WorldWideScience

Sample records for partial equilibrium model

  1. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  2. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

    International Nuclear Information System (INIS)

    Guidry, M W; Hix, W R; Billings, J J

    2013-01-01

    In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

  3. A Partial Equilibrium Theory for Drops and Capillary Liquids

    International Nuclear Information System (INIS)

    Searcy, Alan W.; Beruto, Dario T.; Barberis, Fabrizio

    2006-01-01

    The two-century old theory of Young and Laplace retains a powerful influence on surface and interface studies because it quantitatively predicts the height of rise of capillary liquids from the contact angles of drops. But the classical theory does not acknowledge that equilibrium requires separate minimization of partial free energies of one-component liquids bonded to immiscible solids. We generalize a theorem of Gibbs and Curie to obtain a partial equilibrium (PE) theory that does so and that also predicts the height of capillary rise from contact angles of drops. Published observations and our own measurements of contact angles of water bonded to glass and Teflon surfaces support the conclusion of PE theory that contact angles of meniscuses and of drops are different dependent variables. PE theory provides thermodynamic and kinetic guidance to nanoscale processes that the classical theory obscures, as illustrated by examples in our concluding section

  4. What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK

    International Nuclear Information System (INIS)

    Kesicki, Fabian

    2013-01-01

    Marginal abatement cost (MAC) curves are widely used for the assessment of costs related to CO 2 emissions reduction in environmental economics, as well as domestic and international climate policy. Several meta-analyses and model comparisons have previously been performed that aim to identify the causes for the wide range of MAC curves. Most of these concentrate on general equilibrium models with a focus on aspects such as specific model type and technology learning, while other important aspects remain almost unconsidered, including the availability of abatement technologies and level of discount rates. This paper addresses the influence of several key parameters on MAC curves for the United Kingdom and the year 2030. A technology-rich energy system model, UK MARKAL, is used to derive the MAC curves. The results of this study show that MAC curves are robust even to extreme fossil fuel price changes, while uncertainty around the choice of the discount rate, the availability of key abatement technologies and the demand level were singled out as the most important influencing factors. By using a different model type and studying a wider range of influencing factors, this paper contributes to the debate on the sensitivity of MAC curves. - Highlights: ► A partial-equilibrium model is employed to test key sensitivities of MAC curves. ► MAC curves are found to be robust to wide-ranging changes in fossil fuel prices. ► Most influencing factors are the discount rate, availability of key technologies. ► Further important uncertainty in MAC curves is related to demand changes

  5. The equilibrium structures of the 900 partial dislocation in silicon

    International Nuclear Information System (INIS)

    Valladares, Alexander; Sutton, A P

    2005-01-01

    We consider the free energies of the single-period (SP) and double-period (DP) core reconstructions of the straight 90 0 partial dislocation in silicon. The vibrational contributions are calculated with a harmonic model. It is found that it leads to a diminishing difference between the free energies of the two core reconstructions with increasing temperature. The question of the relative populations of SP and DP reconstructions in a single straight 90 0 partial dislocation is solved by mapping the problem onto a one-dimensional Ising model in a magnetic field. The model contains only two parameters and is solved analytically. It leads to the conclusion that for the majority of the published energy differences between the SP and DP reconstructions the equilibrium core structure is dominated by the DP reconstruction at all temperatures up to the melting point. We review whether it is possible to distinguish between the SP and DP reconstructions experimentally, both in principle and in practice. We conclude that aberration corrected transmission electron microscopy should be able to distinguish between these two core reconstructions, but published high resolution micrographs do not allow the distinction to be made

  6. Internalisation of external costs in the Polish power generation sector: A partial equilibrium model

    International Nuclear Information System (INIS)

    Kudelko, Mariusz

    2006-01-01

    This paper presents a methodical framework, which is the basis for the economic analysis of the mid-term planning of development of the Polish energy system. The description of the partial equilibrium model and its results are demonstrated for different scenarios applied. The model predicts the generation, investment and pricing of mid-term decisions that refer to the Polish electricity and heat markets. The current structure of the Polish energy sector is characterised by interactions between the supply and demand sides of the energy sector. The supply side regards possibilities to deliver fuels from domestic and import sources and their conversion through transformation processes. Public power plants, public CHP plants, industry CHP plants and municipal heat plants represent the main producers of energy in Poland. Demand is characterised by the major energy consumers, i.e. industry and construction, transport, agriculture, trade and services, individual consumers and export. The relationships between the domestic electricity and heat markets are modelled taking into account external costs estimates. The volume and structure of energy production, electricity and heat prices, emissions, external costs and social welfare of different scenarios are presented. Results of the model demonstrate that the internalisation of external costs through the increase in energy prices implies significant improvement in social welfare

  7. Cotton Trade Liberalizations and Domestic Agricultural Policy Reforms: A Partial Equilibrium Analysis

    OpenAIRE

    Pan, Suwen; Fadiga, Mohamadou L.; Mohanty, Samarendu; Welch, Mark

    2006-01-01

    This paper analyzed the effects of trade liberalizing reforms in the world cotton market using a partial equilibrium model. The simulation results indicated that a removal of domestic subsidies and border tariffs for cotton would increase the amount of world cotton trade by an average of 4% in the next five years and world cotton prices by an average of 12% over the same time horizon. The findings indicated that under the liberalization policy, the United States would lose part of its export ...

  8. The energy balance of a plasma in partial local thermodynamic equilibrium

    NARCIS (Netherlands)

    Kroesen, G.M.W.; Schram, D.C.; Timmermans, C.J.; de Haas, J.C.M.

    1990-01-01

    The energy balance for electrons and heavy particles constituting a plasma in partial local thermodynamic equilibrium is derived. The formulation of the energy balance used allows for evaluation of the source terms without knowledge of the particle and radiation transport situation, since most of

  9. The equilibrium structures of the 90{sup 0} partial dislocation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, Alexander; Sutton, A P [Materials Modelling Laboratory, Department of Materials, University of Oxford, OX1 3PH (United Kingdom)

    2005-12-07

    We consider the free energies of the single-period (SP) and double-period (DP) core reconstructions of the straight 90{sup 0} partial dislocation in silicon. The vibrational contributions are calculated with a harmonic model. It is found that it leads to a diminishing difference between the free energies of the two core reconstructions with increasing temperature. The question of the relative populations of SP and DP reconstructions in a single straight 90{sup 0} partial dislocation is solved by mapping the problem onto a one-dimensional Ising model in a magnetic field. The model contains only two parameters and is solved analytically. It leads to the conclusion that for the majority of the published energy differences between the SP and DP reconstructions the equilibrium core structure is dominated by the DP reconstruction at all temperatures up to the melting point. We review whether it is possible to distinguish between the SP and DP reconstructions experimentally, both in principle and in practice. We conclude that aberration corrected transmission electron microscopy should be able to distinguish between these two core reconstructions, but published high resolution micrographs do not allow the distinction to be made.

  10. Computing diffusivities from particle models out of equilibrium

    Science.gov (United States)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  11. Examining the Competition for Forest Resources in Sweden Using Factor Substitution Analysis and Partial Equilibrium Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Anna

    2011-07-01

    The overall objective of the thesis is to analyse the procurement competition for forest resources in Sweden. The thesis consists of an introductory part and two self-contained papers. In paper I a translog cost function approach is used to analyse the factor substitution in the sawmill industry, the pulp and paper industry and the heating industry in Sweden over the period 1970 to 2008. The estimated parameters are used to calculate the Allen and Morishima elasticities of substitution as well as the price elasticities of input demand. The utilisation of forest resources in the energy sector has been increasing and this increase is believed to continue. The increase is, to a large extent, caused by economic policies introduced to reduce the emission of greenhouse gases. Such policies could lead to an increase in the procurement competition between the forest industries and the energy sector. The calculated substitution elasticities indicate that it is easier for the heating industry to substitutes between by-products and logging residues than it is for the pulp and paper industry to substitute between by-products and roundwood. This suggests that the pulp and paper industry could suffer from an increase in the procurement competition. However, overall the substitutions elasticities estimated in our study are relatively low. This indicates that substitution possibilities could be rather limited due to rigidities in input prices. This result suggests that competition of forest resources also might be relatively limited. In paper II a partial equilibrium model is constructed in order to asses the effects an increasing utilisation of forest resources in the energy sector. The increasing utilisation of forest fuel is, to a large extent, caused by economic policies introduced to reduce the emission of greenhouse gases. In countries where forests already are highly utilised such policies will lead to an increase in the procurement competition between the forest sector and

  12. Equilibrium models and variational inequalities

    CERN Document Server

    Konnov, Igor

    2007-01-01

    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  13. Partial chemical equilibrium in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1980-01-01

    An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly

  14. Partially wrong? Partial equilibrium and the economic analysis of public health emergencies of international concern.

    Science.gov (United States)

    Beutels, P; Edmunds, W J; Smith, R D

    2008-11-01

    We argue that traditional health economic analysis is ill-equipped to estimate the cost effectiveness and cost benefit of interventions that aim at controlling and/or preventing public health emergencies of international concern (such as pandemic influenza or severe acute respiratory syndrome). The implicit assumption of partial equilibrium within both the health sector itself and--if a wider perspective is adopted--the economy as a whole would be violated by such emergencies. We propose an alternative, with the specific aim of accounting for the behavioural changes and capacity problems that are expected to occur when such an outbreak strikes. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. Numerical method for partial equilibrium flow

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)

    1981-01-01

    A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step

  16. A consistent model for the equilibrium thermodynamic functions of partially ionized flibe plasma with Coulomb corrections

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2003-01-01

    Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed

  17. A Multiperiod Equilibrium Pricing Model

    Directory of Open Access Journals (Sweden)

    Minsuk Kwak

    2014-01-01

    Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.

  18. Non-equilibrium dog-flea model

    Science.gov (United States)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  19. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  20. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    Energy Technology Data Exchange (ETDEWEB)

    Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)

    2015-06-08

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  1. Partial equilibrium in induced redox reactions of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skii, B P; Posvol' skii, M V; Krylov, L I; Morozova, Z P

    1975-01-01

    A study was made of oxidation-reduction reactions of Pu in buffer solutions containing bichromate and a reducing agent which reacted with hexavalent chromium at pH=3.5. In most cases sodium nitrite was used. A rather slow reduction of Pu (6) with NaNO/sub 2/ in the course of which tetravalent plutonium was formed via disproportionation reaction of plutonium (5), became very rapid upon the addition of bichromate to the solution. The yield of tetravalent plutonium increased with an increase in the concentration of NaNO/sub 2/ and the bichromate but never reached 100%. This was due to a simultaneous occurrenc of the induced oxidation reaction of Pu(4), leading to a partial equilibrium between the valence forms of plutonium in the nitrite-bichromate system which on the whole was in a nonequilibrium state. It was shown that in the series of reactions leading to the reduction of plutonium the presence of bivalent chromium was a necessary link.

  2. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, JA; Darton, R

    1997-01-01

    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  3. Value Added Tax and price stability in Nigeria: A partial equilibrium analysis

    Directory of Open Access Journals (Sweden)

    Marius Ikpe

    2013-12-01

    Full Text Available The economic impact of Value Added Tax (VAT that was implemented in Nigeria in 1994 has generated much debate in recent times, especially with respect to its effect on the level of aggregate prices. This study empirically examines the influence of VAT on price stability in Nigeria using partial equilibrium analysis. We introduced the VAT variable in the framework of a combination of structuralist, monetarist and fiscalist approaches to inflation modelling. The analysis was carried out by applying multiple regression analysis in static form to data for the 1994-2010 period. The results reveal that VAT exerts a strong upward pressure on price levels, most likely due to the burden of VAT on intermediate outputs. The study rules out the option of VAT exemptions for intermediate outputs as a solution, due to the difficulty in distinguishing between intermediate and final outputs. Instead, it recommends a detailed post-VAT cost-benefit analysis to assess the social desirability of VAT policy in Nigeria.

  4. Gaussian random bridges and a geometric model for information equilibrium

    Science.gov (United States)

    Mengütürk, Levent Ali

    2018-03-01

    The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.

  5. A model for non-equilibrium, non-homogeneous two-phase critical flow

    International Nuclear Information System (INIS)

    Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun

    1999-01-01

    Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)

  6. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    Science.gov (United States)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  7. The substitution of mineral fertilizers by compost from household waste in Cameroon: economic analysis with a partial equilibrium model.

    Science.gov (United States)

    Jaza Folefack, Achille Jean

    2009-05-01

    This paper analyses the possibility of substitution between compost and mineral fertilizer in order to assess the impact on the foreign exchange savings in Cameroon of increasing the use of compost. In this regard, a partial equilibrium model was built up and used as a tool for policy simulations. The review of existing literature already suggests that, the compost commercial value i.e. value of substitution (33,740 FCFA tonne(-1)) is higher compared to the compost real price (30,000 FCFA tonne(-1)), proving that it could be profitable to substitute the mineral fertilizer by compost. Further results from the scenarios used in the modelling exercise show that, increasing the compost availability is the most favourable policy for the substitution of mineral fertilizer by compost. This policy helps to save about 18.55% of the annual imported mineral fertilizer quantity and thus to avoid approximately 8.47% of the yearly total import expenditure in Cameroon. The policy of decreasing the transport rate of compost in regions that are far from the city is also favourable to the substitution. Therefore, in order to encourage the substitution of mineral fertilizer by compost, programmes of popularization of compost should be highlighted and be among the top priorities in the agricultural policy of the Cameroon government.

  8. Statistical approach to partial equilibrium analysis

    Science.gov (United States)

    Wang, Yougui; Stanley, H. E.

    2009-04-01

    A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.

  9. Mechanism of alkalinity lowering and chemical equilibrium model of high fly ash silica fume cement

    International Nuclear Information System (INIS)

    Hoshino, Seiichi; Honda, Akira; Negishi, Kumi

    2014-01-01

    The mechanism of alkalinity lowering of a High Fly ash Silica fume Cement (HFSC) under liquid/solid ratio conditions where the pH is largely controlled by the soluble alkali components (Region I) has been studied. This mechanism was incorporated in the chemical equilibrium model of HFSC. As a result, it is suggested that the dissolution and precipitation behavior of SO 4 2- partially contributes to alkalinity lowering of HFSC in Region I. A chemical equilibrium model of HFSC incorporating alkali (Na, K) adsorption, which was presumed as another contributing factor of the alkalinity lowering effect, was also developed, and an HFSC immersion experiment was analyzed using the model. The results of the developed model showed good agreement with the experiment results. From the above results, it was concluded that the alkalinity lowering of HFSC in Region I was attributed to both the dissolution and precipitation behavior of SO 4 2- and alkali adsorption, in addition to the absence of Ca(OH) 2 . A chemical equilibrium model of HFSC incorporating alkali and SO 4 2- adsorption was also proposed. (author)

  10. On a unified presentation of the non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Boure, J.A.

    1975-01-01

    If the various existing one-dimensional two-phase flow models are consistent, they must appear as particular cases of more general models. It is shown that such is the case if, and only if, the mathematical form of the laws of the transfers between the phases is sufficiently general. These transfer laws control the non-equilibrium phenomena. A convenient general model is a particular form of the two-fluid model. This particular form involves three equations and three dependent variables characterizing the mixture, and three equations and three dependent variables characterizing the differences between the phases (slip, thermal non-equilibriums). The mathematical expressions of the transfert terms present in the above equations involve first-order partial derivatives of the dependent variables. The other existing models may be deduced from the general model by making assumptions on the fluid evolution. Several examples are given. The resulting unified presentation of the existing model enables a comparison of the implicit assumptions made in these models on the transfer laws. It is therefore, a useful tool for the appraisal of the existing models and for the development of new models [fr

  11. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  12. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  13. Micro Data and General Equilibrium Models

    DEFF Research Database (Denmark)

    Browning, Martin; Hansen, Lars Peter; Heckman, James J.

    1999-01-01

    Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different...... economic models, assesses the discordance between the macromodels used in policy evaluation and the microeconomic models used to generate the empirical evidence. For concreteness, we focus on two general equilibrium models: the stochastic growth model extended to include some forms of heterogeneity...

  14. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  15. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  16. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    Science.gov (United States)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  17. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  18. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  19. Regret Theory and Equilibrium Asset Prices

    Directory of Open Access Journals (Sweden)

    Jiliang Sheng

    2014-01-01

    Full Text Available Regret theory is a behavioral approach to decision making under uncertainty. In this paper we assume that there are two representative investors in a frictionless market, a representative active investor who selects his optimal portfolio based on regret theory and a representative passive investor who invests only in the benchmark portfolio. In a partial equilibrium setting, the objective of the representative active investor is modeled as minimization of the regret about final wealth relative to the benchmark portfolio. In equilibrium this optimal strategy gives rise to a behavioral asset priciting model. We show that the market beta and the benchmark beta that is related to the investor’s regret are the determinants of equilibrium asset prices. We also extend our model to a market with multibenchmark portfolios. Empirical tests using stock price data from Shanghai Stock Exchange show strong support to the asset pricing model based on regret theory.

  20. Coordinating choice in partial cooperative equilibrium

    NARCIS (Netherlands)

    Mallozzi, L.; Tijs, S.H.

    2009-01-01

    In this paper we consider symmetric aggregative games and investigate partial cooperation between a portion of the players that sign a cooperative agreement and the rest of the players. Existence results of partial cooperative equilibria are obtained when the players who do not sign the agreement

  1. The structural phase diagram and oxygen equilibrium partial pressure of YBa 2Cu 3O 6+ x studied by neutron powder diffraction and gas volumetry

    Science.gov (United States)

    Andersen, N. H.; Lebech, B.; Poulsen, H. F.

    1990-12-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.

  2. Estimating Equilibrium Effects of Job Search Assistance

    DEFF Research Database (Denmark)

    Gautier, Pieter; Muller, Paul; van der Klaauw, Bas

    that the nonparticipants in the experiment regions find jobs slower after the introduction of the activation program (relative to workers in other regions). We then estimate an equilibrium search model. This model shows that a large scale role out of the activation program decreases welfare, while a standard partial...... microeconometric cost-benefit analysis would conclude the opposite....

  3. Partial Reform Equilibrium in Russia: A Case Study of the Political Interests of and in the Russian Gas and Oil Industry

    Science.gov (United States)

    Everett, Rabekah

    While several theories abound that attempt to explain the obstacles to democracy in Russia, Joel Hellman's partial reform equilibrium model is an institutional theory that illustrates how weak institutions, combined with an instrumentalist cultural approach to the law and authoritarian-minded leadership, allowed the struggle over interests to craft and determine the nature of Russia's political structure. This thesis builds on the work of Hellman by using the partial reform theory to understand the evolution of interest infiltration and their impact on the formation of policies and institutions in favour of the elites or winners from 2004 to the present time period that allow them to wield law as a political weapon. The hypothesis posits that through their vested interests in state politics, the political and economic elites of the oil and gas industry have successfully stalled reform in Russia resulting in partial reform equilibrium. This is illustrated in a case study that was designed to collect the names, backgrounds, and social networks of gas and oil executives in order to determine how many of them have a history of, or are currently working as, ministers in the government or representatives in the Federation Council. The objective being to measure the degree to which gas and oil interests are present in government decision-making and conversely, the degree to which the government is present in the gas and oil industry. The thesis stresses the importance of institutional structure in determining Russia's political evolution, and uses vested interests as a primary source of structural institutional change, while also stressing on the social and international implications of this evolution.

  4. Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model

    Science.gov (United States)

    Von Davier, Matthias; Yamamoto, Kentaro

    2004-01-01

    The generalized partial-credit model (GPCM) is used frequently in educational testing and in large-scale assessments for analyzing polytomous data. Special cases of the generalized partial-credit model are the partial-credit model--or Rasch model for ordinal data--and the two parameter logistic (2PL) model. This article extends the GPCM to the…

  5. Structural phase diagram and equilibrium oxygen partial pressure of YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Andersen, N.H.; Lebech, B.; Poulsen, H.F.

    1990-01-01

    of the ordering of oxygen. Oxygen equilibrium partial pressure shows significant variations with temperature and concentration which indicate that x = 0.15 and x = 0.92 are minimum and maximum oxygen concentrations. Measurements of oxygen in-diffusion flow show relaxation type behaviour: View the MathML source......An experimental technique by which in-situ gas volumetric measurements are carried out on a neutron powder diffractometer, is presented and used for simultaneous studies of oxygen equilibrium partial pressure and the structural phase diagram of YBa2Cu3O6 + x. Experimental data was collected under...... near equilibrium conditions at 350 points in (x,T)-space with 0.15 gas law in connection with iodiometric titration and structural analyses. The temperature...

  6. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  7. Lifting the US crude oil export ban: A numerical partial equilibrium analysis

    International Nuclear Information System (INIS)

    Langer, Lissy; Huppmann, Daniel; Holz, Franziska

    2016-01-01

    The upheaval in global crude oil markets and the boom in shale oil production in North America brought scrutiny on the US export ban for crude oil from 1975. The ban was eventually lifted in early 2016. This paper examines the shifts of global trade flows and strategic refinery investments in a spatial, game-theoretic partial equilibrium model. We consider detailed oil supply chain infrastructure with multiple crude oil types, distinct oil products, as well as specific refinery configurations and modes of transport. Prices, quantities produced and consumed, as well as infrastructure and refining capacity investments are endogenous to the model. We compare two scenarios: an insulated US crude oil market, and a counter-factual with lifted export restrictions. We find a significant expansion of US sweet crude exports with the lift of the export ban. In the US refinery sector, more (imported) heavy sour crude is transformed. Countries importing US sweet crude gain from higher product output, while avoiding costly refinery investments. Producers of heavy sour crude (e.g. the Middle East) are incentivised to climb up the value chain to defend their market share and maintain their dominant position. - Highlights: • We study the impacts of lifting the US crude ban on global oil flows and investments. • We find massive expansion of US sweet crude oil exports. • We analyze the resulting welfare effects for US producers, refiners and consumers. • We indicate the changes on global trade patterns. • We conclude that lifting the ban is the right policy for the US and the global economy.

  8. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  9. The DART general equilibrium model: A technical description

    OpenAIRE

    Springer, Katrin

    1998-01-01

    This paper provides a technical description of the Dynamic Applied Regional Trade (DART) General Equilibrium Model. The DART model is a recursive dynamic, multi-region, multi-sector computable general equilibrium model. All regions are fully specified and linked by bilateral trade flows. The DART model can be used to project economic activities, energy use and trade flows for each of the specified regions to simulate various trade policy as well as environmental policy scenarios, and to analy...

  10. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  11. Non-Equilibrium Turbulence and Two-Equation Modeling

    Science.gov (United States)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  12. Phylogenies support out-of-equilibrium models of biodiversity.

    Science.gov (United States)

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  13. Thermodynamic quantities and defect equilibrium in La2-xSrxNiO4+δ

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Yashiro, Keiji; Sato, Kazuhisa; Mizusaki, Junichiro

    2009-01-01

    In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistical thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data. Partial molar enthalpy of oxygen and partial molar entropy of oxygen are obtained from δ-P(O 2 )-T relation by using Gibbs-Helmholtz equation. Statistical thermodynamic model is derived from defect equilibrium models proposed before by authors, localized electron model and delocalized electron model which could well explain the variation of oxygen content of La 2-x Sr x NiO 4+δ . Although assumed defect species and their equilibrium are different, the results of thermodynamic calculation by localized electron model and delocalized electron model show minor difference. Calculated results by the both models agree with the thermodynamic quantities obtained from oxygen nonstoichiometry of La 2-x Sr x NiO 4+δ . - Graphical abstract: In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistics thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data.

  14. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  15. On non-equilibrium states in QFT model with boundary interaction

    International Nuclear Information System (INIS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Zamolodchikov, Alexander B.

    1999-01-01

    We prove that certain non-equilibrium expectation values in the boundary sine-Gordon model coincide with associated equilibrium-state expectation values in the systems which differ from the boundary sine-Gordon in that certain extra boundary degrees of freedom (q-oscillators) are added. Applications of this result to actual calculation of non-equilibrium characteristics of the boundary sine-Gordon model are also discussed

  16. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  17. A note on partial vertical integration

    NARCIS (Netherlands)

    G.W.J. Hendrikse (George); H.J.M. Peters (Hans)

    1989-01-01

    textabstractA simple model is constructed to show how partial vertical integration may emerge as an equilibrium market structure in a world characterized by rationing, differences in the reservation prices of buyers, and in the risk attitudes of buyers and sellers. The buyers with the high

  18. Electricity market equilibrium model with resource constraint and transmission congestion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F. [ABB, Inc., Santa Clara, CA 95050 (United States); Sheble, G.B. [Portland State University, Portland, OR 97207 (United States)

    2010-01-15

    Electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models and many efforts have been made on it before. However, most past research focused on a single-period, single-market model and did not address the fact that GENCOs hold a portfolio of assets in both electricity and fuel markets. This paper first identifies a proper SFE model, which can be applied to a multiple-period situation. Then the paper develops the equilibrium condition using discrete time optimal control considering fuel resource constraints. Finally, the paper discusses the issues of multiple equilibria caused by transmission network and shows that a transmission constrained equilibrium may exist, however the shadow price may not be zero. Additionally, an advantage from the proposed model for merchant transmission planning is discussed. (author)

  19. Electricity market equilibrium model with resource constraint and transmission congestion

    International Nuclear Information System (INIS)

    Gao, F.; Sheble, G.B.

