Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding
Mahmoud, Saad; Hi, Jianjun
2012-01-01
The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of
Directory of Open Access Journals (Sweden)
H. Prashantha Kumar
2011-09-01
Full Text Available Low density parity check (LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical Shannon limit for a memory less channel. LDPC codes are finding increasing use in applications like LTE-Networks, digital television, high density data storage systems, deep space communication systems etc. Several algebraic and combinatorial methods are available for constructing LDPC codes. In this paper we discuss a novel low complexity algebraic method for constructing regular LDPC like codes derived from full rank codes. We demonstrate that by employing these codes over AWGN channels, coding gains in excess of 2dB over un-coded systems can be realized when soft iterative decoding using a parity check tree is employed.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Quasi Cyclic Low Density Parity Check Code for High SNR Data Transfer
Directory of Open Access Journals (Sweden)
M. R. Islam
2010-06-01
Full Text Available An improved Quasi Cyclic Low Density Parity Check code (QC-LDPC is proposed to reduce the complexity of the Low Density Parity Check code (LDPC while obtaining the similar performance. The proposed QC-LDPC presents an improved construction at high SNR with circulant sub-matrices. The proposed construction yields a performance gain of about 1 dB at a 0.0003 bit error rate (BER and it is tested on 4 different decoding algorithms. Proposed QC-LDPC is compared with the existing QC-LDPC and the simulation results show that the proposed approach outperforms the existing one at high SNR. Simulations are also performed varying the number of horizontal sub matrices and the results show that the parity check matrix with smaller horizontal concatenation shows better performance.
Statistical mechanics of low-density parity-check codes
Energy Technology Data Exchange (ETDEWEB)
Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 2268502 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)
2004-02-13
We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)
Statistical mechanics of low-density parity-check codes
International Nuclear Information System (INIS)
Kabashima, Yoshiyuki; Saad, David
2004-01-01
We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)
Performance of Low-Density Parity-Check Coded Modulation
Hamkins, Jon
2010-01-01
This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.
Quantum quasi-cyclic low-density parity-check error-correcting codes
International Nuclear Information System (INIS)
Yuan, Li; Gui-Hua, Zeng; Lee, Moon Ho
2009-01-01
In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated. (general)
Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage
Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo
2005-01-01
Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.
Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes
Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman
2011-01-01
Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...
Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation
Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie
2009-01-01
In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.
Entanglement-assisted quantum quasicyclic low-density parity-check codes
Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor
2009-03-01
We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.
Directory of Open Access Journals (Sweden)
Du Bing
2010-01-01
Full Text Available A recently developed theory suggests that network coding is a generalization of source coding and channel coding and thus yields a significant performance improvement in terms of throughput and spatial diversity. This paper proposes a cooperative design of a parity-check network coding scheme in the context of a two-source multiple access relay channel (MARC model, a common compact model in hierarchical wireless sensor networks (WSNs. The scheme uses Low-Density Parity-Check (LDPC as the surrogate to build up a layered structure which encapsulates the multiple constituent LDPC codes in the source and relay nodes. Specifically, the relay node decodes the messages from two sources, which are used to generate extra parity-check bits by a random network coding procedure to fill up the rate gap between Source-Relay and Source-Destination transmissions. Then, we derived the key algebraic relationships among multidimensional LDPC constituent codes as one of the constraints for code profile optimization. These extra check bits are sent to the destination to realize a cooperative diversity as well as to approach MARC decode-and-forward (DF capacity.
An FPGA Implementation of (3,6-Regular Low-Density Parity-Check Code Decoder
Directory of Open Access Journals (Sweden)
Tong Zhang
2003-05-01
Full Text Available Because of their excellent error-correcting performance, low-density parity-check (LDPC codes have recently attracted a lot of attention. In this paper, we are interested in the practical LDPC code decoder hardware implementations. The direct fully parallel decoder implementation usually incurs too high hardware complexity for many real applications, thus partly parallel decoder design approaches that can achieve appropriate trade-offs between hardware complexity and decoding throughput are highly desirable. Applying a joint code and decoder design methodology, we develop a high-speed (3,k-regular LDPC code partly parallel decoder architecture based on which we implement a 9216-bit, rate-1/2(3,6-regular LDPC code decoder on Xilinx FPGA device. This partly parallel decoder supports a maximum symbol throughput of 54 Mbps and achieves BER 10Ã¢ÂˆÂ’6 at 2 dB over AWGN channel while performing maximum 18 decoding iterations.
