WorldWideScience

Sample records for partial canopy cotton

  1. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  2. Seasonal Canopy Temperatures for Normal and Okra Leaf Cotton under Variable Irrigation in the Field

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-11-01

    Full Text Available Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation to assess crop stress and management actions in cotton. Normal and okra leaf shapes in cotton have been associated with differences in water use and canopy temperature. The okra leaf shape in cotton is generally expected to result in lower water use and lower canopy temperatures, relative to normal leaf, under water deficits. In this study canopy temperatures were monitored in okra and normal leaf varieties for a growing season at four irrigation levels. Differences in canopy temperature (<2 °C were measured between the two leaf shapes. As irrigation levels increased, canopy temperature differences between the leaf shapes declined. At the lowest irrigation level, when differences in sensible energy exchanges due to the okra leaf shape would be enhanced, the canopy temperature of the okra leaf was warmer than the normal leaf. This suggests that varietal differences that are not related to leaf shape may have more than compensated for leaf shape differences in the canopy temperature.

  3. Aerial electrostatic spray deposition and canopy penetration in cotton

    Science.gov (United States)

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  4. Modeling cotton (Gossypium spp) leaves and canopy using computer aided geometric design (CAGD)

    Science.gov (United States)

    The goal of this research is to develop a geometrically accurate model of cotton crop canopies for exploring changes in canopy microenvironment and physiological function with leaf structure. We develop an accurate representation of the leaves, including changes in three-dimensional folding and orie...

  5. Estimating the relative water content of leaves in a cotton canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Kupinski, Meredith; Bradley, Christine; French, Andrew; Bronson, Kevin; Chipman, Russell; Dahlgren, Robert

    2017-08-01

    Remotely sensing plant canopy water status remains a long term goal of remote sensing research. Established approaches to estimating canopy water status — the Crop Water Stress Index, the Water Deficit Index and the Equivalent Water Thickness — involve measurements in the thermal or reflective infrared. Here we report plant water status estimates based upon analysis of polarized visible imagery of a cotton canopy measured by ground Multi-Spectral Polarization Imager (MSPI). Such estimators potentially provide access to the plant hydrological photochemistry that manifests scattering and absorption effects in the visible spectral region.

  6. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer

    International Nuclear Information System (INIS)

    Hicks, S.K.; Lascano, R.J.

    1995-01-01

    Measurement of leaf area index (LAI) is useful for understanding cotton (Gossypium hirsutum L.) growth, water use, and canopy light interception. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor (Lincoln, NE) LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of cotton LAI on the southern High Plains of Texas. We evaluated shading as a way to allow PCA measurements in direct sunlight and the influence of solar direction when using this procedure. We also evaluated a test of canopy homogeneity (information required for setting PCA field of view), determined the number of below-canopy measurements required, examined the influence of leaf wilting on PCA LAI determinations, and tested an alternative method (masking the sensor's two outer rings) for calculating LAI from PCA measurements. The best agreement between PCA and destructively measured LAI values was obtained when PCA observations were made either during uniformly overcast conditions or around solar noon using the shading method. Heterogeneous canopies with large gaps between rows required both a restricted (45 degrees) azimuthal field of view and averaging the LAI values for two transects, made with the field of view parallel and then perpendicular to the row direction. This method agreed well (r2 = 0.84) with destructively measured LAI in the range of 0.5 to 3.5 and did not deviate from a 1:1 relationship. The PCA underestimated LAI by greater than or equal 20% when measurements were made on canopies wilted due to water stress. Masking the PCA sensor's outer rings did not improve the relationship between estimated and measured LAI in the range of LAI sampled

  7. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    International Nuclear Information System (INIS)

    Sadras, V.O.

    1996-01-01

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  8. Estimating cotton canopy ground cover from remotely sensed scene reflectance

    International Nuclear Information System (INIS)

    Maas, S.J.

    1998-01-01

    Many agricultural applications require spatially distributed information on growth-related crop characteristics that could be supplied through aircraft or satellite remote sensing. A study was conducted to develop and test a methodology for estimating plant canopy ground cover for cotton (Gossypium hirsutum L.) from scene reflectance. Previous studies indicated that a relatively simple relationship between ground cover and scene reflectance could be developed based on linear mixture modeling. Theoretical analysis indicated that the effects of shadows in the scene could be compensated for by averaging the results obtained using scene reflectance in the red and near-infrared wavelengths. The methodology was tested using field data collected over several years from cotton test plots in Texas and California. Results of the study appear to verify the utility of this approach. Since the methodology relies on information that can be obtained solely through remote sensing, it would be particularly useful in applications where other field information, such as plant size, row spacing, and row orientation, is unavailable

  9. Cotton Trade Liberalizations and Domestic Agricultural Policy Reforms: A Partial Equilibrium Analysis

    OpenAIRE

    Pan, Suwen; Fadiga, Mohamadou L.; Mohanty, Samarendu; Welch, Mark

    2006-01-01

    This paper analyzed the effects of trade liberalizing reforms in the world cotton market using a partial equilibrium model. The simulation results indicated that a removal of domestic subsidies and border tariffs for cotton would increase the amount of world cotton trade by an average of 4% in the next five years and world cotton prices by an average of 12% over the same time horizon. The findings indicated that under the liberalization policy, the United States would lose part of its export ...

  10. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  11. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    Science.gov (United States)

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  12. Within canopy distribution of cotton seed N

    Science.gov (United States)

    Whole cotton seeds can be an important component of dairy rations. Nitrogen content of the seed is an important determinant of the feed value of the seed. Efforts to increase the seed value as feed will be enhanced with knowledge of the range and distribution of seed N within the cotton crop. This s...

  13. Use of a Digital Camera to Monitor the Growth and Nitrogen Status of Cotton

    Directory of Open Access Journals (Sweden)

    Biao Jia

    2014-01-01

    Full Text Available The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass. There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R2 value was 0.978, and the root mean square error (RMSE value was 1.479 g m−2. Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R2 value of 0.926 and an RMSE value of 1.631 g m−2. In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status.

  14. Investigation of the Influence of Leaf Thickness on Canopy Reflectance and Physiological Traits in Upland and Pima Cotton Populations

    Directory of Open Access Journals (Sweden)

    Duke Pauli

    2017-08-01

    Full Text Available Many systems for field-based, high-throughput phenotyping (FB-HTP quantify and characterize the reflected radiation from the crop canopy to derive phenotypes, as well as infer plant function and health status. However, given the technology's nascent status, it remains unknown how biophysical and physiological properties of the plant canopy impact downstream interpretation and application of canopy reflectance data. In that light, we assessed relationships between leaf thickness and several canopy-associated traits, including normalized difference vegetation index (NDVI, which was collected via active reflectance sensors carried on a mobile FB-HTP system, carbon isotope discrimination (CID, and chlorophyll content. To investigate the relationships among traits, two distinct cotton populations, an upland (Gossypium hirsutum L. recombinant inbred line (RIL population of 95 lines and a Pima (G. barbadense L. population composed of 25 diverse cultivars, were evaluated under contrasting irrigation regimes, water-limited (WL and well-watered (WW conditions, across 3 years. We detected four quantitative trait loci (QTL and significant variation in both populations for leaf thickness among genotypes as well as high estimates of broad-sense heritability (on average, above 0.7 for both populations, indicating a strong genetic basis for leaf thickness. Strong phenotypic correlations (maximum r = −0.73 were observed between leaf thickness and NDVI in the Pima population, but not the RIL population. Additionally, estimated genotypic correlations within the RIL population for leaf thickness with CID, chlorophyll content, and nitrogen discrimination (r^gij = −0.32, 0.48, and 0.40, respectively were all significant under WW but not WL conditions. Economically important fiber quality traits did not exhibit significant phenotypic or genotypic correlations with canopy traits. Overall, our results support considering variation in leaf thickness as a potential

  15. Water stress effects on spatially referenced cotton crop canopy properties

    Science.gov (United States)

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  16. The Impacts of U.S. Cotton Programs on the West and Central African Countries Cotton Export Earnings

    OpenAIRE

    Fadiga, Mohamadou L.; Mohanty, Samarendu; Pan, Suwen

    2005-01-01

    This study uses a stochastic simulation approach based on a partial equilibrium structural econometric model of the world fiber market to examine the effects of a removal of U.S. cotton programs on the world market. The effects on world cotton prices and African export earnings were analyzed. The results suggest that on average an elimination of U.S. cotton programs would lead to a marginal increase in the world cotton prices thus resulting in minimal gain for cotton exporting countries in Af...

  17. KUTUN : a morphogenetic model for cotton (Gossypium hirsitum L.)

    NARCIS (Netherlands)

    Mutsaers, H.J.W.

    1982-01-01

    A whole crop model for growth and development of cotton ( Gossypium hirsutum L.) is presented. The model is based on previous extensive studies on plant morphogenesis, growth of fruits and canopy photosynthesis. The crop model basically is a carbohydrate budget, but all

  18. Par and IR reflectance, transmittance, and absorptance of four crop canopies

    International Nuclear Information System (INIS)

    Wanjura, D.F.; Hatfield, J.L.

    1986-01-01

    Reflectance, transmittance and absorptance of electromagnetic radiation by cotton, soybeans, grain sorghum, and sunflower was measured at three growth stages in two wavebands (PAR: 0.4 to 0.7 pun and IR: 0.7 to 1.1 yim). As leaf area increased in each crop there were increases in IR reflectance and PAR absorptance and decreases in PAR reflectance and both PAR and IR transmittance. IR radiation was concentrated at the soil surface between rows by reflectance from the sides of canopies when crop cover was less than 80%. Across all crops one parameter, leaf overlap index, explained 81 and 71% of the PAR reflectance and another, crop cover, explained 86 and 94% of IR reflectance from rows and interrows, respectively. Attenuation of PAR radiation through the canopies of cotton and sunflower was similar (K = 0.62 and 0.67) but different from that of soybeans and grain sorghum (K = 0.46 and 0.43) which were the same

  19. Using functional-structural plant modeling to explore the response of cotton to mepiquat chloride application and plant population density

    NARCIS (Netherlands)

    Gu, S.; Evers, J.B.; Zhang, L.; Mao, L.; Vos, J.; Li, Z.

    2013-01-01

    The crop growth regulator Mepiquat Chloride (MC) is widely used in cotton production to optimize the canopy structure in order to maximize the yield and fiber quality. Cotton plasticity in relation to MC and other agronomical practice was quantified using a functional-structural plant model of

  20. Growth analysis of cotton crops infested with spider mites. I. Light interception and radiation-use efficiency

    International Nuclear Information System (INIS)

    Sadras, V.O.; Wilson, L.J.

    1997-01-01

    Two-spotted spider mites (Tetranychus urticae Koch) are important pests of cotton (Gossypium hirsutum L.). The effects of mites on cotton photosynthesis have been investigated at the leaf and cytological level but not at the canopy level. Our objective was to quantify the effects of timing and intensity of infestation by mites on cotton radiation-use efficiency (RUE). Leaf area, light interception, RUE, canopy temperature, and leaf nitrogen concentration (LNC) were assessed during two growing seasons in crops artificially infested with mites between 59 and 127 d after sowing. Normal and okra-leaf cultivars were compared. A mite index (MI = natural log of the area under the curve of mite number vs thermal time) was used to quantify the cumulative effects of mites on RUE, LNC, and canopy temperature. Crop growth reduction due to mites was greater in early- than in late-infested crops Growth reduction was primarily due to reductions in RUE, but in the more severe treatments accelerated leaf senescence and, hence. reduced light interception also contributed to reductions in crop growth. At a given date, infested okra-leaf crops usually had greater RUE than their normal-leaf counterparts. Both plant types, however. responded similarly to a given level of mite infestation. The ability of the okra-leaf cultivar to maintain greater RUE levels can be attributed. therefore, to its relative inhospitality for the development of mite colonies rather than to an intrinsically greater capacity to maintain photosynthesis under mite damage. Canopy temperature, LNC, and RUE showed a similar, biphasic pattern of response to Ml. In the first phase, response variables were almost unaffected by mites. In the second phase, there was a marked decline in RUE and LNC and a marked increase in canopy temperature with increasing MI. These results suggest (i) some degree of compensatory photosynthesis at low to moderate levels of mite infestation, and (ii) reductions in RUE of mite

  1. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton.

    Science.gov (United States)

    Martin, Daniel E; Latheef, Mohamed A

    2018-02-01

    The two-spotted spider mite, Tetranychus urticae Koch, is an important pest of cotton in mid-southern USA and causes yield reduction and deprivation in fiber fitness. Cotton and pinto beans grown in the greenhouse were infested with spider mites at the three-leaf and trifoliate stages, respectively. Spider mite damage on cotton and bean canopies expressed as normalized difference vegetation index indicative of changes in plant health was measured for 27 consecutive days. Plant health decreased incrementally for cotton until day 21 when complete destruction occurred. Thereafter, regrowth reversed decline in plant health. On spider mite treated beans, plant vigor plateaued until day 11 when plant health declined incrementally. Results indicate that pinto beans were better suited as a host plant than cotton for rearing T. urticae in the laboratory.

  2. Modeling directional thermal radiance from a forest canopy

    International Nuclear Information System (INIS)

    McGuire, M.J.; Balick, L.K.; Smith, J.A.; Hutchison, B.A.

    1989-01-01

    Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)

  3. Spatial variability of leaf wetness duration in cotton, coffee and banana crop canopies Variabilidade espacial da duração do período de molhamento foliar nas culturas do algodão, do café e da banana

    Directory of Open Access Journals (Sweden)

    Eduardo Alvarez Santos

    2008-12-01

    Full Text Available Despite the importance of leaf wetness duration for plant disease epidemiology, there has been little attention paid to research on how its variability relates to different cropping situations. The objective of this study was to evaluate the spatial variability of leaf wetness duration (LWD in three crops, comparing these measurements with turfgrass LWD, obtained in a standard weather station. LWD was measured by electronic sensors in three crops with different canopy structures and leaf area: cotton, coffee and banana. For the cotton crop, cylindrical sensors were deployed at the lower third and on the top of the canopy, facing southwest. For the coffee crop, flat plate sensors were installed in the lower third of the canopy facing northeast and southwest; in the middle third facing northeast and southwest; and inside and on the top of the canopy. For the banana canopy, cylindrical sensors were used to measure LWD in the lower third of the canopy and in the upper third of the plant. Turfgrass LWD was simultaneously measured in a nearby standard weather station. The LWD showed different patterns of variation in the three crop canopies. For coffee plants, the longest LWD was found in the lower portions of the canopy; for the banana crop, the upper third of the canopy showed the longest LWD; whereas for the cotton crop no difference was observed between the top and lower third of the canopy. Turfgrass LWD presented a good relationship with LWD measured on the top or in the upper third of the crops. Thus, the estimate of crop LWD can be perfomed based on turfgrass LWD, this being a useful tool for plant disease management purposes for crops in which the longer LWD occurs at the upper canopy portion.Apesar da importância da duração do período de molhamento para a epidemiologia de doenças de plantas, pouca atenção tem sido dada à sua variabilidade em diferentes posições da cultura. O objetivo deste estudo foi avaliar a variabilidade

  4. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  5. The Nutritive value of mulberry leaves (Morus Alba) and partial replacement of cotton seed in rations on the performance of growing Vietnamese cattle

    NARCIS (Netherlands)

    Vu, C.C.; Verstegen, M.W.A.; Hendriks, W.H.; Pham, K.T.

    2011-01-01

    The in vivo digestibility of mulberry leaves (Morus alba) and the effects of the partial replacement of cotton seed with fresh mulberry leaf in rations on the performance of growing Vietnamese cattle was investigated. For the in vivo digestibility trial, twenty castrated rams of Phanrang breed (a

  6. Parasitoids of boll weevil Anthonomus grandis and resident predators in kaolin-treated cotton

    Directory of Open Access Journals (Sweden)

    Roberta Leme Santos

    2013-12-01

    Full Text Available Simultaneous use of control methods is essential to reach success in managing arthropod pests. The current study investigated the effect of kaolin application on resident predators in the cotton plant canopy and parasitism of boll weevil on abscised squares in the field, and parasitism of boll weevil in the laboratory. Predators Araneae, Formicidae, Chrysopidae, and Coccinellidae showed similar seasonal densities for kaolin-treated and untreated cotton fields as well as the emergence rate of the parasitoids Bracon vulgaris Ashmead (Hymenoptera: Braconidae and Catolaccus grandis Burks (Hymenoptera: Pteromalidae from abscised field-collected structures. Under laboratory conditions, the parasitism of boll weevil larvae infesting squares was similar when treated and untreated squares with kaolin were offered to the parasitoid under free choice test. Therefore, the results show that spraying cotton fields with kaolin does not affect the natural biological control by parasitoids of boll weevil and pink bollworm and resident predators naturally occurring in cotton fields.

  7. Soil moisture and plant canopy temperature sensing for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  8. TEST OF COTTON LINES WITH DROUGHT TOLERANT INTERCROPPED WITH MAIZE

    Directory of Open Access Journals (Sweden)

    Kadarwati F.T.

    2017-12-01

    Full Text Available The distribution of cotton cultivation is mostly located in the sub-optimal land due to competition with the field crop. The cotton cultivation in Indonesia is always done through intercropping with pulses. This research aims to test the suitability of cotton lines with drought-tolerant intercropped with maize. The research is conducted in February to August 2016 at Asembagus Experimental Garden, Situbondo. Planting materials used in this research are 6 lines and 2 varieties of drought-tolerant cotton consist of strain 03001/9, 03008/24, 03008/25, 03017/13, 06062/3, 06063/3, kanesia 10 and kanesia 14. The research prepared by the draft randomized group with three replications. The observation parameter consists of plant height, canopy width, number of generative branches, number of fruits, fruits weight, the yield of seed cotton, and corn dry results. The research result shows that the strain 03017/13 and 03008/24 have the highest consecutive acceptance of IDR 17,860,681 and IDR 17,520,879, the increase in revenue compared to monoculture is IDR 6,278,473 and IDR 5,668,191, seed cotton production amounted to 2470.01 kg/ha and 2329.72 kg/ha, maize production amounted to 2001.54 kg/ha and 2112.74 kg/ha, LER 1.68 and 1.60, number of harvested fruit of 12.66 and 11.76 fruits/plant, fruit weight of 4.05 and 4.17 g/fruit.

  9. Cotton phenotyping with lidar from a track-mounted platform

    Science.gov (United States)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at cotton bolls.

  10. The Optimal Tax on Antebellum U.S. Cotton Exports

    OpenAIRE

    Douglas A. Irwin

    2001-01-01

    The United States produced about 80 percent of the world's cotton in the decades prior to the Civil War. How much monopoly power did the United States possess in the world cotton market and what would have been the effect of an optimal export tax? This paper estimates the elasticity of foreign demand for U.S. cotton exports and uses the elasticity in a simple partial equilibrium model to calculate the optimal export tax and its effect on prices, trade, and welfare. The results indicate that t...

  11. Tree Death Not Resulting in Gap Creation: An Investigation of Canopy Dynamics of Northern Temperate Deciduous Forests

    Directory of Open Access Journals (Sweden)

    Jean-Francois Senécal

    2018-01-01

    Full Text Available Several decades of research have shown that canopy gaps drive tree renewal processes in the temperate deciduous forest biome. In the literature, canopy gaps are usually defined as canopy openings that are created by partial or total tree death of one or more canopy trees. In this study, we investigate linkages between tree damage mechanisms and the formation or not of new canopy gaps in northern temperate deciduous forests. We studied height loss processes in unmanaged and managed forests recovering from partial cutting with multi-temporal airborne Lidar data. The Lidar dataset was used to detect areas where canopy height reduction occurred, which were then field-studied to identify the tree damage mechanisms implicated. We also sampled the density of leaf material along transects to characterize canopy structure. We used the dataset of the canopy height reduction areas in a multi-model inference analysis to determine whether canopy structures or tree damage mechanisms most influenced the creation of new canopy gaps within canopy height reduction areas. According to our model, new canopy gaps are created mainly when canopy damage enlarges existing gaps or when height is reduced over areas without an already established dense sub-canopy tree layer.

  12. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  13. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  14. Canopy Version 7.0: Canopy manual

    International Nuclear Information System (INIS)

    Fischler, M.; Uchima, M.; Hockney, G.; Mackenzie, P.

    1993-12-01

    Canopy provides a machine-independent environment for attacking grid-oriented problems. This document describes the concepts and routines common to all Canopy implementations, independent of the system and implementation. Information specific to the massively parallel ACPMAPS/indexACPMAPS system at FermiLab is contained in two other documents: The CANOPY ACPMAPS USER's GUIDE provides user-oriented instructions on compiling, running, file system usage, and production job control. The CANOPY ACPMAPS SYSTEM MANUAL describes system tools and installation and system management techniques. System-specific User's Guides may be created for implementations on other systems. The goal of Canopy is to allow scientists to use massively parallel systems for a broad class of applications without having to become expert in any particular system or in parallel programming techniques. The Canopy approach identifies grid-oriented concepts and implements them as routines in a library. Applications written in terms of these concepts will run on any system which supports the Canopy software. A side benefit in dealing with familiar concepts is that programs can more easily be understood by other researchers

  15. Study of mungbean intercropping in cotton planted with different techniques

    International Nuclear Information System (INIS)

    Khan, M.B.; Khaliq, A.

    2004-01-01

    Bio-economic efficiency of different cotton-based intercropping systems was determined at the Agronomic Research Area, University of Agriculture, Faisalabad, (Pakistan) during 1996-1997 and 1997-98. Cotton cultivar NIAB-78 was planted in 80-cm apart single rows and 120-cm spaced double row strips with the help of a single row hand drill. Intercropping systems were cotton alone and cotton + mungbean. Experiment was laid out in a RCBD with split arrangements in four replications. Planting patterns were kept in main plots and intercropping systems in sub-plots. Inter crop was sown in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Competition functions like relative crowding coefficient, competitive ratio, aggressivity, land equivalent ratio and area time equivalent ratio were calculated for the assessment of the benefits of the intercropping. Partial budget was prepared for determining net field benefits of the systems under study. Growing of cotton in 120-cm spaced double row strips proved superior to 80-cm spaced single rows. Intercropping decreased the seed cotton production significantly in both years, however, inter crop not only covered this loss but also increased overall productivity. Higher net field benefit (NFB) was obtained from cotton + mungbean than sole cropping of cotton. Farmers with small land holdings, seriously constrained by low crop income can adopt the practice of intercropping of mungbean in cotton. (author)

  16. Hemispherical photography to estimate biophysical variables of cotton

    Directory of Open Access Journals (Sweden)

    Ziany N. Brandão

    Full Text Available ABSTRACT The Leaf Area Index (LAI is a key parameter to evaluate the vegetation spectral response, estimating plant nutrition and water requirements. However, in large fields is difficult to obtain accurate data to LAI determination. Therefore, the objective of this study was the estimation of LAI, biomass and yield of irrigated cotton through digital hemispherical photography. The treatments consisted of four nitrogen doses (0, 90, 180 and 270 kg ha-1 and four phosphorus doses (0, 120, 240 and 360 kg ha-1. Digital hemispherical photographs were collected under similar sky brightness conditions at 60 and 75 days after emergence (DAE, performed by the Digital Plant Canopy Imager - CI-110® of CID Inc. Biomass and LAI measurements were made on the same dates. LAI was also determined by destructive and non-destructive methods through a leaf area integrator (LI-COR® -LI-3100C model, and by measurements based on the midrib length of all leaves, respectively. The results indicate that the hemispherical images were appropriate to estimate the LAI and biomass production of irrigated cotton, while for the estimation of yield, more research is needed to improve the method.

  17. Molecular characterization of a virus from the family Luteoviridae associated with cotton blue disease.

    Science.gov (United States)

    Corrêa, R L; Silva, T F; Simões-Araújo, J L; Barroso, P A V; Vidal, M S; Vaslin, M F S

    2005-07-01

    Cotton blue disease is an aphid-transmitted cotton disease described in Brazil in 1962 as Vein Mosaic "var. Ribeirão Bonito". At present it causes economically important losses in cotton crops if control measures are not implemented. The observed symptoms and mode of transmission have prompted researchers to speculate that cotton blue disease could be attributed to a member of the family Luteoviridae, but there was no molecular evidence supporting this hypothesis. We have amplified part of the genome of a virus associated with this disease using degenerate primers for members of the family Luteoviridae. Sequence analysis of the entire capsid and a partial RdRp revealed a virus probably belonging to the genus Polerovirus. Based on our results we propose that cotton blue disease is associated with a virus with the putative name Cotton leafroll dwarf virus (CLRDV).

  18. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    Science.gov (United States)

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  19. Genetic analysis of some agronomic traits (gossypium hamster L.) in cotton

    International Nuclear Information System (INIS)

    Zulqarnain, M.; Khan, I.A.; Shakeel, T.; JAfri, J.S.

    1998-01-01

    Four varieties of cotton were crossed in a complete diallel fashion to evaluate the mode of inheritance of different agronomic traits. Height of main stem, number of bolls per plant, boll weight and yield of seed cotton per plant appeared to be controlled by additive with partial dominance type of gene action. While number of seeds per boll was controlled by over dominance type of gene action. Variety MNH-93 possessed dominant genes for height of main stem, number of bolls per plant number of seeds per boll and yield of seed cotton per plant. AMSI-38 carried dominant genes for boll weight and recessive for number of bolls per plant, number of seeds per boll and boll weight. Height of main stem and yield of seed cotton were controlled by recessive genes in Variety AMSI-38. (author)

  20. Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome in Soybean

    Directory of Open Access Journals (Sweden)

    Ittai Herrmann

    2018-03-01

    Full Text Available Pre-visual detection of crop disease is critical for food security. Field-based spectroscopic remote sensing offers a method to enable timely detection, but still requires appropriate instrumentation and testing. Soybean plants were spectrally measured throughout a growing season to assess the capacity of leaf and canopy level spectral measurements to detect non-visual foliage symptoms induced by Fusarium virguliforme (Fv, which causes sudden death syndrome. Canopy reflectance measurements were made using the Piccolo Doppio dual field-of-view, two-spectrometer (400 to 1630 nm system on a tractor. Leaf level measurements were obtained, in different plots, using a handheld spectrometer (400 to 2500 nm. Partial least squares discriminant analysis (PLSDA was applied to the spectroscopic data to discriminate between Fv-inoculated and control plants. Canopy and leaf spectral data allowed identification of Fv infection, prior to visual symptoms, with classification accuracy of 88% and 91% for calibration, 79% and 87% for cross-validation, and 82% and 92% for validation, respectively. Differences in wavelengths important to prediction by canopy vs. leaf data confirm that there are different bases for accurate predictions among methods. Partial least square regression (PLSR was used on a late-stage canopy level data to predict soybean seed yield, with calibration, cross-validation and validation R2 values 0.71, 0.59 and 0.62 (p < 0.01, respectively, and validation root mean square error of 0.31 t·ha−1. Spectral data from the tractor mounted system are thus sensitive to the expression of Fv root infection at canopy scale prior to canopy symptoms, suggesting such systems may be effective for precision agricultural research and management.

  1. Predicting tropical plant physiology from leaf and canopy spectroscopy.

    Science.gov (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E

    2011-02-01

    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  2. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Science.gov (United States)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  3. Synthesis of Cotton from Tossa Jute Fiber and Comparison with Original Cotton

    Directory of Open Access Journals (Sweden)

    Md. Mizanur Rahman

    2015-01-01

    Full Text Available Cotton fibers were synthesized from tossa jute and characteristics were compared with original cotton by using FTIR and TGA. The FTIR results indicated that the peak intensity of OH group from jute cotton fibers occurred at 3336 cm−1 whereas the peak intensity of original cotton fibers occurred at 3338 cm−1. This indicated that the synthesized cotton fiber properties were very similar to the original cotton fibers. The TGA result showed that maximum rate of mass loss, the onset of decomposition, end of decomposition, and activation energy of synthesized cotton were higher than original cotton. The activation energy of jute cotton fibers was higher than the original cotton fibers.

  4. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization.

    Science.gov (United States)

    Du, Shuang-kui; Su, Xia; Yang, Weihua; Wang, Yanqin; Kuang, Meng; Ma, Lei; Fang, Dan; Zhou, Dayun

    2016-04-20

    Cotton stalk is a potential biomass for bioethanol production, while the conversion of direct saccharification or biotransformation of cotton stalk is extremely low due to the recalcitrant nature of lignocellulose. To enhance the enzymatic conversion of cotton stalks, the enzymatic saccharification parameters of high pressure assist-alkali pretreatment (HPAP) cotton stalk were optimized in the present study. Results indicated that a maximum reducing sugar yield of 54.7g/100g dry biomass cellulose was achieved at a substrate concentration of 2%, 100rpm agitation, 0.6g/g enzyme loading, 40°C hydrolysis temperature, 50h saccharification time, and pH 5.0. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to identify structural changes in native, pretreated biomass and hydrolyzed residues. Structural analysis revealed large part of amorphous cellulose and partial crystalline cellulose in the HPAP cotton stalk were hydrolyzed during enzymatic treatment. HPAP cotton stalk can be used as a potential feed stock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China

    Science.gov (United States)

    Yu, Quanzhou; Wang, Shaoqiang; Zhou, Lei

    2017-10-01

    A precise estimate of canopy leaf nitrogen concentration (CNC, based on dry mass) is important for researching the carbon assimilation capability of forest ecosystems. Hyperspectral remote sensing technology has been applied to estimate regional CNC, which can adjust forest photosynthetic capacity and carbon uptake. However, the relationship between forest CNC and canopy spectral reflectance as well as its mechanism is still poorly understood. Using measured CNC, canopy structure and species composition data, four vegetation indices (VIs), and near-infrared reflectance (NIR) derived from EO-1 Hyperion imagery, we investigated the role of canopy structure traits and plant functional types (PFTs) in modulating the correlation between CNC and canopy reflectance in a temperate forest in northeast China. A plot-scale forest structure indicator, named broad foliar dominance index (BFDI), was introduced to provide forest canopy structure and coniferous and broadleaf species composition. Then, we revealed the response of forest canopy reflectance spectrum to BFDI and CNC. Our results showed that leaf area index had no significant effect on NIR (P>0.05) but indicated that there was a significant correlation (R2=0.76, P0.05). On the contrary, removing the CNC effect, the partial correlation between BFDI and NIR was positively significant (R=0.69, Pforest types. Nevertheless, the relationship cannot be considered as a feasible approach of CNC estimation for a single PFT.

  6. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  7. China's Cotton Policy and the Impact of China's WTO Accession and Bt Cotton Adoption on the Chinese and U.S. Cotton Sectors

    OpenAIRE

    Cheng Fang; Bruce A. Babcock

    2003-01-01

    In this paper we provide an analysis of China's cotton policy and develop a framework to quantify the impact of both China's World Trade Organization (WTO) accession and Bt (Bacillus thuringiensis) cotton adoption on Chinese and U.S. cotton sectors. We use a Chinese cotton sector model consisting of supply, demand, price linkages, and textiles output equations. A two-stage framework model provides gross cropping area and total area for cotton and major subsitute crops from nine cotton-produci...

  8. Upland cotton growth and yield response to timing the initial postplant irrigation

    International Nuclear Information System (INIS)

    Steger, A.J.; Silvertooth, J.C.; Brown, P.W.