    2010-01-01

    Electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models and many efforts have been made on it before. However, most past research focused on a single-period, single-market model and did not address the fact that GENCOs hold a portfolio of assets in both electricity and fuel markets. This paper first identifies a proper SFE model, which can be applied to a multiple-period situation. Then the paper develops the equilibrium condition using discrete time optimal control considering fuel resource constraints. Finally, the paper discusses the issues of multiple equilibria caused by transmission network and shows that a transmission constrained equilibrium may exist, however the shadow price may not be zero. Additionally, an advantage from the proposed model for merchant transmission planning is discussed. (author)

  20. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  1. A Comparison of the Computation Times of Thermal Equilibrium and Non-equilibrium Models of Droplet Field in a Two-Fluid Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun

    2007-12-15

    A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.

  2. Equilibrium Price Dispersion in a Matching Model with Divisible Money

    NARCIS (Netherlands)

    Kamiya, K.; Sato, T.

    2002-01-01

    The main purpose of this paper is to show that, for any given parameter values, an equilibrium with dispersed prices (two-price equilibrium) exists in a simple matching model with divisible money presented by Green and Zhou (1998).We also show that our two-price equilibrium is unique in certain

  3. Partial local thermal equilibrium in a low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Hey, J.D.; Chu, C.C.; Rash, J.P.S.

    1999-01-01

    If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Development of a Thermal Equilibrium Prediction Algorithm

    International Nuclear Information System (INIS)

    Aviles-Ramos, Cuauhtemoc

    2002-01-01

    A thermal equilibrium prediction algorithm is developed and tested using a heat conduction model and data sets from calorimetric measurements. The physical model used in this study is the exact solution of a system of two partial differential equations that govern the heat conduction in the calorimeter. A multi-parameter estimation technique is developed and implemented to estimate the effective volumetric heat generation and thermal diffusivity in the calorimeter measurement chamber, and the effective thermal diffusivity of the heat flux sensor. These effective properties and the exact solution are used to predict the heat flux sensor voltage readings at thermal equilibrium. Thermal equilibrium predictions are carried out considering only 20% of the total measurement time required for thermal equilibrium. A comparison of the predicted and experimental thermal equilibrium voltages shows that the average percentage error from 330 data sets is only 0.1%. The data sets used in this study come from calorimeters of different sizes that use different kinds of heat flux sensors. Furthermore, different nuclear material matrices were assayed in the process of generating these data sets. This study shows that the integration of this algorithm into the calorimeter data acquisition software will result in an 80% reduction of measurement time. This reduction results in a significant cutback in operational costs for the calorimetric assay of nuclear materials. (authors)

  5. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  6. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  7. Models of supply function equilibrium with applications to the electricity industry

    Science.gov (United States)

    Aromi, J. Daniel

    Electricity market design requires tools that result in a better understanding of incentives of generators and consumers. Chapter 1 and 2 provide tools and applications of these tools to analyze incentive problems in electricity markets. In chapter 1, models of supply function equilibrium (SFE) with asymmetric bidders are studied. I prove the existence and uniqueness of equilibrium in an asymmetric SFE model. In addition, I propose a simple algorithm to calculate numerically the unique equilibrium. As an application, a model of investment decisions is considered that uses the asymmetric SFE as an input. In this model, firms can invest in different technologies, each characterized by distinct variable and fixed costs. In chapter 2, option contracts are introduced to a supply function equilibrium (SFE) model. The uniqueness of the equilibrium in the spot market is established. Comparative statics results on the effect of option contracts on the equilibrium price are presented. A multi-stage game where option contracts are traded before the spot market stage is considered. When contracts are optimally procured by a central authority, the selected profile of option contracts is such that the spot market price equals marginal cost for any load level resulting in a significant reduction in cost. If load serving entities (LSEs) are price takers, in equilibrium, there is no trade of option contracts. Even when LSEs have market power, the central authority's solution cannot be implemented in equilibrium. In chapter 3, we consider a game in which a buyer must repeatedly procure an input from a set of firms. In our model, the buyer is able to sign long term contracts that establish the likelihood with which the next period contract is awarded to an entrant or the incumbent. We find that the buyer finds it optimal to favor the incumbent, this generates more intense competition between suppliers. In a two period model we are able to completely characterize the optimal mechanism.

  8. The rational expectations equilibrium inventory model theory and applications

    CERN Document Server

    1989-01-01

    This volume consists of six essays that develop and/or apply "rational expectations equilibrium inventory models" to study the time series behavior of production, sales, prices, and inventories at the industry level. By "rational expectations equilibrium inventory model" I mean the extension of the inventory model of Holt, Modigliani, Muth, and Simon (1960) to account for: (i) discounting, (ii) infinite horizon planning, (iii) observed and unobserved by the "econometrician" stochastic shocks in the production, factor adjustment, storage, and backorders management processes of firms, as well as in the demand they face for their products; and (iv) rational expectations. As is well known according to the Holt et al. model firms hold inventories in order to: (a) smooth production, (b) smooth production changes, and (c) avoid stockouts. Following the work of Zabel (1972), Maccini (1976), Reagan (1982), and Reagan and Weitzman (1982), Blinder (1982) laid the foundations of the rational expectations equilibrium inve...

  9. Thermochemical equilibrium modelling of a gasifying process

    International Nuclear Information System (INIS)

    Melgar, Andres; Perez, Juan F.; Laget, Hannes; Horillo, Alfonso

    2007-01-01

    This article discusses a mathematical model for the thermochemical processes in a downdraft biomass gasifier. The model combines the chemical equilibrium and the thermodynamic equilibrium of the global reaction, predicting the final composition of the producer gas as well as its reaction temperature. Once the composition of the producer gas is obtained, a range of parameters can be derived, such as the cold gas efficiency of the gasifier, the amount of dissociated water in the process and the heating value and engine fuel quality of the gas. The model has been validated experimentally. This work includes a parametric study of the influence of the gasifying relative fuel/air ratio and the moisture content of the biomass on the characteristics of the process and the producer gas composition. The model helps to predict the behaviour of different biomass types and is a useful tool for optimizing the design and operation of downdraft biomass gasifiers

  10. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  11. Choking flow modeling with mechanical and thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, H.J.; Ishii, M.; Revankar, S.T. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2006-01-15

    The mechanistic model, which considers the mechanical and thermal non-equilibrium, is described for two-phase choking flow. The choking mass flux is obtained from the momentum equation with the definition of choking. The key parameter for the mechanical non-equilibrium is a slip ratio. The dependent parameters for the slip ratio are identified. In this research, the slip ratio which is defined in the drift flux model is used to identify the impact parameters on the slip ratio. Because the slip ratio in the drift flux model is related to the distribution parameter and drift velocity, the adequate correlations depending on the flow regime are introduced in this study. For the thermal non-equilibrium, the model is developed with bubble conduction time and Bernoulli choking model. In case of highly subcooled water compared to the inlet pressure, the Bernoulli choking model using the pressure undershoot is used because there is no bubble generation in the test section. When the phase change happens inside the test section, two-phase choking model with relaxation time calculates the choking mass flux. According to the comparison of model prediction with experimental data shows good agreement. The developed model shows good prediction in both low and high pressure ranges. (author)

  12. Plasma equilibrium response modelling and validation on JT-60U

    International Nuclear Information System (INIS)

    Lister, J.B.; Sharma, A.; Limebeer, D.J.N.; Wainwright, J.P.; Nakamura, Y.; Yoshino, R.

    2002-01-01

    A systematic procedure to identify the plasma equilibrium response to the poloidal field coil voltages has been applied to the JT-60U tokamak. The required response was predicted with a high accuracy by a state-space model derived from first principles. The ab initio derivation of linearized plasma equilibrium response models is re-examined using an approach standard in analytical mechanics. A symmetric formulation is naturally obtained, removing a previous weakness in such models. RZIP, a rigid current distribution model, is re-derived using this approach and is compared with the new experimental plasma equilibrium response data obtained from Ohmic and neutral beam injection discharges in the JT-60U tokamak. In order to remove any bias from the comparison between modelled and measured plasma responses, the electromagnetic response model without plasma was first carefully tuned against experimental data, using a parametric approach, for which different cost functions for quantifying model agreement were explored. This approach additionally provides new indications of the accuracy to which various plasma parameters are known, and to the ordering of physical effects. Having taken these precautions when tuning the plasmaless model, an empirical estimate of the plasma self-inductance, the plasma resistance and its radial derivative could be established and compared with initial assumptions. Off-line tuning of the JT-60U controller is presented as an example of the improvements which might be obtained by using such a model of the plasma equilibrium response. (author)

  13. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  14. Learning of Chemical Equilibrium through Modelling-Based Teaching

    Science.gov (United States)

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  15. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  16. A dissipative model of plasma equilibrium in toroidal systems

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-10-01

    In order to describe a steady-state plasma equilibrium in tokamaks, stellarators or other non-axisymmetric configurations, the model of ideal MHD with isotropic plasma pressure is widely used. The ideal MHD - model of a toroidal plasma equilibrium requires the existence of closed magnetic surfaces. Several numerical codes have been developed in the past to solve the three-dimensional equilibrium problem, but so far no existence theorem for a solution has been proved. Another difficulty is the formation of magnetic islands and field line ergodisation, which can only be described in terms of ideal MHD if the plasma pressure is constant in the ergodic region. In order to describe the formation of magnetic islands and ergodisation of surfaces properly, additional dissipative terms have to be incorporated to allow decoupling of the plasma and magnetic field. In a collisional plasma viscosity and inelastic collisions introduce such dissipative processes. In the model used a friction term proportional to the velocity v vector of the plasma is included. Such a term originates from charge exchange interaction of the plasma with a nuetral background. With these modifications, the equilibrium problem reduces to a set of quasilinear elliptic equations for the pressure, the electric potential and the magnetic field. The paper deals with an existence theorem based on the Fixed - Point method of Schauder. It can be shown that a self-consistent and unique equilibrium exists if the friction term is large and the plasma pressure is sufficiently low. The essential role of the dissipative terms is to remove the singularities of the ideal MHD model on rational magnetic surfaces. The problem has a strong similarity to Benard cell convection, and consequently similar behaviour such as bifurcation and exchange of stability are expected. (orig./GG)

  17. Improving firm performance in out-of-equilibrium, deregulated markets using feedback simulation models

    International Nuclear Information System (INIS)

    Gary, S.; Larsen, E.R.

    2000-01-01

    Deregulation has reshaped the utility sector in many countries around the world. Organisations in these deregulated industries must adopt new polices which guide strategic decisions, in an uncertain and unfamiliar environment, that determine the short- and long-term fate of their companies. Traditional economic equilibrium models do not adequately address the issues facing these organisations in the shift towards deregulated market competition. Equilibrium assumptions break down in the out-of-equilibrium transition to competitive markets, and therefore different underpinning assumptions must be adopted in order to guide management in these periods. Simulation models incorporating information feedback through behavioural policies fill the void left by equilibrium models and support strategic policy analysis in out-of-equilibrium markets. As an example, we present a feedback simulation model developed to examine firm and industry level performance consequences of new generation capacity investment policies in the deregulated UK electricity sector. The model explicitly captures behavioural decision polices of boundedly rational managers and avoids equilibrium assumptions. Such models are essential to help managers evaluate the performance impact of various strategic policies in environments in which disequilibrum behaviour dominates. (Author)

  18. Soils apart from equilibrium – consequences for soil carbon balance modelling

    Directory of Open Access Journals (Sweden)

    T. Wutzler

    2007-01-01

    Full Text Available Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable

  19. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  20. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    Science.gov (United States)

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of

  1. New fundamental equations of thermodynamics for systems in chemical equilibrium at a specified partial pressure of a reactant and the standard transformed formation properties of reactants

    International Nuclear Information System (INIS)

    Alberty, R.A.; Oppenheim, I.

    1993-01-01

    When temperature, pressure, and the partial pressure of a reactant are fixed, the criterion of chemical equilibrium can be expressed in terms of the transformed Gibbs energy G' that is obtained by using a Legendre transform involving the chemical potential of the reactant that is fixed. For reactions of ideal gases, the most natural variables to use in the fundamental equation are T, P', and P B , where P' is the partial pressure of the reactants other than the one that is fixed and P B is the partial pressure of the reactant that is fixed. The fundamental equation for G' yields the expression for the transformed entropy S', and a transformed enthalpy can be defined by the additional Legendre transform H'=G'+TS'. This leads to an additional form of the fundamental equation. The calculation of transformed thermodynamic properties and equilibrium compositions is discussed for a simple system and for a general multireaction system. The change, in a reaction, of the binding of the reactant that is at a specified pressure can be calculated using one of the six Maxwell equations of the fundamental equation in G'

  2. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  3. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  4. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2015-10-09

    The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.

  5. Modelling of an homogeneous equilibrium mixture model

    International Nuclear Information System (INIS)

    Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.

    2014-01-01

    We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)

  6. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  7. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions

    Science.gov (United States)

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...

  8. Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios

    International Nuclear Information System (INIS)

    Igos, Elorri; Rugani, Benedetto; Rege, Sameer; Benetto, Enrico; Drouet, Laurent; Zachary, Daniel S.

    2015-01-01

    Highlights: • The environmental impacts of two energy policy scenarios in Luxembourg are assessed. • Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models are used. • Results from coupling of CGE and PE are integrated in hybrid Life Cycle Assessment. • Impacts due to energy related production and imports are likely to grow over time. • Carbon mitigation policies seem to not substantially decrease the impacts’ trend. - Abstract: Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of

  9. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  10. A partially ionized plasma modeling; Un modele de plasma partiellement ionise

    Energy Technology Data Exchange (ETDEWEB)

    Le Thanh, K.C.; Raviart, P.A

    2003-07-01

    We propose a model for the partially ionized plasma sheaths near the anode of an anodic spot electric arc where the cathode is considered as an electron emitter. A fluid description takes into account the heating and the ionization of the plasma induced by the electron beam. As physical hypothesis we assume that the condition of charge neutrality is valid. According that the electron mass can be neglected compared to the ion mass, we can assume that ions and atoms have the same velocity and the same temperature. Electrons and heavy particles are then regarded as two separate fluids coexisting in the plasma. Governing equations are then multi-fluid equations with relaxation correction to the local thermodynamic equilibrium (LTE) and heating by Joule effect. Equations are solved by an operator splitting procedure. That is we first discretize the homogeneous conservation laws (i.e. without source terms) by a finite volume method. The second step is to solve the ordinary differential system (i.e, governing equation without transport terms) with an implicit scheme. (authors)

  11. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  12. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    Science.gov (United States)

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  13. Termination of Dynamic Contracts in an Equilibrium Labor Market Model

    OpenAIRE

    Wang, Cheng

    2005-01-01

    I construct an equilibrium model of the labor market where workers and firms enter into dyamic contracts that can potentially last forever, but are subject to optimal terminations. Upon a termination, the firm hires a new worker, and the worker who is terminated receives a termination compensation from the firm and is then free to go back to the labor market to seek new employment opportunities and enter into new dynamic contracts. The model permits only two types of equilibrium terminations ...

  14. General Equilibrium Models: Improving the Microeconomics Classroom

    Science.gov (United States)

    Nicholson, Walter; Westhoff, Frank

    2009-01-01

    General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…

  15. A field-theoretic approach to non-equilibrium work identities

    International Nuclear Information System (INIS)

    Mallick, Kirone; Orland, Henri; Moshe, Moshe

    2011-01-01

    We study non-equilibrium work relations for a space-dependent field with stochastic dynamics (model A). Jarzynski's equality is obtained through symmetries of the dynamical action in the path-integral representation. We derive a set of exact identities that generalize the fluctuation-dissipation relations to non-stationary and far-from-equilibrium situations. These identities are prone to experimental verification. Furthermore, we show that a well-studied invariance of the Langevin equation under supersymmetry, which is known to be broken when the external potential is time dependent, can be partially restored by adding to the action a term which is precisely Jarzynski's work. The work identities can then be retrieved as consequences of the associated Ward-Takahashi identities.

  16. Comparing two non-equilibrium approaches to modelling of a free-burning arc

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Cunha, M D

    2013-01-01

    Two models of high-pressure arc discharges are compared with each other and with experimental data for an atmospheric-pressure free-burning arc in argon for arc currents of 20–200 A. The models account for space-charge effects and thermal and ionization non-equilibrium in somewhat different ways. One model considers space-charge effects, thermal and ionization non-equilibrium in the near-cathode region and thermal non-equilibrium in the bulk plasma. The other model considers thermal and ionization non-equilibrium in the entire arc plasma and space-charge effects in the near-cathode region. Both models are capable of predicting the arc voltage in fair agreement with experimental data. Differences are observed in the arc attachment to the cathode, which do not strongly affect the near-cathode voltage drop and the total arc voltage for arc currents exceeding 75 A. For lower arc currents the difference is significant but the arc column structure is quite similar and the predicted bulk plasma characteristics are relatively close to each other. (paper)

  17. Equilibrium and transient conductivity for gadolium-doped ceria under large perturbations: II. Modeling

    DEFF Research Database (Denmark)

    Zhu, Huayang; Ricote, Sandrine; Coors, W. Grover

    2014-01-01

    the computational implementation of a Nernst–Planck–Poisson (NPP) model to represent and interpret conductivity-relaxation measurements. Defect surface chemistry is represented with both equilibrium and finite-rate kinetic models. The experiments and the models are capable of representing relaxations from strongly......A model-based approach is used to interpret equilibrium and transient conductivity measurements for 10% gadolinium-doped ceria: Ce0.9Gd0.1O1.95 − δ (GDC10). The measurements were carried out by AC impedance spectroscopy on slender extruded GDC10 rods. Although equilibrium conductivity measurements...... provide sufficient information from which to derive material properties, it is found that uniquely establishing properties is difficult. Augmenting equilibrium measurements with conductivity relaxation significantly improves the evaluation of needed physical properties. This paper develops and applies...

  18. Partially ordered models

    NARCIS (Netherlands)

    Fernandez, R.; Deveaux, V.

    2010-01-01

    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks).

  19. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    Science.gov (United States)

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  20. Fitting Equilibrium Search Models to Labour Market Data

    DEFF Research Database (Denmark)

    Bowlus, Audra J.; Kiefer, Nicholas M.; Neumann, George R.

    1996-01-01

    Specification and estimation of a Burdett-Mortensen type equilibrium search model is considered. The estimation is nonstandard. An estimation strategy asymptotically equivalent to maximum likelihood is proposed and applied. The results indicate that specifications with a small number of productiv...... of productivity types fit the data well compared to the homogeneous model....

  1. Phenomenological model for non-equilibrium deuteron emission in nucleon induced reactions

    International Nuclear Information System (INIS)

    Broeders, C.H.M.; Konobeyev, A.Yu.

    2005-01-01

    A new approach is proposed for the calculation of non-equilibrium deuteron energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines the model of the nucleon pick-up, the coalescence and the deuteron knock-out. Emission and absorption rates for excited particles are described by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from the exciton configurations starting from (2p, 1h). The model of deuteron knock-out is formulated taking into account the Pauli principle for the nucleon-deuteron interaction inside a nucleus. The contribution of the direct nucleon pick-up is described phenomenologically. The multiple pre-equilibrium emission of particles is taken into account. The calculated deuteron energy distributions are compared with experimental data from 12 C to 209 Bi. (orig.)

  2. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  3. Insights: Simple Models for Teaching Equilibrium and Le Chatelier's Principle.

    Science.gov (United States)

    Russell, Joan M.

    1988-01-01

    Presents three models that have been effective for teaching chemical equilibrium and Le Chatelier's principle: (1) the liquid transfer model, (2) the fish model, and (3) the teeter-totter model. Explains each model and its relation to Le Chatelier's principle. (MVL)

  4. Research on spot power market equilibrium model considering the electric power network characteristics

    International Nuclear Information System (INIS)

    Wang, Chengmin; Jiang, Chuanwen; Chen, Qiming

    2007-01-01

    Equilibrium is the optimum operational condition for the power market by economics rule. A realistic spot power market cannot achieve the equilibrium condition due to network losses and congestions. The impact of the network losses and congestion on spot power market is analyzed in this paper in order to establish a new equilibrium model considering the network loss and transmission constraints. The OPF problem formulated according to the new equilibrium model is solved by means of the equal price principle. A case study on the IEEE-30-bus system is provided in order to prove the effectiveness of the proposed approach. (author)

  5. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  6. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  7. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  8. Pre-equilibrium assumptions and statistical model parameters effects on reaction cross-section calculations

    International Nuclear Information System (INIS)

    Avrigeanu, M.; Avrigeanu, V.

    1992-02-01

    A systematic study on effects of statistical model parameters and semi-classical pre-equilibrium emission models has been carried out for the (n,p) reactions on the 56 Fe and 60 Co target nuclei. The results obtained by using various assumptions within a given pre-equilibrium emission model differ among them more than the ones of different models used under similar conditions. The necessity of using realistic level density formulas is emphasized especially in connection with pre-equilibrium emission models (i.e. with the exciton state density expression), while a basic support could be found only by replacement of the Williams exciton state density formula with a realistic one. (author). 46 refs, 12 figs, 3 tabs

  9. Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...

    African Journals Online (AJOL)

    Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...

  10. Sorption Behavior of CO2 and CH4 of Glassy Polymeric Membranes and Analytical Discussion of Partial Immobilization Model

    Directory of Open Access Journals (Sweden)

    M. Mahdavian

    2007-06-01

    Full Text Available Among various reported membrane-based gas separation processes, the best explanation is generally achieved by the solution-diffusion model. The main factors in this model are the solubility and diffusivity of permeationcomponents through the membrane. The prediction of permeability and diffusivity in multicomponent gas permeation as well as the separation evaluation equilibrium and kinetic interactions requires a proper explanation of sorption and diffusion phenomena in the polymer matrix. Investigation made by various researchers in this area shows that the equilibrium interaction (sorption step plays the key role in determining diffusion and permeation in multicomponent system. Therefore, the proper description of sorption behaviour of gas mixture in the polymer is an essential task. The dual-mode sorption (Langmuir-Henry is usually used for the description of equilibrium isotherm of gases in glassy polymers based on this model; the diffusive behaviour of the system is subsequently analyzed by the partial immobilization model. In this study, the equilibrium sorption of CO2/CH4 mixture in various polymers was modelled using the experimental data available in the literature. The differences in the mechanism of adsorption for CO2 and CH4 were analyzed by considering variations in mode of sorption for each adsorbed component at different pressures. By introducing a new adsorption parameter, P50/50, (the pressure at which the portion of two modes in sorption are equal the contribution of each adsorbed component in occupying Langmuir sites was evaluated. The results indicate that the relative significance of sorption mode for each component is a function of pressure and it is different for various polymers.

  11. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    Science.gov (United States)

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion.

  12. Absence of local thermal equilibrium in two models of heat conduction

    OpenAIRE

    Dhar, Abhishek; Dhar, Deepak

    1998-01-01

    A crucial assumption in the conventional description of thermal conduction is the existence of local thermal equilibrium. We test this assumption in two simple models of heat conduction. Our first model is a linear chain of planar spins with nearest neighbour couplings, and the second model is that of a Lorentz gas. We look at the steady state of the system when the two ends are connected to heat baths at temperatures T1 and T2. If T1=T2, the system reaches thermal equilibrium. If T1 is not e...

  13. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  14. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  15. Partial Cooperative Equilibria: Existence and Characterization

    Directory of Open Access Journals (Sweden)

    Amandine Ghintran

    2010-09-01

    Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.

  16. On solutions to equilibrium problems for systems of stiffened gases

    OpenAIRE

    Flåtten, Tore; Morin, Alexandre; Munkejord, Svend Tollak

    2011-01-01

    We consider an isolated system of N immiscible fluids, each following a stiffened-gas equation of state. We consider the problem of calculating equilibrium states from the conserved fluid-mechanical properties, i.e., the partial densities and internal energies. We consider two cases; in each case mechanical equilibrium is assumed, but the fluids may or may not be in thermal equilibrium. For both cases, we address the issues of existence, uniqueness, and physical validity of equilibrium soluti...

