe carotid artery occlusion and nonarteritic ischemic optic neuropathy developed a spontaneous bulbar conjunctival defect. Despite intensive lubrication, and attempts at surgical closure including an amniotic membrane patch graft, it progressed with subsequent adjacent corneal perforation. Thorough investigations revealed no underlying disease, except markedly delayed episcleral vessel filling on anterior segment fluorescein angiography.Conclusions: Neovascularisation is a known factor in the inhibition of ulceration. In light of the findings in this report, ocular ischemia should be considered as a cause or contributing factor in the differential diagnosis of conjunctival-corneal melt.Keywords: conjunctival melt, corneal melt, ocular ischemia, carotid artery stenosis

  20. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Science.gov (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  1. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  2. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  3. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  4. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  5. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations

  6. Criteria for the spreading of oxide melts: Test series miniKATS-1 to -5

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Massier, H.; Schuetz, W.; Stegmaier, U.; Stern, G.

    2001-09-01

    In a long series of larger spreading tests with high temperature oxide melts (KATS tests) many parameters have been varied which are influencing the spreading behaviour (viscosity, pouring rate, substratum of spreading surface, presence of water). In spite of an extensive instrumentation using different thermocouples, an infrared camera and several video cameras, only in very few cases the behaviour of the melt front at the very moment of immobilization could be detected in detail. Therefore in the additional miniKATS series five small scale (5 kg) spreading tests with oxide melts have been conducted to investigate the mechanical properties of the spreading front in the moment of immobilization. It turned out that in all cases the bulk of the melt at this moment was still liquid at a temperature close to the initial one. Depending on the initial melt properties two distinct phenomena have been observed which control the immobilization of the melt: the first phenomena is the crust formation at the surface, the crusts at the bottom combined with the crust at the surface of the melt. In the other case the whole melt front was still above the liquid temperature at the moment of immobilization. Here the surface tension was controlling the spreading, it was in balance with the driving gravitational force. In none of the test bulk freezing has been detected. (orig.)

  7. Compositions of melts for growth of functional single crystals of complex oxides and other compounds

    Science.gov (United States)

    Soboleva, L. V.

    2008-12-01

    The melt compositions ( M c) are calculated for growing crystals with valuable physical properties. The calculation is based on the compositions of the invariant points of the liquidus curves for 33 congruently and 12 incongruently melting solid phases of 42 fusibility diagrams of binary systems. These systems include Na, Ca, Ba, Mg, and Y aluminates; Bi and Pb germanates; Li, K, Ba, and Bi borates; Ba, Fe, Sr, and Bi titanates; Li, K, Cs, Ba, Zn, Ca niobates; Li, Pb, and Gd molibdates; Pb and Nd tungstates; etc. More than 60 studies with data on the experimentally found melt compositions ( M e) for growing the noted crystals are analyzed. It is shown that the melt compositions M c and M e for growth of congruently and incongruently melting crystals are similar. Large-size stoichiometric crystals of high optical quality are grown using these melt compositions. Nonstoichiometric crystals of low structural quality are grown from melt compositions either corresponding to the stoichiometric ratio of the components ( M s) or similar to the compositions at invariant points ( M i). In these cases, a large difference is observed between the melt compositions M c, M s, and M e.

  8. Optimization of partial search

    International Nuclear Information System (INIS)

    Korepin, Vladimir E

    2005-01-01

    A quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster; this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by the number of queries to the oracle. The author suggests a new version of the Grover-Radhakrishnan algorithm which uses a minimal number of such queries. The algorithm can run on the same hardware that is used for the usual Grover algorithm. (letter to the editor)

  9. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.