Simulasi Low Density Parity Check (Ldpc) dengan Standar Dvb-t2
Kurniawan, Yusuf; Hafizh, Idham
2014-01-01
Artikel ini berisi implementasi simulasi encoding-decoding yang dilakukanpada suatu sampel data biner acak sesuai dengan standar yang digunakanpada Digital Video Broadcasting – Terrestrial 2nd Generation (DVB-T2),dengan menggunakan MATLAB. Low Density Parity Check (LDPC)digunakan dalam proses encoding-decoding sebagai fitur untuk melakukankoreksi kesalahan pada saat pengiriman data. Modulasi yang digunakandalam simulasi adalah BPSK dengan model kanal AWGN. Dalam simulasitersebut, diperbanding...
Entanglement-assisted quantum low-density parity-check codes
International Nuclear Information System (INIS)
Fujiwara, Yuichiro; Clark, David; Tonchev, Vladimir D.; Vandendriessche, Peter; De Boeck, Maarten
2010-01-01
This article develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error-correction performance, high rates, and low decoding complexity. The proposed method produces several infinite families of codes with a wide variety of parameters and entanglement requirements. Our framework encompasses the previously known entanglement-assisted quantum LDPC codes having the best error-correction performance and many other codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.
Directory of Open Access Journals (Sweden)
Valérian Mannoni
2004-09-01
Full Text Available This paper deals with optimized channel coding for OFDM transmissions (COFDM over frequency-selective channels using irregular low-density parity-check (LDPC codes. Firstly, we introduce a new characterization of the LDPC code irregularity called Ã‚Â“irregularity profile.Ã‚Â” Then, using this parameterization, we derive a new criterion based on the minimization of the transmission bit error probability to design an irregular LDPC code suited to the frequency selectivity of the channel. The optimization of this criterion is done using the Gaussian approximation technique. Simulations illustrate the good performance of our approach for different transmission channels.
Typical performance of regular low-density parity-check codes over general symmetric channels
International Nuclear Information System (INIS)
Tanaka, Toshiyuki; Saad, David
2003-01-01
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models
Typical performance of regular low-density parity-check codes over general symmetric channels
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Toshiyuki [Department of Electronics and Information Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Saad, David [Neural Computing Research Group, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)
2003-10-31
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.
Double-Layer Low-Density Parity-Check Codes over Multiple-Input Multiple-Output Channels
Directory of Open Access Journals (Sweden)
Yun Mao
2012-01-01
Full Text Available We introduce a double-layer code based on the combination of a low-density parity-check (LDPC code with the multiple-input multiple-output (MIMO system, where the decoding can be done in both inner-iteration and outer-iteration manners. The present code, called low-density MIMO code (LDMC, has a double-layer structure, that is, one layer defines subcodes that are embedded in each transmission vector and another glues these subcodes together. It supports inner iterations inside the LDPC decoder and outeriterations between detectors and decoders, simultaneously. It can also achieve the desired design rates due to the full rank of the deployed parity-check matrix. Simulations show that the LDMC performs favorably over the MIMO systems.
Quantum Kronecker sum-product low-density parity-check codes with finite rate
Kovalev, Alexey A.; Pryadko, Leonid P.
2013-07-01
We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.
Joint nonbinary low-density parity-check codes and modulation diversity over fading channels
Shi, Zhiping; Li, Tiffany Jing; Zhang, Zhongpei
2010-09-01
A joint exploitation of coding and diversity techniques to achieve efficient, reliable wireless transmission is considered. The system comprises a powerful non-binary low-density parity-check (LDPC) code that will be soft-decoded to supply strong error protection, a quadratic amplitude modulator (QAM) that directly takes in the non-binary LDPC symbols and a modulation diversity operator that will provide power- and bandwidth-efficient diversity gain. By relaxing the rate of the modulation diversity rotation matrices to below 1, we show that a better rate allocation can be arranged between the LDPC codes and the modulation diversity, which brings significant performance gain over previous systems. To facilitate the design and evaluation of the relaxed modulation diversity rotation matrices, based on a set of criteria, three practical design methods are given and their point pairwise error rate are analyzed. With EXIT chart, we investigate the convergence between demodulator and decoder.A rate match method is presented based on EXIT analysis. Through analysis and simulations, we show that our strategies are very effective in combating random fading and strong noise on fading channels.