  17. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  18. Post-CHF heat transfer: a non-equilibrium, relaxation model

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1977-01-01

    Existing phenomenological models of heat transfer in the non-equilibrium, liquid-deficient, dispersed flow regime can sometimes predict the thermal behavior fairly well but are quite complex, requiring coupled simultaneous differential equations to describe the axial gradients of mass and energy along with those of droplet acceleration and size. In addition, empirical relations are required to express the droplet breakup and increased effective heat transfer due to holdup. This report describes the development of a different approach to the problem. It is shown that the non-equilibrium component of the total energy can be expressed as a first order, inhomogeneous relaxation equation in terms of one variable coefficient termed the Superheat Relaxation number. A demonstration is provided to show that this relaxation number can be correlated using local variables in such a manner to allow the single non-equilibrium equation to accurately calculate the effects of mass velocity and heat flux along with tube length, diameter, and critical quality for equilibrium qualities from 0.13 to over 3.0

  19. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics.

    Science.gov (United States)

    Zhu, Huayang; Ricote, Sandrine; Coors, W Grover; Kee, Robert J

    2015-01-01

    A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein relationship, equilibrium conductivity measurements are sufficient to establish thermodynamic and transport properties. However, in practice it is difficult to establish unique sets of properties using equilibrium conductivity alone. Combining equilibrium and conductivity-relaxation measurements serves to significantly improve the quantitative fidelity of the derived material properties. The models are developed using a Nernst-Planck-Poisson (NPP) formulation, which enables the quantitative representation of conductivity relaxations caused by very large changes in oxygen partial pressure.

  20. Knowledge Management through the Equilibrium Pattern Model for Learning

    Science.gov (United States)

    Sarirete, Akila; Noble, Elizabeth; Chikh, Azeddine

    Contemporary students are characterized by having very applied learning styles and methods of acquiring knowledge. This behavior is consistent with the constructivist models where students are co-partners in the learning process. In the present work the authors developed a new model of learning based on the constructivist theory coupled with the cognitive development theory of Piaget. The model considers the level of learning based on several stages and the move from one stage to another requires learners' challenge. At each time a new concept is introduced creates a disequilibrium that needs to be worked out to return back to its equilibrium stage. This process of "disequilibrium/equilibrium" has been analyzed and validated using a course in computer networking as part of Cisco Networking Academy Program at Effat College, a women college in Saudi Arabia. The model provides a theoretical foundation for teaching especially in a complex knowledge domain such as engineering and can be used in a knowledge economy.

  1. Comparing supply-side specifications in models of global agriculture and the food system

    NARCIS (Netherlands)

    Robinson, S.; Meijl, van J.C.M.; Willenbockel, D.; Valin, H.; Fujimori, S.; Masui, T.; Sands, R.; Wise, M.; Calvin, K.V.; Mason d'Croz, D.; Tabeau, A.A.; Kavallari, A.; Schmitz, C.; Dietrich, J.P.; Lampe, von M.

    2014-01-01

    This article compares the theoretical and functional specification of production in partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two model families differ in their scope—partial

  2. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  3. Quantum Cournot equilibrium for the Hotelling–Smithies model of product choice

    International Nuclear Information System (INIS)

    Rahaman, Ramij; Majumdar, Priyadarshi; Basu, B

    2012-01-01

    This paper demonstrates the quantization of a spatial Cournot duopoly model with product choice, a two stage game focusing on non-cooperation in locations and quantities. With quantization, the players can access a continuous set of strategies, using a continuous variable quantum mechanical approach. The presence of quantum entanglement in the initial state identifies a quantity equilibrium for each location pair choice with any transport cost. Also higher profit is obtained by the firms at Nash equilibrium. Adoption of quantum strategies rewards us by the existence of a larger quantum strategic space at equilibrium. (paper)

  4. On a class of quantum Langevin equations and the question of approach to equilibrium

    International Nuclear Information System (INIS)

    Maassen, J.D.M.

    1982-01-01

    This thesis is concerned with a very simple 'open' quantum system, i.e. being in contact with the outer world. It is asked whether the motion of this system shows frictional behaviour in that it tends to thermal equilibrium. A partial positive answer is given to this question, more precisely, to the question if the solution of the quantum mechanical Langevin equation that describes the Lamb-model (a harmonic oscillator damped by coupling with a string), approaches an equilibrium state. In two sections, the classical and quantum Langevin equations are treated analogously. (Auth.)

  5. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    Science.gov (United States)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  6. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  7. Study of PrP - I heterogeneous equilibrium

    International Nuclear Information System (INIS)

    Vasil'eva, I.G.; Mironov, K.E.; Tarasenko, A.D.

    1976-01-01

    Using static methods the authors have measured the equilibrium vapor pressure in the system PrP+I 2 at different temperatures and different initial iodine concentrations. The equilibrium reactions in the system have been determined. The reaction of PrP with iodine is irreversible. The content of PrI 3 and I 2 in the gas phase is negligible. The pressure in the system is determined by the partial pressure of phosphorus

  8. Dividend taxation in an infinite-horizon general equilibrium model

    OpenAIRE

    Pham, Ngoc-Sang

    2017-01-01

    We consider an infinite-horizon general equilibrium model with heterogeneous agents and financial market imperfections. We investigate the role of dividend taxation on economic growth and asset price. The optimal dividend taxation is also studied.

  9. Organic tank safety project: Equilibrium moisture determination task. FY 1998 annual progress report

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1998-08-01

    During fiscal year 1998, PNNL investigated the effect of P H 2 O at or near maximum tank waste surface temperatures on the equilibrium water content of selected Hanford waste samples. These studies were performed to determine how dry organic-bearing wastes will become if exposed to environmental Hanford water partial pressures. The samples tested were obtained from Organic Watch List Tanks. At 26 C, the lowest temperature used, the water partial pressures ranged from 2 to 22 torr. At 41 C, the highest temperature used, the water partial pressures ranged from 3.5 to 48 torr. When the aliquots exposed to the lowest and highest water partial pressures reached their equilibrium or near-equilibrium water contents, they were exchanged to determine if hysteresis occurred. In some experiments, once equilibrated, aliquots not used in the hysteresis experiments were allowed to equilibrate at room temperature (23 C) until the hysteresis experiments ended; this provides a measure of the effect of temperature

  10. Equilibrium and nonequilibrium attractors for a discrete, selection-migration model

    Science.gov (United States)

    James F. Selgrade; James H. Roberds

    2003-01-01

    This study presents a discrete-time model for the effects of selection and immigration on the demographic and genetic compositions of a population. Under biologically reasonable conditions, it is shown that the model always has an equilibrium. Although equilibria for similar models without migration must have real eigenvalues, for this selection-migration model we...

  11. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    Science.gov (United States)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  12. A Model for Partial Kantian Cooperation

    OpenAIRE

    Kordonis, Ioannis

    2016-01-01

    This work presents a game theoretic model to describe game situations in which there is a partial cooperation among the players. Specifically, we assume that the players partially follow Kant's "Categorical Imperative". The model is stated for games with a continuum of players and the basic assumption made is that the participants consider that they belong to virtual groups in which they optimize their actions as if they were bound to follow the same strategy. The relation with the Nash, (Ben...

  13. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  14. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  15. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  16. Once more on the equilibrium-point hypothesis (lambda model) for motor control.

    Science.gov (United States)

    Feldman, A G

    1986-03-01

    The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.

  17. Estimating Dynamic Equilibrium Models using Macro and Financial Data

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Posch, Olaf; van der Wel, Michel

    We show that including financial market data at daily frequency, along with macro series at standard lower frequency, facilitates statistical inference on structural parameters in dynamic equilibrium models. Our continuous-time formulation conveniently accounts for the difference in observation...... of the estimators and estimate the model using 20 years of U.S. macro and financial data....

  18. The restricted stochastic user equilibrium with threshold model: Large-scale application and parameter testing

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær; Nielsen, Otto Anker; Watling, David P.

    2017-01-01

    Equilibrium model (DUE), by combining the strengths of the Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow is distributed according to Random Utility Theory among a consistently...... model improves the behavioural realism, especially for high congestion cases. Also, fast and well-behaved convergence to equilibrated solutions among non-universal choice sets is observed across different congestion levels, choice model scale parameters, and algorithm step sizes. Clearly, the results...... highlight that the RSUET outperforms the MNP SUE in terms of convergence, calculation time and behavioural realism. The choice set composition is validated by using 16,618 observed route choices collected by GPS devices in the same network and observing their reproduction within the equilibrated choice sets...

  19. Examples of equilibrium and non-equilibrium behavior in evolutionary systems

    Science.gov (United States)

    Soulier, Arne

    With this thesis, we want to shed some light into the darkness of our understanding of simply defined statistical mechanics systems and the surprisingly complex dynamical behavior they exhibit. We will do so by presenting in turn one equilibrium and then one non-equilibrium system with evolutionary dynamics. In part 1, we will present the seceder-model, a newly developed system that cannot equilibrate. We will then study several properties of the system and obtain an idea of the richness of the dynamics of the seceder model, which is particular impressive given the minimal amount of modeling necessary in its setup. In part 2, we will present extensions to the directed polymer in random media problem on a hypercube and its connection to the Eigen model of evolution. Our main interest will be the influence of time-dependent and time-independent changes in the fitness landscape viewed by an evolving population. This part contains the equilibrium dynamics. The stochastic models and the topic of evolution and non-equilibrium in general will allow us to point out similarities to the various lines of thought in game theory.

  20. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.; Villacorte, Loreen O.; Verliefde, Arne R. D.; Verberk, Jasper Q J C; Heijman, Bas G J; Amy, Gary L.; Van Dijk, Johannis C.

    2010-01-01

    to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon

  1. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  2. Adaptive behaviour and multiple equilibrium states in a predator-prey model.

    Science.gov (United States)

    Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii

    2015-05-01

    There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hopf bifurcation in a partial dependent predator-prey system with delay

    International Nuclear Information System (INIS)

    Zhao Huitao; Lin Yiping

    2009-01-01

    In this paper, a partial dependent predator-prey model with time delay is studied by using the theory of functional differential equation and Hassard's method, the condition on which positive equilibrium exists and Hopf bifurcation occurs are given. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.

  4. Adiabatic equilibrium models for direct containment heating

    International Nuclear Information System (INIS)

    Pilch, M.; Allen, M.D.

    1991-01-01

    Probabilistic risk assessment (PRA) studies are being extended to include a wider spectrum of reactor plants than was considered in NUREG-1150. There is a need for simple direct containment heating (DCH) models that can be used for screening studies aimed at identifying potentially significant contributors to overall risk in individual nuclear power plants. This paper presents two adiabatic equilibrium models suitable for the task. The first, a single-cell model, places a true upper bound on DCH loads. This upper bound, however, often far exceeds reasonable expectations of containment loads based on CONTAIN calculations and experiment observations. In this paper, a two cell model is developed that captures the major mitigating feature of containment compartmentalization, thus providing more reasonable estimates of the containment load

  5. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  6. Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1999-01-01

    In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications

  7. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  8. Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

    International Nuclear Information System (INIS)

    Shanableh, A.; Imteaz, M.

    2010-01-01

    Yoon et al. 1 presented an approximate mathematical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a 'saturation factor, β' was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated β values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between NH 3 and NH 4 + as a function of pH: temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et al. 1 and the results matched the theory in an excellent manner

  9. An Equilibrium Model of User Generated Content

    OpenAIRE

    Dae-Yong Ahn; Jason A. Duan; Carl F. Mela

    2011-01-01

    This paper considers the joint creation and consumption of content on user generated content platforms (e.g., reviews or articles, chat, videos, etc.). On these platforms, users' utilities depend upon the participation of others; hence, users' expectations regarding the participation of others on the site becomes germane to their own involvement levels. Yet these beliefs are often assumed to be fixed. Accordingly, we develop a dynamic rational expectations equilibrium model of joint consumpti...

  10. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  11. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  12. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  13. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  14. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  15. Time-dependent free boundary equilibrium and resistive diffusion in a tokamak plasma

    International Nuclear Information System (INIS)

    Selig, G.

    2012-12-01

    In a Tokamak, in order to create the necessary conditions for nuclear fusion to occur, a plasma is maintained by applying magnetic fields. Under the hypothesis of an axial symmetry of the tokamak, the study of the magnetic configuration at equilibrium is done in two dimensions, and is deduced from the poloidal flux function. This function is solution of a non linear partial differential equation system, known as equilibrium problem. This thesis presents the time dependent free boundary equilibrium problem, where the circuit equations in the tokamak coils and passive conductors are solved together with the Grad-Shafranov equation to produce a dynamic simulation of the plasma. In this framework, the Finite Element equilibrium code CEDRES has been improved in order to solve the aforementioned dynamic problem. Consistency tests and comparisons with the DINA-CH code on an ITER vertical instability case have validated the results. Then, the resistive diffusion of the plasma current density has been simulated using a coupling between CEDRES and the averaged one-dimensional diffusion equation, and it has been successfully compared with the integrated modeling code CRONOS. (author)

  16. Equilibrium statistical mechanics of lattice models

    CERN Document Server

    Lavis, David A

    2015-01-01

    Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...

  17. With timing options and heterogeneous costs, the lognormal diffusion is hardly an equilibrium price process for exhaustible resources

    International Nuclear Information System (INIS)

    Lund, D.

    1992-01-01

    The report analyses the possibility that the lognormal diffusion process should be an equilibrium spot price process for an exhaustible resource. A partial equilibrium model is used under the assumption that the resource deposits have different extraction costs. Two separate problems have been pointed out. Under full certainty, when the process reduces to an exponentially growing price, the equilibrium places a very strong restriction on a relationship between the demand function and the cost density function. Under uncertainty there is an additional problem that during periods in which the price is lower than its previously recorded high, no new deposits will start extraction. 30 refs., 1 fig

  18. Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei

    International Nuclear Information System (INIS)

    Dupuis, M.

    2006-01-01

    When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)

  19. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  20. Generalized multivalued equilibrium-like problems: auxiliary principle technique and predictor-corrector methods

    Directory of Open Access Journals (Sweden)

    Vahid Dadashi

    2016-02-01

    Full Text Available Abstract This paper is dedicated to the introduction a new class of equilibrium problems named generalized multivalued equilibrium-like problems which includes the classes of hemiequilibrium problems, equilibrium-like problems, equilibrium problems, hemivariational inequalities, and variational inequalities as special cases. By utilizing the auxiliary principle technique, some new predictor-corrector iterative algorithms for solving them are suggested and analyzed. The convergence analysis of the proposed iterative methods requires either partially relaxed monotonicity or jointly pseudomonotonicity of the bifunctions involved in generalized multivalued equilibrium-like problem. Results obtained in this paper include several new and known results as special cases.

  1. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Science.gov (United States)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  2. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  3. A development of multi-Species mass transport model considering thermodynamic phase equilibrium

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2008-01-01

    ) variation in solid-phase composition when using different types of cement, (ii) physicochemical evaluation of steel corrosion initiation behaviour by calculating the molar ratio of chloride ion to hydroxide ion [Cl]/[OH] in pore solution, (iii) complicated changes of solid-phase composition caused......In this paper, a multi-species mass transport model, which can predict time dependent variation of pore solution and solid-phase composition due to the mass transport into the hardened cement paste, has been developed. Since most of the multi-species models established previously, based...... on the Poisson-Nernst-Planck theory, did not involve the modeling of chemical process, it has been coupled to thermodynamic equilibrium model in this study. By the coupling of thermodynamic equilibrium model, the multi-species model could simulate many different behaviours in hardened cement paste such as: (i...

  4. Foundations and models of pre-equilibrium decay

    International Nuclear Information System (INIS)

    Bunakov, V.E.

    1980-01-01

    A review is given of the presently existing microscopic, semi-phenomenologic and phenomenologic models used for the description of nuclear reactions. Their advantages and drawbacks are analyzed. A special attention is given to the analysis of pre-equilibrium decay phenomenological models based on the use of master equations (time-dependent versions of exciton models, intranuclear cascade, etc.). A version of the unified theory of nuclear reactions is discussed which makes use of quantum master equations for finite open systems. The conditions are formulated for the derivation of these equations from the time-dependent Schroedinger equation for the many-body problem. The various models of nuclear reactions used in practice are shown to be approximate solutions of master equations for finite open systems. From this point of view the analysis is carried out of these models' reliability in the description of experimental data. Possible modifications are considered which provide for better agreement between the different models and for the more exact description of experimental data. (author)

  5. Quantity Constrained General Equilibrium

    NARCIS (Netherlands)

    Babenko, R.; Talman, A.J.J.

    2006-01-01

    In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In

  6. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  7. Prediction of the working parameters of a wood waste gasifier through an equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Altafini, Carlos R.; Baretto, Ronaldo M. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Wander, Paulo R. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Federal Univ. of Rio Grande do Sul State (UFRGS), Mechanical Engineering Postgraduation Program (PROMEC), RS (Brazil)

    2003-10-01

    This paper deals with the computational simulation of a wood waste (sawdust) gasifier using an equilibrium model based on minimization of the Gibbs free energy. The gasifier has been tested with Pinus Elliotis sawdust, an exotic specie largely cultivated in the South of Brazil. The biomass used in the tests presented a moisture of nearly 10% (wt% on wet basis), and the average composition results of the gas produced (without tar) are compared with the equilibrium models used. Sensitivity studies to verify the influence of the moisture sawdust content on the fuel gas composition and on its heating value were made. More complex models to reproduce with better accuracy the gasifier studied were elaborated. Although the equilibrium models do not represent the reactions that occur at relatively high temperatures ( {approx_equal} 800 deg C) very well, these models can be useful to show some tendencies on the working parameter variations of a gasifier. (Author)

  8. A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2011-08-15

    This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.

  9. African wildlife and people : finding solutions where equilibrium models fail

    NARCIS (Netherlands)

    Poshiwa, X.

    2013-01-01

    Grazing systems, covering about half of the terrestrial surface, tend to be either equilibrial or non-equilibrial in nature, largely depending on the environmental stochasticity.The equilibrium model perspective stresses the importance of biotic feedbacks between herbivores and their resource,

  10. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    Science.gov (United States)

    Fan, Zhengfeng; Liu, Jie

    2016-10-01

    We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.

  11. Thermodynamic Equilibria and Extrema Analysis of Attainability Regions and Partial Equilibria

    CERN Document Server

    Gorban, Alexander N; Kaganovich, Boris M; Keiko, Alexandre V; Shamansky, Vitaly A; Shirkalin, Igor A

    2006-01-01

    This book discusses mathematical models that are based on the concepts of classical equilibrium thermodynamics. They are intended for the analysis of possible results of diverse natural and production processes. Unlike the traditional models, these allow one to view the achievable set of partial equilibria with regards to constraints on kinetics, energy and mass exchange and to determine states of the studied systems of interest for the researcher. Application of the suggested models in chemical technology, energy and ecology is illustrated in the examples.

  12. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  13. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  14. Adaptive Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rasmussen, Tage

    1996-01-01

    Partially Hidden Markov Models (PHMM) have recently been introduced. The transition and emission probabilities are conditioned on the past. In this report, the PHMM is extended with a multiple token version. The different versions of the PHMM are applied to bi-level image coding....

  15. An applied general equilibrium model for Dutch agribusiness policy analysis

    NARCIS (Netherlands)

    Peerlings, J.

    1993-01-01

    The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of

  16. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  17. Phase equilibrium modeling of gas hydrate systems for CO2 capture

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2012-01-01

    to form from vapor phases with initial mole fractions of CO2 at or above 0.15.The two models are validated against mixed hydrate equilibrium data found in literature. Both dissociation pressures and hydrate compositions are considered in the validation process.With the fitted parameters, Model I predicts...

  18. An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach

    Science.gov (United States)

    Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo

    2017-07-01

    In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.

  19. Measuring productivity differences in equilibrium search models

    DEFF Research Database (Denmark)

    Lanot, Gauthier; Neumann, George R.

    1996-01-01

    Equilibrium search models require unobserved heterogeneity in productivity to fit observed wage distribution data, but provide no guidance about the location parameter of the heterogeneity. In this paper we show that the location of the productivity heterogeneity implies a mode in a kernel density...... estimate of the wage distribution. The number of such modes and their location are identified using bump hunting techniques due to Silverman (1981). These techniques are applied to Danish panel data on workers and firms. These estimates are used to assess the importance of employer wage policy....

  20. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    Science.gov (United States)

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  1. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  2. Partial Orders and Fully Abstract Models for Concurrency

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik

    1990-01-01

    In this thesis sets of labelled partial orders are employed as fundamental mathematical entities for modelling nondeterministic and concurrent processes thereby obtaining so-called noninterleaving semantics. Based on different closures of sets of labelled partial orders, simple algebraic language...

  3. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  4. Phase equilibrium engineering

    CERN Document Server

    Brignole, Esteban Alberto

    2013-01-01

    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  5. Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model

    International Nuclear Information System (INIS)

    Nagel, T.; Shao, H.; Singh, A.K.; Watanabe, N.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also determine reaction kinetics. To advance this technology beyond the laboratory stage requires a thorough theoretical understanding of the multiphysics phenomena and their quantification on a scale relevant to engineering analyses. Here, the theoretical derivation of a macroscopic model for multicomponent compressible gas flow through a porous solid is presented along with its finite element implementation where solid–gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius–Duhem inequality. Special emphasis is placed on the interphase coupling via mass, momentum and energy interaction terms and their effects are partially illustrated using numerical examples. Novel features of the implementation of the described model are verified via comparisons to analytical solutions. The specification, validation and application of the full model to a calcium hydroxide/calcium oxide based thermochemical storage system are the subject of part 2 of this study. - Highlights: • Rigorous application of the Theory of Porous Media and the 2nd law of thermodynamics. • Thermodynamically consistent model for thermochemical heat storage systems. • Multicomponent gas; modified Fick's and Darcy's law; thermal non-equilibrium; solid–gas reactions. • Clear distinction between source and production terms. • Open source finite element implementation and benchmarks

  6. Estuarine Facies Model Revisited: Conceptual Model of Estuarine Sediment Dynamics During Non-Equilibrium Conditions

    Science.gov (United States)

    Elliott, E. A.; Rodriguez, A. B.; McKee, B. A.

    2017-12-01

    Traditional models of estuarine systems show deposition occurs primarily within the central basin. There, accommodation space is high within the deep central valley, which is below regional wave base and where current energy is presumed to reach a relative minimum, promoting direct deposition of cohesive sediment and minimizing erosion. However, these models often reflect long-term (decadal-millennial) timescales, where accumulation rates are in relative equilibrium with the rate of relative sea-level rise, and lack the resolution to capture shorter term changes in sediment deposition and erosion within the central estuary. This work presents a conceptual model for estuarine sedimentation during non-equilibrium conditions, where high-energy inputs to the system reach a relative maximum in the central basin, resulting in temporary deposition and/or remobilization over sub-annual to annual timescales. As an example, we present a case study of Core Sound, NC, a lagoonal estuarine system where the regional base-level has been reached, and sediment deposition, resuspension and bypassing is largely a result of non-equilibrium, high-energy events. Utilizing a 465 cm-long sediment core from a mini-basin located between Core Sound and the continental shelf, a 40-year sub-annual chronology was developed for the system, with sediment accumulation rates (SAR) interpolated to a monthly basis over the 40-year record. This study links erosional processes in the estuary directly with sediment flux to the continental shelf, taking advantage of the highly efficient sediment trapping capability of the mini-basin. The SAR record indicates high variation in the estuarine sediment supply, with peaks in the SAR record at a recurrence interval of 1 year (+/- 0.25). This record has been compared to historical storm influence for the area. Through this multi-decadal record, sediment flushing events occur at a much more frequent interval than previously thought (i.e. annual rather than

  7. Nonflat equilibrium liquid shapes on flat surfaces.

    Science.gov (United States)

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  8. Testing the generalized partial credit model

    NARCIS (Netherlands)

    Glas, Cornelis A.W.

    1996-01-01

    The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a

  9. A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences

    Science.gov (United States)

    Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su

    2015-08-01

    Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.

  10. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    Science.gov (United States)

    2015-01-01

    wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O

  11. Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model

    International Nuclear Information System (INIS)

    Wu, Y.J.; Rosen, M.A.

    1999-01-01

    Energy equilibrium models can be valuable aids in energy planning and decision-making. In such models, supply is represented by a cost-minimizing linear submodel and demand by a smooth vector-valued function of prices. In this paper, we use the energy equilibrium model to study conventional systems and cogeneration-based district energy (DE) systems for providing heating, cooling and electrical services, not only to assess the potential economic and environmental benefits of cogeneration-based DE systems, but also to develop optimal configurations while accounting for such factors as economics and environmental impact. The energy equilibrium model is formulated and solved with software called WATEMS, which uses sequential non-linear programming to calculate the intertemporal equilibrium of energy supplies and demands. The methods of analysis and evaluation for the economic and environmental impacts are carefully explored. An illustrative energy equilibrium model of conventional and cogeneration-based DE systems is developed within WATEMS to compare quantitatively the economic and environmental impacts of those systems for various scenarios. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. A new equilibrium trading model with asymmetric information

    Directory of Open Access Journals (Sweden)

    Lianzhang Bao

    2018-03-01

    Full Text Available Taking arbitrage opportunities into consideration in an incomplete market, dealers will pricebonds based on asymmetric information. The dealer with the best offering price wins the bid. The riskpremium in dealer’s offering price is primarily determined by the dealer’s add-on rate of change tothe term structure. To optimize the trading strategy, a new equilibrium trading model is introduced.Optimal sequential estimation scheme for detecting the risk premium due to private inforamtion isproposed based on historical prices, and the best bond pricing formula is given with the accordingoptimal trading strategy. Numerical examples are provided to illustrate the economic insights underthe certain stochastic term structure interest rate models.