    2006-01-01

    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  10. ELM-induced transient tungsten melting in the JET divertor

    Science.gov (United States)

    Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA

    2015-02-01

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of IP = 3.0 MA/BT = 2.9 T H-mode pulses with an input power of PIN = 23 MW, a stored energy of ˜6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ˜ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ˜1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ˜ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (˜80 µm) were released. Almost 1 mm (˜6 mm3) of W was moved by ˜150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j × B forces. The evaporation rate determined

  11. ELM-induced transient tungsten melting in the JET divertor

    International Nuclear Information System (INIS)

    Coenen, J.W.; Clever, M.; Knaup, M.; Arnoux, G.; Matthews, G.F.; Balboa, I.; Meigs, A.; Bazylev, B.; Autricque, A.; Dejarnac, R.; Horacek, J.; Komm, M.; Coffey, I.; Corre, Y.; Gauthier, E.; Devaux, S.; Krieger, K.; Frassinetti, L.; Jachmich, S.; Marsen, S.

    2015-01-01

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I P  = 3.0 MA/B T  = 2.9 T H-mode pulses with an input power of P IN  = 23 MW, a stored energy of ∼6 MJ and regular type I ELMs at ΔW ELM  = 0.3 MJ and f ELM  ∼ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ∼1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ∼ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957–64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (∼80 µm) were released. Almost 1 mm (∼6 mm 3 ) of W was moved by ∼150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j

  12. Building optimal regression tree by ant colony system-genetic algorithm: Application to modeling of melting points

    Energy Technology Data Exchange (ETDEWEB)

    Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.

  13. Medium-scale melt-sodium fragmentation experiments

    International Nuclear Information System (INIS)

    Chu, T.Y.; Beattie, A.G.; Drotning, W.D.; Powers, D.A.

    1979-01-01

    The results of a series of fragmentation experiments involving up to 20 Kg of thermitically produced high temperature melts and 23 Kg of sodium are presented. Except for one experiment where some centimeter size particles are observed, the fragment distributions seem to be in the range of previous data. Spatial distribution of the fragments in the debris bed appears to be stratified. Scanning electron micrographs of fragments indicate fragmentation to be occurring in the molten state for the more intense interactions observed. Interaction data obtained show quiescent periods of 0.5 to 1.5 second between pressure pulses. The force impulse values per unit mass of melt seems to be in the same range as previous experiments

  14. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  15. Mobility of partially molten crust, heat and mass transfer, and the stabilization of continents

    Science.gov (United States)

    Teyssier, Christian; Whitney, Donna L.; Rey, Patrice F.

    2017-04-01

    The core of orogens typically consists of migmatite terrains and associated crustal-derived granite bodies (typically leucogranite) that represent former partially molten crust. Metamorphic investigations indicate that migmatites crystallize at low pressure (cordierite stability) but also contain inclusions of refractory material (mafic, aluminous) that preserve evidence of crystallization at high pressure (HP), including HP granulite and eclogite (1.0-1.5 GPa), and in some cases ultrahigh pressure (2.5-3.0 GPa) when the continental crust was subducted (i.e. Norwegian Caledonides). These observations indicate that the partially molten crust originates in the deep crust or at mantle depths, traverses the entire orogenic crust, and crystallizes at shallow depth, in some cases at the near-surface ( 2 km depth) based on low-T thermochronology. Metamorphic assemblages generally show that this nearly isothermal decompression is rapid based on disequilibrium textures (symplectites). Therefore, the mobility of partially molten crust results in one of the most significant heat and mass transfer mechanisms in orogens. Field relations also indicate that emplacement of partially molten crust is the youngest major event in orogeny, and tectonic activity essentially ceases after the partially molten crust is exhumed. This suggests that flow and emplacement of partially molten crust stabilize the orogenic crust and signal the end of orogeny. Numerical modeling (open source software Underworld; Moresi et al., 2007, PEPI 163) provides useful insight into the mechanisms of exhumation of partially molten crust. For example, extension of thickened crust with T-dependent viscosity shows that extension of the shallow crust initially drives the mobility of the lowest viscosity crust (T>700°C), which begins to flow in a channel toward the zone of extension. This convergent flow generates channel collision and the formation of a double-dome of foliation (two subdomes separated by a steep