    1998-01-01

    Cotton (Gossypium spp.) production in arid and semiarid regions depends on well-managed irrigation systems for optimum yield and production efficiency. Water deficit stress early in the growing season can affect the subsequent growth and development of short-season cotton. A 2-yr field study was conducted in southern Arizona to determine the optimum timing of the initial postplant irrigation for a short-season upland cotton variety based on midday leaf water potential (LWP) measurements, and to evaluate the season-long effects of delayed irrigation on subsequent plant growth patterns. In both years, the short-season upland variety, DPL 20, was planted into a Pima clay loam soil [fine-silty, mixed (calcareous), thermic Typic Torrifluvent] that had received a preplant irrigation of 152 (1993) or 254 mm (1994) approximately 3 wk prior to planting. Treatments, designated T1, T2, and T3, received the initial postplant irrigation when the average midday LWP of the uppermost, fully expanded leaf measured −1.5, −1.9, and −2.3 MPa, respectively. Daily midday LWP measurements were taken using the pressure chamber technique. Soil water was measured at 25-cm depth increments using neutron attenuation. Plant height, number of mainstem nodes, nodes above white flower (NAWF), and canopy closure were measured at weekly intervals. All treatments reached maturity, as measured by NAWF ≤ 5, at approximately the same time during the growing season. Complete canopy closure was delayed in the T3 plots resulting in reduced interception and utilization of available solar radiation early in the growing season. When treatments were initiated, approximately 84% (T1), 62% (T2), and 32% (T3) of the total plant-available water (field capacity less permanent wilting point) was present in the upper 1.5 of the soil profile. Yields were 1263, 1244, and 1110 kg lint ha−1 in 1993 and 1229, 1176, and 1095 kg lint ha −1 in 1994 for T1, T2, and T3, respectively. Lint yields were significantly

  9. Impact of Bollgard cotton on Indian cotton production and Income of ...

    Indian Academy of Sciences (India)

    Impact of Bollgard cotton on Indian cotton production and Income of cotton farmers. Presentation made in the Seventy Second Annual Meeting Indian Academy of Sciences, Bangalore at Devi Ahilya Vishwavidyalaya Indore 11th November 2006.

  10. Impact of efficient refuge policies for Bt cotton in India on world cotton trade

    OpenAIRE

    Singla, Rohit; Johnson, Phillip N.; Misra, Sukant K.

    2010-01-01

    India is a major cotton producing country in the world along with the U.S. and China. A change in the supply of and demand for cotton in the Indian market has the potential to have an impact on world cotton trade. This study evaluates the implications of efficient Bt cotton refuge policies in India on world and U.S. cotton markets. It can be hypothesized that increased refuge requirements for Bt cotton varieties in India could decrease the world supply of cotton because of the lower yield pot...

  11. Water use, canopy temperature, lint yield, and fiber quality response of six upland cotton cultivars to water stress

    Science.gov (United States)

    The declining saturated thickness of the Ogallala Aquifer combined with the unpredictability of precipitation during the growing season in the Southern High Plains has resulted in elevated production risks associated with short-term crop water deficits. Cotton (Gossypium spp.) cultivars that can use...

  12. Dictionary of Cotton

    Science.gov (United States)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  13. Identifying the environmental factors that effect within canopy BVOC loss using a multilevel canopy model

    Science.gov (United States)

    Chan, W. S.; Fuentes, J. D.; Lerdau, M.

    2010-12-01

    This presentation will provide research findings to evaluate the hypothesis that the loss of biogenic volatile organic compound (BVOC) within plant canopies is dynamic and depends on factors such as plant canopy architecture (height and leaf area distribution), atmospheric turbulence, concentration of oxidants (OH, O3, NO3), and the reactivity of BVOC species. Results will be presented from a new one dimensional, multilevel canopy model that couples algorithms for canopy microclimate, leaf physiology, BVOC emission, turbulent transport, and atmospheric chemistry to investigate the relative importance of factors that impact BVOC loss within a forest canopy. Model sensitivity tests will be presented and discussed to identify factors driving canopy loss. Results show isoprene and monoterpene canopy losses as high as 9 and 18%, respectively, for tall canopies during the daytime. We hypothesize that canopy height and wind speed (i.e. canopy residence time) may be the most important in dictating within-canopy loss. This work will reduce the error in bottom-up flux estimates of BVOCs and ultimately improve parameterizations of BVOC sources in air quality models by accounting for within canopy processes.

  14. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    Science.gov (United States)

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-04-23

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  15. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    Directory of Open Access Journals (Sweden)

    Roberta De Bei

    2016-04-01

    Full Text Available Leaf area index (LAI and plant area index (PAI are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI, canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  16. TURKISH TRADE POLICY AND THE EFFICIENCY OF TURKISH COTTON MARKETS

    OpenAIRE

    Schmitz, Troy G.

    1999-01-01

    Turkish cotton markets are affected by import duties, export taxes, and a range of domestic subsidies. The degree of economic inefficiency arising from these government policies is estimated through the use of two partial equilibrium models, one for the Aegean market and another for the non-Aegean market. The welfare implications of these policies are also explored.

  17. Turbulent mixing and removal of ozone within an Amazon rainforest canopy

    Science.gov (United States)

    Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.

    2017-03-01

    Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.

  18. The crosstalk between Target of Rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton.

    Science.gov (United States)

    Song, Yun; Zhao, Ge; Zhang, Xueyan; Li, Linxuan; Xiong, Fangjie; Zhuo, Fengping; Zhang, Chaojun; Yang, Zuoren; Datla, Raju; Ren, Maozhi; Li, Fuguang

    2017-04-04

    Target of rapamycin (TOR) acts as an important regulator of cell growth, development and stress responses in most examined diploid eukaryotes. However, little is known about TOR in tetraploid species such as cotton. Here, we show that TORC1-S6K-RPS6, the major signaling components, are conserved and further expanded in cotton genome. Though the cotton seedlings are insensitive to rapamycin, AZD8055, the second-generation inhibitor of TOR, can significantly suppress the growth in cotton. Global transcriptome analysis revealed that genes associated with jasmonic acid (JA) biosynthesis and transduction were significantly altered in AZD8055 treated cotton seedlings, suggesting the potential crosstalk between TOR and JA signaling. Pharmacological and genetic approaches have been employed to get further insights into the molecular mechanism of the crosstalk between TOR and JA. Combination of AZD8055 with methyl jasmonate can synergistically inhibit cotton growth, and additionally JA levels were significantly increased when cotton seedlings were subjected to AZD8055. JA biosynthetic and signaling mutants including jar1, coi1-2 and myc2-2 displayed TOR inhibitor-resistant phenotypes, whereas COI1 overexpression transgenic lines and jaz10 exhibited sensitivity to AZD8055. Consistently, cotton JAZ can partially rescue TOR-suppressed phenotypes in Arabidopsis. These evidences revealed that the crosstalk between TOR and JA pathway operates in cotton and Arabidopsis.

  19. Turbulent flows over sparse canopies

    Science.gov (United States)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  20. Canopy arthropod response to density and distribution of green trees retained after partial harvest.

    Science.gov (United States)

    Timothy D. Schowalter; Yanli Zhang; Robert A. Progar

    2005-01-01

    We measured canopy arthropod responses to six contrasting green-tree retention treatments at six locations (blocks) in western Oregon and Washington as part of the Demonstration of Ecosystem Management Options (DEMO) study. Treatments were 100% retention (uncut), 75% retention with three 1-ha harvested gaps, 40% dispersed retention, 40% aggregated retention with five 1...

  1. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  2. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  3. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  4. Genetic study of various agronomic traits in cotton (Gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Ashraf, F.; Khan, I.A.; Ahmed, S.

    2009-01-01

    The use of already existing genetic variability in the breeding material, as well as, the creation of new variability along with the genetic understanding of various agronomic traits is of crucial importance, in order to develop potential sources of cotton. For this purpose, 5 X 6 complete diallel cross experiment was conducted during 2003-04, involving 5 strains i.e. VH-55, MNH-516, ACALA-SJ-4, A-8100 and CRIS-420, to evaluate gene-action, general and specific combining ability for number of sympodial branches, number of monopodial branches, plant height, number of bolls per plant, boll weight and yield of seed cotton. Additive type of gene action, with partial dominance for all the traits studied, was observed. Most dominant genes for boll weight, yield of seed-cotton, and number of sympodial branches were observed in CRIS-420, while maximum dominant genes for number of monopodial branches, plant height were observed in ACALA-SJ-4. Variety VH-55 carried maximum dominant genes for number of bolls per plant. Recessive genes for the number of sympodial branches, number of monopodial branches, plant height, number of bolls per plant and yield of seed-cotton, were exhibited by MNH-516. The variety ACAU-SJ-4 showed harmonius combination for bolls per plant and yield of seed-cotton, whereas CRIS- 420 was found a good general combiner for plant height and number of sympodial branches. (author)

  5. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.

    Science.gov (United States)

    Sun, Shangpeng; Li, Changying; Paterson, Andrew H; Jiang, Yu; Xu, Rui; Robertson, Jon S; Snider, John L; Chee, Peng W

    2018-01-01

    Plant breeding programs and a wide range of plant science applications would greatly benefit from the development of in-field high throughput phenotyping technologies. In this study, a terrestrial LiDAR-based high throughput phenotyping system was developed. A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS was used to provide spatial coordinates. Precise 3D models of scanned plants were reconstructed based on the LiDAR and RTK-GPS data. The ground plane of the 3D model was separated by RANSAC algorithm and a Euclidean clustering algorithm was applied to remove noise generated by weeds. After that, clean 3D surface models of cotton plants were obtained, from which three plot-level morphologic traits including canopy height, projected canopy area, and plant volume were derived. Canopy height ranging from 85th percentile to the maximum height were computed based on the histogram of the z coordinate for all measured points; projected canopy area was derived by projecting all points on a ground plane; and a Trapezoidal rule based algorithm was proposed to estimate plant volume. Results of validation experiments showed good agreement between LiDAR measurements and manual measurements for maximum canopy height, projected canopy area, and plant volume, with R 2 -values of 0.97, 0.97, and 0.98, respectively. The developed system was used to scan the whole field repeatedly over the period from 43 to 109 days after planting. Growth trends and growth rate curves for all three derived morphologic traits were established over the monitoring period for each cultivar. Overall, four different cultivars showed similar growth trends and growth rate patterns. Each cultivar continued to grow until ~88 days after planting, and from then on varied little. However, the actual values were cultivar specific. Correlation analysis between morphologic traits and final yield was conducted over the monitoring period. When considering each cultivar individually

  6. Characterization and Modeling of Atmospheric Flow Within and Above Plant Canopies

    Science.gov (United States)

    Souza Freire Grion, Livia

    upper-half of the canopy, and partially mixed conditions in the lower half of the canopy. During the night, most of the canopy (except for the upper 20%) is either partially or poorly mixed, resulting in mixing timescales of up to several hours. For the specific case of ozone, the mixing timescales observed during the day are much lower than the chemical and deposition timescales, whereas chemical processes and turbulence have comparable timescales during the night. In addition, the high day-to-day variability in mixing conditions and the fast increase in mixing during the morning transition period indicate that turbulence within the canopy needs to be properly investigated and modeled in many studies involving plant-atmosphere interactions. Motivated by the findings described above, this work proposes and tests a new approach for modeling canopy flows. Typically, vertical profiles of flow statistics are needed to represent canopy-atmosphere exchanges in chemical and biophysical processes happening within the canopy. Current single-column models provide only steady-state (equilibrium) profiles, and rely on closure assumptions that do not represent the dominant non-local turbulent fluxes present in canopy flows. We overcome these issues by adapting the one-dimensional turbulent (ODT) model to represent atmospheric flows from the ground up to the top of the atmospheric boundary layer (ABL). The ODT model numerically resolves the one-dimensional diffusion equation along a vertical line (representing a horizontally homogeneous ABL column), and the presence of three-dimensional turbulence is added through the effect of stochastic eddies. Simulations of ABL without canopy were performed for different atmospheric stabilities and a diurnal cycle, to test the capabilities of this modeling approach in representing unsteady flows with strong non-local transport. In addition, four different types of canopies were simulated, one of them including the transport of scalar with a point

  7. Dictionary of cotton: Picking & ginning

    Science.gov (United States)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  8. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  9. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  10. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  11. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-01

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  12. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-11

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  13. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  14. Quantification of growth, yield and radiation use efficiency of promising cotton cultivars at varying nitrogen levels

    International Nuclear Information System (INIS)

    Wajid, A.; Ahmad, A.; Khaliq, T.; Alam, S.; Hussaun, A.; Hussain, K.; Naseem, W.; Usman, M.; Ahmad, S.

    2010-01-01

    Cotton cultivars response to different doses of nitrogen for radiation interception, canopy development, growth and seed yield were studied in 2006. The experiment was laid out in randomized complete block design with split arrangement under the climatic conditions of Bahawalpur. Data on seed yield, total dry matter (TDM), leaf area index (LAI), fraction of intercepted radiation (Fi), accumulated radiation interception during the growth season (Sa) and radiation use efficiency (RUE) were taken into account. TDM pattern showed sigmoid growth curve for both cultivars and nitrogen levels and showed strong relationship (R2 = 0.98) with the accumulated intercepted radiation (Sa) for the season. Mean maximum value of fraction of incident PAR (Fi) remained 90% at 120 days after sowing (DAS) harvest due to maximum crop canopy development. Cultivar NIAB-111 produced 0.81 g m/sup -2/ of TDM for each MJ of accumulated PAR and nitrogen at the rate of 185 kg ha/sup -1/ statistically proved to be better in converting radiation into dry matter production. (author)

  15. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    Science.gov (United States)

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  16. The impact of modifying antenna size of photosystem II on canopy photosynthetic efficiency – development of a new canopy photosynthesis model scaling from metabolism to canopy level processes

    Science.gov (United States)

    Canopy photosynthesis describes photosynthesis of an entire crop field and positively correlates with biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis ...

  17. Superoleophobic cotton textiles

    NARCIS (Netherlands)

    Leng, B.; Shao, Z.; With, de G.; Ming, W.

    2009-01-01

    Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we

  18. 7 CFR 1205.319 - Cotton-producing region.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton-producing region. 1205.319 Section 1205.319... Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing region means each of the following groups of cotton-producing States: (a) Southeast Region: Alabama...

  19. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  20. Effects of sub-Arctic shrub canopies on snowmelt energetics

    Science.gov (United States)

    Bewley, D.; Essery, R.; Pomeroy, J.

    2006-12-01

    Much of the low Arctic is covered with shrub tundra, and there is increasing evidence that snowmelt rates are substantially different between shrub tundra and poorly vegetated sites. The cause of this remains uncertain, however, and extends beyond simple differences in albedo. Results are presented in this study from a detailed field investigation at Wolf Creek Research Basin in 2004 to determine the effect of two different shrub canopy structures on both melt rates and the partitioning of melt energy. The low shrub site (LSS) was essentially an unvegetated snowfield prior to melt (mean albedo ~0.85), and shrubs only became exposed during the last few days of melt reaching a mean height of 0.31 m and mean Plant Area Index (PAI) of 0.32. Shrubs at the tall shrub site (TSS) were partially buried initially (shrub fraction, mean height and PAI of 0.2, 0.9 m and 0.41) but dominated the landscape by the end of melt (corresponding values of 0.71, 1.6 m and 0.6). Melt rates were higher at TSS up until the exposure of shrubs and bare ground at LSS, after which the rates converged. A Shrub-Snow Canopy Model (SSCM) is developed to improve snowmelt simulations for shrub canopies by parameterizing the key shrub effects on surface fluxes, including the extinction of shortwave irradiance beneath shrubs and in canopy gaps, and the enhancement of snow surface fluxes of longwave radiation and sensible heat. SSCM was run for LSS assuming no shrubs were present above the variable snow and bare ground tiles, whereas for TSS an increasing shrub fraction above each tile was prescribed from observations. Results from both sites suggest that sensible heat fluxes contributed more melt energy than net radiation, and were greater during early melt at TSS due to the warming of exposed shrubs. SWE was accurately predicted against transect measurements at TSS (rms error 4 mm), but was overestimated at LSS (rms error 13 mm) since both air temperatures and turbulent transport were underestimated

  1. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  3. ASSESSING THE CANOPY INTEGRITY USING CANOPY DIGITAL IMAGES IN SEMIDECIDUOUS FOREST FRAGMENT IN SÃO CARLOS - SP- BRAZIL1

    Directory of Open Access Journals (Sweden)

    Thiago Yamada

    2017-11-01

    Full Text Available ABSTRACT It is well-known that conducting experimental research aiming the characterization of canopy structure of forests can be a difficult and costly task and, generally, requires an expert to extract, in loco, relevant information. Aiming at easing studies related to canopy structures, several techniques have been proposed in the literature and, among them, various are based on canopy digital image analysis. The research work described in this paper empirically compares two techniques that measure the integrity of the canopy structure of a forest fragment; one of them is based on central parts of canopy cover images and, the other, on canopy closure images. For the experiments, 22 central parts of canopy cover images and 22 canopy closure images were used. The images were captured along two transects: T1 (located in the conserved area and T2 (located in the naturally disturbance area. The canopy digital images were computationally processed and analyzed using the MATLAB platform for the canopy cover images and the Gap Light Analyzer (GLA, for the canopy closure images. The results obtained using these two techniques showed that canopy cover images and, among the employed algorithms, the Jseg, characterize the canopy integrity best. It is worth mentioning that part of the analysis can be automatically conducted, as a quick and precise process, with low material costs involved.

  4. Locally Grown: Examining Attitudes and Perceptions About Organic Cotton Production and Manufacturing Between Mississippi Cotton Growers and Consumers

    Directory of Open Access Journals (Sweden)

    Charles Freeman

    2016-06-01

    Full Text Available The purpose of this study is to examine attitudes and perceptions about organic cotton of Mississippi cotton growers and producers in comparison to fashion-conscious consumers, including advantages/disadvantages of growing and production processes, quality control, consumer preferences, and competitive price structures/profit margins. A sample size of 16 local Mississippi growers and/or producers and 44 undergraduate students at a mid-major Southeastern university were chosen to participate in the study. Instruments were developed based on current research and the definition of organic cotton production defined by the United States Department of Agriculture. Results indicate 75% of growers and producers do not perceive a quality difference between organic and conventionally grown cotton, while 72.7% of the consumers report organically grown cotton is capable of producing a higher quality product compared to conventionally grown cotton. Even with an increase in organic cotton prices (25- 40% higher premium, only 25% of growers and producers would be willing to convert, while a majority (52.3% of consumers would not be willing to spend more than 25% extra for an organically grown cotton product. Consumers indicate the negative effects of conventionally grown cotton, yet many report little knowledge about organic cotton production, while growers/producers immediately dismiss organically grown cotton as a retail marketing strategy.

  5. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  6. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; Meerwall, Ernst von; Vaia, Richard A.; Rodriguez, Robert; Giannelis, Emmanuel P.

    2010-01-01

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  7. Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses. III. Canopy photosynthesis, individual leaf photosynthesis and the distribution of current assimilate

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, J E

    1977-01-01

    The rates of canopy and individual leaf photosynthesis and /sup 14/C distribution for three temperate forage grasses Lolium perenne cv. S24, L. perenne cv. Reveille and Festuca arundinacea cv. S170 were determined in the field during a summer growth period. Canopy photosynthesis declined as the growth period progressed, reflecting a decline in the photosynthetic capacity of successive youngest fully expanded leaves. The decline in the maximum photosynthetic capacity of the canopies was correlated with a decline in their quantum efficiencies at low irradiance. Changes in canopy structure resulted in changes in canopy net photosynthesis and dark respiration. No clear relationships between changes in the environment and changes in canopy net photosynthesis and dark respiration were established. The relative distributions of /sup 14/C in the shoots of the varieties gave a good indication of the amount of dry matter per ground area in the varieties. 21 references, 4 figures, 1 table.

  8. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field

    International Nuclear Information System (INIS)

    Tissue, D. T.; Lewis, J. D.; Wullschleger, S. D.; Amthro, J. S.; Griffin, K. L.; Anderson, O. R.

    2002-01-01

    The effects of elevated carbon dioxide and canopy position on leaf respiration in sweetgum trees in a closed canopy forest were measured in an effort to determine if, and why, enriched atmospheric carbon dioxide might affect leaf respiration in sweetgum. To account for the dark respiratory response to growth in elevated carbon dioxide, cell ultrastructure and cytochrome c oxidase activity in leaves were measured at different seasonal growth periods. Leaf respiration under light conditions was also estimated to determine whether elevated carbon dioxide affected daytime respiration. Results showed that long-term exposure to elevated carbon dioxide did not effect night-time or day- time respiration in trees grown in a plantation in the field. Canopy position affected night-time respiration partially, through the effects on leaf soluble sugar, starch, nitrogen and leaf mass per unit area. In carbon dioxide partial pressure the effects of canopy position were insignificant. It was concluded that elevated carbon dioxide does not directly impact leaf respiration in sweetgum and assuming no changes in leaf nitrogen or leaf chemical composition, the long-term effects on respiration in this species will be minimal. 50 refs., 4 tabs., 3 figs

  9. Spectroscopic Remote Sensing of Non-Structural Carbohydrates in Forest Canopies

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2015-03-01

    Full Text Available Non-structural carbohydrates (NSC are products of photosynthesis, and leaf NSC concentration may be a prognostic indicator of climate-change tolerance in woody plants. However, measurement of leaf NSC is prohibitively labor intensive, especially in tropical forests, where foliage is difficult to access and where NSC concentrations vary enormously by species and across environments. Imaging spectroscopy may allow quantitative mapping of leaf NSC, but this possibility remains unproven. We tested the accuracy of NSC remote sensing at leaf, canopy and stand levels using visible-to-shortwave infrared (VSWIR spectroscopy with partial least squares regression (PLSR techniques. Leaf-level analyses demonstrated the high precision (R2 = 0.69–0.73 and accuracy (%RMSE = 13%–14% of NSC estimates in 6136 live samples taken from 4222 forest canopy species worldwide. The leaf spectral data were combined with a radiative transfer model to simulate the role of canopy structural variability, which led to a reduction in the precision and accuracy of leaf NSC estimation (R2 = 0.56; %RMSE = 16%. Application of the approach to 79 one-hectare plots in Amazonia using the Carnegie Airborne Observatory VSWIR spectrometer indicated the good precision and accuracy of leaf NSC estimates at the forest stand level (R2 = 0.49; %RMSE = 9.1%. Spectral analyses indicated strong contributions of the shortwave-IR (1300–2500 nm region to leaf NSC determination at all scales. We conclude that leaf NSC can be remotely sensed, opening doors to monitoring forest canopy physiological responses to environmental stress and climate change.

  10. Superamphiphobic cotton fabrics with enhanced stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bi, E-mail: xubi@dhu.edu.cn [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ding, Yinyan; Qu, Shaobo [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Cai, Zaisheng, E-mail: zshcai@dhu.edu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-11-30

    Highlights: • Superamphiphobic cotton fabrics were prepared. • Water and hexadecane contact angels reach to 164.4° and 156.3°, respectively. • Nanoporous organically modified silica alcogel particles were synthesized. • The superamphiphobic cotton fabrics exhibit enhanced stability against abrasion, laundering and acid. - Abstract: Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H{sub 2}SO{sub 4}. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  11. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Science.gov (United States)

    Hedley, John D; McMahon, Kathryn; Fearns, Peter

    2014-01-01

    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  12. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Directory of Open Access Journals (Sweden)

    John D Hedley

    Full Text Available A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  13. U.S. Cotton Prices and the World Cotton Market: Forecasting and Structural Change

    OpenAIRE

    Isengildina-Massa, Olga; MacDonald, Stephen

    2009-01-01

    The purpose of this study was to analyze structural changes that took place in the cotton industry in recent years and develop a statistical model that reflects the current drivers of U.S. cotton prices. Legislative changes authorized the U.S. Department of Agriculture to resume publishing cotton price forecasts for the first time in 79 years. In addition, systematic problems have become apparent in the forecasting models used by USDA and elsewhere, highlighting the need for an updated review...

  14. Brightness-normalized Partial Least Squares Regression for hyperspectral data

    International Nuclear Information System (INIS)

    Feilhauer, Hannes; Asner, Gregory P.; Martin, Roberta E.; Schmidtlein, Sebastian

    2010-01-01

    Developed in the field of chemometrics, Partial Least Squares Regression (PLSR) has become an established technique in vegetation remote sensing. PLSR was primarily designed for laboratory analysis of prepared material samples. Under field conditions in vegetation remote sensing, the performance of the technique may be negatively affected by differences in brightness due to amount and orientation of plant tissues in canopies or the observing conditions. To minimize these effects, we introduced brightness normalization to the PLSR approach and tested whether this modification improves the performance under changing canopy and observing conditions. This test was carried out using high-fidelity spectral data (400-2510 nm) to model observed leaf chemistry. The spectral data was combined with a canopy radiative transfer model to simulate effects of varying canopy structure and viewing geometry. Brightness normalization enhanced the performance of PLSR by dampening the effects of canopy shade, thus providing a significant improvement in predictions of leaf chemistry (up to 3.6% additional explained variance in validation) compared to conventional PLSR. Little improvement was made on effects due to variable leaf area index, while minor improvement (mostly not significant) was observed for effects of variable viewing geometry. In general, brightness normalization increased the stability of model fits and regression coefficients for all canopy scenarios. Brightness-normalized PLSR is thus a promising approach for application on airborne and space-based imaging spectrometer data.

  15. Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  16. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  17. Separation and recycling of cotton from cotton/PET blends by depolymerization of PET catalyzed by bases and ionic liquids

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Groeneveld, R.A.J. (Richard); Oelerich, J. (Jens)

    2014-01-01

    The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is

  18. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  19. Water-borne hyphomycetes in tree canopies of Kaiga (Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Naga M. Sudheep

    2013-12-01

    Full Text Available The canopy samples such as trapped leaf litter, trapped sediment (during summer, stemflow and throughfall (during monsoon from five common riparian tree species (Artocarpus heterophyllus, Cassia fistula, Ficus recemosa, Syzygium caryophyllatum and Xylia xylocarpa in Kaiga forest stand of the Western Ghats of southwest India were evaluated for the occurrence of water-borne hyphomycetes. Partially decomposed trapped leaf litter was incubated in bubble chambers followed by filtration to assess conidial output. Sediments accumulated in tree holes or junction of branches were shaken with sterile leaf disks in distilled water followed by incubation of leaf disks in bubble chamber and filtration to find out colonized fungi. Stemflow and throughfall samples were filtered directly to collect free conidia. From five canopy niches, a total of 29 water-borne hyphomycetes were recovered. The species richness was higher in stemflow and throughfall than trapped leaf litter and sediments (14-16 vs. 6-10 species. Although sediments of Syzygium caryophyllatum were acidic (5.1, the conidial output was higher than other tree species. Stemflow and throughfall of Xylea xylocarpa even though alkaline (8.5-8.7 showed higher species richness (6-12 species as well as conidial load than rest of the tree species. Flagellospora curvula and Triscelophorus acuminatus were common in trapped leaf litter and sediments respectively, while conidia of Anguillospora crassa and A. longissima were frequent in stemflow and throughfall. Diversity of water-borne hyphomycetes was highest in throughfall of Xylea xylocarpa followed by throughfall of Ficus recemosa. Our study reconfirms the occurrence and survival of diverse water-borne hyphomycetes in different niches of riparian tree canopies of the Western Ghats during wet and dry regimes and predicts their possible role in canopy as saprophytes, endophytes and alternation of life cycle between canopy and aquatic habitats.

  20. The "Cotton Problem"

    OpenAIRE

    Baffes, John

    2005-01-01

    Cotton is an important cash crop in many developing economies, supporting the livelihoods of millions of poor households. In some countries it contributes as much as 40 percent of merchandise exports and more than 5 percent of gross domestic product (GDP). The global cotton market, however, has been subject to numerous policy interventions, to the detriment of nonsubsidized producers. This ...

  1. Tensile Properties of Single Jersey and 1×1 Rib Knitted Fabrics Made from 100% Cotton and Cotton/Lycra Yarns

    Directory of Open Access Journals (Sweden)

    Dereje Berihun Sitotaw

    2017-01-01

    Full Text Available The tensile properties such as tensile strength which is measured as breaking force in Newton (N and elongation percent (% at break of single jersey and 1×1 rib (knitted with full needles knitted fabrics made from 100% cotton and cotton/Lycra yarns (5% Lycra yarn content in 95% combed cotton yarn are investigated in this research. The sample fabrics are conditioned for 24 hours at 20±1°C temperature and 65±2% relative humidity before testing. Ten specimens (five for lengthwise and five for widthwise have been taken from each of the two knitted structures, those made from 100% cotton and cotton/Lycra (at 95/5 percent ratio blend yarns. According to the discussion and as found from the investigations, the tensile properties of single jersey and 1×1 rib knitted fabrics made from 100% cotton and cotton/Lycra yarns are significantly different from each other and both of the knitted fabrics have high elongation percent at break with cotton/Lycra blend yarns as compared to 100% cotton yarn. Knitted fabrics made from cotton/Lycra blended yarn have low breaking force and high elongation percent at break relative to knitted fabrics made from 100% cotton yarns.

  2. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-07-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  3. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  4. The water footprint of cotton consumption

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2005-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  5. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls, under elevated CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The growth, development and consumption of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers were examined. Significant decreases in protein, total amino acid, water and nitrogen content and increases in free fatty acid were observed in cotton bolls. Changes in quality of cotton bolls affected the growth, development and food utilization of H. armigera. Significantly longer larval development duration in three successive generations and lower pupal weight of the second and third generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower fecundity was also found in successive three generations of H. armigera fed on cotton bolls grown under elevated CO2. The consumption per larva occurred significant increase in successive three generations and frass per larva were also significantly increased during the second and third generations under elevated CO2. Significantly lower relative growth rate, efficiency of conversion of ingested food and significant higher relative consumption rate in successive three generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower potential female fecundity, larval numbers and population consumption were found in the second and third generations of cotton bollworm fed on cotton bolls grown under elevated CO2. The integrative effect of higher larval mortality rate and lower adult fecundity resulted in significant decreases in potential population consumption in the latter two generations. The results show that elevated CO2 adversely affects cotton bolls quality, which indicates the potential population dynamics and potential population consumption of cotton bollworm will alleviate the harm to the plants in the future rising CO2 atmosphere.

  6. Predicting seed yield in perennial ryegrass using repeated canopy reflectance measurements and PLSR

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Boelt, Birte

    2009-01-01

    with first year seed crops using three sowing rates and three spring nitrogen (N) application rates. PLSR models were developed for each year and showed correlation coefficients of 0.71, 0.76, and 0.92, respectively. Regression coefficients showed in these experiments that the optimum time for canopy...... reflectance measurements was from approximately 600 cumulative growing degree-days (CGDD) to approximately 900 CGDD. This is the period just before and at heading of the seed crop. Furthermore, regression coefficients showed that information about N and water is important. The results support the development......Repeated canopy reflectance measurements together with partial least-squares regression (PLSR) were used to predict seed yield in perennial ryegrass (Lolium perenne L.). The measurements were performed during the spring and summer growing seasons of 2001 to 2003 in three field experiments...

  7. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes

    Science.gov (United States)

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley

    2014-01-01

    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  8. Evaluation of different methods of measuring evapotranspiration as a scheduling guide for drip-irrigated cotton

    International Nuclear Information System (INIS)

    Rawitz, E.; Marani, A.; Mahrer, Y.; Berkovich, D.

    1983-01-01

    Evapotranspiration in a drip-irrigated cotton field was estimated by the energy balance method, net radiation, standard evaporation pan, evaporation pan in the field at canopy height, and by the Penman equation, and the results were compared with the soil-water balance based on neutron meter and tensiometer data from seven observation sites. Evapotranspiration according to the soil-water balance was only about 85% of that determined by the energy balance method, and this is attributed to the fact that irrigation laterals were placed every second row, and the soil-water balance was determined in the irrigated rows. The crop also utilized moisture stored from winter rains in the unirrigated inter-row spaces, which was detected by the energy balance method. Actual evapotranspiration (ET) was 96% of potential ET (Penman), and the latter equalled 98% of net radiation energy. The actual ET equalled 90% of free water evaporation from the pan in the field at canopy height, and 88% of net radiation. The high-frequency drip regime maintained ET very close to potential ET, and under these conditions the field-installed evaporation pan, or the net radiometer, are good indicators of crop water use, with the latter being adaptable to computer-controlled irrigation. (author)

  9. Evaluation of cotton stalks destroyers

    OpenAIRE

    Bianchini, Aloisio; Borges, Pedro H. de M.

    2013-01-01

    The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle...

  10. Cotton : Market setting, trade policies, and issues

    OpenAIRE

    Baffes, John

    2004-01-01

    The value of world cotton production in 2000-01 has been estimated at about $20 billion, down from $35 billion in 1996-97 when cotton prices were 50 percent higher. Although cotton's share in world merchandise trade is insignificant (about 0.12 percent), it is very important to a number of developing countries. Cotton accounts for approximately 40 percent of total merchandise export earnin...