  13. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    Science.gov (United States)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  14. Recent tests of the equilibrium-point hypothesis (lambda model).

    Science.gov (United States)

    Feldman, A G; Ostry, D J; Levin, M F; Gribble, P L; Mitnitski, A B

    1998-07-01

    The lambda model of the equilibrium-point hypothesis (Feldman & Levin, 1995) is an approach to motor control which, like physics, is based on a logical system coordinating empirical data. The model has gone through an interesting period. On one hand, several nontrivial predictions of the model have been successfully verified in recent studies. In addition, the explanatory and predictive capacity of the model has been enhanced by its extension to multimuscle and multijoint systems. On the other hand, claims have recently appeared suggesting that the model should be abandoned. The present paper focuses on these claims and concludes that they are unfounded. Much of the experimental data that have been used to reject the model are actually consistent with it.

  15. A general equilibrium model of ecosystem services in a river basin

    Science.gov (United States)

    Travis Warziniack

    2014-01-01

    This study builds a general equilibrium model of ecosystem services, with sectors of the economy competing for use of the environment. The model recognizes that production processes in the real world require a combination of natural and human inputs, and understanding the value of these inputs and their competing uses is necessary when considering policies of resource...

  16. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.

    Science.gov (United States)

    Netz, Roland R

    2018-05-14

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium

  17. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium

    Science.gov (United States)

    Netz, Roland R.

    2018-05-01

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium

  18. A Generalized Partial Credit Model: Application of an EM Algorithm.

    Science.gov (United States)

    Muraki, Eiji

    1992-01-01

    The partial credit model with a varying slope parameter is developed and called the generalized partial credit model (GPCM). Analysis results for simulated data by this and other polytomous item-response models demonstrate that the rating formulation of the GPCM is adaptable to the analysis of polytomous item responses. (SLD)

  19. Partial stabilization and control of distributed parameter systems with elastic elements

    CERN Document Server

    Zuyev, Alexander L

    2015-01-01

     This monograph provides a rigorous treatment of problems related to partial asymptotic stability and controllability for models of flexible structures described by coupled nonlinear ordinary and partial differential equations or equations in abstract spaces. The text is self-contained, beginning with some basic results from the theory of continuous semigroups of operators in Banach spaces. The problem of partial asymptotic stability with respect to a continuous functional is then considered for a class of abstract multivalued systems on a metric space. Next, the results of this study are applied to the study of a rotating body with elastic attachments. Professor Zuyev demonstrates that the equilibrium cannot be made strongly asymptotically stable in the general case, motivating consideration of the problem of partial stabilization with respect to the functional that represents “averaged” oscillations. The book’s focus moves on to spillover analysis for infinite-dimensional systems with finite-dimensio...

  20. Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices

    Science.gov (United States)

    Garcia Bertrand, Raquel

    In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary

  1. Conformational stability and self-association equilibrium in biologics.

    Science.gov (United States)

    Clarkson, Benjamin R; Schön, Arne; Freire, Ernesto

    2016-02-01

    Biologics exist in equilibrium between native, partially denatured, and denatured conformational states. The population of any of these states is dictated by their Gibbs energy and can be altered by changes in physical and solution conditions. Some conformations have a tendency to self-associate and aggregate, an undesirable phenomenon in protein therapeutics. Conformational equilibrium and self-association are linked thermodynamic functions. Given that any associative reaction is concentration dependent, conformational stability studies performed at different protein concentrations can provide early clues to future aggregation problems. This analysis can be applied to the selection of protein variants or the identification of better formulation solutions. In this review, we discuss three different aggregation situations and their manifestation in the observed conformational equilibrium of a protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An Equilibrium Chance-Constrained Multiobjective Programming Model with Birandom Parameters and Its Application to Inventory Problem

    Directory of Open Access Journals (Sweden)

    Zhimiao Tao

    2013-01-01

    Full Text Available An equilibrium chance-constrained multiobjective programming model with birandom parameters is proposed. A type of linear model is converted into its crisp equivalent model. Then a birandom simulation technique is developed to tackle the general birandom objective functions and birandom constraints. By embedding the birandom simulation technique, a modified genetic algorithm is designed to solve the equilibrium chance-constrained multiobjective programming model. We apply the proposed model and algorithm to a real-world inventory problem and show the effectiveness of the model and the solution method.

  3. Some Considerations on the Partial Credit Model

    Science.gov (United States)

    Verhelst, N. D.; Verstralen, H. H. F. M.

    2008-01-01

    The Partial Credit Model (PCM) is sometimes interpreted as a model for stepwise solution of polytomously scored items, where the item parameters are interpreted as difficulties of the steps. It is argued that this interpretation is not justified. A model for stepwise solution is discussed. It is shown that the PCM is suited to model sums of binary…

  4. Modeling and Control of an Ornithopter for Non-Equilibrium Maneuvers

    OpenAIRE

    Rose, Cameron Jarrel

    2015-01-01

    Flapping-winged flight is very complex, and it is difficult to efficiently model the unsteady airflow and nonlinear dynamics for online control. While steady state flight is well understood, transitions between flight regimes are not readily modeled or controlled. Maneuverability in non-equilibrium flight, which birds and insects readily exhibit in nature, is necessary to operate in the types of cluttered environments that small-scale flapping-winged robots are best suited for. The advantages...

  5. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  6. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    Science.gov (United States)

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly

  7. A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis

    OpenAIRE

    Masataka, SUZUKI; Yoshihiko, YAMAZAKI; Yumiko, TANIGUCHI; Department of Psychology, Kinjo Gakuin University; Department of Health and Physical Education, Nagoya Institute of Technology; College of Human Life and Environment, Kinjo Gakuin University

    2003-01-01

    SUZUKI,M., YAMAZAKI,Y. and TANIGUCHI,Y., A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis. Adv. Exerc. Sports Physiol., Vol.9, No.1 pp.7-25, 2003. According to the equilibrium point hypothesis of motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction among moving equilibrium point, reflex feedback and muscle mechanical properties. This approach is attractive as it obviates the n...

  8. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  9. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    International Nuclear Information System (INIS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-01-01

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter

  10. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  11. Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-10-01

    A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.

  12. Testing the generalized partial credit model

    OpenAIRE

    Glas, Cornelis A.W.

    1996-01-01

    The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a generalization of the PCM (GPCM), a further generalization of the one-parameter logistic model, is discussed. The model is defined and the conditional maximum likelihood procedure for the method is describe...

  13. Restructured electric power systems analysis of electricity markets with equilibrium models

    CERN Document Server

    2010-01-01

    Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets.

  14. Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models

    NARCIS (Netherlands)

    Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.

    2016-01-01

    A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of

  15. Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases

    International Nuclear Information System (INIS)

    Arapaki, E.; Argyrakis, P.; Tringides, M.C.

    2008-01-01

    Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity

  16. Iteration scheme for implicit calculations of kinetic and equilibrium chemical reactions in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1995-01-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described. Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow. 10 refs., 2 figs

  17. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit

  18. Towards Automated Bargaining in Electronic Markets: A Partially Two-Sided Competition Model

    Science.gov (United States)

    Gatti, Nicola; Lazaric, Alessandro; Restelli, Marcello

    This paper focuses on the prominent issue of automating bargaining agents within electronic markets. Models of bargaining in literature deal with settings wherein there are only two agents and no model satisfactorily captures settings in which there is competition among buyers, being they more than one, and analogously among sellers. In this paper, we extend the principal bargaining protocol, i.e. the alternating-offers protocol, to capture bargaining in markets. The model we propose is such that, in presence of a unique buyer and a unique seller, agents' equilibrium strategies are those in the original protocol. Moreover, we game theoretically study the considered game providing the following results: in presence of one-sided competition (more buyers and one seller or vice versa) we provide agents' equilibrium strategies for all the values of the parameters, in presence of two-sided competition (more buyers and more sellers) we provide an algorithm that produce agents' equilibrium strategies for a large set of the parameters and we experimentally evaluate its effectiveness.

  19. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  20. Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models

    Directory of Open Access Journals (Sweden)

    Achim Ionita

    2009-01-01

    Full Text Available The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.

  1. The free energies of partially open coronal magnetic fields

    Science.gov (United States)

    Low, B. C.; Smith, D. F.

    1993-01-01

    A simple model of the low corona is examined in terms of a static polytropic atmosphere in equilibrium with a global magnetic field. The question posed is whether magnetostatic states with partially open magnetic fields may contain magnetic energies in excess of those in fully open magnetic fields. Based on the analysis presented here, it is concluded that the cross-field electric currents in the pre-eruption corona are a viable source of the bulk of the energies in a mass ejection and its associated flare.

  2. Exploring the Use of Multiple Analogical Models when Teaching and Learning Chemical Equilibrium

    Science.gov (United States)

    Harrison, Allan G.; De Jong, Onno

    2005-01-01

    This study describes the multiple analogical models used to introduce and teach Grade 12 chemical equilibrium. We examine the teacher's reasons for using models, explain each model's development during the lessons, and analyze the understandings students derived from the models. A case study approach was used and the data were drawn from the…

  3. Tracer disposition kinetics in the determination of local cerebral blood flow by a venous equilibrium model, tube model, and distributed model

    International Nuclear Information System (INIS)

    Sawada, Y.; Sugiyama, Y.; Iga, T.; Hanano, M.

    1987-01-01

    Tracer distribution kinetics in the determination of local cerebral blood flow (LCBF) were examined by using three models, i.e., venous equilibrium, tube, and distributed models. The technique most commonly used for measuring LCBF is the tissue uptake method, which was first developed and applied by Kety. The measurement of LCBF with the 14 C-iodoantipyrine (IAP) method is calculated by using an equation derived by Kety based on the Fick's principle and a two-compartment model of blood-tissue exchange and tissue concentration at a single data point. The procedure, in which the tissue is to be in equilibrium with venous blood, will be referred to as the tissue equilibration model. In this article, effects of the concentration gradient of tracer along the length of the capillary (tube model) and the transverse heterogeneity in the capillary transit time (distributed model) on the determination of LCBF were theoretically analyzed for the tissue sampling method. Similarities and differences among these models are explored. The rank order of the LCBF calculated by using arterial blood concentration time courses and the tissue concentration of tracer based on each model were tube model (model II) less than distributed model (model III) less than venous equilibrium model (model I). Data on 14 C-IAP kinetics reported by Ohno et al. were employed. The LCBFs calculated based on model I were 45-260% larger than those in models II or III. To discriminate among three models, we propose to examine the effect of altering the venous infusion time of tracer on the apparent tissue-to-blood concentration ratio (lambda app). A range of the ratio of the predicted lambda app in models II or III to that in model I was from 0.6 to 1.3

  4. The negotiated equilibrium model of spinal cord function.

    Science.gov (United States)

    Wolpaw, Jonathan R

    2018-04-16

    The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium

    Science.gov (United States)

    Limpaitoon, Tanachai

    This dissertation presents an equilibrium framework for analyzing the impact of cap-and-trade regulation on transmission-constrained electricity market. The cap-and-trade regulation of greenhouse gas emissions has gained momentum in the past decade. The impact of the regulation and its efficacy in the electric power industry depend on interactions of demand elasticity, transmission network, market structure, and strategic behavior of firms. I develop an equilibrium model of an oligopoly electricity market in conjunction with a market for tradable emissions permits to study the implications of such interactions. My goal is to identify inefficiencies that may arise from policy design elements and to avoid any unintended adverse consequences on the electric power sector. I demonstrate this modeling framework with three case studies examining the impact of carbon cap-and-trade regulation. In the first case study, I study equilibrium results under various scenarios of resource ownership and emission targets using a 24-bus IEEE electric transmission system. The second and third case studies apply the equilibrium model to a realistic electricity market, Western Electricity Coordinating Council (WECC) 225-bus system with a detailed representation of the California market. In the first and second case studies, I examine oligopoly in electricity with perfect competition in the permit market. I find that under a stringent emission cap and a high degree of concentration of non-polluting firms, the electricity market is subject to potential abuses of market power. Also, market power can occur in the procurement of non-polluting energy through the permit market when non-polluting resources are geographically concentrated in a transmission-constrained market. In the third case study, I relax the competitive market structure assumption of the permit market by allowing oligopolistic competition in the market through a conjectural variation approach. A short-term equilibrium

  6. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    Directory of Open Access Journals (Sweden)

    Benjamin Scellier

    2017-05-01

    Full Text Available We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made and the second phase of training (after the target or prediction error is revealed. Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST

  7. Pharmaceutical industry and trade liberalization using computable general equilibrium model.

    Science.gov (United States)

    Barouni, M; Ghaderi, H; Banouei, Aa

    2012-01-01

    Computable general equilibrium models are known as a powerful instrument in economic analyses and widely have been used in order to evaluate trade liberalization effects. The purpose of this study was to provide the impacts of trade openness on pharmaceutical industry using CGE model. Using a computable general equilibrium model in this study, the effects of decrease in tariffs as a symbol of trade liberalization on key variables of Iranian pharmaceutical products were studied. Simulation was performed via two scenarios in this study. The first scenario was the effect of decrease in tariffs of pharmaceutical products as 10, 30, 50, and 100 on key drug variables, and the second was the effect of decrease in other sectors except pharmaceutical products on vital and economic variables of pharmaceutical products. The required data were obtained and the model parameters were calibrated according to the social accounting matrix of Iran in 2006. The results associated with simulation demonstrated that the first scenario has increased import, export, drug supply to markets and household consumption, while import, export, supply of product to market, and household consumption of pharmaceutical products would averagely decrease in the second scenario. Ultimately, society welfare would improve in all scenarios. We presents and synthesizes the CGE model which could be used to analyze trade liberalization policy issue in developing countries (like Iran), and thus provides information that policymakers can use to improve the pharmacy economics.

  8. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  9. Ageing in the trap model as a relaxation further away from equilibrium

    International Nuclear Information System (INIS)

    Bertin, Eric

    2013-01-01

    The ageing regime of the trap model, observed for a temperature T below the glass transition temperature T g , is a prototypical example of non-stationary out-of-equilibrium state. We characterize this state by evaluating its ‘distance to equilibrium’, defined as the Shannon entropy difference ΔS (in absolute value) between the non-equilibrium state and the equilibrium state with the same energy. We consider the time evolution of ΔS and show that, rather unexpectedly, ΔS(t) continuously increases in the ageing regime, if the number of traps is infinite, meaning that the ‘distance to equilibrium’ increases instead of decreasing in the relaxation process. For a finite number N of traps, ΔS(t) exhibits a maximum value before eventually converging to zero when equilibrium is reached. The time t* at which the maximum is reached however scales in a non-standard way as t * ∼N T g /2T , while the equilibration time scales as τ eq ∼N T g /T . In addition, the curves ΔS(t) for different N are found to rescale as ln t/ln t*, instead of the more familiar scaling t/t*. (paper)

  10. International nuclear model and code comparison on pre-equilibrium effects

    International Nuclear Information System (INIS)

    Gruppelaar, H.; van der Kamp, H.A.J.; Nagel, P.

    1983-01-01

    This paper gives the specification of an intercomparison of statistical nuclear models and codes with emphasis on pre-equilibrium effects. It is partly based upon the conclusions of a meeting of an ad-hoc working group on this subject. The parameters studied are: masses, Q values, level scheme data, optical model parameters, X-ray competition parameters, total level-density specifications, for 86 Rb, 89 Sr, 90 Y, 92 Y, 92 Zr, 93 Zr, 89 Y, 91 Nb, 92 Nb and 93 Nb

  11. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  12. Partial-Order Reduction for GPU Model Checking

    NARCIS (Netherlands)

    Neele, T.; Wijs, A.; Bosnacki, D.; van de Pol, Jan Cornelis; Artho, C; Legay, A.; Peled, D.

    2016-01-01

    Model checking using GPUs has seen increased popularity over the last years. Because GPUs have a limited amount of memory, only small to medium-sized systems can be verified. For on-the-fly explicit-state model checking, we improve memory efficiency by applying partial-order reduction. We propose

  13. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  14. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    International Nuclear Information System (INIS)

    Yeh, G.T.; Iskra, G.A.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength

  15. Partial chord diagrams and matrix models

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide

    In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length spe...

  16. The equilibrium response to doubling atmospheric CO2

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1990-01-01

    The equilibrium response of climate to increased atmospheric carbon dioxide as simulated by general circulation models is assessed. Changes that are physically plausible are summarized, along with an indication of the confidence attributable to those changes. The main areas of uncertainty are highlighted. They include: equilibrium experiments with mixed-layer oceans focusing on temperature, precipitation, and soil moisture; equilibrium studies with dynamical ocean-atmosphere models; results deduced from equilibrium CO 2 experiments; and priorities for future research to improve atmosphere models

  17. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  18. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    Science.gov (United States)

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  19. Ginsburg criterion for an equilibrium superradiant model in the dynamic approach

    International Nuclear Information System (INIS)

    Trache, M.

    1991-10-01

    Some critical properties of an equilibrium superradiant model are discussed, taking into account the quantum fluctuations of the field variables. The critical region is calculated using the Ginsburg criterion, underlining the role of the atomic concentration as a control parameter of the phase transition. (author). 16 refs, 1 fig

  20. Coenzyme B12 model studies: Equilibrium constants for the pH ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 1. Coenzyme B12 model studies: Equilibrium constants for the H-dependent axial ligation of benzyl(aquo)cobaloxime by various N- and S-donor ligands. D Sudarshan Reddy N Ravi Kumar Reddy V Sridhar S Satyanarayana. Inorganic and Analytical ...

  1. Non-equilibrium physics at a holographic chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nick; Kim, Keun-young [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Kavli Institute for Theoretical Physics China, Beijing (China); Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  2. Approach to chemical equilibrium in thermal models

    International Nuclear Information System (INIS)

    Boal, D.H.

    1984-01-01

    The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect

  3. Bayesian inference for partially identified models exploring the limits of limited data

    CERN Document Server

    Gustafson, Paul

    2015-01-01

    Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp

  4. Partially nested designs in psychotherapy trials: A review of modeling developments.

    Science.gov (United States)

    Sterba, Sonya K

    2017-07-01

    Individually-randomized psychotherapy trials are often partially nested. For instance, individuals assigned to a treatment arm may be clustered into therapy groups for purposes of treatment administration, whereas individuals assigned to a wait-list control are unclustered. The past several years have seen rapid expansion and investigation of methods for analyzing partially nested data. Yet partial nesting often remains ignored in psychotherapy trials. This review integrates and disseminates developments in the analysis of partially nested data that are particularly relevant for psychotherapy researchers. First, we differentiate among alternative partially nested designs. Then, we present adaptations of multilevel model specifications that accommodate each design. Next, we address how moderation by treatment as well as mediation of the treatment effect can be investigated in partially nested designs. Model fitting results, annotated software syntax, and illustrative data sets are provided and key methodological issues are discussed. We emphasize that cluster-level variability in the treatment arm need not be considered a nuisance; it can be modeled to yield insights about the treatment process.

  5. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  6. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  7. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  8. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay

    International Nuclear Information System (INIS)

    Prince, J.R.

    1979-01-01

    Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium

  9. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    Science.gov (United States)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  10. Nonequilibrium Kondo effect by the equilibrium numerical renormalization group method: The hybrid Anderson model subject to a finite spin bias

    Science.gov (United States)

    Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng

    2018-06-01

    We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].

  11. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    Science.gov (United States)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  12. Equilibrium shoreface profiles

    DEFF Research Database (Denmark)

    Aagaard, Troels; Hughes, Michael G

    2017-01-01

    Large-scale coastal behaviour models use the shoreface profile of equilibrium as a fundamental morphological unit that is translated in space to simulate coastal response to, for example, sea level oscillations and variability in sediment supply. Despite a longstanding focus on the shoreface...... profile and its relevance to predicting coastal response to changing environmental conditions, the processes and dynamics involved in shoreface equilibrium are still not fully understood. Here, we apply a process-based empirical sediment transport model, combined with morphodynamic principles to provide......; there is no tuning or calibration and computation times are short. It is therefore easily implemented with repeated iterations to manage uncertainty....

  13. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    Science.gov (United States)

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Energy taxes and wages in a general equilibrium model of production

    International Nuclear Information System (INIS)

    Thompson, H.

    2000-01-01

    Energy taxes are responsible for a good deal of observed differences in energy prices across states and countries. They alter patterns of production and income distribution. The present paper examines the potential of energy taxes to lower wages in a general equilibrium model of production with capital, labour and energy inputs. (Author)

  15. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  16. Some Considerations on the Partial Credit Model

    OpenAIRE

    H.H.F.M. Verstralen; N.D. Verhelst

    2008-01-01

    The Partial Credit Model (PCM) is sometimes interpreted as a model for stepwise solution of polytomously scored items, where the item parameters are interpreted as di culties of the steps. It is argued that this interpretation is not justi ed. A model for stepwise solution is discussed. It is shown that the PCM is suited to model sums of binary responses which are not supposed to be stochastically independent. As a practical result, a statistical test of sto...

  17. Transfer coefficients to terrestrial food products in equilibrium assessment models for nuclear installations

    International Nuclear Information System (INIS)

    Zach, R.

    1980-09-01

    Transfer coefficients have become virtually indispensible in the study of the fate of radioisotopes released from nuclear installations. These coefficients are used in equilibrium assessment models where they specify the degree of transfer in food chains of individual radioisotopes from soil to plant products and from feed or forage and drinking water to animal products and ultimately to man. Information on transfer coefficients for terrestrial food chain models is very piecemeal and occurs in a wide variety of journals and reports. To enable us to choose or determine suitable values for assessments, we have addressed the following aspects of transfer coefficients on a very broad scale: (1) definitions, (2) equilibrium assumption, which stipulates that transfer coefficients be restricted to equilibrium or steady rate conditions, (3) assumption of linearity, that is the idea that radioisotope concentrations in food products increase linearly with contamination levels in the soil or animal feed, (4) methods of determination, (5) variability, (6) generic versus site-specific values, (7) statistical aspects, (8) use, (9) sources of currently used values, (10) criteria for revising values, (11) establishment and maintenance of files on transfer coefficients, and (12) future developments. (auth)

  18. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  19. Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence

    International Nuclear Information System (INIS)

    Lapillonne, X.; Brunner, S.; Dannert, T.; Jolliet, S.; Marinoni, A.; Villard, L.; Goerler, T.; Jenko, F.; Merz, F.

    2009-01-01

    In the context of gyrokinetic flux-tube simulations of microturbulence in magnetized toroidal plasmas, different treatments of the magnetic equilibrium are examined. Considering the Cyclone DIII-D base case parameter set [Dimits et al., Phys. Plasmas 7, 969 (2000)], significant differences in the linear growth rates, the linear and nonlinear critical temperature gradients, and the nonlinear ion heat diffusivities are observed between results obtained using either an s-α or a magnetohydrodynamic (MHD) equilibrium. Similar disagreements have been reported previously [Redd et al., Phys. Plasmas 6, 1162 (1999)]. In this paper it is shown that these differences result primarily from the approximation made in the standard implementation of the s-α model, in which the straight field line angle is identified to the poloidal angle, leading to inconsistencies of order ε (ε=a/R is the inverse aspect ratio, a the minor radius and R the major radius). An equilibrium model with concentric, circular flux surfaces and a correct treatment of the straight field line angle gives results very close to those using a finite ε, low β MHD equilibrium. Such detailed investigation of the equilibrium implementation is of particular interest when comparing flux tube and global codes. It is indeed shown here that previously reported agreements between local and global simulations in fact result from the order ε inconsistencies in the s-α model, coincidentally compensating finite ρ * effects in the global calculations, where ρ * =ρ s /a with ρ s the ion sound Larmor radius. True convergence between local and global simulations is finally obtained by correct treatment of the geometry in both cases, and considering the appropriate ρ * →0 limit in the latter case.

  20. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen, E-mail: yen.liu@nasa.gov; Vinokur, Marcel [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, Marco; Sahai, Amal [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  1. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    International Nuclear Information System (INIS)

    Liu, Yen; Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-01-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  2. Can elliptical galaxies be equilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia

    1980-08-01

    This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational + centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes with n = 0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Young et al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical galaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.