  16. Auxiliary partial liver transplantation

    NARCIS (Netherlands)

    C.B. Reuvers (Cornelis Bastiaan)

    1986-01-01

    textabstractIn this thesis studies on auxiliary partial liver transplantation in the dog and the pig are reported. The motive to perform this study was the fact that patients with acute hepatic failure or end-stage chronic liver disease are often considered to form too great a risk for successful

  17. Partial Remission Definition

    DEFF Research Database (Denmark)

    Andersen, Marie Louise Max; Hougaard, Philip; Pörksen, Sven

    2014-01-01

    OBJECTIVE: To validate the partial remission (PR) definition based on insulin dose-adjusted HbA1c (IDAA1c). SUBJECTS AND METHODS: The IDAA1c was developed using data in 251 children from the European Hvidoere cohort. For validation, 129 children from a Danish cohort were followed from the onset...

  18. Fundamental partial compositeness

    DEFF Research Database (Denmark)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Unde...

  19. Partially ordered models

    NARCIS (Netherlands)

    Fernandez, R.; Deveaux, V.

    2010-01-01

    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks).

  20. Honesty in partial logic

    NARCIS (Netherlands)

    W. van der Hoek (Wiebe); J.O.M. Jaspars; E. Thijsse

    1995-01-01

    textabstractWe propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the

  1. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  2. Screened Coulomb balls-structural properties and melting behaviour

    International Nuclear Information System (INIS)

    Golubnychiy, V; Baumgartner, H; Bonitz, M; Filinov, A; Fehske, H

    2006-01-01

    Classical molecular dynamics and Monte Carlo simulations are used to investigate three-dimensional spherical charged particle clusters which were experimentally observed in dusty plasmas (Arp et al 2004 Phys. Rev. Lett. 93 165005). The shell configuration and geometry of the ground state is found to change with the screening parameter. The melting temperature of small clusters exhibits a non-monotonic dependence on the total number of particles

  3. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  4. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  5. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk

    2011-04-15

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).

  6. Phenomenological Studies on Melt-Structure-Water Interactions (MSWI) during Postulated Severe Accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Park, H.S.; Giri, A.; Karbojian, A.; Jasiulevicius, A.; Hansson, R.C.; Chikkanagoudar, U.; Shiferaw, D.; Stepanyan, A.

    2004-01-01

    This is the annual report for the work performed in year 2003 in the research project 'Melt-Structure-Water Interactions (MSWI) During Severe Accidents in LWRs', under the auspices of the APRI Project, jointly funded by SKI, HSK, and the Swedish and Finnish power companies. The emphasis of the work was placed on phenomena and parameters, which govern the droplet fragmentation in steam explosions, in-vessel and ex-vessel melt/debris coolability, melt pool convection, and the thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Most research projects in 2002, such as the COMECO, POMECO and MISTEE programs, were continued. An analysis of the FOREVER experiments using the RELAP code to investigate the melt coolability, bubble dynamics and bubble stability to investigate the dynamic behavior of vapor bubble during steam explosions and associated melt fragmentation, quenching boiling experiment to investigate the thermal behavior of single melt droplet were newly initiated. The SIMECO experiment to investigate the three-layer melt pool convection was restarted. The experimental facilities for these projects were fully functional during year 2003. Many of the investigations performed during the course of the MSWI project have produced papers, which have been published in the proceedings of technical meetings and Journals. Significant technical advances were achieved during the course of these studies. These were: A series of experiments on single drop steam explosions was performed to investigate the fine fragmentation process of a metallic melt drop in various thermal conditions. For the first time, transient fine fragmentation process of a melt drop during explosion phase of a steam explosion was visualized continuously and quantified. Different triggering behavior with respect to the coolant subcooling was observed. The analyses on bubble dynamics during a single drop steam explosion and vapor bubble stability estimated the dynamic

  7. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  8. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  9. Microstructure of selective laser melted nickel–titanium