Photonic circuits for iterative decoding of a class of low-density parity-check codes
International Nuclear Information System (INIS)
Pavlichin, Dmitri S; Mabuchi, Hideo
2014-01-01
Photonic circuits in which stateful components are coupled via guided electromagnetic fields are natural candidates for resource-efficient implementation of iterative stochastic algorithms based on propagation of information around a graph. Conversely, such message=passing algorithms suggest novel circuit architectures for signal processing and computation that are well matched to nanophotonic device physics. Here, we construct and analyze a quantum optical model of a photonic circuit for iterative decoding of a class of low-density parity-check (LDPC) codes called expander codes. Our circuit can be understood as an open quantum system whose autonomous dynamics map straightforwardly onto the subroutines of an LDPC decoding scheme, with several attractive features: it can operate in the ultra-low power regime of photonics in which quantum fluctuations become significant, it is robust to noise and component imperfections, it achieves comparable performance to known iterative algorithms for this class of codes, and it provides an instructive example of how nanophotonic cavity quantum electrodynamic components can enable useful new information technology even if the solid-state qubits on which they are based are heavily dephased and cannot support large-scale entanglement. (paper)
Discussion on LDPC Codes and Uplink Coding
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.
Ni, Jianjun David
2011-01-01
This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.
Spatially coupled LDPC coding in cooperative wireless networks
Jayakody, D.N.K.; Skachek, V.; Chen, B.
2016-01-01
This paper proposes a novel technique of spatially coupled low-density parity-check (SC-LDPC) code-based soft forwarding relaying scheme for a two-way relay system. We introduce an array-based optimized SC-LDPC codes in relay channels. A more precise model is proposed to characterize the residual
Construction of Short-length High-rates Ldpc Codes Using Difference Families
Deny Hamdani; Ery Safrianti
2007-01-01
Low-density parity-check (LDPC) code is linear-block error-correcting code defined by sparse parity-check matrix. It isdecoded using the massage-passing algorithm, and in many cases, capable of outperforming turbo code. This paperpresents a class of low-density parity-check (LDPC) codes showing good performance with low encoding complexity.The code is constructed using difference families from combinatorial design. The resulting code, which is designed tohave short code length and high code r...
On Analyzing LDPC Codes over Multiantenna MC-CDMA System
Directory of Open Access Journals (Sweden)
S. Suresh Kumar
2014-01-01
Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.
Weight Distribution for Non-binary Cluster LDPC Code Ensemble
Nozaki, Takayuki; Maehara, Masaki; Kasai, Kenta; Sakaniwa, Kohichi
In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist $(2,d_c)$-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.
Construction of LDPC codes over GF(q) with modified progressive edge growth
Institute of Scientific and Technical Information of China (English)
CHEN Xin; MEN Ai-dong; YANG Bo; QUAN Zi-yi
2009-01-01
A parity check matrix construction method for constructing a low-density parity-check (LDPC) codes over GF(q) (q>2) based on the modified progressive edge growth (PEG) algorithm is introduced. First, the nonzero locations of the parity check matrix are selected using the PEG algorithm. Then the nonzero elements are defined by avoiding the definition of subcode. A proof is given to show the good minimum distance property of constructed GF(q)-LDPC codes. Simulations are also presented to illustrate the good error performance of the designed codes.
Multiple LDPC decoding for distributed source coding and video coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Luong, Huynh Van; Huang, Xin
2011-01-01
Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate...... (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental...
Interleaved Product LDPC Codes
Baldi, Marco; Cancellieri, Giovanni; Chiaraluce, Franco
2011-01-01
Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.