  3. The Equilibrium Analysis of a Closed Economy Model with Government and Money Market Sector

    Directory of Open Access Journals (Sweden)

    Catalin Angelo Ioan

    2011-10-01

    Full Text Available In this paper, we first study the static equilibrium of a a closed economy model in terms of dependence on national income and interest rate from the main factors namely the marginal propensity to consume, tax rate, investment rate and the rate of currency demand. In the second part, we study the dynamic equilibrium solutions in terms of stability. We thus obtain the variation functions of national income and interest rate variation and their limit values.

  4. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  5. An equilibrium pricing model for weather derivatives in a multi-commodity setting

    International Nuclear Information System (INIS)

    Lee, Yongheon; Oren, Shmuel S.

    2009-01-01

    Many industries are exposed to weather risk. Weather derivatives can play a key role in hedging and diversifying such risk because the uncertainty in a company's profit function can be correlated to weather condition which affects diverse industry sectors differently. Unfortunately the weather derivatives market is a classical example of an incomplete market that is not amenable to standard methodologies used for derivative pricing in complete markets. In this paper, we develop an equilibrium pricing model for weather derivatives in a multi-commodity setting. The model is constructed in the context of a stylized economy where agents optimize their hedging portfolios which include weather derivatives that are issued in a fixed quantity by a financial underwriter. The supply and demand resulting from hedging activities and the supply by the underwriter are combined in an equilibrium pricing model under the assumption that all agents maximize some risk averse utility function. We analyze the gains due to the inclusion of weather derivatives in hedging portfolios and examine the components of that gain attributable to hedging and to risk sharing. (author)

  6. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  7. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  8. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  9. Nonlinear Dynamic Analysis on the Rain-Wind-Induced Vibration of Cable Considering the Equilibrium Position of Rivulet

    Directory of Open Access Journals (Sweden)

    Xijun Liu

    2013-01-01

    Full Text Available The nonlinear dynamic behavior of rain-wind-induced vibration of inclined cable is investigated with the consideration of the equilibrium position of the moving rivulet. The partial differential governing equations of three-degree-of-freedom on the model of rain-wind-induced cable vibration are established, which are proposed for describing the nonlinear interactions among the in-plane, out-of-plane vibration of the cable and the oscillation of the moving rivulet. The Galerkin method is applied to discretize the partial differential governing equations. The approximately analytic solution is obtained by using the method of averaging. The unique correspondence between the wind and the equilibrium position of the rivulet is ascertained. The presence of rivulet at certain positions on the surface of cable is then proved to be one of the trigger for wind-rain-induced cable vibration. The nonlinear dynamic phenomena of the inclined cable subjected to wind and rain turbulence are then studied by varying the parameters including mean wind velocity, Coulomb damping force, damping ratio, the span length, and the initial tension of the inclined cable on the model. The jump phenomenon is also observed which occurs when there are multiple solutions in the system.

  10. Response Styles in the Partial Credit Model

    OpenAIRE

    Tutz, Gerhard; Schauberger, Gunther; Berger, Moritz

    2016-01-01

    In the modelling of ordinal responses in psychological measurement and survey- based research, response styles that represent specific answering patterns of respondents are typically ignored. One consequence is that estimates of item parameters can be poor and considerably biased. The focus here is on the modelling of a tendency to extreme or middle categories. An extension of the Partial Credit Model is proposed that explicitly accounts for this specific response style. In contrast to exi...

  11. First principles modeling of hydrocarbons conversion in non-equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)

  12. Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid + liquid) equilibrium and the (vapour + liquid) equilibrium. The modified UNIFAC (Do) model characterization

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lachwa, Joanna

    2005-01-01

    The (solid + liquid) equilibrium (SLE) of eight binary systems containing N-methyl-2-pyrrolidinone (NMP) with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) were carried out by using a dynamic method from T = 200 K to the melting point of the NMP. The isothermal (vapour + liquid) equilibrium data (VLE) have been measured for three binary mixtures of NMP with 2-propanone, 3-pentanone and 2-hexanone at pressure range from p = 0 kPa to p = 115 kPa. Data were obtained at the temperature T = 333.15 K for the first system and at T = 373.15 K for the second two systems. The experimental results of SLE have been correlated using the binary parameters Wilson, UNIQUAC ASM and two modified NRTL equations. The root-mean-square deviations of the solubility temperatures for all the calculated values vary from (0.32 K to 0.68 K) and depend on the particular equation used. The data of VLE were correlated with one to three parameters in the Redlich-Kister expansion. Binary mixtures of NMP with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) have been investigated in the framework of the modified UNIFAC (Do) model. The reported new interaction parameters for NMP-group (c-CONCH 3 ) and carbonyl group ( C=O) let the model consistently described a set of thermodynamic properties, including (solid + liquid) equilibrium (vapour + liquid) equilibrium, excess Gibbs energy and molar excess enthalpies of mixing. Our experimental and literature data of binary mixtures containing NMP and ketones were compared with the results of prediction with the modified UNIFAC (Do) model

  13. MODEL PENSKORAN PARTIAL CREDIT PADA BUTIR MULTIPLE TRUE-FALSE BIDANG FISIKA

    Directory of Open Access Journals (Sweden)

    Wasis Wasis

    2013-01-01

    Full Text Available Tujuan penelitian ini menghasilkan model penskoran politomus untuk respons butir multiple true-false, sehingga dapat mengestimasi secara lebih akurat kemampuan di bidang fisika. Pengembangan penskoran menggunakan Four-D model dan diuji akurasinya melalui penelitian empiris dan simulasi. Penelitian empiris menggunakan 15 butir multiple true-false yang diambil dari soal UMPTN tahun 1996-2006 dan dikenakan pada 410 mahasiswa baru FMIPA Universitas Negeri Surabaya angkatan tahun 2007. Respons peserta tes diskor dengan tiga model partial credit (PCM I; II; dan III dan secara dikotomus. Hasil penskoran dianalisis dengan program Quest untuk mendapat-kan estimasi tingkat kesukaran butir (δ dan estimasi ke-mampuan peserta (θ untuk menentukan nilai fungsi informasi tes dan kesalahan baku estimasi. Penelitian simulasi mengguna-kan data bangkitan berdasarkan parameter empiris (δ dan θ memakai program statistik SAS dan akurasi estimasinya di-analisis dengan metode root mean squared error (RMSE. Hasil penelitian ini menunjukkan: (i Penskoran PCM dengan pem-bobotan mampu mengestimasi kemampuan lebih akurat di-bandingkan tanpa pembobotan maupun secara dikotomus; (ii Semakin banyak jumlah kategori dalam penskoran partial credit, semakin akurat. Kata kunci: model penskoran partial credit, butir multiple true-false ____________________________________________________________ THE PARTIAL CREDIT SCORING MODEL FOR THE MULTIPLE TRUE-FALSE BUTIRS IN PHYSICS Abstract This study is an attempt to overcome the weaknesses. This study aims to produce a polytomous scoring model for responses to multiple true-false butirs in order to get a more accurate estimation of abilities in physics. It adopts the Four-D model and its accuracy is assessed through empirical and simulation studies. The empirical study employed 15 multiple true-false butirs taken from the New Students Entrance Test of State University the year of 1996–2006. It administered to 410 new students enrolled

  14. Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation

    OpenAIRE

    Catalina Rodriguez; Gerardo Gordillo

    2011-01-01

    Colombian coffee industry produces about 0.6 million tons of husk (CH) per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i) CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii) experimental thermogravimetric analysis to determine the CH activation energy (E). The Chemical Equilibrium with Applications Program (CEA), developed by NASA, was used to estimate the effect of equiva...

  15. The equilibrium crystal shape of nickel

    International Nuclear Information System (INIS)

    Meltzman, Hila; Chatain, Dominique; Avizemer, Dan; Besmann, Theodore M.; Kaplan, Wayne D.

    2011-01-01

    Highlights: → The ECS of pure Ni is completely facetted with both dense and high-index planes. → The partial pressure of oxygen has a significant effect on the surface anisotropy. → The addition of Fe decreased the anisotropy and de-stabilized high-index planes. → During solid dewetting nucleation barriers prevent equilibration of the top facet. - Abstract: The crystal shape of Ni particles, dewetted in the solid state on sapphire substrates, was examined as a function of the partial pressure of oxygen (P(O 2 )) and iron content using scanning and transmission electron microscopy. The chemical composition of the surface was characterized by atom-probe tomography. Unlike other face-centered cubic (fcc) equilibrium crystal shapes, the Ni crystals containing little or no impurities exhibited a faceted shape, indicating large surface anisotropy. In addition to the {1 1 1}, {1 0 0} and {1 1 0} facets, which are usually present in the equilibrium crystal shape of fcc metals, high-index facets were identified such as {1 3 5} and {1 3 8} at low P(O 2 ), and {0 1 2} and {0 1 3} at higher P(O 2 ). The presence of iron altered the crystal shape into a truncated sphere with only facets parallel to denser planes. The issue of particle equilibration is discussed specifically for the case of solid-state dewetting.

  16. Existence of equilibrium states of hollow elastic cylinders submerged in a fluid

    Directory of Open Access Journals (Sweden)

    M. B. M. Elgindi

    1992-01-01

    Full Text Available This paper is concerned with the existence of equilibrium states of thin-walled elastic, cylindrical shell fully or partially submerged in a fluid. This problem obviously serves as a model for many problems with engineering importance. Previous studies on the deformation of the shell have assumed that the pressure due to the fluid is uniform. This paper takes into consideration the non-uniformity of the pressure by taking into account the effect of gravity. The presence of a pressure gradient brings additional parameters to the problem which in turn lead to the consideration of several boundary value problems.

  17. A porous flow approach to model thermal non-equilibrium applicable to melt migration

    Science.gov (United States)

    Schmeling, Harro; Marquart, Gabriele; Grebe, Michael

    2018-01-01

    We develop an approach for heat exchange between a fluid and a solid phase of a porous medium where the temperatures of the fluid and matrix are not in thermal equilibrium. The formulation considers moving of the fluid within a resting or deforming porous matrix in an Eulerian coordinate system. The approach can be applied, for example, to partially molten systems or to brine transport in porous rocks. We start from an existing theory for heat exchange where the energy conservation equations for the fluid and the solid phases are separated and coupled by a heat exchange term. This term is extended to account for the full history of heat exchange. It depends on the microscopic geometry of the fluid phase. For the case of solid containing hot, fluid-filled channels, we derive an expression based on a time-dependent Fourier approach for periodic half-waves. On the macroscopic scale, the temporal evolution of the heat exchange leads to a convolution integral along the flow path of the solid, which simplifies considerably in case of a resting matrix. The evolution of the temperature in both phases with time is derived by inserting the heat exchange term into the energy equations. We explore the effects of thermal non-equilibrium between fluid and solid by considering simple cases with sudden temperature differences between fluid and solid as initial or boundary conditions, and by varying the fluid velocity with respect to the resting porous solid. Our results agree well with an analytical solution for non-moving fluid and solid. The temperature difference between solid and fluid depends on the Peclet number based on the Darcy velocity. For Peclet numbers larger than 1, the temperature difference after one diffusion time reaches 5 per cent of \\tilde{T} or more (\\tilde{T} is a scaling temperature, e.g. the initial temperature difference). Thus, our results imply that thermal non-equilibrium can play an important role for melt migration through partially molten systems

  18. Some Considerations on the Partial Credit Model

    Directory of Open Access Journals (Sweden)

    H.H.F.M. Verstralen

    2008-01-01

    Full Text Available The Partial Credit Model (PCM is sometimes interpreted as a model for stepwise solution of polytomously scored items, where the item parameters are interpreted as di culties of the steps. It is argued that this interpretation is not justi ed. A model for stepwise solution is discussed. It is shown that the PCM is suited to model sums of binary responses which are not supposed to be stochastically independent. As a practical result, a statistical test of stochastic independence in the Rasch model is derived

  19. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

    Science.gov (United States)

    Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri

    2015-10-01

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts

  20. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  1. Financial equilibrium with career concerns

    Directory of Open Access Journals (Sweden)

    Amil Dasgupta

    2006-03-01

    Full Text Available What are the equilibrium features of a financial market where a sizeable proportion of traders face reputational concerns? This question is central to our understanding of financial markets, which are increasingly dominated by institutional investors. We construct a model of delegated portfolio management that captures key features of the US mutual fund industry and embed it in an asset pricing framework. We thus provide a formal model of financial equilibrium with career concerned agents. Fund managers differ in their ability to understand market fundamentals, and in every period investors choose a fund. In equilibrium, the presence of career concerns induces uninformed fund managers to churn, i.e., to engage in trading even when they face a negative expected return. Churners act as noise traders and enhance the level of trading volume. The equilibrium relationship between fund return and net fund flows displays a skewed shape that is consistent with stylized facts. The robustness of our core results is probed from several angles.

  2. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  3. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, B.A.

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  4. Physico-chemical investigation of cement carbonation in aqueous solution in equilibrium with calcite and with a controlled CO2 partial pressure at 25 and 50 deg. C

    International Nuclear Information System (INIS)

    Chomat, Laure; Trepy, Nadia; Le Bescop, Patrick; Dauzeres, Alexandre; Monguillon, Corinne

    2012-01-01

    In the framework of radioactive waste geological disposal, structural concretes have to be adapted to underground chemical conditions. For concrete in water saturated medium, it is believed that carbonation will have a major impact on the interaction between concrete and the geological medium. So, to understand the complex degradation of the cement paste in that context, it is interesting to study a simplified system such as degradation in carbonated water solution. This solution must be at equilibrium with a CO 2 partial pressure 30 times higher than the atmospheric pCO 2 , to reproduce underground natural conditions of Callovo-Oxfordian clayey rock of Bure (France). In this study, the behaviour of a new low pH material (CEM I + silica fume + fly ashes) is compared with a CEM I cement paste, both of them being submitted to carbonation in aqueous solution in equilibrium with calcite and with a pCO 2 equal to 1.32 kPa (1.3 10 -2 atm). Two different temperatures, 25 and 50 C, are considered. To realize these experiments, two different original types of devices were developed

  5. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2006-01-01

    Full Text Available A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition.

  6. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  7. Non-equilibrium blunt body flows in ionized gases

    International Nuclear Information System (INIS)

    Nishida, Michio

    1981-01-01

    The behaviors of electrons and electronically excited atoms in non-equilibrium and partially ionized blunt-body-flows are described. Formulation has been made separately in a shock layer and in a free stream, and then the free stream solution has been connected with the shock layer solution by matching the two solutions at the shock layer edge. The method of this matching is described here. The partially ionized gas is considered to be composed of neutral atoms, ions and electrons. Furthermore, the neutral atoms are divided into atoms in excited levels. Therefore, it is considered that electron energy released due to excitation, and that gained due to de-excitation, contribute to electron energy. Thus, the electron energy equation including these contributions is solved, coupled with the continuity equations of the excited atoms and the electrons. An electron temperature distribution from a free stream to a blunt body wall has been investigated for a case when the electrons are in thermal non-equilibrium with heavy particles in the free stream. In addition, the distributions of the excited atom density are discussed in the present analysis. (author)

  8. Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Catalina Rodriguez

    2011-01-01

    Full Text Available Colombian coffee industry produces about 0.6 million tons of husk (CH per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii experimental thermogravimetric analysis to determine the CH activation energy (E. The Chemical Equilibrium with Applications Program (CEA, developed by NASA, was used to estimate the effect of equivalence ratio (ER and steam to fuel ratio (S : F on equilibrium temperature and gas composition of ~150 species. Also, an atom balance model was developed for comparison purposes. The results showed that increased ER and (S : F ratios produce mixtures that are rich in H2 and CO2 but poor in CO. The value for the activation energy was estimated to be 221 kJ/kmol.

  9. Modeling of the equilibrium of a tokamak plasma

    International Nuclear Information System (INIS)

    Grandgirard, V.

    1999-12-01

    The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)

  10. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions

    International Nuclear Information System (INIS)

    Rodriguez-Alejandro, David A.; Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Aguilera-Alvarado, Alberto F.

    2016-01-01

    The objective of this work is to develop a thermodynamic model considering non-stoichiometric restrictions. The model validation was done from experimental works using a bench-scale fluidized bed gasifier with wood chips, dairy manure, and sorghum. The model was used for a further parametric study to predict the performance of a pilot-scale fluidized biomass gasifier. The Gibbs free energy minimization was applied to the modified equilibrium model considering a heat loss to the surroundings, carbon efficiency, and two non-equilibrium factors based on empirical correlations of ER and gasification temperature. The model was in a good agreement with RMS <4 for the produced gas. The parametric study ranges were 0.01 < ER < 0.99 and 500 °C < T < 900 °C to predict syngas concentrations and its LHV (lower heating value) for the optimization. Higher aromatics in tar were contained in WC gasification compared to manure gasification. A wood gasification tar simulation was produced to predict the amount of tars at specific conditions. The operating conditions for the highest quality syngas were reconciled experimentally with three biomass wastes using a fluidized bed gasifier. The thermodynamic model was used to predict the gasification performance at conditions beyond the actual operation. - Highlights: • Syngas from experimental gasification was used to create a non-equilibrium model. • Different types of biomass (HTS, DM, and WC) were used for gasification modelling. • Different tar compositions were identified with a simulation of tar yields. • The optimum operating conditions were found through the developed model.

  11. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  12. Latent Partially Ordered Classification Models and Normal Mixtures

    Science.gov (United States)

    Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith

    2013-01-01

    Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…

  13. Approach to transverse equilibrium in axial channeling

    International Nuclear Information System (INIS)

    Fearick, R.W.

    2000-01-01

    Analytical treatments of channeling rely on the assumption of equilibrium on the transverse energy shell. The approach to equilibrium, and the nature of the equilibrium achieved, is examined using solutions of the equations of motion in the continuum multi-string model. The results show that the motion is chaotic in the absence of dissipative processes, and a complicated structure develops in phase space which prevent the development of the simple equilibrium usually assumed. The role of multiple scattering in smoothing out the equilibrium distribution is investigated

  14. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  15. Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation

    International Nuclear Information System (INIS)

    Missiato, O.

    1986-01-01

    The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt

  16. Melt migration modeling in partially molten upper mantle

    Science.gov (United States)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  17. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  18. Fitting and Testing Conditional Multinormal Partial Credit Models

    Science.gov (United States)

    Hessen, David J.

    2012-01-01

    A multinormal partial credit model for factor analysis of polytomously scored items with ordered response categories is derived using an extension of the Dutch Identity (Holland in "Psychometrika" 55:5-18, 1990). In the model, latent variables are assumed to have a multivariate normal distribution conditional on unweighted sums of item…

  19. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    Science.gov (United States)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  20. On the thermal raleigh problem in partially ionized argon

    International Nuclear Information System (INIS)

    Hutten Mansfeld, A.C.B.

    1976-01-01

    A partially ionized gas is created by the reflection of a shock wave with incident Mach numbers in the range 7 to 10 and an initial pressure of 5 Torr against the cold end wall of a shock tube. Heat exchange between the plasma and this cold wall induces several relaxation processes in the thermal boundary layer. Of these, relaxation of i) the electron and heavy particles temperature and ii) the degree of ionization towards a local thermodynamic equilibrium state are considered. In the model, transport and relaxation processes are treated simultaneously. A classification on the basis of relaxation phenomena is performed, i.e., simplified sets of equations are obtained in a systematic way from the frozen or equilibrium limits of the relaxation processes. A finite difference numerical solution for the different models is obtained. Because the boundary conditions are of mixed type and the relaxation processes show aspects of stiffness, the application of a backward implicit discretization scheme is necessary. As a diagnostic tool, a two wavelength version of the laser schlieren method is used. The measurements provide time histories of both the electron and atom number density gradients

  1. Modeling chromatographic columns. Non-equilibrium packed-bed adsorption with non-linear adsorption isotherms

    NARCIS (Netherlands)

    Özdural, A.R.; Alkan, A.; Kerkhof, P.J.A.M.

    2004-01-01

    In this work a new mathematical model, based on non-equilibrium conditions, describing the dynamic adsorption of proteins in columns packed with spherical adsorbent particles is used to study the performance of chromatographic systems. Simulations of frontal chromatography, including axial

  2. Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its stru....... Further fundamental extensions and advances to more sophisticated theory models, such as those related to dynamics and expectations (in the structural relations) are left for future papers......This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its......, it is demonstrated how other controversial hypotheses such as Rational Expectations can be formulated directly as restrictions on the CVAR-parameters. A simple example of a "Neoclassical synthetic" AS-AD model is also formulated. Finally, the partial- general equilibrium distinction is related to the CVAR as well...

  3. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  4. Error propagation of partial least squares for parameters optimization in NIR modeling

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  5. Error propagation of partial least squares for parameters optimization in NIR modeling.

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  6. Thermodynamic evolution far from equilibrium

    Science.gov (United States)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  7. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    Science.gov (United States)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  8. Numerical equilibrium analysis for structured consumer resource models.

    Science.gov (United States)

    de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A

    2010-02-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.

  9. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    Science.gov (United States)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  10. Modeling of the (liquid + liquid) equilibrium of polydisperse hyperbranched polymer solutions by lattice-cluster theory

    International Nuclear Information System (INIS)

    Enders, Sabine; Browarzik, Dieter

    2014-01-01

    Graphical abstract: - Highlights: • Calculation of the (liquid + liquid) equilibrium of hyperbranched polymer solutions. • Description of branching effects by the lattice-cluster theory. • Consideration of self- and cross association by chemical association models. • Treatment of the molar-mass polydispersity by the use of continuous thermodynamics. • Improvement of the theoretical results by the incorporation of polydispersity. - Abstract: The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled in the framework of lattice-cluster theory. The association effects are described by the chemical association models CALM (for self association) and ECALM (for cross association). For the first time the molar mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number average of the segment number of the polymer the treatment is more general than in previous papers on continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution. The calculation of the cloud-point curve reduces to two equations that have to be numerically solved. Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar solvents the polydispersity influence is small. In all other of the considered cases polydispersity influences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calculations is improved, especially, in the diluted region

  11. The Extended Generalized Cost Concept and its Application in Freight Transport and General Equilibrium Modeling

    NARCIS (Netherlands)

    Tavasszy, L.; Davydenko, I.; Ruijgrok, K.

    2009-01-01

    The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by

  12. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    International Nuclear Information System (INIS)

    Huang, Lei; Yu, Cong

    2014-01-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  13. Equilibrium p(CO) measurements over V-C-O system

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Khan, M.I.; Radhakrishna, J.; Shankaran, P.S.; Yadav, C.S.; Chhapru, G.C.; Shukla, N.K.; Prasad, R.; Sood, D.D.

    1986-01-01

    The equilibrium partial pressure of (CO) over hyperstoichiometric U-C-O system has been measured in the temperature range 1300-1700degC. Slope of the curve log p(CO) vs.1/T(K) changed at about 1450degC indicating some change in the reaction involved in the formation of (CO). The enthalpy change for the possible reactions are also determined. (author)

  14. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    Science.gov (United States)

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  15. Equilibrium Analysis of a Yellow Fever Dynamical Model with Vaccination

    Directory of Open Access Journals (Sweden)

    Silvia Martorano Raimundo

    2015-01-01

    Full Text Available We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies.

  16. Out-of-equilibrium dynamics in a Gaussian trap model

    International Nuclear Information System (INIS)

    Diezemann, Gregor

    2007-01-01

    The violations of the fluctuation-dissipation theorem are analysed for a trap model with a Gaussian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all ageing effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus indicating the possibility for the definition of a timescale-dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular, plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures

  17. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  18. Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Lepikhin, N. D.; Pustovitov, V. D.

    2013-01-01

    Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p ‖ and p ⊥ (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p ‖ and p ⊥ are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p ‖ /p ⊥ or p ⊥ /p ‖ . A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p ⊥ with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p ⊥ on a magnetic surface. This does not happen in the other more complex case

  19. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  20. Equilibrium in a random viewer model of television broadcasting

    DEFF Research Database (Denmark)

    Hansen, Bodil Olai; Keiding, Hans

    2014-01-01

    The authors considered a model of commercial television market with advertising with probabilistic viewer choice of channel, where private broadcasters may coexist with a public television broadcaster. The broadcasters influence the probability of getting viewer attention through the amount...... number of channels. The authors derive properties of equilibrium in an oligopolistic market with private broadcasters and show that the number of firms has a negative effect on overall advertising and viewer satisfaction. If there is a public channel that also sells advertisements but does not maximize...... profits, this will have a positive effect on advertiser and viewer satisfaction....

  1. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  2. Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.

    1980-01-01

    This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs

  3. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    Science.gov (United States)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  4. Phase equilibrium of North Sea oils with polar chemicals: Experiments and CPA modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Kontogeorgis, Georgios M.; von Solms, Nicolas

    2016-01-01

    This work consists of a combined experimental and modeling study for oil - MEG - water systems, of relevance to petroleum applications. We present new experimental liquid-liquid equilibrium data for the mutual solubility of two North Sea oils + MEG and North Sea oils + MEG + water systems...