    International Nuclear Information System (INIS)

    Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; Wild, Michael de

    2014-01-01

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution

  10. Effects of Melt Processing on Evolution of Structure in PEEK

    Science.gov (United States)

    Georgiev, Georgi; Dai, Patrick Shuanghua; Oyebode, Elizabeth; Cebe, Peggy; Capel, Malcolm

    1999-01-01

    treatment scheme involving annealing/crystallization at T(sub a1) followed by annealing at T(sub a2) where either T(sub a1) T(sub a2). We proposed a model to explain multiple melting endotherms in PPS, treated according to one or two-stage melt or cold crystallization. Key features of this model are that multiple endotherms: (1) are due to reorganization/recrystallization after cold crystallization; and, (2) are dominated by crystal morphology after melt crystallization at high T. In other words, multiple distinct crystal populations are formed by the latter treatment, leading to observation of multiple melting. PEEK 45OG pellets (ICI Americas) were the starting material for this study. Films were compression molded at 400 C, then quenched to ice water. Samples were heated to 375 C in a Mettler FP80 hot stage and held for three min. to erase crystal seeds before cooling them to T(sub a1) = 280 C . Samples were held at T(sub a2) for a period of time, then immediately heated to 360 C. In the second treatment samples were held at T(sub a1) = 31 C for different crystallization times t(sub c) then cooled to 295 C and held 15 min. In situ (SAXS) experiments were performed at the Brookhaven National Synchrotron Light Source with the sample located inside the Mettler hot stage. The system was equipped with a two-dimensional position sensitive detector. The sample to detector distance was 172.7 cm and the X-ray wavelength was 1.54 Angstroms. SAXS data were taken continuously during the isothermal periods and during the heating to 360 C at 5 C/min. Each SAXS scan was collected for 30 sec. Since the samples were isotropic, circular integration was used to increase the signal to noise ratio. After dual stage melt crystallization with T(sub a1) T(sub a2), the amount of space remaining for additional growth at T(sub a2) depends upon the holding time at T(sub a1). The long period of crystals formed at T(sub a2) is smaller than that formed at T(sub a1) due to growth in a now

  11. Developing a Hygrometer for Water-Undersaturated Lherzolite Melts

    Science.gov (United States)

    Guild, M. R.; Till, C. B.

    2017-12-01

    The effect of water on the composition of primitive mantle melts at arc volcanoes is a topic of wide interest and has been addressed in a number of previous experimental studies including Hirose & Kawamoto (1995), Gaetani & Grove (1998), Till et al. (2012) and Mitchell & Grove (2015). The current study builds upon the work by previous authors in an effort to develop a more robust hygrometer for primitive lherzolite melts at water-undersaturated conditions. The starting composition for this experimental study is a mixture of 75% primitive upper mantle and 25% primitive basalt (Baker et al., 1991) with a bulk H2O content of 2 wt. %. Experiments were performed at Arizona State University in the Experimental Petrology and Igneous processes Center (EPIC) from 1.2-1.6 GPa at 1150-1300 ºC for 2 days in a piston cylinder apparatus to reflect conditions relevant for arc melt equilibration (Till 2017). A double capsule design was used to prevent Fe and H2O loss with an inner Fe-presaturated Au80Pd20 capsule and an outer Au80Pd20 capsule. Run products were analyzed by electron microprobe and determined to be successful when they demonstrated 0-5% Fe-loss, olivine-melt KDs of 0.27-0.30, and minimal H2O loss. The water-undersaturated melt composition are in equilibrium with ol+opx+sp±cpx. Run products at 1.6 GPa do not contain cpx in the mineral assemblage over the studied temperature range. Observed melt compositions have SiO2 contents of 48-49 wt. % at 1.2 GPa and 46-49 wt.% at 1.6 GPa. Our experimental results suggest an enhanced effect of water on increasing the SiO2 content of the melt compared to previous studies on systems with similar water contents and anhydrous systems. Baker, et al., JGR 96, 21819-21842 (1991). Gaetani & Grove, CMP 131, 323-346 (1998). Hirose & Kawamoto, EPSL 133, 463-473 (1995). Mitchell & Grove, CMP 170, 13 (2015). Till, Am. Mineral, 102, 931-947 (2017). Till, et al., JGR 117 (2012).