  11. Carbon contributions from roots in cotton based rotations

    Science.gov (United States)

    Tan, D. K. Y.; Hulugalle, N. R.

    2012-04-01

    Most research on the decline in soil organic carbon (SOC) stocks in Australian cotton farming systems has focussed on the inputs from above-ground crop residues, with contribution from roots being less studied. This paper aims to outline the contribution of cotton roots and roots of other crops to soil carbon stocks in furrow-irrigated Vertisols in several cotton (Gossypium hirsutum L.)-based rotations. Data was collected from cotton-based rotation systems: cotton monoculture, cotton-vetch (Vicia benghalensis) Roth.), cotton-wheat (Triticum aestivum L.), cotton-wheat-vetch, cotton-corn, corn-corn, cotton-sorghum (Sorghum bicolor L.) and from BollgardTM II (Bt) and non-Bt cotton. Land management systems were permanent beds, with or without standing stubble, and conventional tillage. Root growth in the surface 0.10 m was measured with the core-break method, and that in the 0.10 to 1.0 m depth with a minirhizotron and I-CAP image capture system. These measurements were used to derive root C added to soil through intra-seasonal root death (Clost), C in roots remaining at the end of season (Croot), and total root C added to soil (Ctotal = Croot + Clost). Ctotal in non-Bt cotton (Sicot 80RRF, 0.9 t C/ha/year) was higher than in Bt cotton (Sicot 80RRF, 0.6 t C/ha/year). Overall, Ctotal from cotton roots ranges between 0.5 to 5 t C/ha/year, with Clost contributing 25-70%. Ctotal was greater with vetch than with wheat and was in the order of vetch in cotton-wheat-vetch (5.1 t C/ha/year) > vetch in cotton-vetch (1.9 t C/ha/year) > wheat in cotton-wheat (1.6 t C/ha/year) = wheat in cotton-wheat-vetch (1.7 t C/ha/year). Intra-seasonal root mortality accounted for 12% of total root carbon in vetch and 36% in wheat. Average corn Ctotal with monoculture was 9.3 t/ha and with cotton-corn 5.0 t/ha. Ctotal averaged between both treatments was, thus, of the order of 7.7 t C/ha/year and average Clost 0.04 t/ha/yr. Sorghum roots contributed less carbon with conventional tillage (8.2 t

  12. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  13. Processing and properties of PCL/cotton linter compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Elieber Barros; Franca, Danyelle Campos; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Rosa, Morsyleide de Freitas; Morais, Joao Paulo Saraiva [Embrapa Tropical Agroindustia, Fortaleza, CE (Brazil); Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiaba (UFPB), Joao Pessoa, PB (Brazil)

    2017-03-15

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton nanolinter compounds. Adding cotton linter to PCL did not change its crystalline character as showed by XRD; however an increase in degree of crystallinity was observed by means of DSC. From mechanical tests in tension was observed an increase in ductility of PCL, and from mechanical tests in flexion an increase in elastic modulus upon addition of cotton linter, whereas impact strength presented lower values for PCL/cotton linter and PCL/cotton nanolinter compounds. SEM images showed that PCL presents plastic fracture and cotton linter has an interlacing fibril structure with high L/D ratio, which are in agreement with matrix/fibril morphology observed for PCL/cotton linter compounds. PCL/cotton linter compounds made in this work cost less than neat PCL matrix and presented improved properties making feasible its commercial use. (author)

  14. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  15. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    Science.gov (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  16. Engineered disease resistance in cotton using RNA-interference to knock down cotton leaf curl kokhran virus-Burewala and cotton leaf curl Multan betasatellite

    Science.gov (United States)

    Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...

  17. Development and validation of SUCROS-Cotton : A potential crop growth simulation model for cotton

    NARCIS (Netherlands)

    Zhang, L.; Werf, van der W.; Cao, W.; Li, B.; Pan, X.; Spiertz, J.H.J.

    2008-01-01

    A model for the development, growth and potential production of cotton (SUCROS-Cotton) was developed. Particular attention was given to the phenological development of the plant and the plasticity of fruit growth in response to temperature, radiation, daylength, variety traits, and management. The

  18. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  19. Cotton trends in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Cotton trends in India. A crop of significant economic importance, valued at over Rs. 15000 Crs. Provides income to 60 million people. Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides ...

  20. Ergonomic Evaluation of Battery Powered Portable Cotton Picker

    Science.gov (United States)

    Dixit, A.; Manes, G. S.; Singh, A.; Prakash, A.; Mahal, J. S.

    2012-09-01

    Ergonomic evaluation of battery powered portable manual cotton picker was carried out on two subjects for three cotton varieties and was compared against manual method of picking. It is a hand operated machine and has a pair of chain with small sharp edged teeth and sprockets and is operated by a light weight 12 V battery. Cotton gets entangled with the chain and is collected and guided into the collection bag. Average heart rate, oxygen consumption, workload, energy expenditure was more in case of cotton picking by manual cotton picker as compared to manual picking for both the subjects for all three cotton variety types. Oxygen consumption varied from 0.81 to 0.97 l/min, workload varied from 36.32 to 46.16 W and energy expenditure varied from 16.83 to 20.33 kJ/min for both the subject in case of machine picking for all three cotton varieties. The maximum discomfort experienced by the subjects during picking cotton by manual cotton picker was in right wrist palm, right forearm, upper and lower back, left shoulder and in lower legs and both feet.

  1. 7 CFR 1427.1203 - Eligible ELS cotton.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Extra Long Staple (ELS) Cotton... must be either: (1) Baled lint, including baled lint classified by USDA's Agricultural Marketing..., under the provisions of this subpart, has been made available; (2) Imported ELS cotton; (3) Raw...

  2. Canopy for VERAView Installation Guide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ronald W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-12

    With the addition of the 3D volume slicer widget, VERAView now relies on Mayavi and its dependents. Enthought's Canopy Python environment provides everything VERAView needs, and pre-built Canopy versions for Windows, Mac OSX, and Linux can be downloaded.

  3. Energy usage for cotton ginning in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, S.A. [MARA Univ. of Technology, Shah Alam (Malaysia). Faculty of Applied Sciences; Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture; Chen, G.; Baillie, C.; Symes, T. [Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study that evaluated the energy consumption of cotton gins used in Australia. The average electricity use is 52.3 kWh per bale. In practicality, the electricity consumption for different gins is correlated linearly with the bale numbers produced. The cost of electricity is therefore important in cotton ginning operations. The power factor in all the gins monitored in this study was greater than 0.85. The study showed that the use of gas dryers was highly influenced by the cotton moisture and regulated drying temperature. In general, electricity and gas consumption comprised 61 and 39 per cent of total energy use respectively. The study showed that 60.38 kg of carbon dioxide are emitted for ginning each bale of cotton. This paper described a newly developed method for monitoring the energy performance in cotton gins. Detailed monitoring and analysis carried out at 2 gin sites revealed that electricity consumption is not influenced much by changes in trash content in the module, degree of moisture and lint quality. However, the cotton variety influences the energy consumption. Cotton handling constituted nearly 50 per cent of the power used in both gins.

  4. [Effects of cotton stalk biochar on microbial community structure and function of continuous cropping cotton rhizosphere soil in Xinjiang, China].

    Science.gov (United States)

    Gu, Mei-ying; Tang, Guang-mu; Liu, Hong-liang; Li, Zhi-qiang; Liu, Xiao-wei; Xu, Wan-li

    2016-01-01

    In this study, field trials were conducted to examine the effects of cotton stalk biochar on microbial population, function and structural diversity of microorganisms in rhizosphere soil of continuous cotton cropping field in Xinjiang by plate count, Biolog and DGGE methods. The experiment was a factorial design with four treatments: 1) normal fertilization with cotton stalk removed (NPK); 2) normal fertilization with cotton stalk powdered and returned to field (NPKS); 3) normal fertilization plus cotton stalk biochar at 22.50 t · hm⁻² (NPKB₁); and 4) normal fertilization plus cotton stalk biochar at 45.00 t · hm⁻² (NPKB₂). The results showed that cotton stalk biochar application obviously increased the numbers of bacteria and actinomycetes in the rhizospheric soil. Compared with NPK treatment, the number of fungi was significantly increased in the NPKB₁treatment, but not in the NPKB₂ treatment. However, the number of fungi was generally lower in the biochar amended (NPKB₁, NPKB₂) than in the cotton stalk applied plots (NPKS). Application of cotton stalk biochar increased values of AWCD, and significantly improved microbial richness index, suggesting that the microbial ability of utilizing carbohydrates, amino acids and carboxylic acids, especially phenolic acids was enhanced. The number of DGGE bands of NPKB₂ treatment was the greatest, with some species of Gemmatimonadetes, Acidobacteria, Proteobacteria and Actinobacteria being enriched. UPGMC Cluster analysis pointed out that bacterial communities in the rhizospheric soil of NPKB₂ treatment were different from those in the NPK, NPKS and NPKB₁treatments, which belonged to the same cluster. These results indicated that application of cotton stalk biochar could significantly increase microbial diversity and change soil bacterial community structure in the cotton rhizosphere soil, thus improving the health of soil ecosystem.

  5. Plant photomorphogenesis and canopy growth

    Science.gov (United States)

    Ballare, Carlos L.; Scopel, Ana L.

    1994-01-01

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2) designing lighting conditions to increase plant productivity in CE used for agronomic purposes (e.g. space farming in CE Life Support Systems). We concentrate on the visible (lambda between 400 and 700 nm) and far-infrared (FR; lambda greater than 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  6. Plant photomorphogenesis and canopy growth

    Energy Technology Data Exchange (ETDEWEB)

    Ballare, C.L.; Scopel, A.L. [Universidad de Buenos Aires (Argentina)

    1994-12-31

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2), designing lighting conditions to increase plant productivity in CE used for agronomic purposes [e.g. space farming in CE Life-Support-Systems]. We concentrate on the visible ({lambda} between 400 and 700 nm) and far red (FR; {lambda} > 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  7. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  8. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses

  9. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  10. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available the treatment with fluorinated or silicon compounds)1-4 and by enhancing the surface roughness with a fractal structure5-8. Cotton, a cellulose-based material, that is greatly hydrophilic, is more benefited when made hydrophobic. Modification of cotton...

  11. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  12. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    Science.gov (United States)

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  13. Cotton fiber quality determined by fruit position, temperature and management

    OpenAIRE

    Wang, X.; Evers, J.B.; Zhang, L.; Mao, L.; Pan, X.; Li, Z.

    2013-01-01

    CottonXL is a tool to explore cotton fiber quality in relation to fruit position, to improve cotton quality by optimizing cotton plant structure, as well as to help farmers understand how the structure of the cotton plant determines crop growth and quality.

  14. Cotton for removal of aquatic oil spills

    International Nuclear Information System (INIS)

    Parker, H.W.; Fedler, C.B.; Heintz, C.E.; Nash, P.T.; Carr, D.L.; Lu, M.

    1992-01-01

    Raw cotton has considerable potential for selective removal of spilled oil and oil products from surface waters, since the natural waxes on the raw cotton make it preferentially oil wet. This potential was recognized in the early seventies at Texas Tech University. More recently other research workers have considered cotton as an adsorbent for spilled oil. The adsorbent market is now dominated by synthetic materials, such as air-blown polypropylene fiber, inorganic clays, and recycled paper and paper products. This paper further examines the potential of cotton in relation to these other adsorbents. Emphasis is placed on the potential for complete biodegradation of oil-soaked cotton adsorbents as a means avoiding the expense for incineration and/or the long-term environmental risk associated with placing the used adsorbents in landfills

  15. The merging of two dynasties--identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Nouman Tahir

    Full Text Available Cotton leaf curl disease (CLCuD is a severe disease of cotton that occurs in Africa and Pakistan/northwestern India. The disease is caused by begomoviruses in association with specific betasatellites that differ between Africa and Asia. During survey of symptomatic cotton in Sindh (southern Pakistan Cotton leaf curl Gezira virus (CLCuGV, the begomovirus associated with CLCuD in Africa, was identified. However, the cognate African betasatellite (Cotton leaf curl Gezira betasatellite was not found. Instead, two Asian betasatellites, the CLCuD-associated Cotton leaf curl Multan betasatellite (CLCuMB and Chilli leaf curl betasatellite (ChLCB were identified. Inoculation of the experimental plant species Nicotiana benthamiana showed that CLCuGV was competent to maintain both CLCuMB and ChLCB. Interestingly, the enations typical of CLCuD were only induced by CLCuGV in the presence of CLCuMB. Also in infections involving both CLCuMB and ChLCB the enations typical of CLCuMB were less evident. This is the first time an African begomovirus has been identified on the Indian sub-continent, highlight the growing threat of begomoviruses and particularly the threat of CLCuD causing viruses to cotton cultivation in the rest of the world.

  16. Microbial contamination of water-soaked cotton gauze and its cause.

    Science.gov (United States)

    Oie, S; Yoshida, H; Kamiya, A

    2001-01-01

    Seven in-use cotton gauze samples and three cotton balls soaked in sterile distilled water in canisters were investigated 7 days after they were prepared in hospital. All samples were contaminated with bacteria including 10(6) to 10(7) colony forming units/ml of Pseudomonas aeruginosa. In vitro viability tests using cotton gauze and cotton balls soaked in sterile distilled water revealed rapid proliferation of P. aeruginosa, Serratia marcescens and Candida albicans. Since the cotton gauze and the cotton balls were soaked in water containing nutrients, such as protein and glucose, these materials may be readily contaminated with bacteria including P. aeruginosa. Thus, when using cotton gauze and cotton balls containing water, microbial contamination should be expected.

  17. Radiation synthesis of silver nanostructures in cotton matrix

    International Nuclear Information System (INIS)

    Chmielewska, Dagmara; Sartowska, Bożena

    2012-01-01

    Cotton is one of the most popular natural fibres, composed mainly of cellulose, which finds a wide range of applications in paper, textile and health care products industry. Researchers have focused their interest on the synthesis of cotton nanocomposites, which enhances its mechanical, thermal and antimicrobial properties by the incorporation of various nanoparticles into the cotton matrix. Silver is one of the most popular antimicrobial agents with a wide spectrum of antibacterial and antifungal activity that results from a complex mechanism of its interactions with the cells of harmful microorganism. In this work, electron beam radiation was applied to synthesise silver nanostructures in cotton fibres. Investigations of the influence of the initial silver salt concentration on the size and distribution of the obtained silver nanostructures were carried out. A detailed characterisation of these nanocomposites with SEM-BSE and EDS methods was performed. TGA and DSC analyses were performed to assess the influence of different size silver nanoparticles and the effect of electron beam irradiation on the thermal properties of cotton fibres. A microbiological investigation to determine the antibacterial activity of Ag-cotton nanocomposites was carried out. - Highlights: ► Ag NPs embedded in cotton matrix were synthesised by electron beam irradiation. ► Concentration of silver salt solution influences on size of silver nanoparticles. ► Silver content as well as irradiation affect thermal properties of cotton fabrics. ► Ag-cotton nanocomposites exhibit antibacterial activity against bacteria and fungi.

  18. (Pleurotus pulmonarius) grown on cotton waste and cassava peel

    African Journals Online (AJOL)

    This work evaluated the yield of Pleurotus pulmonarius on different mixtures of cotton waste and cassava peel. P. pulmonarius demonstrated significantly higher colonization rate on cotton waste substrate (100 g cotton waste) 3 weeks after inoculation of spawn than any other substrate mixtures. Cotton waste had the ...

  19. Acoustical evaluation of carbonized and activated cotton nonwovens.

    Science.gov (United States)

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  20. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  1. Directional reflectance factor distributions of a cotton row crop

    Science.gov (United States)

    Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.

    1984-01-01

    The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.

  2. Bone Canopies in Pediatric Renal Osteodystrophy

    DEFF Research Database (Denmark)

    Pereira, Renata C; Levin Andersen, Thomas; Friedman, Peter A

    2016-01-01

    Pediatric renal osteodystrophy (ROD) is characterized by changes in bone turnover, mineralization, and volume that are brought about by alterations in bone resorption and formation. The resorptive and formative surfaces on the cancellous bone are separated from the marrow cavity by canopies...... and their association with biochemical and bone histomorphometric parameters in 106 pediatric chronic kidney disease (CKD) patients (stage 2-5) across the spectrum of ROD. Canopies in CKD patients often appeared as thickened multilayered canopies, similar to previous reports in patients with primary hyperparathyroidism....... This finding contrasts with the thin appearance reported in healthy individuals with normal kidney function. Furthermore, canopies in pediatric CKD patients showed immunoreactivity to the PTH receptor (PTHR1) as well as to the receptor activator of nuclear factor kappa-B ligand (RANKL). The number of surfaces...

  3. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  4. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  5. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  6. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  7. Gainesville's urban forest canopy cover

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  8. Vulnerabilities and Adapting Irrigated and Rainfed Cotton to Climate Change in the Lower Mississippi Delta Region

    Directory of Open Access Journals (Sweden)

    Saseendran S. Anapalli

    2016-10-01

    about 25% of the cases. As an adaptation measure, planting cotton six weeks earlier than the normal (historical average planting date, in general, was found to boost irrigated cotton yields and compensate for the lost yields in all the CC scenarios. This early planting strategy only partially compensated for the rainfed cotton yield losses under all the CC scenarios, however, supplemental irrigations up to 10 cm compensated for all the yield losses.

  9. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA genes in cotton. The transformed cotton varieties CCRI 30 and NewCott 33B expressing the Bt cryIA gene, and cotton line TFD expressing the tfdA gene were crossed with ...

  10. Thwarting one of cotton's nemeses

    International Nuclear Information System (INIS)

    Senft, D.

    1991-01-01

    There's not much good to be said for the pink bollworm, cotton's most destructive pest, except that it is being controlled to cut crop damage. Scientists have developed strategies, such as increasing native populations of predatory insects and pest-resistant cotton varieties. Thanks to research, growers today can also use cultural practices such as early plowdown of harvested cotton to break up stalks and bury overwintering pink bollworms. And they can disrupt normal mating by releasing sterile insects and using copies of natural compounds, called pheromones, that the pink bollworm uses to attract mates. Such strategies, together with judicious use of insecticides, put together in various combinations, form what is called an integrated pest management system

  11. Canopy wake measurements using multiple scanning wind LiDARs

    Science.gov (United States)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  12. 75 FR 50847 - Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders

    Science.gov (United States)

    2010-08-18

    ... Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders AGENCY... Assistance Program (EAAP) and clarifying the definition of ``active shipping order.'' DATES: Effective Date... address that matter this rule amends in the payment calculation for semi-processed and reginned motes in 7...

  13. THE ELASTICITY OF EXPORT DEMAND FOR US COTTON

    OpenAIRE

    Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala

    2004-01-01

    There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.

  14. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan... intentions to receive a loan deficiency payment on the identified commodity or (ii) A completed request for a... cotton based on a locked-in adjusted world price, provide identifying numbers for modules or other...

  15. Fourier transform infrared imaging of Cotton trash mixtures

    Science.gov (United States)

    There is much interest in the identification of trash types comingled with cotton lint. A good understanding of the specific trash types present can lead to the fabrication of new equipment which can identify and sort cotton trash found with cotton fiber. Conventional methods, including the High Vo...

  16. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  17. 3rd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  18. 2nd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  19. 1st stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  20. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  1. Canopy Chemistry (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Canopy characteristics: leaf chemistry, specific leaf area, LAI, PAR, IPAR, NPP, standing biomass--see also: Meteorology (OTTER) for associated...

  2. Effects of Different Densities of Cotton (Gossypium Hirsutum and Common Lambsquarter (Chenopodium Album on Some Cotton Growth Characteristics in Birjand Condition

    Directory of Open Access Journals (Sweden)

    M. Velayati

    2011-01-01

    Full Text Available Abstract Weeds are problematic plants in agroecosystems as a competitor for crops. In order to evaluate effects of cotton (Gossypium hirsutum and common lambsquarter (Chenopodium album densities on some crop growth indices, a study was conducted during 2006 in Experimental Station of Faculty of Agriculture, The University of Birjand as factorial experiment based on complete randomized block design with four replications. Three densities of cotton (6, 9 and 12 Pl.m-2 and four weed densities (0, 6, 9 and 12 Pl.m-2 were used to provide different weed interference levels. Indeed, three plots in each replication were intended to cultivation of lambsquarter alone at 6, 9 or 12 Pl.m-2. Results showed that crop growth rate (CGR of cotton was influenced by weed density, and its relative growth rate (RGR and net assimilation rate (NAR indicated a declining trend as weed density increased. Dry matter accumulation of cotton also was affected negatively by weed densities, as interference of lambsquarter at 6, 9 and 12 Pl.m-2 resulted to 35, 42 and 48 percent dry matter reduction, respectively, than weed-free treatment. Increasing of cotton density could partly compensate for negative impact of weed attendance on cotton growth. Thus, it seems higher plant densities can be used as a managing tool against weeds in cotton fields to avoid reduction of yield. Keywords: Cotton, Density, Weed, competition, Growth analysis

  3. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Science.gov (United States)

    2010-04-01

    ... used in dry food packaging. 182.70 Section 182.70 Food and Drugs FOOD AND DRUG ADMINISTRATION... used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry food packaging that are generally recognized as safe for their intended use, within the meaning of...

  4. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  5. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    Jabran, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  6. Smartphone based hemispherical photography for canopy structure measurement

    Science.gov (United States)

    Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao

    2018-01-01

    The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.

  7. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  8. 7 CFR 28.107 - Original cotton standards and reserve sets.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Original cotton standards and reserve sets. 28.107... Standards Act Practical Forms of Cotton Standards § 28.107 Original cotton standards and reserve sets. (a) The containers of the original Universal Standards and other official cotton standards of the United...

  9. Cotton Production in Mali: Subsidies or Sustainable Development?

    Science.gov (United States)

    Moore, Lindsey

    2007-01-01

    Current trade rules concerning cotton subsidies are intricately linked with poverty and hunger in Mali. Over half of Mali's economy and over 30 million people depend directly on cotton. It is the main cash crop and the most important source of export revenue. Cotton also plays a key role in development policies and in the fight against poverty by…

  10. Genomic studies for drought tolerance in cotton (abstract)

    International Nuclear Information System (INIS)

    Mahboob-ur-Rehman; Ullah, I.; Asir, M.; Zafar, Y.; Malik, K.A.

    2005-01-01

    The cotton germplasm developed in Pakistan has not been screened comprehensively for their response to water stress, which is a pre-requisite in exploring different metabolic pathways, development of genome maps, isolation of genes etc. The objectives of the study were to identify drought tolerant/sensitive cotton genotypes, development of genetic linkage maps, and to identify the most robust DNA markers leading towards marker-assisted selection (MAS). A field trial was conducted to investigate variation in gas exchange parameters and productivity traits in 32 cotton cultivars/promising strains under water stress environment and to ascertain association among these physiological and productivity traits. Photosynthetic rate (P), stomatal conductance (gs) and transpiration rate (E) were significantly reduced under water stress. Substantial genotypic variation for gas exchange parameters especially photosynthetic rate were observed with a significant association with productivity traits under water-limited environment elucidating its use as an indirect selection criterion for seed cotton yield. Moreover, the genotypes FH-901 and CIM-1100 were found the most sensitive and tolerant cultivars, respectively. Four hundred eighty random primers were surveyed on different cotton genotypes involved in population development programs. Out of these, 32 polymorphic primers were identified which are being converted into sequence characterized amplified regions (SCARs). Similarly, 25 out of 150 microstatellite loci (SSRs) were polymorphic among the cotton genotypes. Amplified fragment length polymorphism (AFLP) fingerprinting technique is being exploited to search for additional polymorphisms. The study will have impact on cotton breeding programme by reducing span to develop drought tolerant cotton varieties. (author)

  11. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  12. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  13. Modeling percent tree canopy cover: a pilot study

    Science.gov (United States)

    John W. Coulston; Gretchen G. Moisen; Barry T. Wilson; Mark V. Finco; Warren B. Cohen; C. Kenneth Brewer

    2012-01-01

    Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006,...

  14. Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Christiansen, Jesper Riis

    2015-01-01

    Forests contribute to improve water quality, affect drinking water resources, and therefore influence water supply on a regional level. The forest canopy structure affects the retention of precipitation (Pr) in the canopy and hence the amount of water transferred to the forest floor termed canopy...... impacts water resources on a large scale in regions where forests play a major role in water resource management....

  15. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  16. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Directory of Open Access Journals (Sweden)

    Schrago Carlos EG

    2011-08-01

    Full Text Available Abstract Background In response to infection, viral genomes are processed by Dicer-like (DCL ribonuclease proteins into viral small RNAs (vsRNAs of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV, a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  17. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

    Science.gov (United States)

    Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S

    2011-08-24

    In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  18. Cotton contamination

    CSIR Research Space (South Africa)

    Van der Sluijs, MHJ

    2018-05-01

    Full Text Available This review focusses on physical forms of contaminant including the presence, prevention and/or removal of foreign bodies, stickiness and seed-coat fragments rather than the type and quantity of chemical residues that might be present in cotton...

  19. Minimization of operational impacts on spectrophotometer color measurements for cotton

    Science.gov (United States)

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  20. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  1. The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae as a new menace to cotton in Egypt and its chemical control

    Directory of Open Access Journals (Sweden)

    El-Zahi El-Zahi Saber

    2016-04-01

    Full Text Available The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae is a polyphagous sap sucking insect with a wide geographical and host range causing severe losses in economically important crops. This study represents the first record of P. solenopsis as a new insect attacking cotton plants (Gossypium barbadense var. Giza 86 in Kafr El-Sheikh governorate, Egypt. The insect was noticed on cotton plants for the first time during its growing season of 2014. The mealybug specimens were collected from infested cotton plants and identified as P. solenopsis. In an attempt to control this pest, eight toxic materials viz., imidacloprid, thiamethoxam, flonicamid, emamectin-benzoate, chlorpyrifos, methomyl, deltamethrin and mineral oil (KZ-oil, belonging to different chemical groups, were tested for their influence against P. solenopsis on cotton under field conditions. Methomyl, imidacloprid, thiamethoxam and chlorpyrifos showed the highest efficacy against P. solenopsis recording 92.3 to 80.4% reduction of the insect population. Flonicamid, emamectin-benzoate and KZ-oil failed to exhibit sufficient P. solenopsis control.

  2. Genetic diversity in upland cotton for cotton leaf curl virus disease, earliness and fiber quality

    International Nuclear Information System (INIS)

    Saeed, F.; Farooq, J.; Mahmood, A.; Hussain, T.

    2014-01-01

    In Pakistan during last two decades the major factor limiting cotton production is cotton leaf curl virus disease (CLCuD). For estimation of genetic diversity regarding CLCuD tolerance, fiber quality and some yield contributing traits, 101 cotton genotypes imported from USA were evaluated. Different statistical procedures like cluster, principle components (PC) and correlation analysis were employed to identify the suitable genotypes that can be further exploited in breeding programme. Significant associations were found between yield contributing trait, boll weight and fiber related trait, staple length. Earliness related traits, like days taken to 1 square and days taken to 1 flower had positive correlation with each other and both these traits also showed their positive association with ginning out turn. The negative significant correlation of CLCuD was obtained with monopodial branches, sympodial branches and plant height. Principal component (PC) analysis showed first five PCs having eigen value >1 explaining 67.8% of the total variation with days to st 1 square and flowering along with plant height and sympodia plant which were being the most important characters in PC1. Cluster analysis classified 101 accessions into five divergent groups. The genotypes in st cluster 1 only showed reasonable values for days to 1 square and flower, sympodia per plant, ginning out turn, staple length and fiber fineness and the genotypes in cluster 5 showed promising values for the traits like cotton leaf curl virus, ginning out turn and fiber fineness. The genotypes in cluster 1 and 5 may be combined to obtain desirable traits related to earliness and better disease tolerance. Scatter plot and tree diagrams demonstrated sufficient diversity among the cotton accessions for various traits and some extent of association between various clusters. It is concluded that diversity among the genotypes could be utilized for the development of CLCuD resistant lines with increased seed

  3. Response of cotton genotypes to boron under-b-adequate conditions

    International Nuclear Information System (INIS)

    Shah, J. A.; Sial, M. A.; Hassan, Z. U.; Rajpar, I.

    2015-01-01

    Balanced boron (B) application is well-known to enhance the cotton production; however, the narrow range between B-deficiency and toxicity levels makes it difficult to manage. Cotton genotypes extensively differ in their response to B requirements. The adequate dose of B for one genotype may be insufficient or even toxic to other genotype. The effects of boron (B) on seed cotton yield and its various yield associated traits were studied on 10 cotton genotypes of Pakistan. The pot studies were undertaken to categorize cotton genotypes using B-deficient (control) and B-adequate (2.0 kg B ha-1) levels arranged in CRD with four repeats. The results indicated that the seed cotton yield, yield attributes and B-uptake of genotypes were comparatively decreased in B-deficient stressed treatment. Genotype NIA-Ufaq exhibited wide range of adaptation and ranked as efficient-responsive, as it produced higher seed cotton yield under both B-regimes. SAU-2 and CIM-506 were highly-efficient and remaining all genotypes were medium-efficient. Genotype Sindh-1 produced low seed cotton yield under B deficient condition and ranked as low-efficient. B-efficient cotton genotypes can be grown in B deficient soils without B application. (author)

  4. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton

    Directory of Open Access Journals (Sweden)

    Lianguang Shang

    2016-10-01

    Full Text Available Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL mapping at multiple developmental stages using two recombinant inbred lines (RILs and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton.

  5. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  6. 78 FR 68983 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-11-18

    ...-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing... regulations to allow for the addition of an optional cotton futures classification procedure--identified and... response to requests from the U.S. cotton industry and ICE, AMS will offer a futures classification option...

  7. MicroRNA expression profiling during upland cotton gland forming ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... 2Key Laboratory of Cotton Genetic Improvement, Cotton Research Institute of the Chinese Academy of Agricultural. Sciences, Ministry of ... terpenoid aldehyde biosynthesis pathway, genetic engineering and molecular breeding of cotton. ... toxic to non-ruminant animals and humans, which means that large ...

  8. Evaluating potassium-use-efficiency of five cotton genotypes of pakistan

    International Nuclear Information System (INIS)

    Hassan, Z.U.; Kubar, K.A.

    2014-01-01

    Potassium (K) deficiency in Pakistani soils has been recently reported as the major limiting factor affecting sustainable cotton production. The present study was conducted to envisage how K nutrition affect the growth, biomass production, yield and K-use-efficiency of five cotton genotypes, NIBGE-3701, NIBGE-1524 (Bt-transgenic), Sadori, Sindh-1 and SAU-2 (non-Bt conventional), commonly grown in Pakistan. All five genotypes were raised at deficient and adequate K levels, i.e. 0 and 60 kg K/sub 2/O ha-1, respectively. The experiment was performed in plastic pots following a completely randomized factorial design with three repeats. Adequate K nutrition significantly increased various plant growth traits and yield of all cotton genotypes under study, viz. number of sympodia (21%), number of leaves (34%), leaf dry biomass (30%), shoot dry biomass (31%), number of bolls (50%) and yield of seed cotton (92%). Substantial variations were observed among cotton genotypes for their K-use-efficiency and K-response-efficiency. Sadori and SAU-2 were screened as most K-use-efficient cotton genotypes, while Sindh-1 and SAU-2 were ranked as the most K-responsive cotton genotypes. Interestingly, Sadori did not respond to K nutrition. Moreover, Bt cotton genotypes accumulated more K as compared to non-Bt genotypes. The cotton genotype SAU-2 was identified as efficient-response genotype for better adaptation for both low- and high-K-input sustainable cotton agriculture systems. (author)

  9. Producing Organic Cotton: A Toolkit - Crop Guide, Projekt guide, Extension tools

    OpenAIRE

    Eyhorn, Frank

    2005-01-01

    The CD compiles the following extension tools on organic cotton: Organic Cotton Crop Guide, Organic Cotton Training Manual, Soil Fertility Training Manual, Organic Cotton Project Guide, Record keeping tools, Video "Organic agriculture in the Nimar region", Photos for illustration.