  5. Energy, economy and equity interactions in a CGE [Computable General Equilibrium] model for Pakistan

    International Nuclear Information System (INIS)

    Naqvi, Farzana

    1997-01-01

    In the last three decades, Computable General Equilibrium modelling has emerged as an established field of applied economics. This book presents a CGE model developed for Pakistan with the hope that it will lay down a foundation for application of general equilibrium modelling for policy formation in Pakistan. As the country is being driven swiftly to become an open market economy, it becomes vital to found out the policy measures that can foster the objectives of economic planning, such as social equity, with the minimum loss of the efficiency gains from the open market resource allocations. It is not possible to build a model for practical use that can do justice to all sectors of the economy in modelling of their peculiar features. The CGE model developed in this book focuses on the energy sector. Energy is considered as one of the basic needs and an essential input to economic growth. Hence, energy policy has multiple criteria to meet. In this book, a case study has been carried out to analyse energy pricing policy in Pakistan using this CGE model of energy, economy and equity interactions. Hence, the book also demonstrates how researchers can model the fine details of one sector given the core structure of a CGE model. (UK)

  6. A Quantal Response Statistical Equilibrium Model of Induced Technical Change in an Interactive Factor Market: Firm-Level Evidence in the EU Economies

    Directory of Open Access Journals (Sweden)

    Jangho Yang

    2018-02-01

    Full Text Available This paper studies the pattern of technical change at the firm level by applying and extending the Quantal Response Statistical Equilibrium model (QRSE. The model assumes that a large number of cost minimizing firms decide whether to adopt a new technology based on the potential rate of cost reduction. The firm in the model is assumed to have a limited capacity to process market signals so there is a positive degree of uncertainty in adopting a new technology. The adoption decision by the firm, in turn, makes an impact on the whole market through changes in the factor-price ratio. The equilibrium distribution of the model is a unimodal probability distribution with four parameters, which is qualitatively different from the Walrasian notion of equilibrium in so far as the state of equilibrium is not a single state but a probability distribution of multiple states. This paper applies Bayesian inference to estimate the unknown parameters of the model using the firm-level data of seven advanced OECD countries over eight years and shows that the mentioned equilibrium distribution from the model can satisfactorily recover the observed pattern of technical change.

  7. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  8. Local Equilibrium and Retardation Revisited.

    Science.gov (United States)

    Hansen, Scott K; Vesselinov, Velimir V

    2018-01-01

    In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  10. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  11. Generalizations of the Nash Equilibrium Theorem in the KKM Theory

    Directory of Open Access Journals (Sweden)

    Sehie Park

    2010-01-01

    Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for G-convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.

  12. Sudden transition from equilibrium stability to chaotic dynamics in a cautious tâtonnement model

    International Nuclear Information System (INIS)

    Foroni, Ilaria; Avellone, Alessandro; Panchuk, Anastasiia

    2015-01-01

    Tâtonnement processes are usually interpreted as auctions, where a fictitious agent sets the prices until an equilibrium is reached and the trades are made. The main purpose of such processes is to explain how an economy comes to its equilibrium. It is well known that discrete time price adjustment processes may fail to converge and may exhibit periodic or even chaotic behavior. To avoid large price changes, a version of the discrete time tâtonnement process for reaching an equilibrium in a pure exchange economy based on a cautious updating of the prices has been proposed two decades ago. This modification leads to a one dimensional bimodal piecewise smooth map, for which we show analytically that degenerate bifurcations and border collision bifurcations play a fundamental role for the asymptotic behavior of the model.

  13. Thermodynamic Modeling and Optimization of the Copper Flash Converting Process Using the Equilibrium Constant Method

    Science.gov (United States)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang

    2018-05-01

    Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively.

  14. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  15. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  16. Coding with partially hidden Markov models

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Rissanen, J.

    1995-01-01

    Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...

  17. Ordering phenomena and non-equilibrium properties of lattice gas models

    International Nuclear Information System (INIS)

    Fiig, T.

    1994-03-01

    This report falls within the general field of ordering processes and non-equilibrium properties of lattice gas models. The theory of diffuse scattering of lattice gas models originating from a random distribution of clusters is considered. We obtain relations between the diffuse part of the structure factor S dif (q), the correlation function C(r), and the size distribution of clusters D(n). For a number of distributions we calculate S dif (q) exactly in one dimension, and discuss the possibility for a Lorentzian and a Lorentzian square lineshape to arise. We discuss the two- and three-dimensional oxygen ordering processes in the high T c superconductor YBa 2 Cu 3 O 6+x based on a simple anisotropic lattice gas model. We calculate the structural phase diagram by Monte Carlo simulation and compared the results with experimental data. The structure factor of the oxygen ordering properties has been calculated in both two and three dimensions by Monte Carlo simulation. We report on results obtained from large scale computations on the Connection Machine, which are in excellent agreement with recent neutron diffraction data. In addition we consider the effect of the diffusive motion of metal-ion dopants on the oxygen ordering properties on YBa 2 Cu 3 O 6+x . The stationary properties of metastability in long-range interaction models are studied by application of a constrained transfer matrix (CTM) formalism. The model considered, which exhibits several metastable states, is an extension of the Blume Capel model to include weak long-range interactions. We show, that the decay rate of the metastable states is closely related to the imaginary part of the equilibrium free-energy density obtained from the CTM formalism. We discuss a class of lattice gas model for dissipative transport in the framework of a Langevin description, which is capable of producing power law spectra for the density fluctuations. We compare with numerical results obtained from simulations of a

  18. Equilibrium modeling of mono and binary sorption of Cu(II and Zn(II onto chitosan gel beads

    Directory of Open Access Journals (Sweden)

    Nastaj Józef

    2016-12-01

    Full Text Available The objective of the work are in-depth experimental studies of Cu(II and Zn(II ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II and Zn(II ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II and Zn(II ions (1:1, 1:2, 2:1. Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.

  19. A facilitated diffusion model constrained by the probability isotherm: a pedagogical exercise in intuitive non-equilibrium thermodynamics.

    Science.gov (United States)

    Chapman, Brian

    2017-06-01

    This paper seeks to develop a more thermodynamically sound pedagogy for students of biological transport than is currently available from either of the competing schools of linear non-equilibrium thermodynamics (LNET) or Michaelis-Menten kinetics (MMK). To this end, a minimal model of facilitated diffusion was constructed comprising four reversible steps: cis- substrate binding, cis → trans bound enzyme shuttling, trans -substrate dissociation and trans → cis free enzyme shuttling. All model parameters were subject to the second law constraint of the probability isotherm, which determined the unidirectional and net rates for each step and for the overall reaction through the law of mass action. Rapid equilibration scenarios require sensitive 'tuning' of the thermodynamic binding parameters to the equilibrium substrate concentration. All non-equilibrium scenarios show sigmoidal force-flux relations, with only a minority of cases having their quasi -linear portions close to equilibrium. Few cases fulfil the expectations of MMK relating reaction rates to enzyme saturation. This new approach illuminates and extends the concept of rate-limiting steps by focusing on the free energy dissipation associated with each reaction step and thereby deducing its respective relative chemical impedance. The crucial importance of an enzyme's being thermodynamically 'tuned' to its particular task, dependent on the cis- and trans- substrate concentrations with which it deals, is consistent with the occurrence of numerous isoforms for enzymes that transport a given substrate in physiologically different circumstances. This approach to kinetic modelling, being aligned with neither MMK nor LNET, is best described as intuitive non-equilibrium thermodynamics, and is recommended as a useful adjunct to the design and interpretation of experiments in biotransport.

  20. Modelling of Equilibrium Between Mantle and Core: Refractory, Volatile, and Highly Siderophile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.

    2013-01-01

    Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.

  1. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  2. On the vapor-liquid equilibrium in hydroprocessing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Munteanu, M.; Farooqi, H. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    When petroleum distillates undergo hydrotreating and hydrocracking, the feedstock and hydrogen pass through trickle-bed catalytic reactors at high temperatures and pressures with large hydrogen flow. As such, the oil is partially vaporized and the hydrogen is partially dissolved in liquid to form a vapor-liquid equilibrium (VLE) system with both vapor and liquid phases containing oil and hydrogen. This may result in considerable changes in flow rates, physical properties and chemical compositions of both phases. Flow dynamics, mass transfer, heat transfer and reaction kinetics may also be modified. Experimental observations of VLE behaviours in distillates with different feedstocks under a range of operating conditions were presented. In addition, VLE was predicted along with its effects on distillates in pilot and commercial scale plants. tabs., figs.

  3. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    International Nuclear Information System (INIS)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-01-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H 2 from cold atomic gas. The formation timescale for H 2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H 2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H 2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H 2 . The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  4. The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models

    Science.gov (United States)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-02-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  5. Social security as Markov equilibrium in OLG models: A note

    DEFF Research Database (Denmark)

    Gonzalez Eiras, Martin

    2011-01-01

    I refine and extend the Markov perfect equilibrium of the social security policy game in Forni (2005) for the special case of logarithmic utility. Under the restriction that the policy function be continuous, instead of differentiable, the equilibrium is globally well defined and its dynamics...

  6. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  7. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  8. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2007-01-01

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mg l -1 and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D h , are 3.6 x 10 -8 ; 6.1 x 10 -8 and 2.4 x 10 -8 cm 2 s -1 , respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium

  9. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Botelho, Cidalia M.S. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Boaventura, Rui A.R. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: bventura@fe.up.pt

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mg l{sup -1} and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D {sub h}, are 3.6 x 10{sup -8}; 6.1 x 10{sup -8} and 2.4 x 10{sup -8} cm{sup 2} s{sup -1}, respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  10. 30th International School of Mathematics "G Stampacchia" : Equilibrium Problems and Variational Models "Ettore Majorana"

    CERN Document Server

    Giannessi, Franco; Maugeri, Antonino; Equilibrium Problems and Variational Models

    2000-01-01

    The volume, devoted to variational analysis and its applications, collects selected and refereed contributions, which provide an outline of the field. The meeting of the title "Equilibrium Problems and Variational Models", which was held in Erice (Sicily) in the period June 23 - July 2 2000, was the occasion of the presentation of some of these papers; other results are a consequence of a fruitful and constructive atmosphere created during the meeting. New results, which enlarge the field of application of variational analysis, are presented in the book; they deal with the vectorial analysis, time dependent variational analysis, exact penalization, high order deriva­ tives, geometric aspects, distance functions and log-quadratic proximal methodology. The new theoretical results allow one to improve in a remarkable way the study of significant problems arising from the applied sciences, as continuum model of transportation, unilateral problems, multicriteria spatial price models, network equilibrium...

  11. Damage-spreading and out-of-equilibrium dynamics in the low-temperature regime of the two-dimensional ± J Edwards–Anderson model

    International Nuclear Information System (INIS)

    Rubio Puzzo, M L; Romá, F; Bustingorry, S; Gleiser, P M

    2010-01-01

    We present results showing the correlation between the out-of-equilibrium dynamics and the equilibrium damage-spreading process in the two-dimensional ± J Edwards–Anderson model at low temperatures. A key ingredient in our analysis is the projection of finite temperature spin configurations onto the ground state topology of the system. In particular, through numerical simulations we correlate ground state information with the out-of-equilibrium dynamics. We also analyse how the propagation of a small perturbation in equilibrated systems is related to the ground state topology. This damage-spreading study unveils the presence of rigid clusters of spins. We claim that these clusters give rise to the slow out-of-equilibrium dynamics observed in the temperature range between the glass temperature T g = 0 of the two-dimensional ± J Edwards–Anderson model and the critical temperature T c of the pure ferromagnetic Ising model

  12. A Synthesis of Equilibrium and Historical Models of Landform Development.

    Science.gov (United States)

    Renwick, William H.

    1985-01-01

    The synthesis of two approaches that can be used in teaching geomorphology is described. The equilibrium approach explains landforms and landform change in terms of equilibrium between landforms and controlling processes. The historical approach draws on climatic geomorphology to describe the effects of Quaternary climatic and tectonic events on…

  13. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  14. An approach of partial control design for system control and synchronization

    International Nuclear Information System (INIS)

    Hu Wuhua; Wang Jiang; Li Xiumin

    2009-01-01

    In this paper, a general approach of partial control design for system control and synchronization is proposed. It turns control problems into simpler ones by reducing their control variables. This is realized by utilizing the dynamical relations between variables, which are described by the dynamical relation matrix and the dependence-influence matrix. By adopting partial control theory, the presented approach provides a simple and general way to stabilize systems to their partial or whole equilibriums, or to synchronize systems with their partial or whole states. Further, based on this approach, the controllers can be simplified. Two examples of synchronizing chaotic systems are given to illustrate its effectiveness.

  15. Analysis of a No Equilibrium Linear Resistive-Capacitive-Inductance Shunted Junction Model, Dynamics, Synchronization, and Application to Digital Cryptography in Its Fractional-Order Form

    Directory of Open Access Journals (Sweden)

    Sifeu Takougang Kingni

    2017-01-01

    Full Text Available A linear resistive-capacitive-inductance shunted junction (LRCLSJ model obtained by replacing the nonlinear piecewise resistance of a nonlinear resistive-capacitive-inductance shunted junction (NRCLSJ model by a linear resistance is analyzed in this paper. The LRCLSJ model has two or no equilibrium points depending on the dc bias current. For a suitable choice of the parameters, the LRCLSJ model without equilibrium point can exhibit regular and fast spiking, intrinsic and periodic bursting, and periodic and chaotic behaviors. We show that the LRCLSJ model displays similar dynamical behaviors as the NRCLSJ model. Moreover the coexistence between periodic and chaotic attractors is found in the LRCLSJ model for specific parameters. The lowest order of the commensurate form of the no equilibrium LRCLSJ model to exhibit chaotic behavior is found to be 2.934. Moreover, adaptive finite-time synchronization with parameter estimation is applied to achieve synchronization of unidirectional coupled identical fractional-order form of chaotic no equilibrium LRCLSJ models. Finally, a cryptographic encryption scheme with the help of the finite-time synchronization of fractional-order chaotic no equilibrium LRCLSJ models is illustrated through a numerical example, showing that a high level security device can be produced using this system.

  16. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2014-01-01

    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  17. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  18. Partial differential equation models in the socio-economic sciences

    KAUST Repository

    Burger, Martin; Caffarelli, Luis; Markowich, Peter A.

    2014-01-01

    Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences

  19. Model integration and the economics of nuclear power

    International Nuclear Information System (INIS)

    Lundgren, S.

    1985-01-01

    The author proposes and applies a specific approach to model integration, i.e. the merger of two or several independently developed models. The approach is intended for integrations of activity analysis sector models and applied general equilibrium models. Model integration makes it possible to extend the range of applicability of applied general equilibrium models by exploiting the information contained in sector models. It also makes it possible to evaluate the validity of the partial equilibrium analyses in which sector models often are employed. The proposed approach is used to integrate a sector model of electricity and heat production with a general equilibrium model of the Swedish economy. Both models have been constructed within the research programme. The author uses the integrated model to look at two issues concerning the role of nuclear power on the Swedish electricity market: What are the likely consequences of a nuclear power discontinuation and how does the nuclear power investment programme of the 1970's and the early 1980's compare with a socially efficient one. (Author)

  20. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    International Nuclear Information System (INIS)

    You, Zhi-Qiang; Herbert, John M.; Mewes, Jan-Michael; Dreuw, Andreas

    2015-01-01

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents

  1. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    Energy Technology Data Exchange (ETDEWEB)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Mewes, Jan-Michael; Dreuw, Andreas [Interdisciplinary Center for Scientific Computing, Ruprechts-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.

  2. Entropy analysis on non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Karwat, H.; Ruan, Y.Q.

    1995-01-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships

  3. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  4. Statistical thermodynamics of equilibrium polymers at interfaces

    NARCIS (Netherlands)

    Gucht, van der J.; Besseling, N.A.M.

    2002-01-01

    The behavior of a solution of equilibrium polymers (or living polymers) at an interface is studied, using a Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of polymers and the chain length distribution are calculated. For equilibrium polymers

  5. Ionic diffusion through confined geometries: from Langevin equations to partial differential equations

    International Nuclear Information System (INIS)

    Nadler, Boaz; Schuss, Zeev; Singer, Amit; Eisenberg, R S

    2004-01-01

    Ionic diffusion through and near small domains is of considerable importance in molecular biophysics in applications such as permeation through protein channels and diffusion near the charged active sites of macromolecules. The motion of the ions in these settings depends on the specific nanoscale geometry and charge distribution in and near the domain, so standard continuum type approaches have obvious limitations. The standard machinery of equilibrium statistical mechanics includes microscopic details, but is also not applicable, because these systems are usually not in equilibrium due to concentration gradients and to the presence of an external applied potential, which drive a non-vanishing stationary current through the system. We present a stochastic molecular model for the diffusive motion of interacting particles in an external field of force and a derivation of effective partial differential equations and their boundary conditions that describe the stationary non-equilibrium system. The interactions can include electrostatic, Lennard-Jones and other pairwise forces. The analysis yields a new type of Poisson-Nernst-Planck equations, that involves conditional and unconditional charge densities and potentials. The conditional charge densities are the non-equilibrium analogues of the well studied pair correlation functions of equilibrium statistical physics. Our proposed theory is an extension of equilibrium statistical mechanics of simple fluids to stationary non-equilibrium problems. The proposed system of equations differs from the standard Poisson-Nernst-Planck system in two important aspects. First, the force term depends on conditional densities and thus on the finite size of ions, and second, it contains the dielectric boundary force on a discrete ion near dielectric interfaces. Recently, various authors have shown that both of these terms are important for diffusion through confined geometries in the context of ion channels

  6. Chaos in a dynamic model of urban transportation network flow based on user equilibrium states

    International Nuclear Information System (INIS)

    Xu Meng; Gao Ziyou

    2009-01-01

    In this study, we investigate the dynamical behavior of network traffic flow. We first build a two-stage mathematical model to analyze the complex behavior of network flow, a dynamical model, which is based on the dynamical gravity model proposed by Dendrinos and Sonis [Dendrinos DS, Sonis M. Chaos and social-spatial dynamic. Berlin: Springer-Verlag; 1990] is used to estimate the number of trips. Considering the fact that the Origin-Destination (O-D) trip cost in the traffic network is hard to express as a functional form, in the second stage, the user equilibrium network assignment model was used to estimate the trip cost, which is the minimum cost of used path when user equilibrium (UE) conditions are satisfied. It is important to use UE to estimate the O-D cost, since a connection is built among link flow, path flow, and O-D flow. The dynamical model describes the variations of O-D flows over discrete time periods, such as each day and each week. It is shown that even in a system with dimensions equal to two, chaos phenomenon still exists. A 'Chaos Propagation' phenomenon is found in the given model.

  7. Removal of semivolatiles from soils by steam stripping. 1. A local equilibrium model

    International Nuclear Information System (INIS)

    Wilson, D.J.; Clarke, A.N.

    1992-01-01

    A mathematical model for the in-situ steam stripping of volatile and semivolatile organics from contaminated vadose zone soils at hazardous waste sites is developed. A single steam injection well is modeled. The model assumes that the pneumatic permeability of the soil is spatially constant and isotropic, that the adsorption isotherm of the contaminant is linear, and that the local equilibrium approximation is adequate. The model is used to explore the streamlines and transit times of the injected steam as well as the effects of injection well depth and contaminant distribution on the time required for remediation

  8. OUTLIER DETECTION IN PARTIAL ERRORS-IN-VARIABLES MODEL

    Directory of Open Access Journals (Sweden)

    JUN ZHAO

    Full Text Available The weighed total least square (WTLS estimate is very sensitive to the outliers in the partial EIV model. A new procedure for detecting outliers based on the data-snooping is presented in this paper. Firstly, a two-step iterated method of computing the WTLS estimates for the partial EIV model based on the standard LS theory is proposed. Secondly, the corresponding w-test statistics are constructed to detect outliers while the observations and coefficient matrix are contaminated with outliers, and a specific algorithm for detecting outliers is suggested. When the variance factor is unknown, it may be estimated by the least median squares (LMS method. At last, the simulated data and real data about two-dimensional affine transformation are analyzed. The numerical results show that the new test procedure is able to judge that the outliers locate in x component, y component or both components in coordinates while the observations and coefficient matrix are contaminated with outliers

  9. Near-wall extension of a non-equilibrium, omega-based Reynolds stress model

    International Nuclear Information System (INIS)

    Nguyen, Tue; Behr, Marek; Reinartz, Birgit

    2011-01-01

    In this paper, the development of a new ω-based Reynolds stress model that is consistent with asymptotic analysis in the near wall region and with rapid distortion theory in homogeneous turbulence is reported. The model is based on the SSG/LRR-ω model developed by Eisfeld (2006) with three main modifications. Firstly, the near wall behaviors of the redistribution, dissipation and diffusion terms are modified according to the asymptotic analysis and a new blending function based on low Reynolds number is proposed. Secondly, an anisotropic dissipation tensor based on the Reynolds stress inhomogeneity (Jakirlic et al., 2007) is used instead of the original isotropic model. Lastly, the SSG redistribution term, which is activated far from the wall, is replaced by Speziale's non-equilibrium model (Speziale, 1998).

  10. Statistical equilibrium calculations for silicon in early-type model stellar atmospheres

    International Nuclear Information System (INIS)

    Kamp, L.W.

    1976-02-01

    Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of the range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0--B5, luminosity classes III, IV, and V

  11. Understanding Rasch Measurement: Partial Credit Model and Pivot Anchoring.

    Science.gov (United States)

    Bode, Rita K.

    2001-01-01

    Describes the Rasch measurement partial credit model, what it is, how it differs from other Rasch models, and when and how to use it. Also describes the calibration of instruments with increasingly complex items. Explains pivot anchoring and illustrates its use and describes the effect of pivot anchoring on step calibrations, item hierarchy, and…

  12. An Introduction to the Partial Credit Model for Developing Nursing Assessments.

    Science.gov (United States)

    Fox, Christine

    1999-01-01

    Demonstrates how the partial credit model, a variation of the Rasch Measurement Model, can be used to develop performance-based assessments for nursing education. Applies the model using the Practical Knowledge Inventory for Nurses. (SK)

  13. Risk Route Choice Analysis and the Equilibrium Model under Anticipated Regret Theory

    Directory of Open Access Journals (Sweden)

    pengcheng yuan

    2014-02-01

    Full Text Available The assumption about travellers’ route choice behaviour has major influence on the traffic flow equilibrium analysis. Previous studies about the travellers’ route choice were mainly based on the expected utility maximization theory. However, with the gradually increasing knowledge about the uncertainty of the transportation system, the researchers have realized that there is much constraint in expected util­ity maximization theory, because expected utility maximiza­tion requires travellers to be ‘absolutely rational’; but in fact, travellers are not truly ‘absolutely rational’. The anticipated regret theory proposes an alternative framework to the tra­ditional risk-taking in route choice behaviour which might be more scientific and reasonable. We have applied the antici­pated regret theory to the analysis of the risk route choosing process, and constructed an anticipated regret utility func­tion. By a simple case which includes two parallel routes, the route choosing results influenced by the risk aversion degree, regret degree and the environment risk degree have been analyzed. Moreover, the user equilibrium model based on the anticipated regret theory has been established. The equivalence and the uniqueness of the model are proved; an efficacious algorithm is also proposed to solve the model. Both the model and the algorithm are demonstrated in a real network. By an experiment, the model results and the real data have been compared. It was found that the model re­sults can be similar to the real data if a proper regret degree parameter is selected. This illustrates that the model can better explain the risk route choosing behaviour. Moreover, it was also found that the traveller’ regret degree increases when the environment becomes more and more risky.

  14. Optimal Designs for the Generalized Partial Credit Model

    OpenAIRE

    Bürkner, Paul-Christian; Schwabe, Rainer; Holling, Heinz

    2018-01-01

    Analyzing ordinal data becomes increasingly important in psychology, especially in the context of item response theory. The generalized partial credit model (GPCM) is probably the most widely used ordinal model and finds application in many large scale educational assessment studies such as PISA. In the present paper, optimal test designs are investigated for estimating persons' abilities with the GPCM for calibrated tests when item parameters are known from previous studies. We will derive t...