  12. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  13. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  14. The effect of coconut oil and palm oil as substituted oils to cocoa butter on chocolate bar texture and melting point

    Science.gov (United States)

    Limbardo, Rebecca Putri; Santoso, Herry; Witono, Judy Retti

    2017-05-01

    Cocoa butter has responsibility for dispersion medium to create a stable chocolate bar. Due to the economic reason, cocoa butter is partially or wholly substituted by edible oils e.g palm oil and coconut oil. The objective of the research was to observe the effect of oil substitution in the chocolate bar towards its melting point and texture. The research were divided in three steps which were preliminary research started with fat content analysis in cocoa powder, melting point analysis of substituted oils anc cocoa butter, and iodine number analysis in vegetable fats (cocoa butter, coconut oil, and palm oil), chocolate bar production with substitution 0%, 20%, 40%, 60%, 80%, and 100%wt of cocoa butter with each of substituted oils, and analysis process to determine the chocolate bar melting point with DSC and chocolate bar hardness with texture analyser. The increasement of substituted oils during substitution in chocolate bar would reduce the melting point of chocolate bar from 33.5°C to 31.6°C in palm oil substitution with cocoa butter and 33.5°C to 30.75°C in coconut oil substitution. The hardness of chocolate with palm oil were around 88.5 to 139 g on the 1st cycle and 22.75 to 132 g on the 2nd cycle. The hardness of chocolate with coconut oil were around 74.75 to 152.5 g on the 1st cycle and 53.25 to 132 g on the 2nd cycle. Maximum amount of fats substitution to produce a stable texture chocolate bar is 60% wt.

  15. Melt-processed LRE-Ba-Cu-O superconductors and prospects for their applications

    International Nuclear Information System (INIS)

    Yoo, S.I.; Fujimoto, H.; Sakai, N.; Murakami, M.

    1997-01-01

    We have recently found that control of the oxygen partial pressure (PO 2 ) during melt processing, named the oxygen-controlled melt-growth (OCMG) process, is critical for obtaining a high superconducting transition temperature (T c ) in the light rare earth (LRE)-Ba-Cu-O (LREBCO) superconductors particularly for Nd, Sm and Eu. Further, compared to a good melt-processed Y-Ba-Cu-O (YBCO) bulk superconductor, LREBCO bulks exhibit larger critical current density (J c ) in high magnetic field and a much improved irreversibility field (H irr ) at 77 K, implying that more effective flux pinning can be realized in a commercially feasible way. In this paper, properties and characteristic flux pinning of OCMG-processed LREBCO (LRE: Nd,Sm,Eu) superconductors are described on the basis of our study during the last several years. We also present the prospects for bulk-type applications, such as the magnetic bearings, flywheels and magnetically levitated (MAGLEV) trains. (orig.)

  16. Effect of tellurium on viscosity and liquid structure of GaSb melts

    Energy Technology Data Exchange (ETDEWEB)

    Ji Leilei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China); Geng Haoran [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)], E-mail: mse_genghr@ujn.edu.cn; Sun Chunjing [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Teng Xinying; Liu Yamei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)

    2008-04-03

    The behavior of GaSb melt with tellurium addition was investigated using viscometer and differential scanning calorimetry (DSC). Normally, the viscosity of all melts measured decreased with the increasing temperature. However, anomalous transition points were observed in the temperature dependence of viscosity for Ga-Sb-Te system. Corresponded with the abnormal points on the viscosity-temperature curves, there were thermal effect peaks on the DSC curves. Furthermore, viscous activation energy and flow units of these melts and their structural features were discussed in this paper.