  10. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  11. West Coast Canopy-Forming Kelp, 1989-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data include the general extents of canopy-forming kelp surveys from 1989 to 2014 and a compilation of existing data sets delineating canopy-forming kelp beds...

  12. Deploying a Proximal Sensing Cart to Identify Drought-Adaptive Traits in Upland Cotton for High-Throughput Phenotyping

    Directory of Open Access Journals (Sweden)

    Alison L. Thompson

    2018-04-01

    Full Text Available Field-based high-throughput phenotyping is an emerging approach to quantify difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts represent an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the field. A proximal sensing cart and specifically a deployment protocol, were developed to phenotype traits related to drought tolerance in the field. The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-spectral reflectance sensor, weather station, and RGB cameras. The cart deployment protocol was evaluated on 35 upland cotton (Gossypium hirsutum L. entries grown in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-watered and water-limited conditions using a (0,1 alpha lattice design and evaluated in June and July. Total collection time of the 0.87 hectare field averaged 2 h and 27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB cameras, respectively. Canopy temperature, crop water stress index (CWSI, canopy height, normalized difference vegetative index (NDVI, and leaf area index (LAI differed among entries and showed an interaction with the water regime (p < 0.05. Broad-sense heritability (H2 estimates ranged from 0.097 to 0.574 across all phenotypes and collections. Canopy cover estimated from RGB images increased with counts of established plants (r = 0.747, p = 0.033. Based on the cart-derived phenotypes, three entries were found to have improved drought-adaptive traits compared to a local adapted cultivar. These results indicate that the deployment protocol developed for the cart and sensor package can measure multiple traits rapidly and accurately to characterize complex plant traits under drought conditions.

  13. Milkweed, stink bugs, and Georgia cotton

    Science.gov (United States)

    In peanut-cotton farmscapes in Georgia, stink bugs, i.e., Nezara viridula (L.)(Say) and Chinavia hilaris (Say), develop in peanut and then disperse at the crop-to-crop interface to feed on fruit in cotton. The main objective of this study was to examine the influence of a habitat of tropical milkwe...

  14. Thermal IR exitance model of a plant canopy

    Science.gov (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.

    1981-01-01

    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  15. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2013-12-23

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  17. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; von Meerwall, Ernst D.; Koerner, Hilmar; Vaia, Richard A.; Fernandes, Nikhil J.; Giannelis, Emmanuel P.

    2013-01-01

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  18. Directional Canopy Emissivity Estimation Based on Spectral Invariants

    Science.gov (United States)

    Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.

    2017-12-01

    Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.

  19. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  20. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Additional samples of cotton; drawing. 27.25 Section... Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore prescribed, separate samples, if desired, may be drawn and furnished to the owner of the cotton. ...

  1. DeepCotton: in-field cotton segmentation using deep fully convolutional network

    Science.gov (United States)

    Li, Yanan; Cao, Zhiguo; Xiao, Yang; Cremers, Armin B.

    2017-09-01

    Automatic ground-based in-field cotton (IFC) segmentation is a challenging task in precision agriculture, which has not been well addressed. Nearly all the existing methods rely on hand-crafted features. Their limited discriminative power results in unsatisfactory performance. To address this, a coarse-to-fine cotton segmentation method termed "DeepCotton" is proposed. It contains two modules, fully convolutional network (FCN) stream and interference region removal stream. First, FCN is employed to predict initially coarse map in an end-to-end manner. The convolutional networks involved in FCN guarantee powerful feature description capability, simultaneously, the regression analysis ability of neural network assures segmentation accuracy. To our knowledge, we are the first to introduce deep learning to IFC segmentation. Second, our proposed "UP" algorithm composed of unary brightness transformation and pairwise region comparison is used for obtaining interference map, which is executed to refine the coarse map. The experiments on constructed IFC dataset demonstrate that our method outperforms other state-of-the-art approaches, either in different common scenarios or single/multiple plants. More remarkable, the "UP" algorithm greatly improves the property of the coarse result, with the average amplifications of 2.6%, 2.4% on accuracy and 8.1%, 5.5% on intersection over union for common scenarios and multiple plants, separately.

  2. Problems and achievements of cotton (Gossypium Hirsutum L. weeds control

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2017-09-01

    Full Text Available Abstract. Weed control in the cultivation of cotton is critical to the yield and quality of production. The influence of economically important weeds was studied. Chemical control is the most effective method of weed control in cotton but much of the information on it relates to primary weed infestation. Problems with primary weed infestation in cotton have been solved to a significant extent. The question of secondary weed infestation with annual and perennial graminaceous weeds during the period of cotton vegetation is also determined largely by the use of antigraminaceous herbicides. The data related to herbicides to effectively control secondary germinated broadleaf weeds in conventional technology for cotton growing are quite scarce, even globally. We are still seeking effective herbicides for control of these weeds in cotton crops. Studies on their influence on the sowing characteristics of cotton seed and the quality of cotton fiber are still insufficient. In the scientific literature there is not enough information on these questions. The combinations of herbicides, as well as their tank mixtures with fertilizers or plant growth regulators are more efficient than autonomous application. Often during their combined application higher synergistic effect on yield is produced. There is information about cotton cultivars resistant to glyphosate. These cultivars are GMO and they are banned within the European Union, including Bulgaria.

  3. Fourier-transform imaging of cotton and botanical and field trash mixtures

    Science.gov (United States)

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  4. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427.174 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION... Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31 following...

  5. The preparation and antibacterial effects of dopa-cotton/AgNPs

    International Nuclear Information System (INIS)

    Xu Hong; Shi Xue; Ma Hui; Lv Yihang; Zhang Linping; Mao Zhiping

    2011-01-01

    Silver nanoparticles (AgNPs) have been known to have powerful antibacterial activity. In this paper, in situ generation of AgNPs on the surface of dopamine modified cotton fabrics (dopa-cotton/AgNPs) in aqueous solution under room temperature is presented. X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to analyze the surface chemical composition and the morphology of the modified cotton fabrics, respectively. The results indicated that the surface of cotton fabrics was successfully coated with polydopamine and AgNPs. The cotton fabrics with AgNPs showed durable antibacterial activity.

  6. Measuring canopy structure with an airborne laser altimeter

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Evans, D.L.; Jacobs, D.; Everitt, J.H.; Weltz, M.A.

    1993-01-01

    Quantification of vegetation patterns and properties is needed to determine their role on the landscape and to develop management plans to conserve our natural resources. Quantifying vegetation patterns from the ground, or by using aerial photography or satellite imagery is difficult, time consuming, and often expensive. Digital data from an airborne laser altimeter offer an alternative method to quantify selected vegetation properties and patterns of forest and range vegetation. Airborne laser data found canopy heights varied from 2 to 6 m within even-aged pine forests. Maximum canopy heights measured with the laser altimeter were significantly correlated to measurements made with ground-based methods. Canopy shape could be used to distinguish deciduous and evergreen trees. In rangeland areas, vegetation heights, spatial patterns, and canopy cover measured with the laser altimeter were significantly related with field measurements. These studies demonstrate the potential of airborne laser data to measure canopy structure and properties for large areas quickly and quantitatively

  7. The roles of dimensionality, canopies and complexity in ecosystem monitoring.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Canopies are common among autotrophs, increasing their access to light and thereby increasing competitive abilities. If viewed from above canopies may conceal objects beneath them creating a 'canopy effect'. Due to complexities in collecting 3-dimensional data, most ecosystem monitoring programmes reduce dimensionality when sampling, resorting to planar views. The resultant 'canopy effects' may bias data interpretation, particularly following disturbances. Canopy effects are especially relevant on coral reefs where coral cover is often used to evaluate and communicate ecosystem health. We show that canopies hide benthic components including massive corals and algal turfs, and as planar views are almost ubiquitously used to monitor disturbances, the loss of vulnerable canopy-forming corals may bias findings by presenting pre-existing benthic components as an altered system. Our reliance on planar views in monitoring ecosystems, especially coral cover on reefs, needs to be reassessed if we are to better understand the ecological consequences of ever more frequent disturbances.

  8. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  9. Marketing policies and economic interests in the cotton sector of Kenya

    NARCIS (Netherlands)

    Dijkstra, T.

    1990-01-01

    This report, which is based on field research carried out in 1988, examines the marketing arrangements for raw cotton, cotton lint and cotton seed in Kenya, as well as the relationships and conflicts between the actors involved. The report starts with the history of cotton production and marketing

  10. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  11. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2011-06-03

    ... ``Any AUP cotton'' and replacing it with the phrase ``Mature AUP cotton'' to clarify the AUP cotton must be mature in order to calculate a conversion factor between AUP cotton and ELS cotton. List of... dividing Price A by 85 percent of Price B. * * * * * (f) Mature AUP cotton harvested or appraised from...

  12. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  13. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. (ed.)

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  14. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. [ed.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  15. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction

    Directory of Open Access Journals (Sweden)

    Alexandra J. Burgess

    2017-05-01

    Full Text Available The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties—four parental founders of a multi-parent advanced generation intercross (MAGIC population plus a high yielding Philippine variety (IR64—was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.

  16. Cotton in Benin: governance and pest management

    NARCIS (Netherlands)

    Togbe, C.E.

    2013-01-01

    Key words: cotton, synthetic pesticides, neem oil (Azadirachta indica), Beauveria bassiana,

    Bacillus thuringiensis, field experiment, farmers’ participation

    Pests are one of the main factors limiting cotton production worldwide. Most of the pest

    control

  17. Orientation of cotton growers of multan district about heal hazards and pesticide use

    International Nuclear Information System (INIS)

    Haq, Q.U.; Hussain, R.; Ali, T.; Ahmad, M.

    2008-01-01

    Cotton growing farmers and cotton pickers are the twin pillars of cotton growing community. Cotton growing farmers (male) are involved in monitoring of quality and quantity of cotton crops by handsome usage of pesticides for better marketing of cotton crops. Whereas, cotton pickers (female) are involved in picking of cotton mainly. To assess their knowledge and source of knowledge about pesticides related health problems, the study was designed and conducted in 20 villages of district Multan selected by multistage random sampling technique. From the selected 20 villages, from the list bearing the villages, mouzas and union councils of district Multan, 220 cotton growers and 150 cotton pickers were selected by simple random sampling technique and interviewed through a reliable and validated interview schedule. The data collected were processed through Statistical Package for Social Sciences (SPSS). The results showed that 75% of cotton growing farmers were having orientation about side effects of pesticides whereas, almost 8% of cotton growers were having no knowledge about side effects of pesticides. (author)

  18. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  19. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  20. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  1. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  2. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    Assessment of Bollgard II cotton pollen mediated transgenes flow to conventional cotton in the farming conditions of Burkina ... This has led to experiment on Bt cotton from 2003 to 2007. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  3. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  4. Removing forest canopy cover restores a reptile assemblage.

    Science.gov (United States)

    Pike, David A; Webb, Jonathan K; Shine, Richard

    2011-01-01

    Humans are rapidly altering natural systems, leading to changes in the distribution and abundance of species. However, so many changes are occurring simultaneously (e.g., climate change, habitat fragmentation) that it is difficult to determine the cause of population fluctuations from correlational studies. We used a manipulative field experiment to determine whether forest canopy cover directly influences reptile assemblages on rock outcrops in southeastern Australia. Our experimental design consisted of three types of rock outcrops: (1) shady sites in which overgrown vegetation was manually removed (n = 25); (2) overgrown controls (n = 30); and (3) sun-exposed controls (n = 20). Following canopy removal, we monitored reptile responses over 30 months. Canopy removal increased reptile species richness, the proportion of shelter sites used by reptiles, and relative abundances of five species that prefer sun-exposed habitats. Our manipulation also decreased the abundances of two shade-tolerant species. Canopy cover thus directly influences this reptile assemblage, with the effects of canopy removal being dependent on each species' habitat preferences (i.e., selection or avoidance of sun-exposed habitat). Our study suggests that increases in canopy cover can cause declines of open-habitat specialists, as previously suggested by correlative studies from a wide range of taxa. Given that reptile colonization of manipulated outcrops occurred rapidly, artificially opening the canopy in ecologically informed ways could help to conserve imperiled species with patchy distributions and low vagility that are threatened by vegetation overgrowth. One such species is Australia's most endangered snake, the broadheaded snake (Hoplocephalus bungaroides).

  5. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    Science.gov (United States)

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  6. Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

    Science.gov (United States)

    Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.

    2018-04-01

    Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.

  7. Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide.

    Science.gov (United States)

    Spíndola, A F; Silva-Torres, C S A; Rodrigues, A R S; Torres, J B

    2013-08-01

    The ladybird beetle, Eriopis connexa (Germar) (Coleoptera: Coccinellidae), is one of the commonest predators of aphids (Hemiptera: Aphididae) in the cotton agroecosystem and in many other row and fruit crops in Brazil, and has been introduced into other countries such as the USA for purposes of aphid control. In addition, the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the most serious cotton pest where it occurs, including Brazil. Controlling boll weevils and other pests such as cotton defoliators still tends to involve the intense application of insecticides to secure cotton production. The pyrethroid insecticide lambda-cyhalothrin (LCT) is commonly used, but this compound is not effective against aphids; hence, a desirable strategy would be to maintain E. connexa populations in cotton fields where LCT is applied. Using populations of E. connexa resistant (Res) and susceptible (Sus) to LCT, we compared behavioural responses on treated cotton plants and under confinement on partially and fully treated surfaces, and assessed the insects' survival on treated plants compared with that of the boll weevil. The E. connexa resistant population caged on treated plants with 15 and 75 g a.i. ha-1 exhibited ≫82% survival for both insecticide concentrations compared with ≪3% and ≪17% survival for susceptible E. connexa populations and boll weevils, respectively. The response of E. connexa Res and Sus populations when released, either on the soil or on the plant canopy, indicated avoidance towards treated plants, as measured by elapsed time to assess the plant. When compared with susceptible individuals, resistant ones took longer time to suffer insecticide knockdown, had a higher recovery rate after suffering knockdown, and spent more time in the plant canopy. Based on behavioural parameters evaluated in treated arenas, no ladybird beetles exhibited repellency. However, irritability was evident, with the susceptible population exhibiting

  8. CATEGORIZATION OF EXTRANEOUS MATTER IN COTTON USING MACHINE VISION SYSTEMS

    Science.gov (United States)

    The Cotton Trash Identification System (CTIS) was developed at the Southwestern Cotton Ginning Research Laboratory to identify and categorize extraneous matter in cotton. The CTIS bark/grass categorization was evaluated with USDA-Agricultural Marketing Service (AMS) extraneous matter calls assigned ...

  9. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay.

    Science.gov (United States)

    Kozaki, Tomoaki; Lee, Soomin; Nishimura, Takayuki; Katsuura, Tetsuo; Yasukouchi, Akira

    2011-01-10

    Although various acceptable and easy-to-use devices have been used for saliva collection, cotton swabs are among the most common ones. Previous studies reported that cotton swabs yield a lower level of melatonin detection. However, this statistical method is not adequate for detecting an agreement between cotton saliva collection and passive saliva collection, and a test for bias is needed. Furthermore, the effects of cotton swabs have not been examined at lower melatonin level, a level at which melatonin is used for assessment of circadian rhythms, namely dim light melatonin onset (DLMO). In the present study, we estimated the effect of cotton swabs on the results of salivary melatonin assay using the Bland-Altman plot at lower level. Nine healthy males were recruited and each provided four saliva samples on a single day to yield a total of 36 samples. Saliva samples were directly collected in plastic tubes using plastic straws, and subsequently pipetted onto cotton swabs (cotton saliva collection) and into clear sterile tubes (passive saliva collection). The melatonin levels were analyzed in duplicate using commercially available ELISA kits. The mean melatonin concentration in cotton saliva collection samples was significantly lower than that in passive saliva collection samples at higher melatonin level (>6 pg/mL). The Bland-Altman plot indicated that cotton swabs causes relative and proportional biases in the assay results. For lower melatonin level (<6 pg/mL), although the BA plots didn't show proportional and relative biases, there was no significant correlation between passive and cotton saliva collection samples. Our findings indicate an interference effect of cotton swabs on the assay result of salivary melatonin at lower melatonin level. Cotton-based collection devices might, thus, not be suitable for assessment of DLMO.

  10. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  11. Off-site movement of endosulfan from irrigated cotton in New South Wales.

    Science.gov (United States)

    Kennedy, I R; Sánchez-Bayo, F; Kimber, S W; Hugo, L; Ahmad, N

    2001-01-01

    The fate and transport of endosulfan (6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) applied to cotton (Gossypium hirsutum L.) fields were studied throughout three consecutive years on two selected locations in New South Wales (Australia). Rates of dissipation from foliage and soil, volatilization from the field, and transport of residues in irrigation and/or storm runoff waters were measured in order to estimate a total field balance. Dissipation of endosulfan from both foliage and soil is best explained by a two-phase process rather than by a first-order decay. Half-lives of total endosulfan toxic residues (alpha- and beta-endosulfan and the sulfate product) in the first phase were 1.6 d in foliage and 7.1 d in soil, and could be explained by the rapid volatilization of the parent isomers in the first 5 d (up to 70% of endosulfan volatilizes). In the second phase, half-lives were 9.5 d in foliage and 82 d in soil, mostly due to the persistence of the sulfate product. Concentration of endosulfan residues in runoff water varied from 45 to 2.5 microg L(-1) depending on the residue levels present on field soil at the time of the irrigation or storm events. These in turn are related to the total amounts applied, the cotton canopy cover at application, and the time since last spraying. Most of the endosulfan in runoff was found in the water phase (80%), suggesting it was bound to colloidal matter. Total endosulfan residues in runoff for a whole season accounted for no more than 2% of the pesticide applied on-field.

  12. Plant canopy characteristics effect on spray deposition

    Science.gov (United States)

    While it is common for applicators to standardize their application parameters to minimize changes in settings during a season, this practice does not necessarily provide the best delivery when targeting different types of plant canopies and different zones within the canopy. The objective of this w...

  13. Within-canopy sesquiterpene ozonolysis in Amazonia

    Science.gov (United States)

    Jardine, K.; YañEz Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L. V.; Ishida, F. Y.; Karl, T.; Kesselmeier, J.; Saleska, S.; Huxman, T.

    2011-10-01

    Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m-2 s-1 due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.

  14. Field Comparison of Fertigation Vs. Surface Irrigation of Cotton Crop

    International Nuclear Information System (INIS)

    Janat, M.

    2004-01-01

    Based on previous results of the same nature, one nitrogen rate 180 kg N ha -1 was tested under two-irrigation methods, surface irrigation and drip fertigation of cotton (Cultivar Rakka-5) for two consecutive seasons 2000 and 2001. The study aimed to answer various questions regarding the applicability of drip fertigation at farm level and the effect of its employment on yield and growth parameters, compared to surface irrigation. Nitrogen fertilizer was either injected in eight equally split applications for the drip fertigated cotton or divided in four unequally split applications as recommend by Ministry of Agriculture (20% before planting, 40% at thinning, 20% after 60 days from planting and 20% after 75 days after planting). 15 N labeled urea was used to evaluate nitrogen fertilizer efficiency. The experimental design was randomized block design with seven replicates. Results showed that drip fertigation led to water saving exceeding 50% in some cases. Field germination percentage was highly increased under drip- fertigated cotton relative to surface-irrigated cotton. Dry matter and seed cotton yield of surface-irrigated cotton was slightly higher than that of drip-fertigated cotton in the first growing season. The reason for that was due to the hot spill that occurred in the region, which exposed the cotton crop to water stress and consequently pushed the cotton into early flowering. Lint properties were not affected by the introduction of drip-fertigation. Actually some properties were improved relative to the standard properties identified by the cotton Bureau.Nitrogen uptake was slightly increased under drip fertigation whereas nitrogen use efficiencies were not constant along the growing seasons. The reason for that could be lateral leaching and root proliferation into the labeled and unlabeled subplots. Field water use efficiency was highly increased for both growing seasons under drip fertigation practice. The rate of field water use efficiencies

  15. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  16. Passive and active protection of cotton textiles

    NARCIS (Netherlands)

    Bochove, C. van

    1967-01-01

    In rotproofing of cotton a distinction is made between passive and active protection. In passive protection, the structure of the cotton fibre is modified in such a way that the fibre can longer be attacked. This modification of structure can be effected on different levels: microscopical,

  17. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  18. Satellite-based monitoring of cotton evapotranspiration

    Science.gov (United States)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  19. Integrated nutrients management for 'desi' cotton

    International Nuclear Information System (INIS)

    Qazi, M.A.; Akram, M.; Ahmad, N.; Khattak, M.A.

    2007-01-01

    Intensive cropping with no return of crop residues and other organic inputs result in the loss of soil organic matter (SOM) and nutrient supply in (Desi) cotton-wheat cropping system in Pakistan. For appraisal of problem and finding solution to sustainability, we evaluated six treatments comprised of two fertilizer doses and three management techniques over a period of three years (2003-05) monitoring their effects on seed cotton yield and soil fertility. The techniques included chemical fertilizers, municipal solid waste manure (MSWM) integrated with chemical fertilizers in 1:4 ratios with, and without pesticides. The results revealed that cotton yields. Were enhanced by 19% due to site-specific fertilizer dose over conventional dose. Ignoring weeds control by means of herbicided application resulted in 5% decrease of seed cotton yield in IPNM technique positive effect of MSWM integration was noted on soil test phosphorus and SOM. Site-specific fertilizer application and integrated plant nutrient management by MSWM proved their suitability as the techniques not only improve soil quality in terms of sustained levels of organic matter and phosphorus but also provide a safe way of waste disposal. (author)

  20. Specular, diffuse and polarized imagery of an oat canopy

    Science.gov (United States)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  1. BOREAS TE-9 NSA Canopy Biochemistry

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0

    Directory of Open Access Journals (Sweden)

    G. B. Bonan

    2018-04-01

    Full Text Available Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0 to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5 at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin–Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.

  3. CANOPY STRUCTURE AND DEPOSITION EFFICIENCY OF VINEYARD SPRAYERS

    Directory of Open Access Journals (Sweden)

    Gianfranco Pergher

    2007-06-01

    Full Text Available A field study was performed to analyse how deposition efficiency from an axial-fan sprayer was affected by the canopy structure of vines trained to the High Cordon, Low Cordon and Casarsa systems, at beginning of flowering and beginning of berry touch growth stages. An empirical calibration method, providing a dose rate adjustment roughly proportional to canopy height, was used. The canopy structure was assessed using the Point Quadrat method, and determining the leaf area index (LAI and the leaf layer index (LLI. Spray deposits were measured by colorimetry, using a water soluble dye (Tartrazine as a tracer. Correlation between deposits and canopy parameters were analysed and discussed. Foliar deposits per unit leaf area were relatively constant, suggesting that empirical calibration can reduce deposit variability associated with different training systems and growth stages. Total foliar deposition ranged from 33.6% and 82.3% of total spray volume, and increased proportionally with the LLI up to LLI<4. Deposits on bunches significantly decreased with the LLI in the grape zone. The results suggest that sprayer efficiency is improved by a regular, symmetrical canopy, with few leaf layers in the grape zone as in Low Cordon. However, a LLI<3 over the whole canopy and >40% gaps in the foliage both reduced total deposition, and may increase the risk for larger drift losses.

  4. Exploring potential and opportunities for pakistan cotton export

    International Nuclear Information System (INIS)

    Afridi, G. S.; Tariq, S. A.

    2016-01-01

    Agriculture is the single largest shareholder to GDP an employment to labour force. It has major share in export but unfortunately unable to meet international standards. This study aims to analyze the pattern of Pakistan cotton export, and to explore sector's export potential and opportunities. This new research endeavor with well-tested analytical tools enabled the trade experts and policy makers to explore the answer of lackness for diversification in export, HS-2- digits aggregated data for cotton sub-sectors have been used with latest data from 2004 to 2013 for the panel 39 countries. Revealed comparative advantage (RCA) index and gravity model approach was employed considering country and time specific fixed effect. The RCA index revealed that cotton sub-sectors have comparative advantage in export and there is gradual gain in the competitiveness with time. The opportunity exists in the markets of low, lower-middle and upper middle income countries and countries those have fair trade (low tariff and non-tariff barriers) for cotton export. Greater export potential lies with malaysia, kenya jordan, thailand, mauritius, netherlands norway, Australia and russian federation for export of cotton, however, export potential for cotton has been exhausted with canada, france, india, iran and saudi arabia. The study provide the policy information that countries of Latin america, eastern europe, central asia and northern africa are virgin for export. Therefore, pakistan should penetrate in these markets for export of cotton and other agricultural products. cognizant to new trade theories, pakistan focus on quality to gain maximum trade volume in the markets of high income countries, Pakistan may develop trade agreement with ASEAN, SAFTA, and EU-27 for export of agricultural products. (author)

  5. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay

    Directory of Open Access Journals (Sweden)

    Katsuura Tetsuo

    2011-01-01

    Full Text Available Abstract Background Although various acceptable and easy-to-use devices have been used for saliva collection, cotton swabs are among the most common ones. Previous studies reported that cotton swabs yield a lower level of melatonin detection. However, this statistical method is not adequate for detecting an agreement between cotton saliva collection and passive saliva collection, and a test for bias is needed. Furthermore, the effects of cotton swabs have not been examined at lower melatonin level, a level at which melatonin is used for assessment of circadian rhythms, namely dim light melatonin onset (DLMO. In the present study, we estimated the effect of cotton swabs on the results of salivary melatonin assay using the Bland-Altman plot at lower level. Methods Nine healthy males were recruited and each provided four saliva samples on a single day to yield a total of 36 samples. Saliva samples were directly collected in plastic tubes using plastic straws, and subsequently pipetted onto cotton swabs (cotton saliva collection and into clear sterile tubes (passive saliva collection. The melatonin levels were analyzed in duplicate using commercially available ELISA kits. Results The mean melatonin concentration in cotton saliva collection samples was significantly lower than that in passive saliva collection samples at higher melatonin level (>6 pg/mL. The Bland-Altman plot indicated that cotton swabs causes relative and proportional biases in the assay results. For lower melatonin level ( Conclusion Our findings indicate an interference effect of cotton swabs on the assay result of salivary melatonin at lower melatonin level. Cotton-based collection devices might, thus, not be suitable for assessment of DLMO.

  6. Processing and Properties of PCL/Cotton Linter Compounds

    OpenAIRE

    Bezerra,Elieber Barros; França,Danyelle Campos; Morais,Dayanne Diniz de Souza; Rosa,Morsyleide de Freitas; Morais,João Paulo Saraiva; Araújo,Edcleide Maria; Wellen,Renate Maria Ramos

    2017-01-01

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton...

  7. Cycling of fertilizer and cotton crop residue nitrogen

    International Nuclear Information System (INIS)

    Rochester, I.J.; Constable, G.A.; MacLeod, D.A.

    1993-01-01

    Mineral nitrogen (N), nitrate and ammonium contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15 N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil micro biomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. It is suggested that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15 N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28% and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop. 33 refs., 1 tab

  8. A meta-analysis of leaf nitrogen distribution within plant canopies

    NARCIS (Netherlands)

    Hikosaka, Kouki; Anten, Niels P.R.; Borjigidai, Almaz; Kamiyama, Chiho; Sakai, Hidemitsu; Hasegawa, Toshihiro; Oikawa, Shimpei; Iio, Atsuhiro; Watanabe, Makoto; Koike, Takayoshi; Nishina, Kazuya; Ito, Akihiko

    2016-01-01

    Background and aims Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown.

  9. Large eddy simulation of the atmospheric boundary layer above a forest canopy

    Science.gov (United States)

    Alam, Jahrul

    2017-11-01

    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  10. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  11. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  12. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  13. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    A survey of 337 cotton farmers in the three northern regions of Ghana was ... five applications were made during the season. ... Keywords: cotton, farmer knowledge and perception, insect pest control, Ghana. .... bordered on tests of farmers' knowledge of cotton insect pests, their damage ..... Agricultural Experiment Station.

  14. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  15. Induced mutations for improvement of desi cotton

    International Nuclear Information System (INIS)

    Waghmare, V.N.; Mohan, Punit; Singh, Phundan; Gururajan, K.N.

    2000-01-01

    Desi cotton varieties of Gossypium arboreum have wide adaptability and are relatively tolerant to biotic (insect pests and diseases) and abiotic (moisture and salt) stresses. Desi varieties have got potential to yield even under adverse and low input situations. Most of them are synchronous in maturity and possess consistent fibre properties. Despite such merits, very little attention has been paid for improvement of desi cotton. The present area under arboreum varieties is 17.0% (15.30 lakh ha.) against 65% (35.75 lakh ha) during 1947-48. Deliberate attempts are required to improve G. arboreum for its economic and quality characters to compete with upland varieties in rainfed cotton ecology

  16. Effects of saliva collection using cotton swab on cortisol enzyme immunoassay.

    Science.gov (United States)

    Kozaki, Tomoaki; Hashiguchi, Nobuko; Kaji, Yumi; Yasukouchi, Akira; Tochihara, Yutaka

    2009-12-01

    Cotton swabs are among the most commonly used devices for collecting saliva, but various studies have reported that their use impacts the results of salivary cortisol assays. These studies, however, estimated this impact by comparing the average of the concentration and/or scatter plots. In the present study, we estimated the impact of cotton swabs on the results of salivary cortisol enzyme immunoassay (EIA) by Bland-Altman plot. Eight healthy males (aged 20-23 years) provided four saliva samples on different days to yield a total of 32 samples. Saliva samples were collected directly in plastic tubes using plastic straws and then pipetted onto cotton swabs (cotton saliva collection) and into clear sterile tubes (passive saliva collection). There was a lower correlation between cotton and passive saliva collection. Individually, four subjects showed a negative correlation between passive and cotton saliva collection. A Bland-Altman plot indicated that cotton swabs causes a proportional bias on the EIA assay result. Our findings indicate a considerable effect of using cotton swabs for saliva collection, and subject-specific variability in the impact. A Bland-Altman plot further suggests possible reasons for this effect.

  17. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  18. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.

    2005-04-01

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  19. Evaluation of one dimensional analytical models for vegetation canopies

    Science.gov (United States)

    Goel, Narendra S.; Kuusk, Andres

    1992-01-01

    The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.

  20. Spatial and temporal distribution of cotton squares and small cotton bolls fallen on ground after damage by boll weevil and the efficiency of the equipment used to collect them

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Domingues da Silva

    Full Text Available ABSTRACT: In this study, we determined the spatial and temporal distribution of fallen cotton squares and small cotton bolls fallen damaged by boll weevil and the efficiency and time interval of the equipment used to collect cotton samples. Spatial and temporal distribution of cotton squares and small cotton bolls fallen on the soil damaged by boll weevil among cotton rows was determined in an experimental design of randomized blocks in a factorial arrangement of 4x3, represented by soil surface tracks located at 1-11cm, 12-22cm, 23-33cm, and 34-44cm away from the planting row of cotton plants 70, 85, and 100 days of age. Efficiency and collection time interval of the cotton samples fallen on the soil infested by boll weevil by plastic rakes that were straight or fan-shaped, big broom, collector instrument model CNPA and aspirator of leaves ‘Trapp’ were determined in randomized block design with five treatments, 10 repetitions for each. Results demonstrated that the collection of cotton samples must be performed with greater attention to soil strips located below the cotton top projection and aspirator ‘Trapp’ of leaves was more appropriate for the operation as it used less time of collection with similar efficiency to other available equipment.

  1. Canopy sink-source partitioning influences root/soil respiration in apple

    Science.gov (United States)

    The root system of plants derives all its energy from photosynthate translocated from the canopy to the root system. Canopy manipulations that alter either the rate of canopy photosynthesis or the translocation of photosynthate are expected to alter dry matter partitioning to the root system. Fiel...

  2. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  3. A Grey Fuzzy Logic Approach for Cotton Fibre Selection

    Science.gov (United States)

    Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati

    2017-06-01

    It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.

  4. Insect pests management of bt cotton through the manipulation of different eco-friendly techniques

    International Nuclear Information System (INIS)

    Ahmad, N.; Khan, M.H.; Tofique, M.