Protograph LDPC Codes for the Erasure Channel
Pollara, Fabrizio; Dolinar, Samuel J.; Divsalar, Dariush
2006-01-01
This viewgraph presentation reviews the use of protograph Low Density Parity Check (LDPC) codes for erasure channels. A protograph is a Tanner graph with a relatively small number of nodes. A "copy-and-permute" operation can be applied to the protograph to obtain larger derived graphs of various sizes. For very high code rates and short block sizes, a low asymptotic threshold criterion is not the best approach to designing LDPC codes. Simple protographs with much regularity and low maximum node degrees appear to be the best choices Quantized-rateless protograph LDPC codes can be built by careful design of the protograph such that multiple puncturing patterns will still permit message passing decoding to proceed
Structured LDPC Codes over Integer Residue Rings
Directory of Open Access Journals (Sweden)
Marc A. Armand
2008-07-01
Full Text Available This paper presents a new class of low-density parity-check (LDPC codes over Ã¢Â„Â¤2a represented by regular, structured Tanner graphs. These graphs are constructed using Latin squares defined over a multiplicative group of a Galois ring, rather than a finite field. Our approach yields codes for a wide range of code rates and more importantly, codes whose minimum pseudocodeword weights equal their minimum Hamming distances. Simulation studies show that these structured codes, when transmitted using matched signal sets over an additive-white-Gaussian-noise channel, can outperform their random counterparts of similar length and rate.
Structured LDPC Codes over Integer Residue Rings
Directory of Open Access Journals (Sweden)
Mo Elisa
2008-01-01
Full Text Available Abstract This paper presents a new class of low-density parity-check (LDPC codes over represented by regular, structured Tanner graphs. These graphs are constructed using Latin squares defined over a multiplicative group of a Galois ring, rather than a finite field. Our approach yields codes for a wide range of code rates and more importantly, codes whose minimum pseudocodeword weights equal their minimum Hamming distances. Simulation studies show that these structured codes, when transmitted using matched signal sets over an additive-white-Gaussian-noise channel, can outperform their random counterparts of similar length and rate.
LDPC Codes--Structural Analysis and Decoding Techniques
Zhang, Xiaojie
2012-01-01
Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…
Rate-Compatible Protograph LDPC Codes
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods resulting in rate-compatible low density parity-check (LDPC) codes built from protographs. Described digital coding methods start with a desired code rate and a selection of the numbers of variable nodes and check nodes to be used in the protograph. Constraints are set to satisfy a linear minimum distance growth property for the protograph. All possible edges in the graph are searched for the minimum iterative decoding threshold and the protograph with the lowest iterative decoding threshold is selected. Protographs designed in this manner are used in decode and forward relay channels.
Xiong, Chenrong; Yan, Zhiyuan
2014-10-01
Non-binary low-density parity-check (LDPC) codes have some advantages over their binary counterparts, but unfortunately their decoding complexity is a significant challenge. The iterative hard- and soft-reliability based majority-logic decoding algorithms are attractive for non-binary LDPC codes, since they involve only finite field additions and multiplications as well as integer operations and hence have significantly lower complexity than other algorithms. In this paper, we propose two improvements to the majority-logic decoding algorithms. Instead of the accumulation of reliability information in the existing majority-logic decoding algorithms, our first improvement is a new reliability information update. The new update not only results in better error performance and fewer iterations on average, but also further reduces computational complexity. Since existing majority-logic decoding algorithms tend to have a high error floor for codes whose parity check matrices have low column weights, our second improvement is a re-selection scheme, which leads to much lower error floors, at the expense of more finite field operations and integer operations, by identifying periodic points, re-selecting intermediate hard decisions, and changing reliability information.
Implementation of Layered Decoding Architecture for LDPC Code using Layered Min-Sum Algorithm
Sandeep Kakde; Atish Khobragade; Shrikant Ambatkar; Pranay Nandanwar
2017-01-01
For binary field and long code lengths, Low Density Parity Check (LDPC) code approaches Shannon limit performance. LDPC codes provide remarkable error correction performance and therefore enlarge the design space for communication systems.In this paper, we have compare different digital modulation techniques and found that BPSK modulation technique is better than other modulation techniques in terms of BER. It also gives error performance of LDPC decoder over AWGN channel using Min-Sum algori...