  15. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions

    Science.gov (United States)

    Crema, Enrico R.; Kandler, Anne; Shennan, Stephen

    2016-12-01

    A long tradition of cultural evolutionary studies has developed a rich repertoire of mathematical models of social learning. Early studies have laid the foundation of more recent endeavours to infer patterns of cultural transmission from observed frequencies of a variety of cultural data, from decorative motifs on potsherds to baby names and musical preferences. While this wide range of applications provides an opportunity for the development of generalisable analytical workflows, archaeological data present new questions and challenges that require further methodological and theoretical discussion. Here we examine the decorative motifs of Neolithic pottery from an archaeological assemblage in Western Germany, and argue that the widely used (and relatively undiscussed) assumption that observed frequencies are the result of a system in equilibrium conditions is unwarranted, and can lead to incorrect conclusions. We analyse our data with a simulation-based inferential framework that can overcome some of the intrinsic limitations in archaeological data, as well as handle both equilibrium conditions and instances where the mode of cultural transmission is time-variant. Results suggest that none of the models examined can produce the observed pattern under equilibrium conditions, and suggest. instead temporal shifts in the patterns of cultural transmission.

  16. Optimal Retail Price Model for Partial Consignment to Multiple Retailers

    Directory of Open Access Journals (Sweden)

    Po-Yu Chen

    2017-01-01

    Full Text Available This paper investigates the product pricing decision-making problem under a consignment stock policy in a two-level supply chain composed of one supplier and multiple retailers. The effects of the supplier’s wholesale prices and its partial inventory cost absorption of the retail prices of retailers with different market shares are investigated. In the partial product consignment model this paper proposes, the seller and the retailers each absorb part of the inventory costs. This model also provides general solutions for the complete product consignment and the traditional policy that adopts no product consignment. In other words, both the complete consignment and nonconsignment models are extensions of the proposed model (i.e., special cases. Research results indicated that the optimal retail price must be between 1/2 (50% and 2/3 (66.67% times the upper limit of the gross profit. This study also explored the results and influence of parameter variations on optimal retail price in the model.

  17. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    Full Text Available The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  18. Equilibrium and non-equilibrium phenomena in arcs and torches

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.

    2000-01-01

    A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.

  19. Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.

    Science.gov (United States)

    Muraki, Eiji

    1999-01-01

    Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…

  20. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Science.gov (United States)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  1. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  2. Warm-fluid description of intense beam equilibrium and electrostatic stability properties

    International Nuclear Information System (INIS)

    Lund, S.M.; Davidson, R.C.

    1998-01-01

    A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A closed macroscopic model is obtained by truncating the hierarchy of moment equations by the assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij endash Vladimirskij (KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability properties are analyzed in detail for a cold beam with step-function density profile, and then for axisymmetric flute perturbations with ∂/∂θ=0 and ∂/∂z=0 about a warm-fluid KV beam equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV equilibrium is found to be identical to the eigenfunction derived in a full kinetic treatment. However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations. None of the instabilities that are present in a kinetic description are obtained in the fluid model. A careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models is made in order to delineate which stability features of a KV beam are model-dependent and which may have general applicability. copyright 1998 American Institute of Physics

  3. Answer Sets in a Fuzzy Equilibrium Logic

    Science.gov (United States)

    Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine

    Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.

  4. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Safety Div.

    2016-12-15

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  5. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    International Nuclear Information System (INIS)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar

    2016-01-01

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  6. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  7. Lattice Boltzmann method with the cell-population equilibrium

    International Nuclear Information System (INIS)

    Zhou Xiaoyang; Cheng Bing; Shi Baochang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions

  8. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  9. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  10. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  11. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  12. Partial differential equation models in macroeconomics.

    Science.gov (United States)

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  14. On price equilibrium with multi-product firms

    NARCIS (Netherlands)

    Z. Sándor (Zsolt)

    2004-01-01

    textabstractIn this paper we provide a result that shows existence and uniqueness of Nash equilibrium in cases in which existent methods are problematic to apply. We employ this result to the model with simple logit demand, and show existence and uniqueness of price equilibrium when firms produce

  15. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Gray S. Chang

    2005-01-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis

  16. A partial hearing animal model for chronic electro-acoustic stimulation

    Science.gov (United States)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  17. An approximate method for calculating composition of the non-equilibrium explosion products of hydrocarbons and oxygen

    International Nuclear Information System (INIS)

    Shargatov, V A; Gubin, S A; Okunev, D Yu

    2016-01-01

    We develop a method for calculating the changes in composition of the explosion products in the case where the complete chemical equilibrium is absent but the bimolecular reactions are in quasi-equilibrium with the exception bimolecular reactions with one of the components of the mixture. We investigate the possibility of using the method of 'quasiequilibrium' for mixtures of hydrocarbons and oxygen. The method is based on the assumption of the existence of the partial chemical equilibrium in the explosion products. Without significant loss of accuracy to the solution of stiff differential equations detailed kinetic mechanism can be replaced by one or two differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the solution of a stiff system for chemically non-equilibrium mixtures replacing it when bimolecular reactions are near to equilibrium. (paper)

  18. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  19. Thermal equilibrium properties of an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Davidson, R.C.; Uhm, H.S.

    1979-01-01

    The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0

  20. Local approximation of a metapopulation's equilibrium.

    Science.gov (United States)

    Barbour, A D; McVinish, R; Pollett, P K

    2018-04-18

    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

  1. Influence of relaxation processes on the structure of a thermal boundary layer in partially ionized argon

    International Nuclear Information System (INIS)

    Dongen, M.E.H. van; Eck, R.B. van P. van; Hagebeuk, H.J.L.; Hirschberg, A.; Hutten-Mansfeld, A.C.B.; Jager, H.J.; Willems, J.F.H.

    1981-01-01

    A model for the unsteady thermal boundary-layer development at the end wall of a shock tube, in partially ionized atmospheric argon, is proposed. Consideration is given to ionization and thermal relaxation processes. In order to obtain some insight into the influence of the relaxation processes on the structure of the boundary layer, a study of the frozen and equilibrium limits has been carried out. The transition from a near-equilibrium situation in the outer part of the boundary layer towards a frozen situation near the wall is determined numerically. Experimental data on the electron and atom density profiles obtained from laser schlieren and absorption measurements are presented. A quantitative agreement between theory and experiment is found for a moderate degree of ionization (3%). At a higher degree of ionization the structure of the boundary layer is dominated by the influence of radiation cooling, which has been neglected in the model. (author)

  2. Sheet beam model for intense space charge: Application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2011-05-01

    Full Text Available A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image-charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet-beam model is then applied to analyze several problems of fundamental interest. A sheet-beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- and three-dimensional thermal equilibrium models in terms of the equilibrium structure and Debye screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability relative to beams with weak space-charge.

  3. A Simple Model to Access Equilibrium Constants of Reactions Type A ⇋ B Using Monte Carlo Simulation.

    Directory of Open Access Journals (Sweden)

    R. R. Farias, L. A. M. Cardoso, N. M. Oliveira Neto

    2011-01-01

    Full Text Available A simple theoretical model to describe equilibrium properties of homogeneous re-versible chemical reactions is proposed and applied to an A ⇋ B type reaction. Forthis purpose the equilibrium properties are analyzed by usual Monte Carlo simula-tion. It is shown that the equilibrium constant (Ke for this kind of reaction exhibitsdistinct characteristics for Eba 1, where Eba is the ratio be-tween the reverse and forward activation energies. For Eba 1 and increase(decrease the temperature our results recover the principle of Le Chˆtelier applied ato temperature effects. The special and interesting case is obtained for Eba = 1 sinceKe = 1 for all range of temperature. Another important parameter in our analysisis θA , defined as temperature measured with relation the activation energy of theforward reaction. For fixed values of Eba and for θA ≫ 1 the equilibrium constantapproaches 1, showing that all transitions are equally likely, no matter the differencein the energy barriers. The data obtained in our simulations show the well knownrelationship between Ke , Eb , Ea and kB T . Finally we argue that this theoreticalmodel can be applied to a family of homogeneous chemical reactions characterizedby the same Eba and θA showing the broad application of this stochastic model tostudy chemical reactions. Some of these results will be discussed in terms of collisiontheory.

  4. Equilibrium fluctuation energy of gyrokinetic plasma

    International Nuclear Information System (INIS)

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs

  5. Experimental measurement of phase equilibrium for gas hydrates of refrigerants, and thermodynamic modeling by SRK, VPT and CPA EOSs

    International Nuclear Information System (INIS)

    Karamoddin, Maryam; Varaminian, Farshad

    2013-01-01

    Highlights: • Three-phase equilibrium data, (VL W H), were measured for HCFC22 and HFC134a hydrates. • The pressures were evaluated by simple EoSs (modified mixing rule) and CPA EOS. • The Kihara potential parameters were obtained by optimizing scheme for refrigerants. -- Abstract: In this study, three-phase equilibrium conditions of hydrate-liquid–vapor, (VL W H), were experimentally determined for chlorodifluoromethane and 1,1,1,2-tetrafluoroethane gas hydrates at temperatures ranging from (278 to 290) K and (280 to 285) K respectively, at pressures ranging from (0.2 to 0.8) MPa. Then the different models were presented for estimating of the hydrate dissociation conditions of chlorodifluoromethane, 1,1,1,2-tetrafluoroethane and 1,1-difluoroethane refrigerants. The cubic simple equations of state (SRK and VPT) and the cubic plus association equation of state (CPA) were employed for modeling the vapor and liquid phases, also van der Waals–Platteeuw statistical model was used for the solid hydrate phase. In this paper, the binary interaction parameters of classic and modified mixing rules were optimized by using two-phase equilibrium data (VL W H). The Kihara potential parameters in each refrigerant were estimated using obtained experimental equilibrium data (VL W H) and based on the optimization scheme by the Nelder Mead optimization method. The agreement between the experimental and the predicted pressure is acceptable by using these models. The average deviation of models for chlorodifluoromethane, 1,1,1,2-tetrafluoroethane, and 1,1-difluoroethane hydrates is about 3%, 4.3%, and 3.6%, respectively

  6. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  7. Examining Policies to Reduce Homelessness Using a General Equilibrium Model of the Housing Market

    OpenAIRE

    Mansur, Erin; Quigley, John M.; Raphael, Steven; Smolensky, Eugene

    2003-01-01

    In this paper, we use a general equilibrium simulation model to assess the potential impacts on homelessness of various housing-market policy interventions. We calibrate the model to the four largest metropolitan areas in California. We explore the welfare con- sequences and the effects on homelessness of three housing-market policy interventions: extending housing vouchers to all low-income households, subsidizing all landlords, and subsidizing those landlords who supply low-income housing. ...

  8. Profiles of equilibrium constants for self-association of aromatic molecules.

    Science.gov (United States)

    Beshnova, Daria A; Lantushenko, Anastasia O; Davies, David B; Evstigneev, Maxim P

    2009-04-28

    Analysis of the noncovalent, noncooperative self-association of identical aromatic molecules assumes that the equilibrium self-association constants are either independent of the number of molecules (the EK-model) or change progressively with increasing aggregation (the AK-model). The dependence of the self-association constant on the number of molecules in the aggregate (i.e., the profile of the equilibrium constant) was empirically derived in the AK-model but, in order to provide some physical understanding of the profile, it is proposed that the sources for attenuation of the equilibrium constant are the loss of translational and rotational degrees of freedom, the ordering of molecules in the aggregates and the electrostatic contribution (for charged units). Expressions are derived for the profiles of the equilibrium constants for both neutral and charged molecules. Although the EK-model has been widely used in the analysis of experimental data, it is shown in this work that the derived equilibrium constant, K(EK), depends on the concentration range used and hence, on the experimental method employed. The relationship has also been demonstrated between the equilibrium constant K(EK) and the real dimerization constant, K(D), which shows that the value of K(EK) is always lower than K(D).

  9. Exploiting partial knowledge for efficient model analysis

    OpenAIRE

    Macedo, Nuno; Cunha, Alcino; Pessoa, Eduardo José Dias

    2017-01-01

    The advancement of constraint solvers and model checkers has enabled the effective analysis of high-level formal specification languages. However, these typically handle a specification in an opaque manner, amalgamating all its constraints in a single monolithic verification task, which often proves to be a performance bottleneck. This paper addresses this issue by proposing a solving strategy that exploits user-provided partial knowledge, namely by assigning symbolic bounds to the problem’s ...

  10. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  11. Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies

    Science.gov (United States)

    Descamps, Pascal

    2016-02-01

    In a previous paper (Descamps, P. [2015]. Icarus 245, 64-79), we developed a specific method aimed to retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elongated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures. The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics. Such synthetic irregular models are used to generate lightcurves from which our method is successfully applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random sphere.

  12. Equilibrium structure of rare earth trihalides

    International Nuclear Information System (INIS)

    Oezgueven, Y.

    2004-01-01

    In this work, we have calculate the equilibrium structure of the yttrium tribromide (YBr 3 ) and its dimer using the interionic force model . In the determination of the model parameters of Y monomer and dimer we use the measured value of the breathing mode of molecular dimer in the pure molecular liquid. We compare our results for the equilibrium structure of molecular dimer namely, the bond lengths and bond angles, with measured values from electron diffraction and with the results of other theoretical calculations. The agreement between calculated and measured spectra frequencies of vibrational modes can be considered as very reasonable

  13. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  14. Novel non-equilibrium modelling of a DC electric arc in argon

    Science.gov (United States)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  15. Novel non-equilibrium modelling of a DC electric arc in argon

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Almeida, N A

    2016-01-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current–voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7–2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A. (paper)

  16. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    Science.gov (United States)

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  17. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  18. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation

    Science.gov (United States)

    Yang, W. W.; Zhao, T. S.

    A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.

  19. Self-employment in an equilibrium model of the labor market

    Directory of Open Access Journals (Sweden)

    Jake Bradley

    2016-06-01

    Full Text Available Abstract Self-employed workers account for between 8 and 30 % of participants in the labor markets of OECD countries (Blanchower, Self-employment: more may not be better, 2004. This paper develops and estimates a general equilibrium model of the labor market that accounts for this sizable proportion. The model incorporates self-employed workers, some of whom hire paid employees in the market. Employment rates and earnings distributions are determined endogenously and are estimated to match their empirical counterparts. The model is estimated using the British Household Panel Survey (BHPS. The model is able to estimate nonpecuniary amenities associated with employment in different labor market states, accounting for both different employment dynamics within state and the misreporting of earnings by self-employed workers. Structural parameter estimates are then used to assess the impact of an increase in the generosity of unemployment benefits on the aggregate employment rate. Findings suggest that modeling the self-employed, some of whom hire paid employees implies that small increases in unemployment benefits leads to an expansion in aggregate employment. JEL Classification J21, J24, J28, J64

  20. Modeling of Eddy current distribution and equilibrium reconstruction in the SST-1 Tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Sharma, Deepti; Radhakrishnana, Srinivasan; Daniel, Raju; Shankara Joisa, Y.; Atrey, Parveen Kumar; Pathak, Surya Kumar; Singh, Amit Kumar

    2015-01-01

    Toroidal continuity of the vacuum vessel and the cryostat leads to the generation of large eddy currents in these passive structures during the Ohmic phase of the steady state superconducting tokamak SST-1. This reduces the magnitude of the loop voltage seen by the plasma as also delays its buildup. During the ramping down of the Ohmic transformer current (OT), the resultant eddy currents flowing in the passive conductors play a crucial role in governing the plasma equilibrium. Amount of this eddy current and its distribution has to be accurately determined such that this can be fed to the equilibrium reconstruction code as an input. For the accurate inclusion of the effect of eddy currents in the reconstruction, the toroidally continuous conducting structures like the vacuum vessel and the cryostat with large poloidal cross-section and any other poloidal field (PF) coil sitting idle on the machine are broken up into a large number of co-axial toroidal current carrying filaments. The inductance matrix for this large set of toroidal current carrying conductors is calculated using the standard Green's function and the induced currents are evaluated for the OT waveform of each plasma discharge. Consistency of this filament model is cross-checked with the 11 in-vessel and 12 out-vessel toroidal flux loop signals in SST-1. Resistances of the filaments are adjusted to reproduce the experimental measurements of these flux loops in pure OT shots and shots with OT and vertical field (BV). Such shots are taken routinely in SST-1 without the fill gas to cross-check the consistency of the filament model. A Grad-Shafranov (GS) equation solver, named as IPREQ, has been developed in IPR to reconstruct the plasma equilibrium through searching for the best-fit current density profile. Ohmic transformer current (OT), vertical field coil current (BV), currents in the passive filaments along with the plasma pressure (p) and current (I p ) profiles are used as inputs to the IPREQ

  1. Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend

    DEFF Research Database (Denmark)

    Hermansen, Mikkel Nørlem

    of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...

  2. Equilibrium of global amphibian species distributions with climate

    DEFF Research Database (Denmark)

    Munguí­a, Mariana; Rahbek, Carsten; Rangel, Thiago F.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a compl...

  3. Analytical Model of Inlet Growth and Equilibrium Cross-Sectional Area

    Science.gov (United States)

    2016-04-01

    classic Escoffier (1940) inlet stability analysis to produce a new quadratic formula derived from simplified momentum and conservation equations ...neglecting time dependence and taking the maximum current gives the following quadratic equation : 2 0 0 d b d ghagAhU U c LA c Lω + − = (5) with the...or quadratic approach as the equilibrium area can be determined through Equation 9. As an alternative, cross- sectional equilibrium is expressed in

  4. Study and optimization of the partial discharges in capacitor model ...

    African Journals Online (AJOL)

    Page 1 ... experiments methodology for the study of such processes, in view of their modeling and optimization. The obtained result is a mathematical model capable to identify the parameters and the interactions between .... 5mn; the next landing is situated in 200 V over the voltage of partial discharges appearance and.

  5. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  6. An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model

    Science.gov (United States)

    Gawron, C.

    An iterative algorithm to determine the dynamic user equilibrium with respect to link costs defined by a traffic simulation model is presented. Each driver's route choice is modeled by a discrete probability distribution which is used to select a route in the simulation. After each simulation run, the probability distribution is adapted to minimize the travel costs. Although the algorithm does not depend on the simulation model, a queuing model is used for performance reasons. The stability of the algorithm is analyzed for a simple example network. As an application example, a dynamic version of Braess's paradox is studied.

  7. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  8. Centrifuge modeling of LNAPL transport in partially saturated sand

    NARCIS (Netherlands)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-01-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an

  9. Surface structures of equilibrium restricted curvature model on two fractal substrates

    International Nuclear Information System (INIS)

    Song Li-Jian; Tang Gang; Zhang Yong-Wei; Han Kui; Xun Zhi-Peng; Xia Hui; Hao Da-Peng; Li Yan

    2014-01-01

    With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension d f , but possess different dynamic exponents of random walk z rw . The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension d f , but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk z rw . The ERC model growing on the two substrates follows the well-known Family—Vicsek scaling law and satisfies the scaling relations 2α + d f ≍ z ≍ 2z rw . In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins—Herring equation. (general)

  10. Sweatshop equilibrium

    OpenAIRE

    Chau, Nancy H.

    2009-01-01

    This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...

  11. CFD analysis of laboratory scale phase equilibrium cell operation

    Science.gov (United States)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  12. CFD analysis of laboratory scale phase equilibrium cell operation.

    Science.gov (United States)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  13. A nested-LES wall-modeling approach for computation of high Reynolds number equilibrium and non-equilibrium wall-bounded turbulent flows

    Science.gov (United States)

    Tang, Yifeng; Akhavan, Rayhaneh

    2014-11-01

    A nested-LES wall-modeling approach for high Reynolds number, wall-bounded turbulence is presented. In this approach, a coarse-grained LES is performed in the full-domain, along with a nested, fine-resolution LES in a minimal flow unit. The coupling between the two domains is achieved by renormalizing the instantaneous LES velocity fields to match the profiles of kinetic energies of components of the mean velocity and velocity fluctuations in both domains to those of the minimal flow unit in the near-wall region, and to those of the full-domain in the outer region. The method is of fixed computational cost, independent of Reτ , in homogenous flows, and is O (Reτ) in strongly non-homogenous flows. The method has been applied to equilibrium turbulent channel flows at 1000 shear-driven, 3D turbulent channel flow at Reτ ~ 2000 . In equilibrium channel flow, the friction coefficient and the one-point turbulence statistics are predicted in agreement with Dean's correlation and available DNS and experimental data. In shear-driven, 3D channel flow, the evolution of turbulence statistics is predicted in agreement with experimental data of Driver & Hebbar (1991) in shear-driven, 3D boundary layer flow.

  14. A new Bayesian model applied to cytogenetic partial body irradiation estimation

    International Nuclear Information System (INIS)

    Higueras, Manuel; Puig, Pedro; Ainsbury, Elizabeth A.; Vinnikov, Volodymyr A.; Rothkamm, Kai

    2016-01-01

    A new zero-inflated Poisson model is introduced for the estimation of partial body irradiation dose and fraction of body irradiated. The Bayes factors are introduced as tools to help determine whether a data set of chromosomal aberrations obtained from a blood sample reflects partial or whole body irradiation. Two examples of simulated cytogenetic radiation exposure data are presented to demonstrate the usefulness of this methodology in cytogenetic biological dosimetry. (authors)

  15. Equilibrium Implications of Fiscal Policy with Tax Evasion

    DEFF Research Database (Denmark)

    Busato, Francesco; Chiarini, Bruno; Rey, Guido M.

    This paper studies equilibrium effects of fiscal policy disturbances within a dynamic general equilibrium model where tax evasion and underground activities are explicitly incorporated. There are three mainresults. (i) The underground sector mitigates the distortionary impact of fiscal policies......, while lesseningthe drop (and the rise) of aggregate production after restrictive (expansionary) tax shocks. (ii) Taxevasion and underground economy can rationalize expansionary response to contractionary fiscal policies;(iii) A dynamic general equilibrium with tax evasion gives a rational justification...

  16. Pre-Equilibrium Cluster Emission with Pickup and Knockout

    International Nuclear Information System (INIS)

    Betak, E.

    2005-01-01

    We present a generalization of the Iwamoto-Harada-Bisplinghoff pre-equilibrium model of light cluster formation and emission, which is enhanced by allowing for possible admixtures of knockout for strongly coupled ejectiles, like α's. The model is able to attain the Weisskopf-Ewing formula for compound-nucleus decay at long-time limit; it keeps the philosophy of pre-equilibrium decay during the equilibration stage and it describes the initial phase of a reaction as direct process(es) expressed using the language of the exciton model

  17. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  18. The Supermarket Model with Bounded Queue Lengths in Equilibrium

    Science.gov (United States)

    Brightwell, Graham; Fairthorne, Marianne; Luczak, Malwina J.

    2018-04-01

    In the supermarket model, there are n queues, each with a single server. Customers arrive in a Poisson process with arrival rate λ n , where λ = λ (n) \\in (0,1) . Upon arrival, a customer selects d=d(n) servers uniformly at random, and joins the queue of a least-loaded server amongst those chosen. Service times are independent exponentially distributed random variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in the regime where λ (n) = 1 - n^{-α } and d(n) = \\lfloor n^β \\rfloor , where α and β are fixed numbers in (0, 1]. For suitable pairs (α , β ) , our results imply that, in equilibrium, with probability tending to 1 as n → ∞, the proportion of queues with length equal to k = \\lceil α /β \\rceil is at least 1-2n^{-α + (k-1)β } , and there are no longer queues. We further show that the process is rapidly mixing when started in a good state, and give bounds on the speed of mixing for more general initial conditions.

  19. An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling

    Science.gov (United States)

    Kane, Patrick; Zollman, Kevin J. S.

    2015-01-01

    The handicap principle has come under significant challenge both from empirical studies and from theoretical work. As a result, a number of alternative explanations for honest signaling have been proposed. This paper compares the evolutionary plausibility of one such alternative, the “hybrid equilibrium,” to the handicap principle. We utilize computer simulations to compare these two theories as they are instantiated in Maynard Smith’s Sir Philip Sidney game. We conclude that, when both types of communication are possible, evolution is unlikely to lead to handicap signaling and is far more likely to result in the partially honest signaling predicted by hybrid equilibrium theory. PMID:26348617

  20. Models for the computation of opacity of mixtures

    International Nuclear Information System (INIS)

    Klapisch, Marcel; Busquet, Michel

    2013-01-01

    We compare four models for the partial densities of the components of mixtures. These models yield different opacities as shown on polystyrene, acrylic and polyimide in local thermodynamical equilibrium (LTE). Two of these models, the ‘whole volume partial pressure’ model (M1) and its modification (M2) are not thermodynamically consistent (TC). The other two models are TC and minimize free energy. M3, the ‘partial volume equal pressure’ model, uses equality of chemical potential. M4 uses commonality of free electron density. The latter two give essentially identical results in LTE, but M4’s convergence is slower. M4 is easily generalized to non-LTE conditions. Non-LTE effects are shown by the variation of the Planck mean opacity of the mixtures with temperature and density. (paper)

  1. Equilibrium and pre-equilibrium emissions in proton-induced ...

    Indian Academy of Sciences (India)

    necessary for the domain of fission-reactor technology for the calculation of nuclear transmutation ... tions occur in three stages: INC, pre-equilibrium and equilibrium (or compound. 344. Pramana ... In the evaporation phase of the reaction, the.