    2011-01-01

    This study was designed to manage insect pests of Bt cotton through the manipulation of different eco-friendly techniques. A perusal of data, based on the overall performance of different treatments reflected that lowest population of jassids (0.29) was observed in bio-control treated Bt cotton followed by bio-control treated conventional cotton (0.41). Mean per leaf population of thrips was found lowest in insecticide treated Bt cotton (0.97) which was statically at par with bi-control treated conventional cotton (0.95), biocontrol treated Bt cotton (1.09) and colour traps treated Bt cotton (1.50). In case of white flies, bio-control treated Bt cotton and bio-control treated conventional cotton again proved effective in maintaining the population at lower levels per leaf (0.33 and 0.35 respectively). No bollworms infestation was recorded in transgenic cotton whereas higher attack of the same was observed in the untreated conventional cotton block. The best results were achieved with the application of bio-control agents in combination with Bt cotton resulting in least infestation by insect pests and maximum seed yield of 3657 kg/ha. The population of Chrysoperla carnea was significantly higher in Bt and conventional cotton treated with bio-control agents as compared to the other treatments. The parasitism percentage of Trichogramma chilonis was observed significantly higher in bio-control treated conventional cotton. The studies manifested that combination of bio-control technology with Bt cotton effectively preserves the local beneficial insect fauna indicating its potential to be used as integrated management system against different insect pests of cotton. (author)

  5. Application of two-stream model to solar radiation of rice canopy

    International Nuclear Information System (INIS)

    Kawakata, T.

    2005-01-01

    The amount of solar radiation absorbed by a crop canopy is correlated with crop production, and thus it is necessary to estimate both transmission and reflection around the canopy for crop growth models. The 'forward and backward streams' representation of radiation has been refined to account for both transmission and reflection in the crop canopy. However, this model has not been applied to a rice canopy through the growing period. The purpose of this study is to examine whether the two-stream model is applicable to the rice canopy, and to investigate the parameters of the model. The values for both transmittance below the rice canopy and reflectance above it that were derived from the two-stream model represent the observed values throughout the growing period. The inclination factor of leaves (F), which is used in the two-stream model, was almost equivalent to the extinction coefficient of transmittance in the case of the rice canopy

  6. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    Science.gov (United States)

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  8. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  9. Fiber quality challenges facing the cotton industry

    Science.gov (United States)

    The cotton industry is in the midst of an exciting time with increased domestic consumption, but also facing pressure from other crops and the global marketplace. In order to ensure the US cotton crop remains the fiber of choice for the world it is important to keep an eye on the challenges to fibe...

  10. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

    Science.gov (United States)

    Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S

    2012-11-01

    Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

  11. Various rates of k and Na influence growth, seed cotton yield and ionic ratio of two cotton varieties in soil culture

    International Nuclear Information System (INIS)

    Ali, L.; Maqsood, M.A.; Ashraf, M.

    2009-01-01

    Cotton is generally grown on alkaline calcareous soils in arid and semi-arid areas of the country. Sodium can interact with other earth cations like K, Ca and Mg. Therefore, a pot study was conducted to investigate the growth, yield and ionic response of two cotton varieties. Four levels of K and Na were developed after considering indigenous K, Na status in soil. The treatments of K+Na in mg/kg were adjusted as, 105+37.5, 135+30 135+37.5 and 105+30 (control). Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Application of K and Na increased seed cotton yield and boll weight significantly (p<0.01). Both varieties varied non-significantly with respect to K:Na ratio in leaf. The beneficial effects of Na with K application over control on seed cotton yield and boll weight were greater in NIBGE-2 than in MNH-786. Increase in seed cotton yield was attributed to maximum boll weight of both varieties. Significant negative correlation (r= -0.89, - 0.76, n= 4) was found between K:Na ratio and K use efficiency in shoot of NIBGE-2 and MNH-786, respectively. (author)

  12. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    Science.gov (United States)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  13. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  14. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  15. Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture

    Science.gov (United States)

    Bement, L. J.

    1976-01-01

    The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.

  16. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides

    DEFF Research Database (Denmark)

    Rajasundaram, Dhivyaa; Runavot, Jean-Luc; Guo, Xiaoyuan

    2014-01-01

    cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from...... different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength...

  17. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  18. Modern trends on development of cotton production and processing chain Uzbekistan

    OpenAIRE

    Abdimumin Alikulov

    2010-01-01

    The cotton production complex of Uzbekistan has high rating comparing other export oriented branches. Cotton fiber value in 2008 share made 12% from total export of the country. The paper observes some trends and policy developments in cotton industry development.

  19. Quantification and characterization of cotton crop biomass residue

    Science.gov (United States)

    Cotton crop residual biomass remaining in the field after mechanical seed cotton harvest is not typically harvested and utilized off-site thereby generating additional revenue for producers. Recently, interest has increased in utilizing biomass materials as feedstock for the production of fuel and ...

  20. Governing the transnational organic cotton network from Benin

    NARCIS (Netherlands)

    Glin, L.C.; Mol, A.P.J.; Oosterveer, P.J.M.; Vodouhè, S.

    2012-01-01

    In this article, we attempt to conceptualize the historical development and the governance structure of the transnational organic cotton network from Benin. We aim to discover how the organic cotton production-consumption network is governed locally and internationally. Existing bodies of literature

  1. Zinc comprising coordination compounds as growth stimulants of cotton seeds

    International Nuclear Information System (INIS)

    Yusupov, Z.N.; Nurmatov, T.M.; Rakhimova, M.M.; Dzhafarov, M.I.; Nikolaeva, T.B.

    1991-01-01

    Present article is devoted to zinc comprising coordination compounds as growth stimulants of cotton seeds. The influence of zinc coordination compounds with physiologically active ligands on germinative energy and seed germination of cotton was studied. The biogical activity and effectiveness of zinc comprising coordination compounds at application them for humidification of cotton seeds was studied as well.

  2. Women cotton pickers perceptions about health hazards due to pesticide use in irrigated punjab

    International Nuclear Information System (INIS)

    Abbas, M.; Mehmood, I.; Bashir, A.; Hassan, S.

    2015-01-01

    In Pakistan, cotton crop has special importance from the perspective of largest employment generation both for males and females in the production and value chains. Cotton picking is primarily a female specific activity in all cropping zones of Pakistan. Women cotton pickers mostly belong to poor rural society involved in this labour force to feed their families. Cotton pickers in Pakistan face some serious health related problems due to heavy use of pesticides on cotton crop. The present study was designed to investigate the problem faced by women cotton pickers and their role in household decision making. Overall 150 women cotton pickers were interviewed from Bahawalnagar, Sahiwal and Vehari districts of cotton-wheat zone of the Punjab. Summary statistics of women cotton pickers' showed mean average age was 33 years and had 2.4 ears of formal schooling and 10 years of cotton picking experience. The main reasons for cotton picking reported were to reduce family financial burden (30%) followed by better access to food and resource (23%) and better education of children (21%). Majority of the respondents (97.33%) reported that the mode of payments of cotton picking was in cash and the most of the respondents (83.70%) reported that they got wages in time. Only few respondents (8.70%) were aware of health hazards due to pesticides and only 10% women wear protective clothes during cotton picking. Majority of the respondents (76%) wash their clothes after cotton picking whereas almost all the respondents wash their hand after cotton picking. The women cotton pickers faced health problem, tiredness (54.5%), mental disturbance (9.90%) and fatigue (8.00%). More than 58% women reported their involvement in household decision making regarding food and groceries while 30.6% women involved in decision about education of children. It is suggested that the female cotton pickers should be educated about the importance (in terms of disease treatment and long-run health costs

  3. NLCD 2001 - Tree Canopy

    Data.gov (United States)

    Minnesota Department of Natural Resources — The National Land Cover Database 2001 tree canopy layer for Minnesota (mapping zones 39-42, 50-51) was produced through a cooperative project conducted by the...

  4. A radiosity model for heterogeneous canopies in remote sensing

    Science.gov (United States)

    GarcíA-Haro, F. J.; Gilabert, M. A.; Meliá, J.

    1999-05-01

    A radiosity model has been developed to compute bidirectional reflectance from a heterogeneous canopy approximated by an arbitrary configuration of plants or clumps of vegetation, placed on the ground surface in a prescribed manner. Plants are treated as porous cylinders formed by aggregations of layers of leaves. This model explicitly computes solar radiation leaving each individual surface, taking into account multiple scattering processes between leaves and soil, and occlusion of neighboring plants. Canopy structural parameters adopted in this study have served to simplify the computation of the geometric factors of the radiosity equation, and thus this model has enabled us to simulate multispectral images of vegetation scenes. Simulated images have shown to be valuable approximations of satellite data, and then a sensitivity analysis to the dominant parameters of discontinuous canopies (plant density, leaf area index (LAI), leaf angle distribution (LAD), plant dimensions, soil optical properties, etc.) and scene (sun/ view angles and atmospheric conditions) has been undertaken. The radiosity model has let us gain a deep insight into the radiative regime inside the canopy, showing it to be governed by occlusion of incoming irradiance, multiple scattering of radiation between canopy elements and interception of upward radiance by leaves. Results have indicated that unlike leaf distribution, other structural parameters such as LAI, LAD, and plant dimensions have a strong influence on canopy reflectance. In addition, concepts have been developed that are useful to understand the reflectance behavior of the canopy, such as an effective LAI related to leaf inclination.

  5. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  6. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  7. Quantifying interception associated with new urban vegetation canopies

    Science.gov (United States)

    Yerk, W.; Montalto, F. A.

    2013-12-01

    Interception of precipitation by vegetation canopies has long been recognized as an important component of the hydrologic cycle, though most research has been in closed or sparse canopy forests. Much less work has been published on interception by urban vegetation, and especially associated with the low growing shrubs commonly installed in green infrastructure program. To inform urban watershed model with vegetation-specific interception data, a field experiment was designed to directly measure canopy throughfall associated with two shrub species commonly included in urban greening programs. Data was collected at a high (e.g. five second) sampling frequency. A non-parametric Kruskal-Wallis test performed on data collected between August and October of 2012 demonstrated statistically significant (p= 0.0011) differences in recorded throughfall between two species (94% for Itea virginica, 86% for Cornus sericea). Additionally, the results suggested that the relationship of throughfall to rainfall intensity varied by species. For Itea, the ratio of throughfall to precipitation intensity was close to 1:1. However, for Cornus, the throughfall rate was on average slower (or 0.85 of the precipitation intensity). An improved and expanded set-up installed in 2013 added two additional species (Prunus laurocerasus and Hydrangea quercifolia). The 2013 results confirm interspecies differences in both throughfall amount, and in the relationship of throughfall rate to precipitation intensity. The results are discussed with respect to droplet splashing and enhanced evaporation within the canopy. Both years' findings suggest that the quantity of water intercepted by vegetation canopies exceeds the canopy storage capacity, as assumed in many conventional hydrologic models.

  8. Single-Wall Carbon Nanotube-Coated Cotton Yarn for Electrocardiography Transmission

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available We fabricated a type of conductive fabric, specifically single-wall carbon nanotube-coated cotton yarns (SWNT-CYs, for electrocardiography (ECG signal transmission utilizing a “dipping and drying” method. The conductive cotton yarns were prepared by dipping cotton yarns in SWNTs (single-wall carbon nanotubes solutions and then drying them at room temperature—a simple process that shows consistency in successfully coating cotton yarns with conductive carbon nanotubes (CNTs. The influence of fabrication conditions on the conductivity properties of SWNT-CYs was investigated. The results demonstrate that our conductive yarns can transmit weak bio-electrical (i.e., ECG signals without significant attenuation and distortion. Our conductive cotton yarns, which combine the flexibility of conventional fabrics and the good conductivity of SWNTs, are promising materials for wearable electronics and sensor applications in the future.

  9. In vitro microbiologic evaluation of PTFE and cotton as spacer materials.

    Science.gov (United States)

    Paranjpe, Avina; Jain, Sumita; Alibhai, Karim J; Wadhwani, Chandur P; Darveau, Richard P; Johnson, James D

    2012-09-01

    To microbiologically evaluate the efficacy of cotton and polytetrafluoroethylene (PTFE) tape used as spacer materials. Twenty-six extracted human molars were restored using either cotton or PTFE tape as spacers under a standardized provisional restorative material (Cavit). The teeth were incubated for 7 days in a culture of Streptococcus gordonii or in liquid media alone. The spacers were removed and tested for bacterial contamination. The access cavities were also evaluated for bacterial contamination. Nine of 10 teeth with cotton spacers and one of 10 teeth with PTFE spacers were positive for S gordonii growth. The nine teeth in the cotton group also showed contamination of the access cavities. Even under optimal conditions, cotton spacers may cause leakage into the access cavities. Cotton fibers may serve as a route for bacterial contamination of the access cavities and root canal space. In contrast, PTFE tape did not provide an avenue for bacterial contamination.

  10. Winter Radiation Extinction and Reflection in a Boreal Pine Canopy: Measurements and Modelling

    Science.gov (United States)

    Pomeroy, J. W.; Dion, K.

    1996-12-01

    Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50̂, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the

  11. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  12. Correlations and Correlated Responses in Upland Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Echekwu, CA.

    2001-01-01

    Full Text Available Plant breeders must be concerned with the total array of economic characters in their efforts to develop a crop variety acceptable to farmers. Their selection endeavours must therefore take into consideration how changes in one trait affect, simultaneously changes in other economic attributes. The importance of correlations and correlated responses is therefore self evident in plant breeding endeavours. In this study F3 progenies from a cross between two cotton lines SAMCOT-9 x Y422 were evaluated for two years and performance data were used to obtain correlations between nine agronomic and fibre quality traits in upland cotton. The results indicated that plant helght was significantly and positively correlated with seed cotton yield, number of sympodial and monopodial branches, seed index, fibre length and micronaire index. Positive and significant correlations were also obtained between : seed cotton yield, tint percent and fibre strength and fibre length. Significant negative correlations were obtained between : plant height and lint percent ; number of monopodial branches, sympodial branches and lint percent ; fibre length, fibre strength and micronaire index. The correlated responses in the other eight traits when selection was practiced for seed cotton yield in the present study shows that it might be more profitable to practice direct selection for seed cotton yield compared to selecting for seed cotton yield through any of the other traits.

  13. The cotton farming pipeline of Malawi and South Africa: Management implications

    Directory of Open Access Journals (Sweden)

    J. P. Grundling

    2008-12-01

    Full Text Available Purpose of the study: The purpose this paper is to identify and describe the characteristics and influences of the cotton farming pipeline in Malawi and South Africa. Problem investigated: A broad based approach was followed to investigate the cotton farming pipeline to identify the major driving forces of the cotton pipeline in each of the respective countries. Research approach: A qualitative field research approach was followed to compile data on cotton farming in Malawi and South Africa. Data was compiled upstream from input suppliers, downstream from ginners, cotton transport conveyors, cotton marketing managers and agricultural government officials as well as from farmers and agricultural organizations. Findings: In Malawi a family farming model is followed versus an industrial model of production in South Africa. Despite the differences in approach, the farmers in both countries are faced with similar problems. In this regard, an urgent rethinking of the technological conditions of production and the possibilities of technological change is needed. Recommendations: The research proposes that these countries can benefit from establishing institutions like agricultural co-operatives and mechanisms like the development of a free traffic mechanism of seed-cotton. Conclusion: The present research may assist in developing first layer managerial recommendations that could enhance the sustainability and co-existence of cotton farming in the two countries.

  14. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  15. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  16. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  17. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    Science.gov (United States)

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  18. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    Science.gov (United States)

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  20. 7 CFR 28.8 - Classification of cotton; determination.

    Science.gov (United States)

    2010-01-01

    ... Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of the Act, the classification of any cotton shall be determined by the quality of a sample in accordance... employees will determine all fiber property measurements using High Volume Instruments. The classification...

  1. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  2. The prevalence of byssinosis among cotton workers in the north of Benin.

    Science.gov (United States)

    Hinson, A V; Schlünssen, V; Agodokpessi, G; Sigsgaards, T; Fayomi, B

    2014-10-01

    Cotton is the main agricultural export product in Benin. Cotton dust is thus present in the air during the handling and processing of cotton. This dust contains a mixture of substances including ground up plant matter, fibres, bacteria, fungi, soil, pesticides, noncotton matter, and other contaminants. While cotton processing is decreasing in industrialized countries, it is increasing in developing countries. Cotton processing, particularly in the early processes of spinning, can cause byssinosis. To determine the respiratory effects of cotton dust exposure among cotton mill workers in Benin. In a cross-sectional study, 109 workers exposed to cotton dust and 107 unexposed workers were studied. The International Commission on Occupational Health (ICOH) questionnaire was used for data collection on respiratory symptoms. For each worker, crossshift pulmonary function was performed with a dry spirometer. Based on the severity of respiratory symptoms and spirometry byssinosis was defined and classified according to the criteria of Schilling, et al. The mean ± SD age of the exposed and unexposed workers was 46.3 ± 7.8 and 37.0 ± 8.3 years, respectively (pcotton mill workers in Benin is high and needs prompt attention of health care workers and policymakers.

  3. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture

    International Nuclear Information System (INIS)

    Endalew, A. Melese; Hertog, M.; Delele, M.A.; Baetens, K.; Persoons, T.; Baelmans, M.; Ramon, H.; Nicolai, B.M.; Verboven, P.

    2009-01-01

    The efficiency of pesticide application to agricultural fields and the resulting environmental contamination highly depend on atmospheric airflow. A computational fluid dynamics (CFD) modelling of airflow within plant canopies using 3D canopy architecture was developed to understand the effect of the canopy to airflow. The model average air velocity was validated using experimental results in a wind tunnel with two artificial model trees of 24 cm height. Mean air velocities and their root mean square (RMS) values were measured on a vertical plane upstream and downstream sides of the trees in the tunnel using 2D hotwire anemometer after imposing a uniform air velocity of 10 m s -1 at the inlet. 3D virtual canopy geometries of the artificial trees were modelled and introduced into a computational fluid domain whereby airflow through the trees was simulated using Reynolds-Averaged Navier-Stokes (RANS) equations and k-ε turbulence model. There was good agreement of the average longitudinal velocity, U between the measurements and the simulation results with relative errors less than 2% for upstream and 8% for downstream sides of the trees. The accuracy of the model prediction for turbulence kinetic energy k and turbulence intensity I was acceptable within the tree height when using a roughness length (y 0 = 0.02 mm) for the surface roughness of the tree branches and by applying a source model in a porous sub-domain created around the trees. The approach was applied for full scale orchard trees in the atmospheric boundary layer (ABL) and was compared with previous approaches and works. The simulation in the ABL was made using two groups of full scale orchard trees; short (h = 3 m) with wider branching and long (h = 4 m) with narrow branching. This comparison showed good qualitative agreements on the vertical profiles of U with small local differences as expected due to the spatial disparities in tree architecture. This work was able to show airflow within and above the

  4. Competition and facilitation structure plant communities under nurse tree canopies in extremely stressful environments.

    Science.gov (United States)

    Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P

    2017-04-01

    Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.

  5. Structure and properties of cotton fabrics treated with functionalized dialdehyde chitosan.

    Science.gov (United States)

    He, Xuemei; Tao, Ran; Zhou, Tianchi; Wang, Chunxia; Xie, Kongliang

    2014-03-15

    In this research, modified cotton fabrics were prepared by pad-dry-cure technique from the aldehyde chitosan solution containing 3-aminopropyltriethoxysilane (APTES) and 1,2-ethanediamine (EDA) respectively. The structural characterization of the modified cotton fabrics was performed by attenuated total reflection ATR, scanning electron microscopy (SEM) and thermogravimetry (TG) analysis and physical mechanical properties were measured. The adsorption kinetics of modified cotton fabrics were also investigated by using the pseudo first-order and pseudo second-order kinetic model. The dyeing rate constant k1, k2 and half adsorption time t1/2 were calculated, respectively. The results show that the mechanical properties of different modified cotton fabrics were improved, and the surface color depth values (K/S), UV index UPF and anti-wrinkle properties were better than those of untreated cotton. Dyeing kinetics data at different temperatures indicate that Direct Pink 12B up-take on the modified cotton fabrics fitted to pseudo second-order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    Science.gov (United States)

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  7. Genome-wide functional analysis of cotton (Gossypium hirsutum in response to drought.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6 of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene analysis showed that the normal biophysical profiles of cotton (cultivar J-13 were affected by drought stress, and some cellular metabolic processes (including photosynthesis were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  8. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  9. Organized turbulent motions in a hedgerow vineyard: effect of evolving canopy structure

    Science.gov (United States)

    Vendrame, Nadia; Tezza, Luca; Tha Paw U, Kyaw; Pitacco, Andrea

    2017-04-01

    Vegetation-atmosphere exchanges are determined by functional and structural properties of the plants together with environmental forcing. However, a fundamental aspect is the interaction of the canopy with the lower atmosphere. The vegetation deeply alters the composition and physical properties of the air flow, exchanging energy, matter and momentum with it. These processes take place in the bottom part of the atmospheric boundary layer where turbulence is the main mechanism transporting within-canopy air towards the mid- and upper atmospheric boundary layer and vice versa. Canopy turbulence is highly influenced by vegetation drag elements, determining the vertical profile of turbulent moments within the canopy. Canopies organized in rows, like vineyards, show peculiar turbulent transport dynamics. In addition, the morphological structure (phenology) of the vineyard is greatly variable seasonally, shifting from an empty canopy during vine dormancy to dense foliage in summer. The understanding of the canopy ventilation regime is related to several practical applications in vineyard management. For example, within-canopy turbulent motion is very important to predict small particles dispersion, like fungal spores, and minimize infection studying the effect on leaf wetness duration. Our study aims to follow the continuous evolution of turbulence characteristics and canopy structure during the growing season of a hedgerow vineyard, from bud break to fully developed canopy. The field experiment was conducted in a flat extensive vineyard in North-Eastern Italy, using a vertical array of five synchronous sonic anemometers within and above the canopy. Turbulent flow organization was greatly influenced by canopy structure. Turbulent coherent structures involved in momentum transport have been investigated using the classical quadrant analysis and a novel approach to identify dominant temporal scales. Momentum transport in the canopy was dominated by downward gusts showing

  10. Pilot scale cotton gin trash energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Harp, S.L. [Oklahoma State Univ., Stillwater, OK (United States)

    1993-12-31

    During the summer of 1992 a 520,000 kcal/h (2,064,400 Btu/hr) biomass combustor was installed at a cotton gin in southwestern Oklahoma. The gin has a capacity of approximately 35 bales per hour. Each bale of cotton ginned weighs about 227 kg (500 lb) and produces about 68 kg (150 lb) of trash. Therefore, this gin produces about 52,360 kg (115,500 lb) of trash per day during a typical ginning season. Approximately 2 million kg (4 million lb) of gin trash are produced at this site each year. Cotton must first be dried to about 3-5% moisture content before the ginning process is begun. To accomplish this at this gin, two six million Btu/hour direct fired gas heaters are used to heat air for drying the cotton. The biomass combustor was installed to operate in parallel with one of the heaters to supply heated air for the drying process. A pneumatic conveying system was installed to intercept a portion of the gin trash and divert it to the burner. The burner was operated during the 1992 ginning season, which lasted from September through November, with few problems.

  11. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  12. Gone with transgenic cotton cropping in the USA. A perception of the presentations and interactions at the Beltwide Cotton Conferences, New Orleans (Louisiana, USA, 4-7/01/2010

    Directory of Open Access Journals (Sweden)

    Fok, M.

    2011-01-01

    Full Text Available The 2010 Beltwide Cotton Conferences provided a new vision of the consequences of about 15 years of widespread and uncoordinated cropping of transgenic cotton in the United States. Insect-resistant and/or herbicide-tolerant cotton varieties modified parasite complexes, namely those of insects and weeds damaging cotton crops. The Conferences have revealed that the adaptation solutions so far proposed make illusory the expectations at the launch of transgenic cotton, in terms of effective pest control, cost reduction, and antagonism between chemical and biotech methods. The USA case points out that the technical and economic sustainability of transgenic varieties must lie in a systemic and coordinated approach.

  13. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.

    1996-01-01

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  14. Radiation degradation of short-cotton linters

    International Nuclear Information System (INIS)

    Ma Zue Teh; Zhou Rui Min

    1984-01-01

    Radiation degradation of short-cotton linters has been studied by using X-ray diffraction, an infrared spectrometer and a viscosimeter. Average molecular weight and crystallinity of short-cotton linters and the change of reducing sugar in γ-radiation degradation were examined. It was found that cellulosic saccharification in hydrolysis was enhanced with preirradiation of linter. This probably resulted from the radiation induced change of cellulosic structure. Sensitizers to promote radiation degradation effect were investigated. Carbon tetrachloride has been found to be effective. (author)

  15. 7 CFR 1427.16 - Movement and protection of warehouse-stored cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Movement and protection of warehouse-stored cotton. 1427.16 Section 1427.16 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY... Cotton Loan and Loan Deficiency Payments § 1427.16 Movement and protection of warehouse-stored cotton. (a...

  16. Current university and USDA lab cotton contamination research

    Science.gov (United States)

    U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination can be classified under four major categorizes: fabrics and strings ...

  17. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Chemistry, Federal College of Education, Kano – Nigeria. 2Department of ... its versatility were examined taken into consideration, the molecular structure. ... hemicelluloses, pectin, coloring matter and ash ... temperature for a fixed period of time. These processes rendered the cotton 99% cellulose in nature.

  18. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  19. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    1Key Laboratory of Cotton Genetic Improvement of the Ministry of Agriculture, Cotton Research Institute, Chinese. Academy of Agricultural Sciences, Anyang Henan 455 112, People's Republic of China. 2Institute ..... Athens, Greece. Xie D. X. ...

  20. The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus.

    Science.gov (United States)

    Distéfano, Ana J; Bonacic Kresic, Ivan; Hopp, H Esteban

    2010-11-01

    Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.

  1. Evaporation and the sub-canopy energy environment in a flooded forest

    Science.gov (United States)

    The combination of canopy cover and a free water surface makes the sub-canopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. The sub-canopy vapor flux and energy budget are not well understood in wetlands, but they importantly control water level and understory...

  2. Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammad Jellur Rahman

    2015-01-01

    Full Text Available Electroconductive cotton textile has been prepared by a simple dipping-drying coating technique using safely functionalized multiwalled carbon nanotubes (f-MWCNTs. Owing to the surface functional groups, the f-MWCNTs become strongly attached with the cotton fibers forming network armors on their surfaces. As a result, the textile exhibits enhanced electrical properties with improved thermal conductivity and therefore is demonstrated as a flexible electrothermal heating element. The fabricated f-MWCNTs/cotton textile can be heated uniformly from room temperature to ca. 100°C within few minutes depending on the applied voltage. The textile shows good thermal stability and repeatability during a long-term heating test.

  3. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    Science.gov (United States)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  4. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L..

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR. The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE and adjusted MFE (AMFE and high MFE index (MFEI. Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton.

  5. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  6. A New, Two-layer Canopy Module For The Detailed Snow Model SNOWPACK

    Science.gov (United States)

    Gouttevin, I.; Lehning, M.; Jonas, T.; Gustafsson, D.; Mölder, M.

    2014-12-01

    A new, two-layer canopy module with thermal inertia for the detailed snow model SNOWPACK is presented. Compared to the old, one-layered canopy formulation with no heat mass, this module now offers a level of physical detail consistent with the detailed snow and soil representation in SNOWPACK. The new canopy model is designed to reproduce the difference in thermal regimes between leafy and woody canopy elements and their impact on the underlying snowpack energy balance. The new model is validated against data from an Alpine and a boreal site. Comparisons of modelled sub-canopy thermal radiations to stand-scale observations at Alptal, Switzerland, demonstrate the improvements induced by our new parameterizations. The main effect is a more realistic simulation of the canopy night-time drop in temperatures. The lower drop is induced by both thermal inertia and the two-layer representation. A specific result is that such a performance cannot be achieved by a single-layered canopy model. The impact of the new parameterizations on the modelled dynamics of the sub-canopy snowpack is analysed and yields consistent results, but the frequent occurrence of mixed-precipitation events at Alptal prevents a conclusive assessment of model performances against snow data.Without specific tuning, the model is also able to reproduce the measured summertime tree trunk temperatures and biomass heat storage at the boreal site of Norunda, Sweden, with an increased accuracy in amplitude and phase. Overall, the SNOWPACK model with its enhanced canopy module constitutes a unique (in its physical process representation) atmosphere-to-soil-through-canopy-and-snow modelling chain.

  7. Inventories of Asian textile producers, US cotton exports, and the exchange rate

    Directory of Open Access Journals (Sweden)

    Durmaz Nazif

    2014-01-01

    Full Text Available The present paper develops a model with US cotton exports depending on the stock-to-use ratio, trade weighted exchange rates, and the relative cotton prices. The role of inventories in cotton consumption is examined in five textile producing cotton importers, China, Indonesia, Thailand, South Korea, and Taiwan. Cotton inventory dynamics is diverse among Asian textile producers. Relative prices have negative effect in all markets as expected. Exchange rate elasticities show that effects should be examined for each separate market. Changes in rates of depreciation also have stronger effects than exchange rate. Results reveal that these countries are not all that homogenous.

  8. Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models

    Directory of Open Access Journals (Sweden)

    Liyu Tang

    2017-12-01

    Full Text Available Virtual geographic environments (VGEs have been regarded as an important new means of simulating, analyzing, and understanding complex geological processes. Plants and light are major components of the geographic environment. Light is a critical factor that affects ecological systems. In this study, we focused on simulating light transmission and distribution within a three-dimensional plant canopy model. A progressive refinement radiosity algorithm was applied to simulate the transmission and distribution of solar light within a detailed, three-dimensional (3D loquat (Eriobotrya japonica Lindl. canopy model. The canopy was described in three dimensions, and each organ surface was represented by a set of triangular facets. The form factors in radiosity were calculated using a hemi-cube algorithm. We developed a module for simulating the instantaneous light distribution within a virtual canopy, which was integrated into ParaTree. We simulated the distribution of photosynthetically active radiation (PAR within a loquat canopy, and calculated the total PAR intercepted at the whole canopy scale, as well as the mean PAR interception per unit leaf area. The ParaTree-integrated radiosity model simulates the uncollided propagation of direct solar and diffuse sky light and the light-scattering effect of foliage. The PAR captured by the whole canopy based on the radiosity is approximately 9.4% greater than that obtained using ray tracing and TURTLE methods. The latter methods do not account for the scattering among leaves in the canopy in the study, and therefore, the difference might be due to the contribution of light scattering in the foliage. The simulation result is close to Myneni’s findings, in which the light scattering within a canopy is less than 10% of the incident PAR. Our method can be employed for visualizing and analyzing the spatial distribution of light within a canopy, and for estimating the PAR interception at the organ and canopy

  9. Polyploidization altered gene functions in cotton (Gossypium spp.)

    Science.gov (United States)

    Cotton fibers are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that a large set of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across the At and ...

  10. Dynamic and Stochastic Structures of U.S. Cotton Exports and Mill Demand

    OpenAIRE

    Fadiga, Mohamadou L.

    2006-01-01

    This study employs a structural time-series method to model and estimate U.S. cotton exports and mill use. The results show that the stochastic process governing cotton export fluctuations is transitory, while the process pertaining to mill use has transitory, seasonal, and secular origins. The estimated structural relationships after accounting for the unobserved components indicate U.S. cotton exports respond directly to higher international price relative to domestic price of cotton, while...

  11. Simulations of tropical rainforest albedo: is canopy wetness important?

    Directory of Open Access Journals (Sweden)

    Silvia N.M. Yanagi

    Full Text Available Accurate information on surface albedo is essential for climate modelling, especially for regions such as Amazonia, where the response of the regional atmospheric circulation to the changes on surface albedo is strong. Previous studies have indicated that models are still unable to correctly reproduce details of the seasonal variation of surface albedo. Therefore, it was investigated the role of canopy wetness on the simulated albedo of a tropical rainforest by modifying the IBIS canopy radiation transfer code to incorporate the effects of canopy wetness on the vegetation reflectance. In this study, simulations were run using three versions of the land surface/ecosystem model IBIS: the standard version, the same version recalibrated to fit the data of albedo on tropical rainforests and a modified version that incorporates the effects of canopy wetness on surface albedo, for three sites in the Amazon forest at hourly and monthly scales. The results demonstrated that, at the hourly time scale, the incorporation of canopy wetness on the calculations of radiative transfer substantially improves the simulations results, whereas at the monthly scale these changes do not substantially modify the simulated albedo.