  17. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses

    Science.gov (United States)

    Shaw, Alison M.; Behn, Mark D.; Humphris, Susan E.; Sohn, Robert A.; Gregg, Patricia M.

    2010-01-01

    We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO 2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO 2 contents in the melt inclusions extend to higher values (167-1596 ppm) than in the co-existing glasses (187-227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO 2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (˜ 4 km) and ˜ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25-40 km) and cold (1240°-1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9-20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model

  18. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  19. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  20. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  1. Technological properties and structure of titanate melts

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  2. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  3. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  4. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  5. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    Science.gov (United States)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  6. Thermal interaction of core melt debris with the TMI-2 baffle, core-former, and lower head structures

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Tolman, E.L.

    1987-09-01

    Recent inspection of the TMI-2 core-former baffle walls (vertical), former plates (horizontal), and lower plenum has been conducted to assess potential damage to these structures. Video observations show evidence of localized melt failure of the baffle walls, whereas fiberoptics data indicate the presence of resolidified debris on the former plates. Lower plenum inspection also confirms the presence of 20 tons or more of core debris in the lower plenum. These data indicate massive core melt relocation and the potential for melt attack on vessel structural components. This report presents analyses aimed at developing an understanding of melt relocation behavior and damage progression to TMI-2 vessel components. Thermal analysis indicates melt-through of the baffle plates, but maintenance of structural integrity of the former plates and lower head. Differences in the damage of these structures is attributed largely to differences in contact time with melt debris and pressure of water. 29 refs., 17 figs., 9 tabs

  7. Effect of Mantle Wedge Hybridization by Sediment Melt on Geochemistry of Arc Magma and Arc Mantle Source - Insights from Laboratory Experiments at High Pressures and Temperatures

    Science.gov (United States)

    Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.

    2015-12-01

    Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also

  8. Photogenic partial seizures.

    Science.gov (United States)

    Hennessy, M J; Binnie, C D

    2000-01-01

    To establish the incidence and symptoms of partial seizures in a cohort of patients investigated on account of known sensitivity to intermittent photic stimulation and/or precipitation of seizures by environmental visual stimuli such as television (TV) screens or computer monitors. We report 43 consecutive patients with epilepsy, who had exhibited a significant EEG photoparoxysmal response or who had seizures precipitated by environmental visual stimuli and underwent detailed assessment of their photosensitivity in the EEG laboratory, during which all were questioned concerning their ictal symptoms. All patients were considered on clinical grounds to have an idiopathic epilepsy syndrome. Twenty-eight (65%) patients reported visually precipitated attacks occurring initially with maintained consciousness, in some instances evolving to a period of confusion or to a secondarily generalized seizure. Visual symptoms were most commonly reported and included positive symptoms such as coloured circles or spots, but also blindness and subjective symptoms such as "eyes going funny." Other symptoms described included nonspecific cephalic sensations, deja-vu, auditory hallucinations, nausea, and vomiting. No patient reported any clear spontaneous partial seizures, and there were no grounds for supposing that any had partial epilepsy excepting the ictal phenomenology of some or all of the visually induced attacks. These findings provide clinical support for the physiological studies that indicate that the trigger mechanism for human photosensitivity involves binocularly innervated cells located in the visual cortex. Thus the visual cortex is the seat of the primary epileptogenic process, and the photically triggered discharges and seizures may be regarded as partial with secondary generalization.