  2. Mathematical modeling of the radiation-chemical behavior of neptunium in HNO3. Equilibrium states

    International Nuclear Information System (INIS)

    Vladimirova, M.V.

    1995-01-01

    A mathematical model of the radiation-chemical behavior of neptunium is presented for a wide range of α-and γ-irradiation doses. Equations determining the equilibrium concentrations of NP(IV), Np(V), and Np(VI) are derived for various concentrations of HNO 3 and dose rates of the ionizing irradiation. The rate constants of the reactions NP(IV) + OH, Np(IV) + NO 3 , Np(V) + NO 2 , Np(V) + H, Np(IV), and Np(V) + Np(V) are obtained by the mathematical modeling

  3. A multicomponent ion-exchange equilibrium model for chabazite columns treating ORNL wastewaters

    International Nuclear Information System (INIS)

    Perona, J.J.

    1993-06-01

    Planned near-term and long-term upgrades of the Oak Ridge National Laboratory (ORNL) Process Waste Treatment Plant (PWTP) will use chabazite columns to remove 90 Sr and 137 Cs from process wastewater. A valid equilibrium model is required for the design of these columns and for evaluating their performance when influent wastewater composition changes. The cations exchanged, in addition to strontium and cesium, are calcium, magnesium, and sodium. A model was developed using the Wilson equation for the calculation of the solid-phase activity coefficients. The model was tested against chabazite column runs on two different wastewaters and found to be valid. A sensitivity analysis was carried out for the projected wastewater compositions, in which the model was used to predict changes in relative separation factors for strontium and cesium subject to changes in calcium, magnesium, and sodium concentrations

  4. Mathematical Modeling of Partial-Porous Circular Cylinders with Water Waves

    Directory of Open Access Journals (Sweden)

    Min-Su Park

    2015-01-01

    Full Text Available The interaction of water waves with partially porous-surfaced circular cylinders was investigated. A three-dimensional numerical modeling was developed based on the complete mathematical formulation of the eigenfunction expansion method in the potential flow. Darcy’s law was applied to describe the porous boundary. The partial-porous cylinder is composed of a porous-surfaced body near the free surface, and an impermeable-surfaced body with an end-capped rigid bottom below the porous region. The optimal ratio of the porous portion to the impermeable portion can be adopted to design an effective ocean structure with minimal hydrodynamic impact. To scrutinize the hydrodynamic interactions in N partial-porous circular cylinders, the computational fluid domain is divided into three regions: an exterior region, N inner porous body regions, and N regions beneath the body. Wave excitation forces and wave run-up on multibodied partial-porous cylinders are calculated and compared for various porous-portion ratios and wave conditions, all of which significantly influence the hydrodynamic property.

  5. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    Science.gov (United States)

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  6. From equilibrium spin models to probabilistic cellular automata

    International Nuclear Information System (INIS)

    Georges, A.; Le Doussal, P.

    1989-01-01

    The general equivalence between D-dimensional probabilistic cellular automata (PCA) and (D + 1)-dimensional equilibrium spin models satisfying a disorder condition is first described in a pedagogical way and then used to analyze the phase diagrams, the critical behavior, and the universality classes of some automato. Diagrammatic representations of time-dependent correlation functions PCA are introduced. Two important classes of PCA are singled out for which these correlation functions simplify: (1) Quasi-Hamiltonian automata, which have a current-carrying steady state, and for which some correlation functions are those of a D-dimensional static model PCA satisfying the detailed balance condition appear as a particular case of these rules for which the current vanishes. (2) Linear (and more generally affine) PCA for which the diagrammatics reduces to a random walk problem closely related to (D + 1)-dimensional directed SAWs: both problems display a critical behavior with mean-field exponents in any dimension. The correlation length and effective velocity of propagation of excitations can be calculated for affine PCA, as is shown on an explicit D = 1 example. The authors conclude with some remarks on nonlinear PCA, for which the diagrammatics is related to reaction-diffusion processes, and which belong in some cases to the universality class of Reggeon field theory

  7. Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

    Science.gov (United States)

    Meng, Jianping; Zhang, Yonghao; Hadjiconstantinou, Nicolas G.; Radtke, Gregg A.; Shan, Xiaowen

    2013-03-01

    A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small Mach number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.

  8. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  9. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    Science.gov (United States)

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  10. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    Science.gov (United States)

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. An Equilibrium-Based Model of Gas Reaction and Detonation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999

  12. The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.

    Science.gov (United States)

    Niu, Yuanling; Wang, Yue; Zhou, Da

    2015-12-07

    The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Modeling the nonequilibrium effects in a nonquasi-equilibrium thermodynamic cycle based on steepest entropy ascent and an isothermal-isobaric ensemble

    International Nuclear Information System (INIS)

    Li, Guanchen; Spakovsky, Michael R. von

    2016-01-01

    Conventional first principle approaches for studying nonequilibrium or far-from-equilibrium processes depend on the mechanics of individual particles or quantum states. They also require many details of the mechanical features of a system to arrive at a macroscopic property. In contrast, thermodynamics provides an approach for determining macroscopic property values without going into these details, because the overall effect of particle dynamics results, for example, at stable equilibrium in an invariant pattern of the “Maxwellian distribution”, which in turn leads to macroscopic properties. However, such an approach is not generally applicable to a nonequilibrium process except in the near-equilibrium realm. To adequately address these drawbacks, steepest-entropy-ascent quantum thermodynamics (SEAQT) provides a first principle, thermodynamic-ensemble approach applicable to the entire nonequilibrium realm. Based on prior developments by the authors, this paper applies the SEAQT framework to modeling the nonquasi-equilibrium cycle, which a system with variable volume undergoes. Using the concept of hypoequilibrium state and nonequilibrium intensive properties, this framework provides a complete description of the nonequilibrium evolution in state of the system. Results presented here reveal how nonequilibrium effects influence the performance of the cycle. - Highlights: • First-principles nonequilibrium model of thermodynamic cycles. • Study of thermal efficiency losses due to nonequilibrium effects. • Study of systems undergoing nonquasi-equilibrium processes. • Study of the coupling of system relaxation and interaction with a reservoir.

  14. Quasi-equilibrium interpretation of aging dynamics

    International Nuclear Information System (INIS)

    Franz, S.; Virasoro, M.A.

    2000-04-01

    We develop an interpretation of the off-equilibrium dynamical solution of mean-field glassy models in terms of quasi-equilibrium concepts. We show that the relaxation of the 'thermoremanent magnetization' follows a generalized version of the Onsager regression postulate of induced fluctuations. We then find the rationale for the equality between the fluctuation-dissipation ratio and the rate of growth of the configurational entropy close to the asymptotic state, found empirically in mean-field solutions. (author)

  15. The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barreno, I.; Tutar, M.; Esnaola, J.A.; Barrutia, H.

    2015-01-01

    Highlights: • A numerical procedure to derive porous media’s coefficients is proposed. • The local thermal non-equilibrium porous media model is more suitable for regenerators. • The regenerator temperature profiles can be better fitted to a logarithmic curve. • The wound woven wire matrix provides lower performance compared to stacked. • The numerical characterization methodology is useful for the multi-D Stirling engine models. - Abstract: Different numerical methods can be applied to the analysis of the flow through the Stirling engine regenerator. One growing approach is to model the regenerator as porous medium to simulate and design the full Stirling engine in three-dimensional (3-D) manner. In general, the friction resistance coefficients and heat transfer coefficient are experimentally obtained to describe the flow and thermal non-equilibrium through a porous medium. A finite volume method (FVM) based non-thermal equilibrium porous media modelling approach characterizing the fluid flow and heat transfer in a representative small detailed flow domain of the woven wire matrix is proposed here to obtain the porous media coefficients without further requirement of experimental studies. The results are considered to be equivalent to those obtained from the detailed woven wire matrix for the pressure drop and heat transfer. Once the equivalence between the models is verified, this approach is extended to model oscillating regeneration cycles through a full size regenerator porous media for two different woven wire matrix configurations of stacked and wound types. The results suggest that the numerical modelling approach proposed here can be applied with confidence to model the regenerator as a porous media in the multi-dimensional (multi-D) simulations of Stirling engines

  16. The performance of simulated annealing in parameter estimation for vapor-liquid equilibrium modeling

    Directory of Open Access Journals (Sweden)

    A. Bonilla-Petriciolet

    2007-03-01

    Full Text Available In this paper we report the application and evaluation of the simulated annealing (SA optimization method in parameter estimation for vapor-liquid equilibrium (VLE modeling. We tested this optimization method using the classical least squares and error-in-variable approaches. The reliability and efficiency of the data-fitting procedure are also considered using different values for algorithm parameters of the SA method. Our results indicate that this method, when properly implemented, is a robust procedure for nonlinear parameter estimation in thermodynamic models. However, in difficult problems it still can converge to local optimums of the objective function.

  17. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  18. Radium-226 equilibrium between water and lake herring, Coregonus artedii, tissues attained within fish lifetime: confirmation in this species of one assumption in the simple linear concentration factor model

    International Nuclear Information System (INIS)

    Clulow, F.V.; Pyle, G.G.

    1997-01-01

    Equilibrium conditions are assumed in the simple linear concentration factor model commonly used in simulations of contaminant flow through ecosystems and in dose and risk calculations. Predictions derived from a power function model have suggested that if the time scale of the food-chain transfer is less than six years in fish, radium-226 equilibrium will not be achieved in nature, thereby violating the equilibrium requirement in the concentration factor model. Our results indicate 226 Ra equilibrium is achieved in a natural population of lake herring (Coregonus artedii), contrary to predictions of the power function model. (author)

  19. Estimating the equilibrium real exchange rate in Venezuela

    OpenAIRE

    Hilde Bjørnland

    2004-01-01

    To determine whether the real exchange rate is misaligned with respect to its long-run equilibrium is an important issue for policy makers. This paper clarifies and calculates the concept of the equilibrium real exchange rate, using a structural vector autoregression (VAR) model. By imposing long-run restrictions on a VAR model for Venezuela, four structural shocks are identified: Nominal demand, real demand, supply and oil price shocks. The identified shocks and their impulse responses are c...

  20. Long-term measurements of equilibrium factor with electrochemically etched CR-39 SSNTD

    International Nuclear Information System (INIS)

    Ng, F.M.F.; Nikezic, D.; Yu, K.N.

    2007-01-01

    Recently, our group proposed a method (proxy equilibrium factor method) using a bare LR 115 detector for long-term monitoring of the equilibrium factor. Due to the presence of an upper alpha-particle energy threshold for track formation in the LR 115 detector, the partial sensitivities to 222 Rn, 218 Po and 214 Po were the same, which made possible measurements of a proxy equilibrium factor F p that was well correlated with the equilibrium factor. In the present work, the method is extended to CR-39 detectors which have better-controlled etching properties but do not have an upper energy threshold. An exposed bare CR-39 detector is first pre-etched in 6.25 N NaOH solution at 70 o C for 6 h, and then etched electrochemically in a 6.25 N NaOH solution with ac voltage of 400 V (peak to peak) and 5 kHz applied across the detectors for 1 h at room temperature. Under these conditions, for tracks corresponding to incident angles larger than or equal to 50 deg., the treeing efficiency is 0% and 100% for incident energies smaller than and larger than 4 MeV, respectively. A simple method is then proposed to obtain the total number of tracks formed below the upper energy threshold of 4 MeV, from which the proxy equilibrium factor method can apply

  1. Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1988-01-01

    Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....

  2. Effects of Risk Aversion on Market Outcomes: A Stochastic Two-Stage Equilibrium Model

    DEFF Research Database (Denmark)

    Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    This paper evaluates how different risk preferences of electricity producers alter the market-clearing outcomes. Toward this goal, we propose a stochastic equilibrium model for electricity markets with two settlements, i.e., day-ahead and balancing, in which a number of conventional and stochastic...... by its optimality conditions, resulting in a mixed complementarity problem. Numerical results from a case study based on the IEEE one-area reliability test system are derived and discussed....

  3. Mapping Isobaric Aging onto the Equilibrium Phase Diagram

    DEFF Research Database (Denmark)

    Niss, Kristine

    2017-01-01

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts...... of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium...... states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single...

  4. Unidimensional factor models imply weaker partial correlations than zero-order correlations.

    Science.gov (United States)

    van Bork, Riet; Grasman, Raoul P P P; Waldorp, Lourens J

    2018-06-01

    In this paper we present a new implication of the unidimensional factor model. We prove that the partial correlation between two observed variables that load on one factor given any subset of other observed variables that load on this factor lies between zero and the zero-order correlation between these two observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional factor model when partial correlations are identified that are either stronger than the zero-order correlation or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical data example with data consisting of fourteen items that measure extraversion.

  5. Topological vector spaces admissible in economic equilibrium theory

    DEFF Research Database (Denmark)

    Keiding, Hans

    2009-01-01

    In models of economic equilibrium in markets with infinitely many commodities, the commodity space is an ordered topological vector space endowed with additional structure. In the present paper, we consider ordered topological vector spaces which are admissible (for equilibrium analysis) in the s......) in the sense that every economy which is reasonably well behaved posesses an equilibrium. It turns out that this condition may be characterized in terms of topology and order. This characterization implies that the commodity space has the structure of a Kakutani space....

  6. Equilibrium polymerization models of re-entrant self-assembly

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  7. Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms

    Science.gov (United States)

    Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.

    2018-04-01

    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.

  8. Detecting Math Anxiety with a Mixture Partial Credit Model

    Science.gov (United States)

    Ölmez, Ibrahim Burak; Cohen, Allan S.

    2017-01-01

    The purpose of this study was to investigate a new methodology for detection of differences in middle grades students' math anxiety. A mixture partial credit model analysis revealed two distinct latent classes based on homogeneities in response patterns within each latent class. Students in Class 1 had less anxiety about apprehension of math…

  9. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  10. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  11. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.

    Science.gov (United States)

    Tian, Huanhuan; Zhang, Li; Wang, Moran

    2015-08-15

    Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Partial least squares path modeling basic concepts, methodological issues and applications

    CERN Document Server

    Noonan, Richard

    2017-01-01

    This edited book presents the recent developments in partial least squares-path modeling (PLS-PM) and provides a comprehensive overview of the current state of the most advanced research related to PLS-PM. The first section of this book emphasizes the basic concepts and extensions of the PLS-PM method. The second section discusses the methodological issues that are the focus of the recent development of the PLS-PM method. The third part discusses the real world application of the PLS-PM method in various disciplines. The contributions from expert authors in the field of PLS focus on topics such as the factor-based PLS-PM, the perfect match between a model and a mode, quantile composite-based path modeling (QC-PM), ordinal consistent partial least squares (OrdPLSc), non-symmetrical composite-based path modeling (NSCPM), modern view for mediation analysis in PLS-PM, a multi-method approach for identifying and treating unobserved heterogeneity, multigroup analysis (PLS-MGA), the assessment of the common method b...

  13. The case for an internal dynamics model versus equilibrium point control in human movement.

    Science.gov (United States)

    Hinder, Mark R; Milner, Theodore E

    2003-06-15

    The equilibrium point hypothesis (EPH) was conceived as a means whereby the central nervous system could control limb movements by a relatively simple shift in equilibrium position without the need to explicitly compensate for task dynamics. Many recent studies have questioned this view with results that suggest the formation of an internal dynamics model of the specific task. However, supporters of the EPH have argued that these results are not incompatible with the EPH and that there is no reason to abandon it. In this study, we have tested one of the fundamental predictions of the EPH, namely, equifinality. Subjects learned to perform goal-directed wrist flexion movements while a motor provided assistance in proportion to the instantaneous velocity. It was found that the subjects stopped short of the target on the trials where the magnitude of the assistance was randomly decreased, compared to the preceding control trials (P = 0.003), i.e. equifinality was not achieved. This is contrary to the EPH, which predicts that final position should not be affected by external loads that depend purely on velocity. However, such effects are entirely consistent with predictions based on the formation of an internal dynamics model.

  14. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  15. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  16. Robust-BD Estimation and Inference for General Partially Linear Models

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2017-11-01

    Full Text Available The classical quadratic loss for the partially linear model (PLM and the likelihood function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of “robust-Bregman divergence (BD” estimators of both the parametric and nonparametric components in the general partially linear model (GPLM, which allows the distribution of the response variable to be partially specified, without being fully known. Using the local-polynomial function estimation method, we propose a computationally-efficient procedure for obtaining “robust-BD” estimators and establish the consistency and asymptotic normality of the “robust-BD” estimator of the parametric component β o . For inference procedures of β o in the GPLM, we show that the Wald-type test statistic W n constructed from the “robust-BD” estimators is asymptotically distribution free under the null, whereas the likelihood ratio-type test statistic Λ n is not. This provides an insight into the distinction from the asymptotic equivalence (Fan and Huang 2005 between W n and Λ n in the PLM constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and robust Wald-type test in the appearance of outlying observations.

  17. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt

    1995-01-01

    We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...... for the ordered alloys are in good agreement with experimental data. For all the alloys the calculated ordering energy and the equilibrium lattices parameters are found to be almost exact quadratic functions of the long-range-order parameter....... and the partially ordered alloys are included in the screened impurity model. The prefactor in the Madelung energy is determined by the requirement that the total energy obtained in direct SS CPA calculations should equal the total energy given by the Connolly-Williams expansion based on Green’s function...

  18. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites

    Science.gov (United States)

    Herzberg, C.; O'Hara, M. J.

    1998-07-01

    Experimental phase equilibrium studies at pressures ranging from 1 atm to 10 GPa are sufficient to constrain the origin of igneous rocks formed along oceanic ridges and in hotspots. The major element geochemistry of MORB is dominated by partial crystallization at low pressures in the oceanic crust and uppermost mantle, forcing compliance with liquid compositions in low-pressure cotectic equilibrium with olivine, plagioclase and often augite too; parental magmas to MORB formed by partial melting, mixing, and pooling have not survived these effects. Similarly, picrites and komatiites can transform to basalts by partial crystallization in the crust and lithosphere. However, parental picrites and komatiites that were successful in erupting to the surface typically have compositions that can be matched to experimentally-observed anhydrous primary magmas in equilibrium with harzburgite [L+Ol+Opx] at 3.0 to 4.5 GPa. This pressure is likely to represent an average for pooled magmas that collected at the top of a plume head as it flattened below the lithosphere. There is substantial uniformity in the normative olivine content of primary magmas at all depths in a plume melt column, and this results in pooled komatiitic magmas that are equally uniform in normative olivine. However, the imposition of pressure above 3 GPa produces picrites and komatiites with variations in normative enstatite and Al 2O 3 that reveal plume potential temperature and depths of initial melting. Hotter plumes begin to melt deeper than cooler plumes, yielding picrites and komatiites that are enriched in normative enstatite and depleted in Al 2O 3 because of a deeper column within which orthopyroxene can dissolve during decompression. Pressures of initial melting span the 4 to 10 GPa range, increasing in the following order: Iceland, Hawaii, Gorgona, Belingwe, Barberton. Parental komatiites and picrites from a single plume also exhibit internal variability in normative enstatite and Al 2O 3

  19. A simple procedure to model water level fluctuations in partially inundated wetlands

    NARCIS (Netherlands)

    Spieksma, JFM; Schouwenaars, JM

    When modelling groundwater behaviour in wetlands, there are specific problems related to the presence of open water in small-sized mosaic patterns. A simple quasi two-dimensional model to predict water level fluctuations in partially inundated wetlands is presented. In this model, the ratio between

  20. A chiral quark model for meson electroproduction in the S11 partial wave

    International Nuclear Information System (INIS)

    Golli, B.; Sirca, S.

    2011-01-01

    We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)

  1. Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission

    CERN Document Server

    Betak, E

    2015-01-01

    We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).

  2. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  3. An Extension of the Partial Credit Model with an Application to the Measurement of Change.

    Science.gov (United States)

    Fischer, Gerhard H.; Ponocny, Ivo

    1994-01-01

    An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)

  4. A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels

    Science.gov (United States)

    2011-01-01

    combined, and therefore, there is one less partial differential equation to be solved. The short-term channel infilling and migration in two laboratory...oscillatory sheet flow: Experiments and bed load modeling. Coastal Engineering, 46(1), 61-87. Exner, F. M. 1925. Uber die Wechselwirkung zwischen

  5. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)

    National Research Council Canada - National Science Library

    Pekker, Leonid

    2008-01-01

    ... plasma core and the ablative capillary walls. The model includes the thermodynamics of partially ionized plasmas and non-ideal effects taking place in the high density plasma and assumes local thermodynamic equilibrium (LTE...

  6. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    Science.gov (United States)

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  7. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2016-01-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic

  8. Nuclear Statistical Equilibrium for compact stars: modelling the nuclear energy functional

    International Nuclear Information System (INIS)

    Aymard, Francois

    2015-01-01

    The core collapse supernova is one of the most powerful known phenomena in the universe. It results from the explosion of very massive stars after they have burnt all their fuel. The hot compact remnant, the so-called proto-neutron star, cools down to become an inert catalyzed neutron star. The dynamics and structure of compact stars, that is core collapse supernovae, proto-neutron stars and neutron stars, are still not fully understood and are currently under active research, in association with astrophysical observations and nuclear experiments. One of the key components for modelling compact stars concerns the Equation of State. The task of computing a complete realistic consistent Equation of State for all such stars is challenging because a wide range of densities, proton fractions and temperatures is spanned. This thesis deals with the microscopic modelling of the structure and internal composition of baryonic matter with nucleonic degrees of freedom in compact stars, in order to obtain a realistic unified Equation of State. In particular, we are interested in a formalism which can be applied both at sub-saturation and super-saturation densities, and which gives in the zero temperature limit results compatible with the microscopic Hartree-Fock-Bogoliubov theory with modern realistic effective interactions constrained on experimental nuclear data. For this purpose, we present, for sub-saturated matter, a Nuclear Statistical Equilibrium model which corresponds to a statistical superposition of finite configurations, the so-called Wigner-Seitz cells. Each cell contains a nucleus, or cluster, embedded in a homogeneous electron gas as well as a homogeneous neutron and proton gas. Within each cell, we investigate the different components of the nuclear energy of clusters in interaction with gases. The use of the nuclear mean-field theory for the description of both the clusters and the nucleon gas allows a theoretical consistency with the treatment at saturation

  9. The application of equilibrium models to incidence situations using the example of the exposure pathway human milk

    International Nuclear Information System (INIS)

    Steiner, Martin; Karcher, Klaus; Nosske, Dietmar

    2012-01-01

    The radiation exposure after a short-term release of radioactive substances is often calculated assuming equilibrium conditions. An example is that of the German Incident Calculation Bases for nuclear power plants with pressurized water reactors. Here, the contamination of human milk is calculated using transfer factors. Applying this equilibrium model to incident situations raises the question whether baby's radiation exposure is adequately assessed. This contribution shows that compliance with the relevant dose limits of paragraph 49 of the German Radiation Protection Ordinance is ensured for design basis accidents on the assumption that the hypothetical breastfeeding period starts at the beginning of the activity release. Comparative analyses were performed against the biokinetic models applied by ICRP for radiation protection purposes, taking the reference nuclides 137 Cs, 90 Sr, 131 I, 241 Am and long-lived plutonium isotopes as examples. (orig.)

  10. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    Science.gov (United States)

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  11. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Álvarez-Estrada

    2014-03-01

    Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not

  12. Statistical fluctuations and correlations in hadronic equilibrium systems

    International Nuclear Information System (INIS)

    Hauer, Michael

    2010-01-01

    This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)

  13. Statistical fluctuations and correlations in hadronic equilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, Michael

    2010-06-17

    This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)

  14. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Science.gov (United States)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  15. Equilibrium thermodynamics in modified gravitational theories

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji

    2010-01-01

    We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.

  16. Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Alvarez-Estrada

    2012-02-01

    Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.

  17. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.

    2013-01-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH 4 H 2 O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H 2 O, NaOH, and NaAl(OH) 4 are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components

  18. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.

    Science.gov (United States)

    Vogel, Reiner; Lüdeke, Steffen; Siebert, Friedrich; Sakmar, Thomas P; Hirshfeld, Amiram; Sheves, Mordechai

    2006-02-14

    Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.

  19. Equilibrium Trust

    OpenAIRE

    Luca Anderlini; Daniele Terlizzese

    2009-01-01

    We build a simple model of trust as an equilibrium phenomenon, departing from standard "selfish" preferences in a minimal way. Agents who are on the receiving end of an other to transact can choose whether to cheat and take away the entire surplus, taking into account a "cost of cheating." The latter has an idiosyncratic component (an agent's type), and a socially determined one. The smaller the mass of agents who cheat, the larger the cost of cheating suffered by those who cheat. Depending o...

  20. A nonlinear model for myogenic regulation of blood flow to bone: equilibrium states and stability characteristics.

    Science.gov (United States)

    Harrigan, T P

    1996-01-01

    A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.