  12. Textile industry can be less pollutant: introducing naturally colored cotton

    Directory of Open Access Journals (Sweden)

    Solimar Garcia

    2014-07-01

    Full Text Available 800x600 Studies in agribusiness and textile industry, both involved with the production of manufacturing fashion present insufficient development for new products that could represent water savings and reduction of chemical effluents, making this production chain a sustainable business. This paper introduces the colored and organic cotton as an alternative to foster colored cotton producing farmers and improving the concept of sustainability in the textile sector. Results show that the increase in the production of colored and organic cotton, may result in reduction of water use, and consequent reduction in the disposal of effluents in nature. As the colored and organic cotton is produced by small farmers, governmental agencies need to participate in the effort of improving its production and distribution, providing the needed infrastructure to meet the increasing market. This would slowly encourage the reduction of white cotton consumption in exchange for this naturally colored product. The water used, and consequent polluted discharge in the use of colored cotton in the textile industry might be reduced by 70%, assuming a reduction of environmental impact of 5% per year would represent expressive numbers in the next ten years. Normal 0 21 false false false ES X-NONE X-NONE

  13. Gamma-radiation effect of the ATP-ASE-activity in various parts of cotton sprouts

    International Nuclear Information System (INIS)

    Kazimov, A.K.

    1975-01-01

    ATP-ase is a thiol enzyme whose sulfhydryl group plays an important role. The transport of substances through biological membranes is the result of the action of the sodium-potassium pump of the cell, which functions with ATP energy. The action of this transport mechanism depends on the activity of ATP-ase. It may be postulated, therefore, that the suppression of the active transport of Na + and K + ions in cells under irradiation is partially the result of a disturbance of the activity of the ATP enzyme system. The author studied the effect of gamma radiation on ATP-ase activity in various parts of seven-day-old seedlings of type 108-F cotton, which were irradiated using Co 60 gamma radiation. The results of the experiment showed that the ATP-ase activity of the cotton seedling rootlets depends on the dose and the time elapsed after irradiation (a table is given). Small radiation doses (0.2 and 0.5 krad) significantly increased ATP-ase activity in the rootlets, while heavy doses inhibited it significantly. Similar results were obtained for the stems and leaves (tables are given). It was estblished that the ATP-ase of cotton seedlings has varying sensitivity to irradiation. The most sensitive ATP-ases were those of the rootlets. The activity of background ATP-ase is less subject to change than Na + and K + activated ATP-ases. For example, while the activity of ATP-ase (without ions) was inhibited by 25% when a 25 krad irradiation dose was administered, the retardation of Na + and K + activated ATP-ases reached 41%. The author suggests that the inhibition of ATP-ase activity under irradiation is mainly the result of a disturbance of the structure of the membrane functions. It is also possible that ATP-ase activity decreases because of a lack of the enzyme substrate - ATP, which is formed during the process of oxydative phosphorylization. A table is also provided showing the effect of irradiation on the activity of ATP-ase activated by various ions in the roots of

  14. Potential Sources of Polarized Light from a Plant Canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  15. AIRBORNE X-HH INCIDENCE ANGLE IMPACT ON CANOPY HEIGHT RETREIVAL: IMPLICATIONS FOR SPACEBORNE X-HH TANDEM-X GLOBAL CANOPY HEIGHT MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Tighe

    2012-07-01

    Full Text Available To support international climate change mitigation efforts, the United Nations REDD+ initiative (Reducing Emissions from Deforestation and Degradation seeks to reduce land use induced greenhouse gas emissions to the atmosphere. It requires independent monitoring of forest cover and forest biomass information in a spatially explicit form. It is widely recognised that remote sensing is required to deliver this information. Synthetic Aperture Radar interferometry (InSAR techniques have gained traction in the last decade as a viable technology from which vegetation canopy height and bare earth elevations can be derived. The viewing geometry of a SAR sensor is side-looking where the radar pulse is transmitted out to one side of the aircraft or satellite, defining an incidence angle (θ range. The incidence angle will change from near-range (NR to far-range (FR across of the track of the SAR platform. InSAR uses image pairs and thus, contain two set of incidence angles. Changes in the InSAR incidence angles can alter the relative contributions from the vegetation canopy and the ground surface and thus, affect the retrieved vegetation canopy height. Incidence angle change is less pronounced in spaceborne data than in airborne data and mitigated somewhat when multiple InSAR-data takes are combined. This study uses NEXTMap® single- and multi-pass X-band HH polarized InSAR to derive vegetation canopy height from the scattering phase centre height (hspc. Comparisons with in situ vegetation canopy height over three test sites (Arizona-1, Minnesota-2; the effect of incidence angle changes across swath on the X-HH InSAR hspc was examined. Results indicate at steep incidence angles (θ = 35º, more exposure of lower vegetation canopy structure (e.g. tree trunks led to greater lower canopy double bounce, increased ground scattering, and decreased volume scattering. This resulted in a lower scattering phase centre height (hspc or a greater underestimation of

  16. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    International Nuclear Information System (INIS)

    Hoai, Nguyen To; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-01-01

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  17. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    Energy Technology Data Exchange (ETDEWEB)

    Hoai, Nguyen To, E-mail: hoaito@pvu.edu.vn; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-02-15

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  18. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.

    2010-01-01

    We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from...... a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both...... the time required and the precision of the estimator. Furthermore, we compare the precision of point counting for three different grid intensities with that of several standard leaf area measurement techniques. Results showed that the precision of the plant leaf area estimator based on point counting...

  19. THE WORLD TRADE ORGANIZATION AND SOUTHERN AGRICULTURE: THE COTTON PERSPECTIVE

    OpenAIRE

    Hudson, Darren

    2000-01-01

    The World Trade Organization (WTO) negotiations could have important implications for Southern Agriculture. This paper explores some of the issues surrounding the WTO negotiations for cotton. Specifically, this paper examines the impacts of the phase-out of the Multi-Fiber Arrangement (MFA) on the location of textile production and cotton trade flows. Generally, it is believed that the WTO negotiations will have little direct impact on cotton, but will have indirect impacts through textile po...

  20. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  1. King Cotton's Lasting Legacy of Poverty and Southern Region Contemporary Conditions

    Science.gov (United States)

    Guthrie, James W.; Peevely, Gary

    2010-01-01

    One hundred fifty years ago, cotton was considered as the king of all United States' agricultural exports. Cotton's dollar value far exceeded that of any other mid-19th-century United States trade item, much more than tobacco, fish, forest products, raw materials for manufacturing, or manufactured items. Indeed, in the mid-19th century, cotton was…

  2. Effect Of Bird Manure On Cotton Plants Grown On Soils Sampled ...

    African Journals Online (AJOL)

    Cotton plant had a better development and growth when bird manure was only applied to soil or combined with mineral fertilizer and when cotton was grown on a soil where the previous crops were cereals (maize or sorghum). Planting cotton on a soil where the previous crop grown was maize or sorghum had no significant ...

  3. Saussurea involucrata SiDhn2 gene confers tolerance to drought stress in upland cotton

    International Nuclear Information System (INIS)

    Liu, B.; Zhu, J.; Mu, J.; Zhu, J.; Liang, Z.; Zhang, L.

    2017-01-01

    Severe water shortage has long been acknowledged as one major limiting factor for global cotton production, and cultivation of cotton varieties with strong drought resistance is of important economic and social significances. In this study, the Xinjiang upland cotton variety Xinluzao 42 was transformed with the SiDhn2 gene by optimized agrobacterium transformation system. The integration of SiDhn2 gene into cotton genome was confirmed by PCR and Southern blot hybridization, and the drought resistance of transgenic and corresponding receptor cotton plants and their physiological indexes under drought stress were detailedly analyzed. Multiple physiological and biochemical indexes including soluble sugar content, free proline content, chlorophyll content, relative water content, net photosynthetic rate, transpiration rate, intercellular CO/sub 2/ concentration in transgenic cotton expressing SiDhn2 gene under drought stress were significantly higher than those of receptor cotton. More importantly, the transgenic cotton plants exhibited remarkably decreased boll abscission rate and highly increased seed yield, indicating the significant role of SiDhn2 gene in cotton drought resistance and its great application potential in agricultural production. (author)

  4. POLICY IMPLICATIONS OF TEXTILE TRADE MANAGEMENT AND THE U.S. COTTON INDUSTRY

    OpenAIRE

    Shui, Shangnan; Wohlgenant, Michael K.; Beghin, John C.

    1993-01-01

    This study investigates the effects on the U.S. cotton industry of textile trade liberalization using a multi-market equilibrium displacement model. The simulation results suggest that textile trade liberalization would induce small changes in the total demand for U.S. cotton but would affect considerable y U.S. cotton demand structure, making U. S, cotton growers more dependent on world markets. The welfare analyses reveal that textile trade liberalization would result in a small welfare los...

  5. Effects of nematicides on cotton root mycobiota.

    Science.gov (United States)

    Baird, R E; Carling, D E; Watson, C E; Scruggs, M L; Hightower, P

    2004-02-01

    Baseline information on the diversity and population densities of fungi collected from soil debris and cotton (Gossypium hirsutum L.) roots was determined. Samples were collected from Tifton, GA, and Starkville, MS containing cotton field soil treated with the nematicides 1,3-dichloroproprene (fumigant) and aldicarb (granules). A total of 10,550 and 13,450 fungal isolates were collected from these two study sites, respectively. Of this total, 34 genera of plant pathogenic or saprophytic species were identified. Pathogenic root fungi included Fusarium spp. (40% of all isolations), Macrophomina, Pythium, Rhizoctonia, and Sclerotium. Fusarium and Rhizoctonia were the most common fungal species identified and included F. oxysporum, F. verticillioides and F. solani, the three Fusarium species pathogenic on cotton plants. Population densities of Fusarium were not significantly different among locations or tissue types sampled. Macrophomina was isolated at greater numbers near the end of the growing seasons. Anastomosis groups of R. solani isolated from roots and soil debris included AG-3, -4, -7, 2-2, and -13 and anastomosis groups of binucleate Rhizoctonia included CAG-2, -3, and -5. Occurrences and frequency of isolations among sampling dates were not consistent. Fluctuations in the frequency of isolation of Rhizoctonia did not correspond with changes in frequency of isolation of the biological control fungus, Trichoderma. When individual or pooled frequencies of the mycobiota were compared to nematicide treatments, no specific trends occurred between treatments, application methods or rates. Results from this study show that use of 1,3-D and aldicarb in cotton fields does not significantly impact plant pathogenic fungi or saprophytic fungal populations. Thus cotton producers need not adjust seedling disease control measures when these two nematicides are used.

  6. 78 FR 54970 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-09-09

    ... Service 7 CFR Part 27 [AMS-CN-13-0043] RIN 0581-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: The... optional cotton futures classification procedure--identified and known as ``registration'' by the U.S...

  7. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps

    International Nuclear Information System (INIS)

    Ewald, Joerg

    2000-01-01

    Compositional and edaphic gradients were studied in montane forests of the Bavarian Alps (Germany), in which natural mixed deciduous-coniferous tree layers have been altered by past management in favour of Picea abies. Data on species composition and ecological factors were collected in a stratified random sample of 84 quadrats comprising a gradient from pure Picea to pure Fagus sylvatica stands. Data about the understorey composition were subjected to indirect (DCA) and direct gradient analysis (RDA) with the proportion of Picea in the canopy as a constraining variable. Three principal components of a matrix containing seven descriptors of mineral soil, relief and tree layer cover were included as covariables describing the variability of primary ecological factors. Gradients of organic topsoil morphology and chemistry were extracted correspondingly. Responses of individual species, species group and topsoil attributes were studied by simple and partial correlation analysis. Mosses were significantly more abundant and diverse under Picea stands. Few graminoid and herb species were partially associated with Picea, and total understorey richness and cover did not differ systematically by stand type. No relationship between tree layer and understorey diversity was detected at the studied scale. Juvenile Fagus sylvatica was the only woody species significantly less abundant under Picea. In the topsoil lower base saturation, lower pH and larger C/N ratios in the litter layer were partially attributable to the proportion of Picea, only for base saturation a relationship was detected in greater soil depth also. The frequency of broad humus form types did not differ by tree species, nor was overall depth of organic forest floor attributable to canopy composition

  8. 78 FR 9330 - Revision of Regulations Defining Bona Fide Cotton Spot Markets

    Science.gov (United States)

    2013-02-08

    ... Cotton Spot Markets AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: The... bona fide cotton spot markets in order to assure consistency with the revised Cotton Research and Promotion Act. Updated bona fide spot market definitions will allow for published spot quotes to consider...

  9. Asymmetric Evolution and Expansion of the NAC Transcription Factor in Polyploidized Cotton

    Directory of Open Access Journals (Sweden)

    Kai Fan

    2018-01-01

    Full Text Available Polyploidy in Gossypium hirsutum conferred different properties from its diploid ancestors under the regulation of transcription factors. The NAC transcription factor is a plant-specific family that can be related to plant growth and development. So far, little is known about the NAC family in cotton. This study identified 495 NAC genes in three cotton species and investigated the evolution and expansion of different genome-derived NAC genes in cotton. We revealed 15 distinct NAC subfamilies in cotton. Different subfamilies had different gene proportions, expansion rate, gene loss rate, and orthologous exchange rate. Paleohexaploidization (35% and cotton-specific decaploidy (32% might have primarily led to the expansion of the NAC family in cotton. Half of duplication events in G. hirsutum were inherited from its diploid ancestor, and others might have occurred after interspecific hybridization. In addition, NAC genes in the At and Dt subgenomes displayed asymmetric molecular evolution, as evidenced by their different gene loss rates, orthologous exchange, evolutionary rates, and expression levels. The dominant duplication event was different during the cotton evolutionary history. Different genome-derived NACs might have interacted with each other, which ultimately resulted in morphogenetic evolution. This study delineated the expansion and evolutionary history of the NAC family in cotton and illustrated the different fates of NAC genes during polyploidization.

  10. Conductive Cotton Fabrics for Motion Sensing and Heating Applications

    Directory of Open Access Journals (Sweden)

    Mengyun Yang

    2018-05-01

    Full Text Available Conductive cotton fabric was prepared by coating single-wall carbon nanotubes (CNTs on a knitted cotton fabric surface through a “dip-and-dry” method. The combination of CNTs and cotton fabric was analyzed using scanning electron microscopy (SEM and Raman scattering spectroscopy. The CNTs coating improved the mechanical properties of the fabric and imparted conductivity to the fabric. The electromechanical performance of the CNT-cotton fabric (CCF was evaluated. Strain sensors made from the CCF exhibited a large workable strain range (0~100%, fast response and great stability. Furthermore, CCF-based strain sensors was used to monitor the real-time human motions, such as standing, walking, running, squatting and bending of finger and elbow. The CCF also exhibited strong electric heating effect. The flexible strain sensors and electric heaters made from CCF have potential applications in wearable electronic devices and cold weather conditions.

  11. Methylation-sensitive amplified polymorphism analysis of Verticillium wilt-stressed cotton (Gossypium).

    Science.gov (United States)

    Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H

    2016-10-06

    In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.

  12. Comparative Analysis of Discovery Function of Cotton Future Price among Different Regions——A Case Study of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Through comparative analysis, We research the relationship between cotton future price and cotton spot price in different regions, in order to formulate corresponding strategies in different regions under the new situation. We use ADF unit root test, E-G two-step cointegration test, Granger causality test, and other research methods in Eviews 5.0 statistical software, to empirically study the relationship between the cotton future price and cotton spot price in Xinjiang, the relationship between the cotton future price and cotton spot price in China. The results show that there is a long-term relationship between the cotton future price and cotton spot price in Xinjiang, between the cotton future price and cotton spot price in China; the cotton future price plays unidirectional role in guiding cotton spot price in Xinjiang and cotton spot price in China. The discovery function of cotton future price plays much greater role in the cotton market of China than in the cotton market of Xinjiang.

  13. Effect of Gamma Irradiation Doses on Some Chemical Characteristics of Cotton Seed Oil

    International Nuclear Information System (INIS)

    Saleh, O.I.

    2011-01-01

    Cotton Seeds c.v. Giza 85 (Gossypium hirsutum L.) were exposed to gamma irradiation doses of 0.5, 1.0 and 1.5 kGy to improve some chemical characteristics of cotton seed oil i.e. saturated and unsaturated fatty acids, gossypol and βsitosterol that were bound oil. The presented study showed that, the saturated fatty acids; lauric, palmitic and stearic increased when the cotton seeds were exposed to gamma irradiation doses of 0.5 up to 1.5 kGy, On the other hand, arachidic acid content decreased in all the irradiated treatments compared with untreated cotton seed. The unsaturated fatty acid oleic was increased in irradiated cotton seed samples compared with untreated one, while linoleic, the major unsaturated fatty acid decreased in irradiated cotton seed oil than untreated seeds. Gossypol and βsitosterol, bound oil, in irradiated cotton seeds increased gradually with gamma irradiated doses compared with untreated control samples

  14. An Assessment of Current Policy Initiatives in Zambia's Cotton Sector

    OpenAIRE

    Zulu, Ballard; Tschirley, David L.

    2004-01-01

    This paper assesses three of these policy initiatives: input credit provision for smallholder producers of selected cash crops including cotton, the proposed creation of a Cotton Board, and the emergence in 2003 of District Council levies as a point of conflict between local governments and cotton companies. The purpose of the paper is to provide guidance to public and private decision makers regarding key modifications which may need to be made to these policies to ensure continued healthy d...

  15. Developing Cotton IPM by Conserving Parasitoids and Predators of The Main Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2015-09-01

    Full Text Available On early development of intensive cotton program, insect pests were considered as an important aspect in cotton cultivation, so that it needed to be scheduled sprays. The frequency of sprays was 7 times used 12L of chemical insecticides per hectare per season. Development of cotton IPM was emphasized on non-chemical control methods through optimally utilize natural enemies of the cotton main pests (Amrasca biguttulla (IshidaHelicoverpa armigera (Hübner. Conservation of parasitoids and predators by providing the environment that support their population development is an act of supporting the natural enemies as an effective biotic mortality factor of the insect pests. The conservation could be done by improving the plant matter and cultivation techniques that include the use of resistant variety to leafhopper, intercropping cotton with secondary food plants, mulch utilization, using action threshold that considered the presence of natural enemies, and application of botanical insecticides, if needed. Conservation of parasitoids and predators in cotton IPM could control the insect pests without any insecticide spray in obtaining the production of cotton seed. As such, the use of IPM method would increase farmers’ income.

  16. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  17. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  18. Isolation and characterization of gene sequences expressed in cotton fiber

    Directory of Open Access Journals (Sweden)

    Taciana de Carvalho Coutinho

    2016-06-01

    Full Text Available ABSTRACT Cotton fiber are tubular cells which develop from the differentiation of ovule epidermis. In addition to being one of the most important natural fiber of the textile group, cotton fiber afford an excellent experimental system for studying the cell wall. The aim of this work was to isolate and characterise the genes expressed in cotton fiber (Gossypium hirsutum L. to be used in future work in cotton breeding. Fiber of the cotton cultivar CNPA ITA 90 II were used to extract RNA for the subsequent generation of a cDNA library. Seventeen sequences were obtained, of which 14 were already described in the NCBI database (National Centre for Biotechnology Information, such as those encoding the lipid transfer proteins (LTPs and arabinogalactans (AGP. However, other cDNAs such as the B05 clone, which displays homology with the glycosyltransferases, have still not been described for this crop. Nevertheless, results showed that several clones obtained in this study are associated with cell wall proteins, wall-modifying enzymes and lipid transfer proteins directly involved in fiber development.

  19. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Science.gov (United States)

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  20. Molecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense Against Cotton Leaf Curl Disease.

    Science.gov (United States)

    Khan, Muhammad Azmat Ullah; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Samiullah, Tahir Rehman; Muzaffar, Adnan; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-12-01

    Gossypium arboreumis resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan beta satellite ( CLCuBuV and CLCuMB ). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV . Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission and co-related with the titer of each viral component (DNA-A, alphasatellite and betasatellite) in plants. The hypothesis was the CLCuV titer in cotton is dependent on the amount of wax laid down on plant surface and the wax composition. Analysis of the presence of viral genes, namely alphasatellite, betasatellite and DNA-A, via real-time PCR in cotton species indicated that these genes are detectable in G. hirsutum , G. harknessii and GaWM3, whereas no particle was detected in G. arboreum . Quantitative wax analysis revealed that G. arboreum contained 183 μg.cm -2 as compared to GaWM3 with only 95 μg.cm -2 . G. hirsutum and G. harknessii had 130 μg.cm -2 and 146 μg.cm -2 , respectively. The GCMS results depicted that Lanceol, cis was 45% in G. harknessii . Heptadecanoic acid was dominant in G. arboreum with 25.6%. GaWM3 had 18% 1,2,-Benenedicarboxylic acid. G. hirsutum contained 25% diisooctyl ester. The whitefly feeding assay with Nile Blue dye showed no color in whiteflies gut fed on G. arboreum . In contrast, color was observed in the rest of whiteflies. From results, it was concluded that reduced quantity as well as absence of (1) 3-trifluoroacetoxytetradecane, (2) 2-piperidinone,n-|4-bromo-n-butyl|, (3) 4-heptafluorobutyroxypentadecane, (4) Silane, trichlorodocosyl-, (5) 6- Octadecenoic acid, methyl ester, and (6) Heptadecanoicacid,16-methyl-,methyl ester in wax could make plants susceptible to CLCuV , infested by whiteflies.

  1. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    Science.gov (United States)

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Study of gene flow from GM cotton (Gossypium hirsutum) varieties in El Espinal (Tolima, Colombia)

    International Nuclear Information System (INIS)

    Rache Cardenal, Leidy Yanira; Mora Oberlaender, Julian; Chaparro Giraldo, Alejandro

    2013-01-01

    In 2009, 4088 hectares of genetically modified (GM) cotton were planted in Tolima (Colombia), however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise Remolinos Inc. located in El Espinal (Tolima) were analyzed in the first half of 2010. The results indicated seed mediated gene flow in 45 refuges (80.4 %) and 26 fields with conventional cotton (96 %), besides pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton.

  3. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    DEFF Research Database (Denmark)

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho

    2014-01-01

    -cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide......Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  4. Enhancing Dark Shade Pigment Dyeing of Cotton Fabric Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2017-07-01

    Full Text Available This study is intended to investigate the effect of atmospheric pressure plasma treatment on dark shade pigment dyeing of cotton fabric. Experimental results reveal that plasma-treated cotton fabric can attain better color yield, levelness, and crocking fastness in dark shade pigment dyeing, compared with normal cotton fabric (not plasma treated. SEM analysis indicates that cracks and grooves were formed on the cotton fiber surface where the pigment and the binder can get deposited and improve the color yield, levelness, and crocking fastness. It was also noticed that pigment was aggregated when deposited on the fiber surface which could affect the final color properties.

  5. Forests and their canopies: Archievements and horizons in canopy science

    Czech Academy of Sciences Publication Activity Database

    Nakamura, A.; Kitching, R. L.; Cao, M.; Creedy, T. J.; Fayle, Tom Maurice; Freiberg, M.; Hewitt, C. N.; Itioka, T.; Koh, L. P.; Ma, K.; Malhi, Y.; Mitchell, A.; Novotný, Vojtěch; Ozanne, C. M. P.; Song, L.; Wang, H.; Ashton, L. A.

    2017-01-01

    Roč. 32, č. 6 (2017), s. 438-451 ISSN 0169-5347 R&D Projects: GA ČR(CZ) GA16-09427S; GA ČR GB14-36098G EU Projects: European Commission(XE) 669609 - Diversity6continents Institutional support: RVO:60077344 Keywords : biodiversity * canopy * cranes Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 15.268, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169534717300599

  6. Leaf tissue assay for lepidopteran pests of Bt cotton

    Science.gov (United States)

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  7. Fourier transform infrared macro-imaging of botanical cotton trash

    Science.gov (United States)

    The marketability of cotton fiber is directly tied to the trash comingled with it. Trash can contaminate cotton during harvesting, ginning, and processing. Thus, the removal of trash is important from field to fabric. An ideal prerequisite to removing trash from lint is identifying what trash types...

  8. 7 CFR 27.73 - Supervision of transfers of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Supervision of transfers of cotton. 27.73 Section 27.73 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER...

  9. Optimization of acid-activated bentonites on bleaching of cotton oil

    International Nuclear Information System (INIS)

    Lacin, O.; Sayan, E.; Kirali, E.G.

    2013-01-01

    Bentonites are commonly used adsorbent on bleaching cotton oil to produce edible oil products. Bleaching capacities of neutralized cotton oil were investigated with acid-activated Arguvan and Kursunlu bentonites. Two models for acid activation of the bentonites were developed by using a full factorial experimental design and central composite design. The parameters used to develop these models were contact time, solid to liquid ratio, acid concentration and moisture of bentonite. By using a constrained optimization program, the maximum bleaching capacities of neutralized cotton oil were determined as 99.99% and 48.5% for Arguvan and Kursunlu, respectively. Optimum results showed that Turkish bentonites (especially Arguvan bentonite) have high bleaching ability and they can be used efficiently to bleach neutralized cotton oil by considering the favorable volume weight, capacity of oil adsorbed and filtration rate. (author)

  10. Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material

    Directory of Open Access Journals (Sweden)

    S. Srikanth Reddy

    2018-01-01

    Full Text Available Various researchers, for the past few decades, had tried to stabilize black cotton soil using lime for improving its shrinkage and swelling characteristics. But these days, the cost of lime has increased resulting in increase in need for alternative and cost effective waste materials such as fly ash and rice husk ash. Brick powder, one among the alternative materials, is a fine powdered waste that contains higher proportions of silica and is found near brick kilns in rural areas. The objective of the study is to investigate the use of lime-stabilized black cotton soil and brick powder mixture as subbase material in flexible pavements. Black cotton soil procured from the local area, tested for suitability as subbase material, turned out to be unsuitable as it resulted in very less CBR value. Even lime stabilization of black cotton soil under study has not showed up the required CBR value specified for the subbase material of flexible pavement by MORTH. Hence the lime-stabilized black cotton soil is proportioned with brick powder to obtain optimum mixture that yields a better CBR value. The mixture of 20% brick powder and 80% lime-stabilized black cotton soil under study resulted in increase in the CBR value by about 135% in comparison with lime-stabilized black cotton soil. Thus it is promising to use the mixture of brick powder and lime-stabilized black cotton soil as subbase material in flexible pavements.

  11. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    Science.gov (United States)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  12. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.

    Science.gov (United States)

    De Silva, Rasike; Byrne, Nolene

    2017-10-15

    Cotton accounts for 30% of total fibre production worldwide with over 50% of cotton being used for apparel. In the process from cotton bud to finished textile product many steps are required, and significant cotton waste is generated. Typically only 30% of pre consumer cotton is recycled. Here we use cotton waste lint to produce regenerated cellulose fibres (RCF). We find the RCF from waste cotton lint had increased mechanical properties compared to RCF produced from wood pulp. We show that this is likely linked to the higher degree of polymerization (DP) of waste cotton lint. An ionic liquid is used to dissolve the cotton lint and the rheology of the spinning is measured. The properties of the RCF are characterized and compared to wood pulp RCF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Review of the cotton market in Pakistan and its future prospects

    Directory of Open Access Journals (Sweden)

    Malik Tassawar Hussain

    2016-11-01

    Full Text Available Pakistan is the world’s 4th largest producer of cotton. Cultivation along the Indus River extends across nearly 3 million hectares and serves as the backbone of the economy. Despite this importance, information on the cotton sector in Pakistan, in particular with regard to cotton oils, is scanty and not available from a single source. This review seeks to remedy that gap. Though cultivated mainly for fiber, its kernel seed oil is also used as an edible vegetable oil and accounts for a large share of the local oil industry; per capita consumption of edible oils is nearly 14 kg, which is much higher than consumption in countries at similar levels of economic development. Pakistan fulfills 17.7% of its demand for edible oils through cottonseed oil. Total demand for this purpose in 2029–30 is estimated at 5.36 million tons of which local production will be 1.98 million tons. Genetically modified (Bt cotton was introduced in Pakistan in 2010 to control three deleterious lepidopterous insects; it now accounts for more than 85% of the cotton cultivated. There is good scope for organic cotton production in Pakistan, especially in non-traditional cotton growing areas where there is less insect pressure. High temperature and water scarcity associated with climate change are a major concern, since current cultivation takes place in areas that already experience extremely high temperatures.

  14. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    Science.gov (United States)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a

  15. Intercropping With Fruit Trees Increases Population Abundance and Alters Species Composition of Spider Mites on Cotton.

    Science.gov (United States)

    Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui

    2018-05-05

    With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.

  16. Developmental and hormonal regulation of fiber quality in two natural-colored cotton cultivars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang; HU Da-peng; LI Yuan; CHEN Yuan; Eltayib H.M.A.Abidallha; DONG Zhao-di; CHEN De-hua; ZHANG Lei

    2017-01-01

    Cotton cultivars with brown (Xiangcaimian 2),green (Wanmian 39) and white (Sumian 9) fiber were investigated to study fiber developmental characteristics of natural-colored cotton and the effect of hormones on fiber quality at different stages after anthesis.Fiber lengths of both natural-colored cottons were lower than the white-fibered control,with brown-flbered cotton longer than green.Fiber strength,micronaire and maturation of natural-colored cotton were also lower than the control.The shorter fiber of the green cultivar was due to slower growth during 10 to 30 days post-anthesis (DPA).Likewise,the lower fiber strength,micronaire and maturation of natured-colored cotton were also due to slower growth during this pivotal stage.Indole-3-acetic acid (IAA) content at 10 DPA,and abscisic acid (ABA) content at 30 to 40 DPA were lower in the fibers of the natural-colored than that of the white-flbered cotton.After applying 20 mg L-1 gibberellic acid (GA3),the IAA content at 20 DPA in the brown and green-fibered cottons increased by 51.07 and 64.33%,fiber ABA content increased by 38.96 and 24.40%,and fiber length increased by 8.13 and 13.96%,respectively.Fiber strength,micronaire and maturation were also enhanced at boll opening stage.Those results suggest that the level of endogenous hormones affect fiber quality.Application of external hormones can increase hormone content in natural-colored cotton fiber,improving its quality.

  17. Crop residue inventory estimates for Texas High Plains cotton

    Science.gov (United States)

    Interest in the use of cotton crop by-products for the production of bio-fuels and value-added products is increasing. Research documenting the availability of cotton crop by-products after machine harvest is needed. The objectives of this work were to document the total biomass production for moder...

  18. Research on detecting heterogeneous fibre from cotton based on linear CCD camera

    Science.gov (United States)

    Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei

    2009-07-01

    The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.

  19. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels

    Science.gov (United States)

    Bian, Meng; Skidmore, Andrew K.; Schlerf, Martin; Wang, Tiejun; Liu, Yanfang; Zeng, Rong; Fei, Teng

    2013-04-01

    Some biochemical compounds are closely related with the quality of tea (Camellia sinensis (L.)). In this study, the concentration of these compounds including total tea polyphenols, free amino acids and soluble sugars were estimated using reflectance spectroscopy at three different levels: powder, leaf and canopy, with partial least squares regression. The focus of this study is to systematically compare the accuracy of tea quality estimations based on spectroscopy at three different levels. At the powder level, the average r2 between predictions and observations was 0.89 for polyphenols, 0.81 for amino acids and 0.78 for sugars, with relative root mean square errors (RMSE/mean) of 5.47%, 5.50% and 2.75%, respectively; at the leaf level, the average r2 decreased to 0.46-0.81 and the relative RMSE increased to 4.46-7.09%. Compared to the results yielded at the leaf level, the results from canopy spectra were slightly more accurate, yielding average r2 values of 0.83, 0.77 and 0.56 and relative RMSE of 6.79%, 5.73% and 4.03% for polyphenols, amino acids and sugars, respectively. We further identified wavelength channels that influenced the prediction model. For powder and leaves, some bands identified can be linked to the absorption features of chemicals of interest (1648 nm for phenolic, 1510 nm for amino acids, 2080 nm and 2270 nm for sugars), while more indirectly related wavelengths were found to be important at the canopy level for predictions of chemical compounds. Overall, the prediction accuracies achieved at canopy level in this study are encouraging for future study on tea quality estimated at the landscape scale using airborne and space-borne sensors.