QC-LDPC code-based cryptography
Baldi, Marco
2014-01-01
This book describes the fundamentals of cryptographic primitives based on quasi-cyclic low-density parity-check (QC-LDPC) codes, with a special focus on the use of these codes in public-key cryptosystems derived from the McEliece and Niederreiter schemes. In the first part of the book, the main characteristics of QC-LDPC codes are reviewed, and several techniques for their design are presented, while tools for assessing the error correction performance of these codes are also described. Some families of QC-LDPC codes that are best suited for use in cryptography are also presented. The second part of the book focuses on the McEliece and Niederreiter cryptosystems, both in their original forms and in some subsequent variants. The applicability of QC-LDPC codes in these frameworks is investigated by means of theoretical analyses and numerical tools, in order to assess their benefits and drawbacks in terms of system efficiency and security. Several examples of QC-LDPC code-based public key cryptosystems are prese...
Construction of Short-Length High-Rates LDPC Codes Using Difference Families
Directory of Open Access Journals (Sweden)
Deny Hamdani
2010-10-01
Full Text Available Low-density parity-check (LDPC code is linear-block error-correcting code defined by sparse parity-check matrix. It is decoded using the massage-passing algorithm, and in many cases, capable of outperforming turbo code. This paper presents a class of low-density parity-check (LDPC codes showing good performance with low encoding complexity. The code is constructed using difference families from combinatorial design. The resulting code, which is designed to have short code length and high code rate, can be encoded with low complexity due to its quasi-cyclic structure, and performs well when it is iteratively decoded with the sum-product algorithm. These properties of LDPC code are quite suitable for applications in future wireless local area network.
Codeword Structure Analysis for LDPC Convolutional Codes
Directory of Open Access Journals (Sweden)
Hua Zhou
2015-12-01
Full Text Available The codewords of a low-density parity-check (LDPC convolutional code (LDPC-CC are characterised into structured and non-structured. The number of the structured codewords is dominated by the size of the polynomial syndrome former matrix H T ( D , while the number of the non-structured ones depends on the particular monomials or polynomials in H T ( D . By evaluating the relationship of the codewords between the mother code and its super codes, the low weight non-structured codewords in the super codes can be eliminated by appropriately choosing the monomials or polynomials in H T ( D , resulting in improved distance spectrum of the mother code.
Pilotless Frame Synchronization Using LDPC Code Constraints
Jones, Christopher; Vissasenor, John
2009-01-01
A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.
Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits
Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry
We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.
Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding
Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.
2016-03-01
In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.
LDPC coded OFDM over the atmospheric turbulence channel.
Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A
2007-05-14
Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).
Directory of Open Access Journals (Sweden)
Yan Zhang
2015-01-01
Full Text Available This paper presents four different integer sequences to construct quasi-cyclic low-density parity-check (QC-LDPC codes with mathematical theory. The paper introduces the procedure of the coding principle and coding. Four different integer sequences constructing QC-LDPC code are compared with LDPC codes by using PEG algorithm, array codes, and the Mackey codes, respectively. Then, the integer sequence QC-LDPC codes are used in coded cooperative communication. Simulation results show that the integer sequence constructed QC-LDPC codes are effective, and overall performance is better than that of other types of LDPC codes in the coded cooperative communication. The performance of Dayan integer sequence constructed QC-LDPC is the most excellent performance.
The application of LDPC code in MIMO-OFDM system
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Enhancement of Unequal Error Protection Properties of LDPC Codes
Directory of Open Access Journals (Sweden)
Poulliat Charly
2007-01-01
Full Text Available It has been widely recognized in the literature that irregular low-density parity-check (LDPC codes exhibit naturally an unequal error protection (UEP behavior. In this paper, we propose a general method to emphasize and control the UEP properties of LDPC codes. The method is based on a hierarchical optimization of the bit node irregularity profile for each sensitivity class within the codeword by maximizing the average bit node degree while guaranteeing a minimum degree as high as possible. We show that this optimization strategy is efficient, since the codes that we optimize show better UEP capabilities than the codes optimized for the additive white Gaussian noise channel.