  9. Arthroscopic partial medial meniscectomy

    Directory of Open Access Journals (Sweden)

    Dašić Žarko

    2011-01-01

    Full Text Available Background/Aim. Meniscal injuries are common in professional or recreational sports as well as in daily activities. If meniscal lesions lead to physical impairment they usually require surgical treatment. Arthroscopic treatment of meniscal injuries is one of the most often performed orthopedic operative procedures. Methods. The study analyzed the results of arthroscopic partial medial meniscectomy in 213 patients in a 24-month period, from 2006, to 2008. Results. In our series of arthroscopically treated medial meniscus tears we noted 78 (36.62% vertical complete bucket handle lesions, 19 (8.92% vertical incomplete lesions, 18 (8.45% longitudinal tears, 35 (16.43% oblique tears, 18 (8.45% complex degenerative lesions, 17 (7.98% radial lesions and 28 (13.14% horisontal lesions. Mean preoperative International Knee Documentation Committee (IKDC score was 49.81%, 1 month after the arthroscopic partial medial meniscectomy the mean IKDC score was 84.08%, and 6 months after mean IKDC score was 90.36%. Six months after the procedure 197 (92.49% of patients had good or excellent subjective postoperative clinical outcomes, while 14 (6.57% patients subjectively did not notice a significant improvement after the intervention, and 2 (0.93% patients had no subjective improvement after the partial medial meniscectomy at all. Conclusion. Arthroscopic partial medial meniscetomy is minimally invasive diagnostic and therapeutic procedure and in well selected cases is a method of choice for treatment of medial meniscus injuries when repair techniques are not a viable option. It has small rate of complications, low morbidity and fast rehabilitation.

  10. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    Science.gov (United States)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  11. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S

    2014-01-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  12. Freezing and melting line invariants of the Lennard-Jones system

    DEFF Research Database (Denmark)

    Costigliola, Lorenzo; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines of the LJ system are shown to be approximated by isomorphs. Then we show...... that the invariants observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid and crystalline phases. The structure is probed by the radial distribution function and the structure factor and dynamics are probed by the mean-square displacement, the intermediate scattering...... function, and the shear viscosity. Studying these properties with reference to isomorph theory explains why the known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our...

  13. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  14. The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations

    Science.gov (United States)

    Domekeli, U.; Sengul, S.; Celtek, M.; Canan, C.

    2018-02-01

    The melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd-Ni NP including core-related solid-like regions melts at once.

  15. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain

    Science.gov (United States)

    López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.

    2012-07-01

    The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.

  16. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  17. Flow and Failure in Extension of Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    is commonly referred to be of either brittle (e.g. cohesive type) or of liquid (e.g. necking type) nature. Here the focus will be on monodisperse polymers, to study numerically the sample flow dynamics in dual wind-up extensional rheometers. The computations are within the ideas of the microstructural......It is well known that failure or rupture phenomenon appears in the extension of polymer melts. These appear not only as failure in extension rheometers, but also as sharkskin, developments of holes in thin polymeric films etc. Sometime these ruptures appear spontaneous as well. The rupture...... 'interchain pressure' theory based on the molecular stress function constitutive model for the polymer melt flow. The purpose is twofold. Primarily to present to what extend the experimentally observed failure, appearing during or after (e.g. as a spontaneous failure) extension, can be explained within...

  18. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  19. Extraction of scandium by organic substance melts

    International Nuclear Information System (INIS)

    Gladyshev, V.P.; Lobanov, F.I.; Zebreva, A.I.; Andreeva, N.N.; Manuilova, O.A.; Il'yukevich, Yu.A.

    1984-01-01

    Regularities of scandium extraction by the melts of octadecanicoic acid, n-carbonic acids of C 17 -C 20 commerical fraction and mixtures of tributylphosphate (TBP) with paraffin at (70+-1) deg C have been studied. The optimum conditions for scandium extraction in the melt of organic substances are determined. A scheme of the extraction by the melts of higher carbonic acids at ninitial metal concentrations of 10 -5 to 10 -3 mol/l has been suggested. The scandium compound has been isolated in solid form, its composition having been determined. The main advantages of extraction by melts are as follows: a possibility to attain high distribution coefficients, distinct separation of phases after extraction, the absence of emulsions, elimination of employing inflammable and toxic solvents, a possibility of rapid X-ray fluorescence determinatinon of scandium directly in solid extract

  20. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.