  20. Soil carbon estimation from eucalyptus grandis using canopy spectra

    African Journals Online (AJOL)

    Mapping soil fertility parameters, such as soil carbon (C), is fundamentally important for forest management and research related to forest growth and climate change. This study seeks to establish the link between Eucalyptus grandis canopy spectra and soil carbon using raw and continuum-removed spectra. Canopy-level ...

  1. CCI and CI Join Hands:A Better Supply Chain with More Innovations on Cotton Fabrics

    Institute of Scientific and Technical Information of China (English)

    Tom; Xue

    2010-01-01

    Cotton Council International("CCI")and Cotton Incorporated("CI") joined forces again,from October 19-22,2010 at Intertextile Shanghai,to promote natural fiber-U.S.cotton.As global textile strategic partners,both organizations were bringing together alliances through the cotton

  2. [Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method].

    Science.gov (United States)

    Xu, Nai Yin; Jin, Shi Qiao; Li, Jian

    2017-01-01

    The distinctive regional characteristics of cotton fiber quality in the major cotton-producing areas in China enhance the textile use efficiency of raw cotton yarn by improving fiber quality through ecological regionalization. The "environment vs. trait" GGE biplot analysis method was adopted to explore the interaction between conventional cotton sub-regions and cotton fiber quality traits based on the datasets collected from the national cotton regional trials from 2011 to 2015. The results showed that the major cotton-producing area in China were divided into four fiber quality ecological regions, namely, the "high fiber quality ecological region", the "low micronaire ecological region", the "high fiber strength and micronaire ecological region", and the "moderate fiber quality ecological region". The high fiber quality ecological region was characterized by harmonious development of cotton fiber length, strength, micronaire value and the highest spinning consistency index, and located in the conventional cotton regions in the upper and lower reaches of Yangtze River Valley. The low micronaire value ecological region composed of the northern and south Xinjiang cotton regions was characterized by low micronaire value, relatively lower fiber strength, and relatively high spinning consistency index performance. The high fiber strength and micronaire value ecological region covered the middle reaches of Yangtze River Valley, Nanxiang Basin and Huaibei Plain, and was prominently characterized by high strength and micronaire value, and moderate performance of other traits. The moderate fiber quality ecological region included North China Plain and Loess Plateau cotton growing regions in the Yellow River Valley, and was characterized by moderate or lower performances of all fiber quality traits. This study effectively applied "environment vs. trait" GGE biplot to regionalize cotton fiber quality, which provided a helpful reference for the regiona-lized cotton growing

  3. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  4. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  5. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  6. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  7. A one bath chemo-enzymatic process for preparation of absorbent cotton

    Directory of Open Access Journals (Sweden)

    A.S.M. Raja

    2016-09-01

    Full Text Available Cotton is the raw material for preparation of absorbent cotton. Raw cotton has to be subjected to scouring and bleaching processes for making it absorbent by removing the naturally present wax, protein and minerals in the fibre. The scouring is done at 115 °C using alkali followed by bleaching at boiling condition using alkaline hydrogen peroxide solution. The effluent coming out of such processes contains high COD and BOD values. Due to the stringent environmental regulation and great awareness among the public about environment, worldwide attempts have been made to develop green and sustainable chemical processing of materials. Based on the above, in the present study efforts have been made to develop an eco-friendly one bath preparatory process for the production of absorbent cotton using chemo-enzymatic formulation. The result indicated that absorbent cotton produced using the developed process fulfilled the required performance properties as per pharmacopoeia in comparable with the conventional process made one.

  8. Performance of mashbean intercropped in cotton planted in different planting patterns

    International Nuclear Information System (INIS)

    Khan, M.B.; Ahmad, S.; Khaliq, A.

    2004-01-01

    Performance of mashbean as intercrop in cotton was studied at the Agronomic Research Area University of Agriculture, Faisalabad (Pakistan) during the years 1996-1997 and 1997-98. cotton variety NIAB 78 was planted in 80-cm apart single rows and 120-cm spaced double row strips. Experiment was laid out in a RCBD with four replications. Net plot size was 7 m x 4.8 m. Mashbean was sown as intercrop in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Mashbean was also sown as a sole crop (P/sub 3/). The inter crops produce substantially smaller yields when grown in association with cotton in either planting pattern compared to the sole crop yields. However, additional produce obtained from intercrop compensated the losses in cotton production. Intercropping of mashbean, in 120-cm apart double row strips of cotton proved to be feasible as well as convenient for farm operations. (author)

  9. 77 FR 51867 - Cotton Board Rules and Regulations: Adjusting Supplemental Assessment on Imports

    Science.gov (United States)

    2012-08-28

    ... Advertising, Agricultural research, Cotton, Marketing agreements, Reporting and recordkeeping requirements... supplemental assessments collected for use by the Cotton Research and Promotion Program. An amendment is..., Chief, Research and Promotion Staff, Cotton and Tobacco Programs, AMS, USDA, 100 Riverside Parkway...

  10. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2010-11-19

    ... dividing Price A by 85 percent of Price B. * * * * * (f) Any AUP cotton harvested or appraised from acreage... dividing the price per pound for AUP cotton by the price per pound for ELS cotton. The prices used for AUP...

  11. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN

    Science.gov (United States)

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.

    2018-01-01

    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  12. Visible-light self-cleaning cotton by metalloporphyrin-sensitized photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Shabana [School of Applied Sciences and Engineering, Monash University, Churchill 3842 (Australia); Daoud, Walid A., E-mail: wdaoud@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Langford, Steven J. [School of Chemistry, Monash University, Clayton 3800 (Australia)

    2013-06-15

    Thin films of meso-tetra(4-carboxyphenyl)porphyrin with different metal centres (MTCPP, M = Fe, Co and Zn) in combination with anatase TiO{sub 2} have been formed on cotton fabric. Their self-cleaning properties have been evaluated by conducting the photocatalytic degradation of methylene blue under visible-light irradiation. All MTCPP/TiO{sub 2}-coated cotton fabrics showed superior self-cleaning performance as compared to the bare TiO{sub 2}-coated cotton. Among the three metal porphyrins, FeTCPP showed the highest photocatalytic activity with complete degradation of methylene blue in 180 min. The fabrics were characterized by FESEM, XRD, UV–vis and fluorescence spectroscopy.

  13. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  14. Cotton Transportation and Logistics: A Dynamic System

    OpenAIRE

    Robinson, John R.; Park, John L.; Fuller, Stephen

    2007-01-01

    The paper reviews the evolution of U.S. cotton transportation and logistics patterns over the last three decades. There have been many forces of change over this time period, with the largest change being a shift from primarily domestic market destinations to the international market. We describe the pre-1999 system and flow patterns when domestic consumption of U.S. cotton was dominant. We contrast this with current flow patterns as measured by available secondary export data and a sample of...

  15. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    OpenAIRE

    Nurindah Nurindah; Dwi Adi Sunarto

    2014-01-01

    Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula) and cotton bollworm (Helicoverpa armigera). The study aimed to evaluate four packages of integrated pest management (IPM) techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012...

  16. Expression of genes associated with carbohydrate metabolism in cotton stems and roots

    Directory of Open Access Journals (Sweden)

    Scheffler Jodi

    2009-01-01

    Full Text Available Abstract Background Cotton (Gossypium hirsutum L is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. Domesticated cotton makes these reserves available to developing seeds which impacts seed yield. The goals of these analyses were to identify genes and physiological pathways that establish cotton stems and roots as physiological sinks and investigate the role these pathways play in cotton development during seed set. Results Analysis of field-grown cotton plants indicated that starch levels peaked about the time of first anthesis and then declined similar to reports in greenhouse-grown cotton plants. Starch accumulated along the length of the stem and the shape and size of the starch grains from stems were easily distinguished from transient starch. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with starch synthesis, starch degradation, hexose metabolism, raffinose synthesis and trehalose synthesis. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in selected tissues. Conclusion In domesticated cotton starch stored prior to flowering was available to support seed production. Starch accumulation observed in young field-grown plants was not observed in greenhouse grown plants. A suite of genes associated with starch biosynthesis was identified. The pathway for starch utilization after flowering was associated with an increase in expression of a glucan water dikinase gene as has been implicated in utilization of transient starch. Changes in raffinose levels and levels of expression of genes controlling trehalose and raffinose biosynthesis were also observed in vegetative

  17. The Prevalence of Byssinosis among Cotton Workers in the North of Benin

    Directory of Open Access Journals (Sweden)

    AV Hinson

    2014-09-01

    Full Text Available Background: Cotton is the main agricultural export product in Benin. Cotton dust is thus present in the air during the handling and processing of cotton. This dust contains a mixture of substances including ground up plant matter, fibres, bacteria, fungi, soil, pesticides, noncotton matter, and other contaminants. While cotton processing is decreasing in industrialized countries, it is increasing in developing countries. Cotton processing, particularly in the early processes of spinning, can cause byssinosis. Objective: To determine the respiratory effects of cotton dust exposure among cotton mill workers in Benin. Methods: In a cross-sectional study, 109 workers exposed to cotton dust and 107 unexposed workers were studied. The International Commission on Occupational Health (ICOH questionnaire was used for data collection on respiratory symptoms. For each worker, crossshift pulmonary function was performed with a dry spirometer. Based on the severity of respiratory symptoms and spirometry byssinosis was defined and classified according to the criteria of Schilling, et al. Results: The mean±SD age of the exposed and unexposed workers was 46.3±7.8 and 37.0±8.3 years, respectively (p<0.001. The mean FEV1 predicted value for the exposed and unexposed workers was 76.3% and 77.3%, respectively. The prevalence of grade 3 byssinosis was 21.1% (95% CI: 13.4–28.9 in exposed workers and 8.4% (95% CI: 3.1–13.7 in unexposed workers (p=0.006. On Mondays, the exposed workers had more respiratory symptoms than unexposed workers; for grade 3 byssinosis, the prevalence was 13.8% in exposed and 4.7% in unexposed workers (p=0.011. Conclusion: The prevalence of respiratory symptoms and byssinosis among cotton mill workers in Benin is high and needs prompt attention of health care workers and policymakers.

  18. Inheritance of resistance to Colletotrichum gossypii var. cephalosporioides in cotton

    Directory of Open Access Journals (Sweden)

    Mansuêmia Alves Couto de Oliveira

    2010-01-01

    Full Text Available The objective of this study was to analyze the inheritance of the resistance to cotton ramulosis. For thispurpose, two groups of lines with contrasting performance for the evaluated trait were crossed. The disease-susceptibleparents were Delta Opal, CNPA 999 and CNPA 2161, and those with resistance BRS Facual, CNPA 2043 and CNPA 2984,resulting in nine crosses, always of one resistant and one susceptible parent, totalizing 42 treatments. The experiment was setup in a randomized complete block design with three replications. It was verified that the genetic control of ramulosisresistance is predominantly oligogenic, and the number of genes involved depends on the parents that participate in eachcross, due to the possibility of differential loci fixation. Evidence of partial dominance in the sense of increasing diseaseresistance was found, but there were also indications that dominance is not unidirectional.

  19. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.

    Science.gov (United States)

    Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2013-09-21

    A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.

  20. Ginning U.S. cotton for domestic and export markets

    Science.gov (United States)

    The U.S. cotton crop is produced by a highly mechanized production system that seeks to minimize manual labor while maximizing fiber quality. It is estimated that a bale of U.S. cotton is produced using approximately three man hours of labor while foreign producers may utilize several hundred man h...

  1. Four things we don't know about scalar transfer from plant canopies

    Science.gov (United States)

    Finnigan, J. J.

    2009-04-01

    In terrestrial plant canopies, turbulent exchange of water through evapotranspiration is intimately bound up with exchange of other scalars, heat and carbon dioxide in particular. Turbulent transport is rarely the process limiting exchange of these scalars between the biosphere and the atmosphere. However, in measurement programs like FLUXNET or when we parameterise surface exchange at the canopy scale in climate or weather models we must understand the mechanism of turbulent exchange in detail. In this talk we survey four current obstacles to extending our understanding of canopy turbulence from the idealised case of homogeneous flow in neutral stratification to complex flows in stable and unstable conditions. 1. Canopy eddy structure and the hydrodynamic instability Recent analysis of canopy LES and wind tunnel simulations has revealed the ‘two hairpin' structure of a characteristic canopy eddy. This structure explains a large body of results from a wide range of canopies and redefines the Roughness Sub Layer (RSL) as an asymptotic layer similar to the logarithmic and outer layers of the Planetary Boundary Layer. However, the nature of the non-linear ‘mixing-layer' instability process that gives canopy/RSL eddies their coherence and enhanced transport efficiency (as compared to eddies in the logarithmic layer above) is poorly understood so we do not know how resilient this instability and the eddies that depend upon it are to large scale flow perturbations or to changes in stability. 2. Turbulent Schmidt and Prandtl Numbers The scalar RSL can be defined as the layer across which the turbulent Schmidt (Sc) and Prandtl (Pr) numbers in neutral stratification change from their canopy top values of ~0.5, typical of mixing layers, to their logarithmic layer values of ~1.0, typical of boundary layers. The value of Sc or Pr is a critical parameter when adjusting Monin-Obukhov similarity theory (MOST) for the proximity of the canopy. The need for such adjustments has

  2. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    Science.gov (United States)

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  3. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  4. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chi-wai Kan

    2018-01-01

    Full Text Available 100% grey cotton knitted fabric contains impurities and yellowness and needs to be prepared for processing to make it suitable for coloration and finishing. Therefore, conventionally 100% grey cotton knitted fabric undergoes a process of scouring and bleaching, which involves the use of large amounts of water and chemicals, in order to remove impurities and yellowness. Due to increased environmental awareness, pursuing a reduction of water and chemicals is a current trend in textile processing. In this study, we explore the possibility of using atmospheric pressure plasma as a dry process to treat 100% grey cotton knitted fabric (single jersey and interlock before processing. Experimental results reveal that atmospheric pressure plasma treatment can effectively remove impurities from 100% grey cotton knitted fabrics and significantly improve its water absorption property. On the other hand, if 100% grey cotton knitted fabrics are pretreated with plasma and then undergo a normal scouring process, the treatment time is reduced. In addition, the surface morphological and chemical changes in plasma-treated fabrics were studied and compared with the conventionally treated fabrics using scanning electron microscope (SEM, Fourier-transform infrared spectroscopy-attenuated total reflection (FTIR-ATR and X-ray photoelectron spectroscopy (XPS. The decrease in carbon content, as shown in XPS, reveal the removal of surface impurities. The oxygen-to-carbon (O/C ratios of the plasma treated knitted fabrics reveal enhanced hydrophilicity.

  5. Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Directory of Open Access Journals (Sweden)

    Toews Michael D

    2011-08-01

    Full Text Available Abstract Background Stink bugs (Hemiptera: Pentatomidae comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding. Results Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls. Conclusions The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.

  6. Natural Dyeing and UV Protection of Raw and Bleached/Mercerised Cotton

    Directory of Open Access Journals (Sweden)

    Čuk Nina

    2017-05-01

    Full Text Available Dyeing with natural dyes extracted from curcuma, green tea, avocado seed, pomegranate peel and horse chestnut bark was studied to evaluate the dyeability and ultraviolet (UV blocking properties of raw and bleached/mercerised cotton fabrics. 20 g/l of powdered plant material was extracted in distilled water and used as a dyeing bath. No mordants were used to obtain ecologically friendly finishing. The colour of samples was measured on a refl ectance spectrophotometer, while UV-blocking properties were analysed with UV-Vis spectrophotometer. The results showed that dyeing increased UV protection factor (UPF to all samples, however much higher UPF values were measured for the dyed raw cotton samples. The highest UPF values were obtained on both cotton fabrics dyed with pomegranate peel and green tea extracts, giving them excellent protective properties (UPF 50+. The lowest UPF values were obtained by dyeing cotton with avocado seed extract and curcumin. Dyeing with selected dyes is not stable to washing, so the UV-blocking properties worsen after repetitive washing. However, raw cotton samples retain their very good Uvblocking properties, while bleached/mercerised cotton fabrics do not provide even satisfactory UV-blocking properties. No correlation between CIE L*a*b*, K/S and UPF values were found.

  7. Chitosan pretreatment for cotton dyeing with black tea

    Science.gov (United States)

    Campos, J.; Díaz-García, P.; Montava, I.; Bonet-Aracil, M.; Bou-Belda, E.

    2017-10-01

    Chitosan is used in a wide range of applications due to its intrinsic properties. Chitosan is a biopolymer obtained from chitin and among their most important aspects highlights its bonding with cotton and its antibacterial properties. In this study two different molecular weight chitosan are used in the dyeing process of cotton with black tea to evaluate its influence. In order to evaluate the effect of the pretreatment with chitosan, DSC and reflection spectrophotometer analysis are performed. The curing temperature is evaluated by the DSC analysis of cotton fabric treated with 15 g/L of chitosan, whilst the enhancement of the dyeing is evaluated by the colorimetric coordinates and the K/S value obtained spectrophotometrically. This study shows the extent of improvement of the pretreatment with chitosan in dyeing with natural products as black tea.

  8. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of cotton or vegetable fibers with coal... § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported on a vessel may not be stowed in the same hold with coal. They may be stowed in adjacent holds if the...

  9. Cotton regeneration in vitro

    Science.gov (United States)

    H. F. Sakhanokho and K. Rajasekaran Over the years, plant breeders have improved cotton via conventional breeding methods, but these methods are time-consuming. To complement classical breeding and, at times, reduce the time necessary for new cultivar development, breeders have turned to in vitro ...

  10. Flume experiments on intermittency and zero-crossing properties of canopy turbulence

    Science.gov (United States)

    Poggi, Davide; Katul, Gabriel

    2009-06-01

    How the presence of a canopy alters the clustering and the fine scale intermittency exponents and any possible connections between them remains a vexing research problem in canopy turbulence. To begin progress on this problem, detailed flume experiments in which the longitudinal and vertical velocity time series were acquired using laser Doppler anemometry within and above a uniform canopy composed of densely arrayed rods. The time series analysis made use of the telegraphic approximation (TA) and phase-randomization (PR) methods. The TA preserved the so-called zero-crossing properties in the original turbulent velocity time series but eliminated amplitude variations, while the PR generated surrogate data that preserved the spectral scaling laws in the velocity series but randomized the acceleration statistics. Based on these experiments, it was shown that the variations in the dissipation intermittency exponents were well described by the Taylor microscale Reynolds number (Reλ) within and above the canopy. In terms of clustering, quantified here using the variance in zero-crossing density across scales, two scaling regimes emerged. For spatial scales much larger than the canopy height hc, representing the canonical scale of the vortices dominating the flow, no significant clustering was detected. For spatial scales much smaller than hc, significant clustering was discernable and follows an extensive scaling law inside the canopy. Moreover, the canopy signatures on the clustering scaling laws were weak. When repeating these clustering measures on the PR data, the results were indistinguishable from the original series. Hence, clustering exponents derived from variances in zero-crossing density across scales primarily depended on the velocity correlation function and not on the distributional properties of the acceleration. In terms of the connection between dissipation intermittency and clustering exponents, there was no significant relationship. While the former

  11. Diurnal Patterns of Direct Light Extinction in Two Tropical Forest Canopies

    Science.gov (United States)

    Cushman, K.; Silva, C. E.; Kellner, J. R.

    2016-12-01

    The extent to which net ecosystem production is light-limited in Neotropical forests is poorly understood. This is due in part to our limited knowledge of how light moves through complex canopies to different layers of leaves, and the extent to which structural changes in canopies modify the amount of light absorbed by the landscape to drive photosynthesis. Systematic diurnal changes in solar angle, leaf angle, and wind speed suggest that patterns of light attenuation change over the course of the day in tropical forests. In this study, we characterize the extinction of direct light through the canopies of two forests in Panama using high-resolution, three-dimensional measurements from a small footprint, discrete return airborne laser scanner mounted on the gondola of a canopy crane. We hypothesized that light penetrates deeper into canopies during the middle of the day because changes in leaf angle by light-saturated leaves temporarily reduce effective canopy leaf area, and because greater wind speeds increase sunflecks. Also, we hypothesized that rates of light extinction are greater in the wetter forest that receives less direct sunlight because light saturation in upper leaves is less prevalent. We collected laser measurements with resolution of approximately 5,000 points per square meter of ground every 90 minutes over the course of one day each at Parque Natural Metropolitano (1740 mm annual rainfall) and Parque Nacional San Lorenzo (3300 mm annual rainfall) during the dry season in April, 2016. Using a voxel-based approach, we compared the actual versus potential distance traveled by laser beams through each volume of the canopy. We fit an exponential model to quantify the rate of light extinction. We found that rates of light extinction vary spatially, temporally, and by site. These results indicate that variation in forest structure changes patterns of light attenuation through the canopy over multiple scales.

  12. Estimating wood volume from canopy area in deciduous woodlands ...

    African Journals Online (AJOL)

    In this study we tested the predictive ability of canopy area in estimating wood volume in deciduous woodlands of Zimbabwe. The study was carried out in four sites of different climatic conditions. We used regression analysis to statistically quantify the prediction of wood volume from canopy area at species and stand level ...

  13. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora

    NARCIS (Netherlands)

    Marek, S.M.; Hansen, K.; Romanish, M.; Thorn, R.G.

    2009-01-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia

  14. Dynamic Relation Mechanism between Cotton Future Price and Stock Price of Related Listed Companies

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Dynamic relation mechanism between ZCE cotton futures price and related listed company stock price has been studied based on the metastock historical data in January 1st,2007 to September 1st,2010,Johansen co-integration analysis,Vector error correction model,Granger causality test and variance decomposition method.The results indicated that:long-term equilibrium relationship existed between ZCE cotton futures price and Xinsai share stock price while which changed in the same tendency and speed in the long-term.Cotton futures price is the main reason for the changing of Xinsai share stock price.The lead-lag relationship in changing course had been confirmed that existed between ZCE cotton futures price and the Xinsai share stock price.Meanwhile,the forward pass mechanism of price changing information had been found only from the ZCE cotton futures market to the stock market while showing asymmetry.Conclusions of the study can be used for cotton and related corporate to hedge business risks by the cotton price changes.

  15. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  16. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    Science.gov (United States)

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  17. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  18. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  19. Dispersion simulation of airborne effluent through tree canopy using OpenFOAM CFD code

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Venkatesan, R.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Nuclear plants are often surrounded by tree canopy as a part of landscaping and green belt development. The transport and dispersion of air borne pollutants within the tree/plant canopies is greatly controlled by turbulence. The density of the tree canopy, the height and type of the trees is of importance while determining the intensity of turbulence. In order to study the mechanical effect of the canopy and the consequent modification in the ground level concentration pattern from a ground level release of radioactivity, a CFD code called OpenFOAM is used. The main task of this study is the implementation of flow and dispersion through plant canopies in Open FOAM

  20. Role of secondary metabolites biosynthesis in resistance to cotton ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Disease percentage on six cotton varieties with respect to time for cotton leaf curl virus (CLCuV) was evaluated. In August 2007, the maximum disease was observed in CIM-506, CYTO-89 and BH-118. (susceptible), whereas CIM-443 was resistant with lower disease percentage. It was found that the leaf.

  1. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    Science.gov (United States)

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  2. Polarization of sky light from a canopy atmosphere

    International Nuclear Information System (INIS)

    Hannay, J H

    2004-01-01

    Light from the clear sky is produced by the scattering of unpolarized sunlight by molecules of the atmosphere and is partially linearly polarized in the process. Singly scattered light, for instance, is fully polarized in viewing directions perpendicular to the sun direction and less and less so towards the parallel and antiparallel directions, where it is unpolarized. The true, multiple, scattering is much less tractable, but importantly different, changing the polarization pattern's topology by splitting the unpolarized directions into pairs. The underlying cause of this 'symmetry breaking' is that the atmosphere is 'wider' than it is deep. Simplifying as much as possible while retaining this feature leads to the caricature atmosphere analysed here: a flattened sheet atmosphere in the sky, a canopy. The multiple scattering is fully tractable and leads to a simple polarization pattern in the sky: the ellipses and hyperbolas of standard confocal ellipsoidal coordinates. The model realizes physically a mathematical pattern of polarization in terms of a complex function proposed by Berry, Dennis and Lee (2004 New J. Phys.6 162) as the simplest one which captures the topology

  3. Drought coping strategies in cotton: increased crop per drop.

    Science.gov (United States)

    Ullah, Abid; Sun, Heng; Yang, Xiyan; Zhang, Xianlong

    2017-03-01

    The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Cotton Study: Albumin Binding and its Effect on Elastase Activity in the Chronic Non-Healing Wound

    Energy Technology Data Exchange (ETDEWEB)

    Castro, N.; Goheen, S.

    2005-01-01

    Cotton, as it is used in wound dressings is composed of nearly pure cellulose. During the wound-healing process, cotton is exposed to various blood components including water, salts, cells, and blood proteins. Albumin is the most prominent protein in blood. Elastase is an enzyme secreted by white blood cells and takes an active role in tissue reconstruction. In the chronic non-healing wound, elastase is often over-expressed such that this enzyme digests tissue and growth factors, and interferes with the normal healing process. Our goal is to design a cotton wound dressing that will sequester elastase or assist in reducing elastase activity in the presence of other blood proteins such as albumin. The ability of cotton and various cotton derivatives to sequester elastase and albumin has been studied by examining the adsorption of these two proteins separately. We undertook the present work to confirm the binding of albumin to cotton and to quantify the activity of elastase in the presence of various derivatives of cotton. We previously observed a slight increase in elastase activity when exposed to cotton. We also observed a continuous accumulation of albumin on cotton using high-performance liquid chromatography methods. In the present study, we used an open-column-absorption technique coupled with a colorimetric protein assay to confirm losses of albumin to cotton. We have also confirmed increased elastase activity after exposure to cotton. The results are discussed in relation to the porosity of cotton and the use of cotton for treating chronic non-healing wounds.

  5. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  6. Effect of nitrates on embryo induction efficiency in cotton (Gossypium ...

    African Journals Online (AJOL)

    Fred

    cotton species (Zhang, 1994b). Somatic embryogenesis and plant regeneration systems have been established from cotton tissue, protoplasts and ovules (Zhang and Li,. 1992; Feng and Zhang, 1994; Zhang, 1995). Regeneration procedures have been used to obtain genetically modified plants after Agrobacterium- ...

  7. Productivity and resource use in cotton and wheat relay intercropping

    NARCIS (Netherlands)

    Zhang, L.

    2007-01-01

    Keywords: Grain yield; lint yield; phenological delay; light use; nitrogen use; resource use efficiency; modelling; profitability; water productivity. From the early 1980s onwards, farmers in the Yellow River cotton producing region intercropped cotton and winter wheat; currently on more than 60% of

  8. Utilization of bio-waste cotton ( Gossypium hirsutum L.) stalks and ...

    African Journals Online (AJOL)

    ... three-layer particleboard containing different cotton (Gossypium hirsutum L.) stalks and underutilized paulownia (paulownia fortunie) wood particle ratios (30, 50 and 70%) using urea formaldehyde resin. Addition of cotton stalk and paulownia wood in particleboard improved mechanical properties of resulting composites ...

  9. An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation

    Science.gov (United States)

    Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika

    2018-01-01

    Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.

  10. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.

    Science.gov (United States)

    Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad

    2018-01-05

    Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Genetic and DNA methylation changes in cotton (Gossypium genotypes and tissues.

    Directory of Open Access Journals (Sweden)

    Kenji Osabe

    Full Text Available In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP assays including a methylation insensitive enzyme (BsiSI, and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC. DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  12. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.

    Science.gov (United States)

    Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W

    2014-01-01

    In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  13. Evaluation of cotton stalk hydrolysate for xylitol production.

    Science.gov (United States)

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-03

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.

  14. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2017-04-01

    Full Text Available Polyploidy plays a major role in genome evolution, which corresponds to environmental changes over millions of years. The mechanisms of genome evolution, particularly during the process of domestication, are of broad interest in the fields of plant science and crop breeding. Upland cotton is derived from the hybridization and polyploidization of its ancient A and D diploid ancestors. As a result, cotton is a model for polyploid genome evolution and crop domestication. To explore the genomic mysteries of allopolyploid cotton, we investigated asymmetric evolution and domestication in the A and D subgenomes. Interestingly, more structural rearrangements have been characterized in the A subgenome than in the D subgenome. Correspondingly, more transposable elements, a greater number of lost and disrupted genes, and faster evolution have been identified in the A subgenome. In contrast, the centromeric retroelement (RT-domain related sequence of tetraploid cotton derived from the D subgenome progenitor was found to have invaded the A subgenome centromeres after allotetrapolyploid formation. Although there is no genome-wide expression bias between the subgenomes, as with expression-level alterations, gene expression bias of homoeologous gene pairs is widespread and varies from tissue to tissue. Further, there are more positively selected genes for fiber yield and quality in the A subgenome and more for stress tolerance in the D subgenome, indicating asymmetric domestication. This review highlights the asymmetric subgenomic evolution and domestication of allotetraploid cotton, providing valuable genomic resources for cotton research and enhancing our understanding of the basis of many other allopolyploids.

  15. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Hu, Liangbing; Deshazer, Heather Dawn; Cui, Yi

    2010-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  16. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro

    2010-06-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  17. 76 FR 80278 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Science.gov (United States)

    2011-12-23

    ... challenge to the provisions of this rule. Regulatory Flexibility Act Pursuant to requirements set forth in... currently part of the official USDA cotton classification. Accurate assignment of leaf grade is of economic... cost factor associated with its removal. Furthermore, since small leaf particles cannot always be...

  18. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  19. TREE STEM AND CANOPY BIOMASS ESTIMATES FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Olofsson

    2017-10-01

    Full Text Available In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  20. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  1. Performance enhancement of a solar still using cotton regenerative medium

    Directory of Open Access Journals (Sweden)

    Thirumalai Gopal Sakthivel

    2017-01-01

    Full Text Available This paper presents the performance of a single slope solar still using cotton cloth regenerative medium. The performance was evaluated under the metrological conditions of Chennai city in India during the summer months of 2016. Two single-slope solar stills are fabricated with an effective area of 0.5 m2 with various thicknesses (2, 4, 6, and 8 mm of cotton cloth were used for the performance comparison. The results showed, the solar still with 6 mm thick cotton assisted regenerative solar still has about 28% improved productivity when compared to conventional solar still.

  2. Remediation of deltamethrin contaminated cotton fields: residual and adsorption assessment

    Directory of Open Access Journals (Sweden)

    Rafique Uzaira

    2016-01-01

    Full Text Available Pakistan occupies a significant global position in the growing of high quality cotton. The extensive application of pesticides on agricultural products leads to environmental risk due to toxic residues in air, water and soil. This study examined the chemodynamic effect of Deltamethrin on cotton fields. Samples were collected from the cotton fields of D.G. Khan, Pakistan and analyzed for heavy metal speciation patterns. Batch experiments were administered in order to study the adsorption of Deltamethrin in cotton fields. The effect of different factors including pH, adsorbate dose, and adsorbent mass on adsorption were studied. It was observed that in general, adsorption increased with increases in the mass of adsorbate, although the trends were irregular. Residual fractions of deltamethrin in the soil and water of cotton fields were analyzed to assess concentrations of xenobiotics bound to soil particles. Results indicated that such residues are significantly higher in soil samples due to high Koc in comparison to water, indicating the former is an efficient degradation agent. Results from the batch experiment resulted in 95% removal with alkaline pH and an adsorbent-adsorbate ratio of 250:1. These results may be used to environment friendly resource management policies.

  3. The relationship between reference canopy conductance and simplified hydraulic architecture

    Science.gov (United States)

    Novick, Kimberly; Oren, Ram; Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Katul, Gabriel

    2009-06-01

    Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.