Multilevel LDPC Codes Design for Multimedia Communication CDMA System
Directory of Open Access Journals (Sweden)
Hou Jia
2004-01-01
Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.
Performance analysis of LDPC codes on OOK terahertz wireless channels
International Nuclear Information System (INIS)
Liu Chun; Wang Chang; Cao Jun-Cheng
2016-01-01
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. (paper)
DNA Barcoding through Quaternary LDPC Codes.
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).
DNA Barcoding through Quaternary LDPC Codes.
Directory of Open Access Journals (Sweden)
Elizabeth Tapia
Full Text Available For many parallel applications of Next-Generation Sequencing (NGS technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH or have intrinsic poor error correcting abilities (Hamming. Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9 at the expense of a rate of read losses just in the order of 10(-6.
Performance Analysis of Iterative Decoding Algorithms for PEG LDPC Codes in Nakagami Fading Channels
Directory of Open Access Journals (Sweden)
O. Al Rasheed
2013-11-01
Full Text Available In this paper we give a comparative analysis of decoding algorithms of Low Density Parity Check (LDPC codes in a channel with the Nakagami distribution of the fading envelope. We consider the Progressive Edge-Growth (PEG method and Improved PEG method for the parity check matrix construction, which can be used to avoid short girths, small trapping sets and a high level of error floor. A comparative analysis of several classes of LDPC codes in various propagation conditions and decoded using different decoding algorithms is also presented.
Wu, Menglong; Han, Dahai; Zhang, Xiang; Zhang, Feng; Zhang, Min; Yue, Guangxin
2014-03-10
We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10(-3)bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.
Bilayer expurgated LDPC codes with uncoded relaying
Directory of Open Access Journals (Sweden)
Md. Noor-A-Rahim
2017-08-01
Full Text Available Bilayer low-density parity-check (LDPC codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uncoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.
LDPC code decoding adapted to the precoded partial response magnetic recording channels
International Nuclear Information System (INIS)
Lee, Jun; Kim, Kyuyong; Lee, Jaejin; Yang, Gijoo
2004-01-01
We propose a signal processing technique using LDPC (low-density parity-check) code instead of PRML (partial response maximum likelihood) system for the longitudinal magnetic recording channel. The scheme is designed by the precoder admitting level detection at the receiver-end and modifying the likelihood function for LDPC code decoding. The scheme can be collaborated with other decoder for turbo-like systems. The proposed algorithm can contribute to improve the performance of the conventional turbo-like systems
LDPC code decoding adapted to the precoded partial response magnetic recording channels
Energy Technology Data Exchange (ETDEWEB)
Lee, Jun E-mail: leejun28@sait.samsung.co.kr; Kim, Kyuyong; Lee, Jaejin; Yang, Gijoo
2004-05-01
We propose a signal processing technique using LDPC (low-density parity-check) code instead of PRML (partial response maximum likelihood) system for the longitudinal magnetic recording channel. The scheme is designed by the precoder admitting level detection at the receiver-end and modifying the likelihood function for LDPC code decoding. The scheme can be collaborated with other decoder for turbo-like systems. The proposed algorithm can contribute to improve the performance of the conventional turbo-like systems.
Error floor behavior study of LDPC codes for concatenated codes design
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Performance Analysis of Faulty Gallager-B Decoding of QC-LDPC Codes with Applications
Directory of Open Access Journals (Sweden)
O. Al Rasheed
2014-06-01
Full Text Available In this paper we evaluate the performance of Gallager-B algorithm, used for decoding low-density parity-check (LDPC codes, under unreliable message computation. Our analysis is restricted to LDPC codes constructed from circular matrices (QC-LDPC codes. Using Monte Carlo simulation we investigate the effects of different code parameters on coding system performance, under a binary symmetric communication channel and independent transient faults model. One possible application of the presented analysis in designing memory architecture with unreliable components is considered.