  4. Association of Verde plant bug, Creontiades signatus (Hemiptera: Miridae), with cotton boll rot

    Science.gov (United States)

    Cotton along the Gulf Coast of south Texas has experienced loss from cotton boll rot especially during the last 10 to 15 years, and stink bugs and plant bugs (Hemiptera: Pentatomidae and Miridae) that feed on cotton bolls have been suspected in introducing the disease. A replicated grower field surv...

  5. Amplicon based RNA interference targeting V2 gene of cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants

    Science.gov (United States)

    An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...

  6. Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber

    Science.gov (United States)

    The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...

  7. Seed cotton yield, ionic and quality attributes of two cotton (Gossypium hirsutum L. varieties as influenced by various rates of K and Na under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail

    2011-11-01

    Full Text Available Cotton is more sensitive to low K availability than most other major field crops, and often shows symptoms of K deficiency in soils not considered K deficient. Field investigation was conducted at Sahiwal to study the effect of different rates of K and Na application on seed cotton yield, ionic ratio and quality characteristics of two cotton varieties. Ten soil K: Na ratios were developed after considering indigenous K, Na status in soil. The treatments of K+Na in kg ha-1 to give K:Na ratios were as: 210+ 60 (3.5:1 i.e. control, 225 + 60 (3.75:1, 240 + 60 (4:1, 255 + 60 (4.25:1, 270 + 60 (4.5:1, 210 + 75 (2.8:1, 225 + 75 (3:1, 240 + 75 (3.2:1, 255 + 75 (3.4:1 and 270 + 75 (3.6:1. Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Maximum seed cotton yield of NIBGE-2 was observed at K: Na ratio of 3.6:1. Variety NIBGE-2 manifested greater seed cotton yield than MNH-786. Leaf K: Na ratio of two cotton varieties differed significantly (p < 0.01 due to varieties, rates of K and Na and their interaction. Variety NIBGE-2 maintained higher K: Na ratio than MNH-786 and manifested good fiber quality. There was significant relationship (R2 = 0.55, n = 10 between K: Na ratio and fiber length and significant relationship (R2 = 0.65, n = 10 between K concentration and fiber length for NIBGE-2. There was also significant relationship (R2 = 0.91, 0.78, n = 10 between boll number and seed cotton yield for both varieties. The increase in yield was attributed to increased boll weight.

  8. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    Science.gov (United States)

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  9. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  10. Canopy interactions of rainfall in an off-shore mangrove ecosystem dominated by Rhizophora mangle (Belize)

    Science.gov (United States)

    Wanek, Wolfgang; Hofmann, Julia; Feller, Ilka C.

    2007-10-01

    SummaryBulk precipitation, throughfall and stemflow were collected to study anthropogenic effects on above-ground nutrient cycling in an off-shore mangrove forest ( Rhizophora mangle L.) on Twin Cays, Belize. Samples were collected in a nitrogen limited fringe and phosphorus limited dwarf zone, and from an adjacent nitrogen fertilized fringe and a phosphorus fertilized dwarf zone. Inorganic cations and anions, dissolved organic carbon (DOC) and nitrogen (DON) were analysed. Throughfall represented 84% of precipitation volume. Sea salt ions (Cl -, Na +, SO42- and Mg 2+) and DOC accounted for the highest proportion of solutes in rainwater, throughfall and stemflow in R. mangle stands. Non-marine sources dominated the flux of DON, DOC, NO3-, NH4+, and inorganic P (P i) in bulk precipitation and throughfall and partially contributed to Ca 2+ and K +. Deposition ratios (throughfall deposition:bulk deposition) showed that inorganic NH4+, and less so P i were retained in the canopy of R. mangle from throughfall while all other solutes increased. Canopy leaching contributed in increasing order to net throughfall of Ca 2+, Cl -, SO42-/K, Mg 2+ and Na + but dry deposition dominated the net throughfall flux during the investigated period. Fertilizer treatment and zone did only slightly affect solute concentrations of hot-water extracts of leaves, of throughfall and stemflow in stands of similar stature. While litterfall and primary production have previously been shown to increase substantially upon nutrient enrichment of mangroves we therefore conclude that fertilization, as a surrogate of anthropogenic eutrophication, may not increase nutrient leaching from mangrove canopies, and thus may only have a minor effect on soluble organic matter cycling and inputs into mangrove food webs.

  11. STUDY OF GENE FLOW FROM GM COTTON (Gossypium hirsutum VARIETIES IN “EL ESPINAL” (TOLIMA, COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2013-09-01

    Full Text Available In 2009, 4088 hectares of genetically modified (GM cotton were planted in Tolima (Colombia, however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise “Remolinos Inc.” located in El Espinal (Tolima were analyzed in the first half of 2010. The results indicated seeds mediated gene flow in 45 refuges (80,4 % and 26 fields with conventional cotton (96 %, besides a pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton.

  12. Correlation of Lipopolysaccharide Endotoxin Level in Cotton Dust with the Increase of TNFα Level and the Decline of Lung Function in Cotton Spinning Factory Workers

    Directory of Open Access Journals (Sweden)

    Fadilatus Sukma Ika Noviarmi

    2014-08-01

    Full Text Available Lipopolysaccharide (LPS endotoxin contained in cotton dust may cause airway inflammation and decline of lung function when inhaled, which eventually leads to respiratory symptoms. The objective of this research is to analyze the correlation of the exposure of LPS endotoxin in cotton dust with the increase of TNFα level and the decline of lung function after one day’s work. This study applies analytical observation method and prospective cohort approach. Main participants of this study were the workers of a cotton spinning factory located in Tulangan District, Sidoarjo Regency, East Java Province. Sixteen samples from cotton factory were taken as study group, and twenty three samples from village administrators were taken as control group. Data collection involves several techniques: spirometry, laboratory test, and interview. Results showed that concentration of personal dust has a significant relationship with the decline of FVC, %FVC, FEV1, and %FEV1, with Pearson correlation test showing p0.05. The research concludes that the level of LPS endotoxin was strongly related to the increase of blood serum TNFα and the decline of lung function. Development of more effective preventive measures such as stronger enforcement of worker’s health maintenance regulations and use of personal protective equipment is needed to ensure the best protection of cotton workers’ health.

  13. Plant science in forest canopies--the first 30 years of advances and challenges (1980-2010).

    Science.gov (United States)

    Lowman, Margaret D; Schowalter, Timothy D

    2012-04-01

    As an emerging subdiscipline of forest biology, canopy science has undergone a transition from observational, 'oh-wow' exploration to a more hypothesis-driven, experimental arena for rigorous field biology. Although efforts to explore forest canopies have occurred for a century, the new tools to access the treetops during the past 30 yr facilitated not only widespread exploration but also new discoveries about the complexity and global effects of this so-called 'eighth continent of the planet'. The forest canopy is the engine that fixes solar energy in carbohydrates to power interactions among forest components that, in turn, affect regional and global climate, biogeochemical cycling and ecosystem services. Climate change, biodiversity conservation, fresh water conservation, ecosystem productivity, and carbon sequestration represent important components of forest research that benefit from access to the canopy for rigorous study. Although some canopy variables can be observed or measured from the ground, vertical and horizontal variation in environmental conditions and processes within the canopy that determine canopy-atmosphere and canopy-forest floor interactions are best measured within the canopy. Canopy science has matured into a cutting-edge subset of forest research, and the treetops also serve as social and economic drivers for sustainable communities, fostering science education and ecotourism. This interdisciplinary context of forest canopy science has inspired innovative new approaches to environmental stewardship, involving diverse stakeholders. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  15. Chemical-Free Cotton Defoliation by; Mechanical, Flame and Laser Girdling

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2017-01-01

    Full Text Available A novel new way to achieve chemical-free defoliation of cotton is discussed. The research found that by severing the phloem tissue on the main stalk, via a girdling operation, the operation stimulated the cotton plant to alter its growth into an early senescence pathway that resulted in the plant shedding its leaves and opening up all its bolls, leaving the plant in the perfect state for machine harvesting. Even with follow-up rains, zero regrowth occurred in the treated plants, unlike the untreated control plots where significant regrowth did occur. This report compares the results of greenhouse and field trials where the girdling operation was performed by hand, flame, mechanical and via a CO2 laser to achieve phloem tissue severance. Design parameters for a prototype laser girdling system are also provided. Results suggest that for deficit irrigated cotton, girdling can provide an alternative means to defoliate cotton.

  16. Analysis Of The Reactivity Of Radpro Solution With Cotton Rags

    International Nuclear Information System (INIS)

    Marusich, R.M.

    2009-01-01

    Rags containing RadPro(reg s ign) solution will be generated during the decontamination of the Plutonium Finishing Plant (PFP). Under normal conditions, the rags will be neutralized with sodium carbonate prior to placing in the drums. The concern with RadPro solutions and cotton rags is that some of the RadPro solutions contain nitric acid. Under the right conditions, nitric acid and cotton rags exothermically react. The concern is, will RadPro solutions react with cotton rags exothermically? The potential for a runaway reaction for any of the RadPro solutions used was studied in Section 5.2 of PNNL-15410, Thermal Stability Studies of Candidate Decontamination Agents for Hanford's Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes. This report shows the thermal behavior of cotton rags having been saturated in one of the various neutralized and non-neutralized RadPro solutions. The thermal analysis was performed using thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Accelerating Rate Calorimetry (ARC).

  17. 77 FR 20503 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Science.gov (United States)

    2012-04-05

    ... measurements for other quality factors are performed by precise HVI measurements, manual determinations for.... Accurate assignment of leaf grade is of economic importance to all participants along the cotton supply... significant economic impact on a substantial number of small entities. Fees paid by users of the service are...

  18. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  19. Cotton, Prof. Frank Albert

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Fellowship. Fellow Profile. Elected: 1985 Honorary. Cotton, Prof. Frank Albert. Date of birth: 9 April 1930. Date of death: 20 February 2007. Last known address: Department of Chemistry, Texas A & M University, College Station, TX 77843, U.S.A..

  20. Crop canopy BRDF simulation and analysis using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.

    2006-01-01

    This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and

  1. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    Science.gov (United States)

    Chen, Tsu-Wei; Henke, Michael; de Visser, Pieter H B; Buck-Sorlin, Gerhard; Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2014-09-01

    Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (S(L)), mesophyll (M(L)), biochemical (B(L)) and light (L(L)) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. In the virtual cucumber canopy, B(L) and L(L) were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (S(L) + M(L)) contributed Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55%. Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to

  2. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  3. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid

    International Nuclear Information System (INIS)

    Ngo Vo Ke Thanh; Nguyen Thi Phuong Phong

    2009-01-01

    In this work, silver nanoparticles were prepared by polyol process with microwave heating and incorporated on cotton fabric surfaces. The antibacterial performance of the antibacterial cotton fabric was tested for different concentration of nano-sized silver colloid, contact time germs, and washing times. It was found that antibacterial activity increased with the increasing concentration of nano-sized silver colloid. The antibacterial fabric with 758 mg/kg of silver nanoparticles on surface cotton was highly effective in killing test bacteria and had excellent water resisting property.

  4. Preliminary assessments of portable color spectrophotometer measurements of cotton color

    Science.gov (United States)

    Cotton in the U.S. is classified for color with the Uster® High Volume Instrument (HVI), using the parameters Rd (diffuse reflectance) and +b (yellowness). It has been reported that some cotton bales, especially those transported overseas, appear to have changed significantly in color from their in...

  5. Statistical behavior of the tensile property of heated cotton fiber

    Science.gov (United States)

    The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...

  6. Sustainability in the supply chain of organic cotton

    OpenAIRE

    Retamiro, Wiliam; Silva, José Luis Gomes da; Vieira, Edson Trajano

    2013-01-01

    This article aims to diagnose the application of sustainability concepts in the economic, spatial,ecological, social, cultural and politics in the productive chain of cotton. Explains about the cotton industry is free from all pesticides and their use in the textile production chain, increasing the value of the input, as well as products derived from this. Analyzed by the method of case studywith a qualitative approach in a bibliographic and documentary through to the collection of data,their...

  7. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  8. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    Science.gov (United States)

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  9. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The multi-year effects of repeatedly growing cotton with moderate resistance to Meloidogyne incognita

    Science.gov (United States)

    Kemerait, Robert C.

    2009-01-01

    Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes. PMID:22661787

  11. Two-dimensional microclimate distribution within and above a crop canopy in an arid environment: Modeling and observational studies

    Science.gov (United States)

    Naot, O.; Mahrer, Y.

    1991-08-01

    A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered. The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients. Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.

  12. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  13. Measuring efficiency of cotton cultivation in Pakistan: a restricted production frontier study.

    Science.gov (United States)

    Watto, Muhammad Arif; Mugera, Amin

    2014-11-01

    Massive groundwater pumping for irrigation has started lowering water tables rapidly in different regions of Pakistan. Declining water tables have thus prompted research efforts to improve agricultural productivity and efficiency to make efficient use of scarce water resources. This study employs a restricted stochastic production frontier to estimate the level of, and factors affecting, technical efficiency of groundwater-irrigated cotton farms in the Punjab province of Pakistan. The mean technical efficiency estimates indicate substantial technical inefficiencies among cotton growers. On average, tube-well owners and water buyers can potentially increase cotton production by 19% and 28%, respectively, without increasing the existing input level. The most influential factors affecting technical efficiency positively are the use of improved quality seed, consultation with extension field staff and farmers' perceptions concerning the availability of groundwater resources for irrigation in the future. This study proposes that adopting improved seed for new cotton varieties and providing better extension services regarding cotton production technology would help to achieve higher efficiency in cotton farming. Within the context of falling water tables, educating farmers about the actual crop water requirements and guiding them about groundwater resource availability may also help to achieve higher efficiencies. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  14. Contrasting germination responses to vegetative canopies experienced in pre- vs. post-dispersal environments

    Science.gov (United States)

    Leverett, Lindsay D.; Auge, Gabriela A.; Bali, Aman; Donohue, Kathleen

    2016-01-01

    Background Seeds adjust their germination based on conditions experienced before and after dispersal. Post-dispersal cues are expected to be more accurate predictors of offspring environments, and thus offspring success, than pre-dispersal cues. Therefore, germination responses to conditions experienced during seed maturation may be expected to be superseded by responses to conditions experienced during seed imbibition. In taxa of disturbed habitats, neighbours frequently reduce the performance of germinants. This leads to the hypotheses that a vegetative canopy will reduce germination in such taxa, and that a vegetative canopy experienced during seed imbibition will over-ride germination responses to a canopy experienced during seed maturation, since it is a more proximal cue of immediate competition. These hypotheses were tested here in Arabidopsis thaliana. Methods Seeds were matured under a simulated canopy (green filter) or white light. Fresh (dormant) seeds were imbibed in the dark, white light or canopy at two temperatures (10 or 22 °C), and germination proportions were recorded. Germination was also recorded in after-ripened (less dormant) seeds that were induced into secondary dormancy and imbibed in the dark at each temperature, either with or without brief exposure to red and far-red light. Key Results Unexpectedly, a maturation canopy expanded the conditions that elicited germination, even as seeds lost and regained dormancy. In contrast, an imbibition canopy impeded or had no effect on germination. Maturation under a canopy did not modify germination responses to red and far-red light. Seed maturation under a canopy masked genetic variation in germination. Conclusions The results challenge the hypothesis that offspring will respond more strongly to their own environment than to that of their parents. The observed relaxation of germination requirements caused by a maturation canopy could be maladaptive for offspring by disrupting germination responses

  15. Non-bleaching heather method for improved whiteness of greige cotton

    Science.gov (United States)

    In accordance with the color space theory known as additive light mixing, the presence of dispersed blue-dyed fiber reduced the overall yellowness of a blended greige fiber and they were perceived as “whiter”. Various intimate blends of blue-dyed cotton fiber in greige cotton fiber were analyzed for...

  16. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  17. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  18. Composting of cotton wastes; Compostaje de residuos de algodon

    Energy Technology Data Exchange (ETDEWEB)

    Dobao, M.M.; Tejada, M.; Benitez, C.; Gonzalez, J.L.

    1997-12-31

    In this article a study on the composting process of residuals of cotton gin is presented crushed and not crushed, previous. The analysis of correlation gotten for each one of the treatments reveals that although common correlations between the parameters studied for both treatment exist, they are presented a great number of correlations between this parameters for the treatment of cotton crushed residuals. (Author) 11 refs.

  19. Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure

    Directory of Open Access Journals (Sweden)

    Jessica N. Hightower

    2014-11-01

    Full Text Available Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2 Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots from LiDAR-identified terraced (n = 150 and non-terraced (n = 150 areas on low (0°–10°, medium (10°–20°, and high (>20° slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage.

  20. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Janga, Madhusudhana R; Campbell, LeAnne M; Rathore, Keerti S

    2017-07-01

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.

  1. Finding the moral fiber: Why reform is urgently needed for a fair cotton trade

    OpenAIRE

    Pfeifer, K.; Kripke, G.; Alpert, E.

    2004-01-01

    Metadata only record US subsidies have led to depressed world cotton prices, which in turn have cost countries in Africa millions of dollars in lost export earnings. Oxfam estimates that sub-Saharan African countries lost $305 million due to US subsidies in crop year 2001. Because cotton is an important livelihood for millions of poor people, Oxfam believes action is urgently needed to reform the distortions in cotton trade that undermine the value of cotton to developing countries. The ce...

  2. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters

    Directory of Open Access Journals (Sweden)

    Sílvia N. M. Yanagi

    2011-12-01

    Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta

  3. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    International Nuclear Information System (INIS)

    Sievering, H.; Tomaszewski, T.; Torizzo, J.

    2007-01-01

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO 3 and NH 3 as well as inferred (NO x and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes ∼1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO 2 uptake) correlated with CNU. Multiple regression indicates ∼20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU

  4. Effect of canopy architectural variation on transpiration and thermoregulation

    Science.gov (United States)

    Linn, R.; Banerjee, T.

    2017-12-01

    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the

  5. Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico

    Directory of Open Access Journals (Sweden)

    Martha G. Rocha-Munive

    2018-06-01

    Full Text Available For more than 20 years cotton has been the most widely sown genetically modified (GM crop in Mexico. Its cultivation has fulfilled all requirements and has gone through the different regulatory stages. During the last 20 years, both research-institutions and biotech-companies have generated scientific and technical information regarding GM cotton cultivation in Mexico. In this work, we collected data in order to analyze the environmental and agronomic effects of the use of GM cotton in Mexico. In 1996, the introduction of Bt cotton made it possible to reactivate this crop, which in previous years was greatly reduced due to pest problems, production costs and environmental concerns. Bt cotton is a widely accepted tool for cotton producers and has proven to be efficient for the control of lepidopteran pests. The economic benefits of its use are variable, and depend on factors such as the international cotton-prices and other costs associated with its inputs. So far, the management strategies used to prevent development of insect resistance to GM cotton has been successful, and there are no reports of insect resistance development to Bt cotton in Mexico. In addition, no effects have been observed on non-target organisms. For herbicide tolerant cotton, the prevention of herbicide resistance has also been successful since unlike other countries, the onset of resistance weeds is still slow, apparently due to cultural practices and rotation of different herbicides. Environmental benefits have been achieved with a reduction in chemical insecticide applications and the subsequent decrease in primary pest populations, so that the inclusion of other technologies—e.g., use of non-Bt cotton- can be explored. Nevertheless, control measures need to be implemented during transport of the bolls and fiber to prevent dispersal of volunteer plants and subsequent gene flow to wild relatives distributed outside the GM cotton growing areas. It is still necessary to

  6. Vegetative growth response of cotton plants due to growth regulator supply via seeds

    Directory of Open Access Journals (Sweden)

    João Vitor Ferrari

    2015-08-01

    Full Text Available The global cotton industry is distinguished by its numerous industrial uses of the plume as well as by high production costs. Excessive vegetative growth can interfere negatively with productivity, and thus, applying growth regulators is essential for the development of the cotton culture. The objective of this study was to evaluate the development and yield of the cotton cultivar FMT 701 with the application of mepiquat chloride to seeds and leaves. The experimental design used a randomized block design with four replications, arranged in bands.The treatments consisted of mepiquat chloride rates (MC (0, 4, 6, 8 and 10 g a.i. kg-1 of seeds applied directly to the cotton seeds and MC management by foliar spray using a 250 mL ha-1 rates that was administered under the following conditions: divided into four applications (35, 45, 55 and 65 days after emergence; as a single application at 70 days; and without the application of the product. The mepiquat chloride applied to cotton seeds controls the initial plant height and stem diameter, while foliar application reduces the height of the plants. After application to seed, foliar spraying MC promotes increase mass of 20 bolls, however no direct influence amount bolls per plant and yield of cotton seed. Higher cotton seed yield was obtained with a rate of 3.4 g a.i. MC kg-1 seeds.

  7. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Science.gov (United States)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  8. Effects of the mutation of selected genes of cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of cotton leaf curl Multan betasatellite

    NARCIS (Netherlands)

    Iqbal, Z.; Sattar, M.N.; Kvarnheden, A.; Mansoor, S.; Briddon, R.W.

    2012-01-01

    Cotton leaf curl Kokhran virus (CLCuKoV) is a cotton-infecting monopartite begomovirus (family Geminiviridae). The effects of mutation of the coat protein (CP), V2, C2 and C4 genes of CLCuKoV on infectivity and symptoms in Nicotiana benthamiana were investigated. Each mutation introduced a premature

  9. Cotton/Wool Printing with Natural Dyes Nano-Particles

    OpenAIRE

    , D Maamoun; , H Osman; , SH Nassar

    2016-01-01

    In the present work, cotton/wool 50/50 blended fabric is printed via three natural dyes nanoparticles namely: turmeric, madder and rhubarb. Dye powder of the three plants was milled for 30 days after which it was exposed to ultrasound for 6 hours. Cotton/wool substrate is mordanted prior to printing process using two mordants separately: tartaric acid and potassium aluminium sulphate (alum). All parameters that are found to inşuence colour intensity as well as fastness levels of the prints ar...

  10. El Niño drought increased canopy turnover in Amazon forests.

    Science.gov (United States)

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  11. Canopy seed banks as time capsules of biodiversity in pasture-remnant tree crowns.

    Science.gov (United States)

    Nadkarni, Nalini M; Haber, Willam A

    2009-10-01

    Tropical pastures present multiple barriers to tree regeneration and restoration. Relict trees serve as "regeneration foci" because they ameliorate the soil microclimate and serve as safe spots for dispersers. Here, we describe another mechanism by which remnant trees may facilitate pasture regeneration: the presence of seed banks in the canopy soil that accumulates from decomposing epiphytes within the crowns of mature remnant trees in tropical cloud forest pastures. We compared seed banks of canopy soils (histosols derived from fallen leaves, fruits, flower, and twigs of host trees and epiphytes, dead bryophytes, bark, detritus, dead animals, and microorganisms, and dust that accumulate on trunks and the upper surfaces of large branches) in pastures, canopy soils in primary forest trees, and soil on the forest floor in Monteverde, Costa Rica. There were 5211 epiphytic and terrestrial plant seeds in the three habitats. All habitats were dominated by seeds in a relatively small number of plant families, most of which were primarily woody, animal pollinated, and animal dispersed. The density of seeds on the forest floor was greater than seed density in either pasture-canopy or forest-canopy soils; the latter two did not differ. Eight species in 44 families and 61 genera from all of the habitats were tallied. There were 37 species in the pasture-canopy soil, 33 in the forest-canopy soil, and 57 on the forest floor. Eleven species were common to all habitats. The mean species richness in the pasture canopy was significantly higher than the forest canopy (F =83.38; p banks of pasture trees can function as time capsules by providing propagules that are removed in both space and time from the primary forest. Their presence may enhance the ability of pastures to regenerate more quickly, reinforcing the importance of trees in agricultural settings.

  12. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals.

    Science.gov (United States)

    Gregory, Tremaine; Carrasco-Rueda, Farah; Alonso, Alfonso; Kolowski, Joseph; Deichmann, Jessica L

    2017-06-20

    Linear infrastructure development and resulting habitat fragmentation are expanding in Neotropical forests, and arboreal mammals may be disproportionately impacted by these linear habitat clearings. Maintaining canopy connectivity through preservation of connecting branches (i.e. natural canopy bridges) may help mitigate that impact. Using camera traps, we evaluated crossing rates of a pipeline right-of-way in a control area with no bridges and in a test area where 13 bridges were left by the pipeline construction company. Monitoring all canopy crossing points for a year (7,102 canopy camera nights), we confirmed bridge use by 25 mammal species from 12 families. With bridge use beginning immediately after exposure and increasing over time, use rates were over two orders of magnitude higher than on the ground. We also found a positive relationship between a bridge's use rate and the number of species that used it, suggesting well-used bridges benefit multiple species. Data suggest bridge use may be related to a combination of bridge branch connectivity, multiple connections, connectivity to adjacent forest, and foliage cover. Given the high use rate and minimal cost, we recommend all linear infrastructure projects in forests with arboreal mammal populations include canopy bridges.

  13. Efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    ... and Betsulfan at 3.2 l ha-1 recorded the highest and lowest yields, respectively. For effective control of cotton bollworms for maximum yield in the ecology, Thionex applied at 2.8 l ha-1 is recommended. Keywords: Control, cotton bollworms, efficacy, Ghana, synthetic insecticides. African Crop Science Journal, Vol. 20, No.

  14. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest

    Science.gov (United States)

    Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.

  15. THE PRE-PENUMBRAL MAGNETIC CANOPY IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    MacTaggart, David [School of Mathematics and Statistics University of Glasgow, Glasgow G12 8QW (United Kingdom); Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, via S. Sofia 78, I-95123 Catania (Italy)

    2016-11-01

    Penumbrae are the manifestation of magnetoconvection in highly inclined (to the vertical direction) magnetic field. The penumbra of a sunspot tends to form, initially, along the arc of the umbra antipodal to the main region of flux emergence. The question of how highly inclined magnetic field can concentrate along the antipodal curves of umbrae, at least initially, remains to be answered. Previous observational studies have suggested the existence of some form of overlying magnetic canopy that acts as the progenitor for penumbrae. We propose that such overlying magnetic canopies are a consequence of how the magnetic field emerges into the atmosphere and are, therefore, part of the emerging region. We show, through simulations of twisted flux tube emergence, that canopies of highly inclined magnetic field form preferentially at the required locations above the photosphere.

  16. Transmittance of young Norway spruce stand canopy for photosynthetically active radiation during the growing season

    International Nuclear Information System (INIS)

    Markova, I.; Kubasek, J.

    2013-01-01

    Analysis of transmittance of young Norway spruce stand canopy for photosynthetically active radiation (PAR) was made at the study site of Bily Kriz (the Moravian-Silesian Beskids Mts., the Czech Republic) at different sky conditions during the growing season in 2010. For the description of PAR transmittance different phenological phases of the spruce stand development in clear and overcast days were chosen. The mean daily PAR transmittance of the spruce canopy was significantly higher in overcast days compared with clear ones. Diffuse PAR thus penetrated into lower parts of the canopy more efficiently than direct one. PAR transmittance of young Norway spruce stand canopy was different in individual phenological phases of the spruce stand canopy which was caused by changes in the stand structure during the growing season. Thus monitoring of transmittance of young Norway spruce stand canopy for PAR can help to describe the development of spruce stand canopy

  17. Transcript mapping of Cotton leaf curl Burewala virus and its cognate betasatellite, Cotton leaf curl Multan betasatellite

    Directory of Open Access Journals (Sweden)

    Akbar Fazal

    2012-10-01

    Full Text Available Abstract Background Whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus are major limiting factors for the production of numerous dicotyledonous crops throughout the warmer regions of the world. In the Old World a small number of begomoviruses have genomes consisting of two components whereas the majority have single-component genomes. Most of the monopartite begomoviruses associate with satellite DNA molecules, the most important of which are the betasatellites. Cotton leaf curl disease (CLCuD is one of the major problems for cotton production on the Indian sub-continent. Across Pakistan, CLCuD is currently associated with a single begomovirus (Cotton leaf curl Burewala virus [CLCuBuV] and the cotton-specific betasatellite Cotton leaf curl Multan betasatellite (CLCuMuB, both of which have recombinant origins. Surprisingly, CLCuBuV lacks C2, one of the genes present in all previously characterized begomoviruses. Virus-specific transcripts have only been mapped for few begomoviruses, including one monopartite begomovirus that does not associate with betasatellites. Similarly, the transcripts of only two betasatellites have been mapped so far. The study described has investigated whether the recombination/mutation events involved in the evolution of CLCuBuV and its associated CLCuMuB have affected their transcription strategies. Results The major transcripts of CLCuBuV and its associated betasatellite (CLCuMuB from infected Nicotiana benthamiana plants have been determined. Two complementary-sense transcripts of ~1.7 and ~0.7 kb were identified for CLCuBuV. The ~1.7 kb transcript appears similar in position and size to that of several begomoviruses and likely directs the translation of C1 and C4 proteins. Both complementary-sense transcripts can potentially direct the translation of C2 and C3 proteins. A single virion-sense transcript of ~1 kb, suitable for translation of the V1 and V2 genes was identified. A predominant

  18. A comparison of hemorrhage control and hydrogen peroxide generation in commercial and cotton-based wound dressing materials

    Science.gov (United States)

    Nonwoven UltraCleanTM Cotton (highly cleaned and hydroentangled, greige cotton) retains the native wax and pectin content (~2%) of the cotton fiber traditionally removed from scoured and bleached cotton gauze, yet potentially affording wound healing properties. In vitro thromboelastography, hydrog...

  19. Combining ability analysis in intraspecific f/sub 1/ diallel cross of upland cotton

    International Nuclear Information System (INIS)

    Khan, S.A.; Khan, N.U.; Mohammad, F.

    2011-01-01

    The research work comprised of combining ability and genetic variability in a 6 X 6 F1 diallel cross which was carried out during crop seasons 2008 and 2009 at Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan. The parental genotypes (CIM-446, CIM-496, CIM-499, CIM-506, CIM-554 and CIM-707) were crossed in a complete diallel fashion during 2008. The 30 F1 hybrids and their parents were grown in a randomized complete block (RCB) design with three replications during 2009. Genotypes manifested significant (p less than or equal to 0.01) differences for days to first flowering, locules boll/sup -1/, seeds locule/sup -1/, lint % and seed cotton yield plant/sup -1/. The F1 hybrids showed significant increase over parents in mean values for all the traits. The correlation of seed cotton yield was significantly positive with majority of yield traits and negative with days to first flowering and lint %. Mean squares due to general (GCA) and specific combining ability (SCA) were highly significant for all the traits, except locules for GCA. Mean squares due to GCA were higher in magnitude than SCA for majority of the traits and their inheritance was mainly governed by additive type of gene action and partially by non-additive. Selection in such promising hybrids could be used in segregating generations, and also some specific cross combinations can be used for hybrid cotton production to increase the seed cotton yield. The best general combiners (CIM-446 and CIM-554) followed by CIM-496 and their utilization as one of the parents produced best specific F1 hybrids (CIM-446 X CIM-499, CIM-446 X CIM-554, CIM-496 X CIM-707 and CIM-506 X CIM-554) having valuable SCA determination and remarkable mean performance for most of the traits. Reciprocal crosses having prominent maternal effects also involved one of the general combiners for majority of the traits. The promising hybrids also exhibited earliness through which the crop can escape from pests attack and soil can

  20. Effects of the irradiation in seeds of cotton

    International Nuclear Information System (INIS)

    Araujo, Ana Leticia; Arthur, Paula Bergamin; Arthur, Valter; Franco, Camilo Flamorion de Oliveira

    2017-01-01

    The experiment aimed to verify if seeds of cotton of variety FiberMax FM 993, irradiated with the doses of 0 (test); 25; 50; 75; 100 Gy can induce the production increase in cotton culture. For all treatments with irradiation, was used a source of cobalt-60, type Gammacell 220. After the irradiation, the seeds were planted in the experimental field of the Department of Plant Production ESALQ-USP, Piracicaba-SP. The experimental design was randomized blocks with four replications and 60 g of seed were used for each repetition, the rows were 5m and the spacing of 0.90m, using randomized blocks and rows of edging. After planting the final height and productivity were evaluated. The obtained data were statistically analyzed in the Tukey test at 5% level of probability. From the results obtained, it was concluded that the dose of 50Gy was the one that induced a greater production of cotton. (author)