Design LDPC Codes without Cycles of Length 4 and 6
Directory of Open Access Journals (Sweden)
Kiseon Kim
2008-04-01
Full Text Available We present an approach for constructing LDPC codes without cycles of length 4 and 6. Firstly, we design 3 submatrices with different shifting functions given by the proposed schemes, then combine them into the matrix specified by the proposed approach, and, finally, expand the matrix into a desired parity-check matrix using identity matrices and cyclic shift matrices of the identity matrices. The simulation result in AWGN channel verifies that the BER of the proposed code is close to those of Mackay's random codes and Tanner's QC codes, and the good BER performance of the proposed can remain at high code rates.
Bounded-Angle Iterative Decoding of LDPC Codes
Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2009-01-01
Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).
Mutiple LDPC Decoding using Bitplane Correlation for Transform Domain Wyner-Ziv Video Coding
DEFF Research Database (Denmark)
Luong, Huynh Van; Huang, Xin; Forchhammer, Søren
2011-01-01
Distributed video coding (DVC) is an emerging video coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. This paper considers a Low Density Parity Check (LDPC) based Transform Domain Wyner-Ziv (TDWZ) video...... codec. To improve the LDPC coding performance in the context of TDWZ, this paper proposes a Wyner-Ziv video codec using bitplane correlation through multiple parallel LDPC decoding. The proposed scheme utilizes inter bitplane correlation to enhance the bitplane decoding performance. Experimental results...
Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-07-07
Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.
Improved Design of Unequal Error Protection LDPC Codes
Directory of Open Access Journals (Sweden)
Sandberg Sara
2010-01-01
Full Text Available We propose an improved method for designing unequal error protection (UEP low-density parity-check (LDPC codes. The method is based on density evolution. The degree distribution with the best UEP properties is found, under the constraint that the threshold should not exceed the threshold of a non-UEP code plus some threshold offset. For different codeword lengths and different construction algorithms, we search for good threshold offsets for the UEP code design. The choice of the threshold offset is based on the average a posteriori variable node mutual information. Simulations reveal the counter intuitive result that the short-to-medium length codes designed with a suitable threshold offset all outperform the corresponding non-UEP codes in terms of average bit-error rate. The proposed codes are also compared to other UEP-LDPC codes found in the literature.
Fast QC-LDPC code for free space optical communication
Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong
2017-02-01
Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.
Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-03-01
A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain ( NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate ( BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.
Constructing LDPC Codes from Loop-Free Encoding Modules
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth
2009-01-01
A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to
Transmission over UWB channels with OFDM system using LDPC coding
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
New Technique for Improving Performance of LDPC Codes in the Presence of Trapping Sets
Directory of Open Access Journals (Sweden)
Mohamed Adnan Landolsi
2008-06-01
Full Text Available Trapping sets are considered the primary factor for degrading the performance of low-density parity-check (LDPC codes in the error-floor region. The effect of trapping sets on the performance of an LDPC code becomes worse as the code size decreases. One approach to tackle this problem is to minimize trapping sets during LDPC code design. However, while trapping sets can be reduced, their complete elimination is infeasible due to the presence of cycles in the underlying LDPC code bipartite graph. In this work, we introduce a new technique based on trapping sets neutralization to minimize the negative effect of trapping sets under belief propagation (BP decoding. Simulation results for random, progressive edge growth (PEG and MacKay LDPC codes demonstrate the effectiveness of the proposed technique. The hardware cost of the proposed technique is also shown to be minimal.
Using LDPC Code Constraints to Aid Recovery of Symbol Timing
Jones, Christopher; Villasnor, John; Lee, Dong-U; Vales, Esteban
2008-01-01
A method of utilizing information available in the constraints imposed by a low-density parity-check (LDPC) code has been proposed as a means of aiding the recovery of symbol timing in the reception of a binary-phase-shift-keying (BPSK) signal representing such a code in the presence of noise, timing error, and/or Doppler shift between the transmitter and the receiver. This method and the receiver architecture in which it would be implemented belong to a class of timing-recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. Acquisition and tracking of a signal of the type described above have traditionally been performed upstream of, and independently of, decoding and have typically involved utilization of a phase-locked loop (PLL). However, the LDPC decoding process, which is iterative, provides information that can be fed back to the timing-recovery receiver circuits to improve performance significantly over that attainable in the absence of such feedback. Prior methods of coupling LDPC decoding with timing recovery had focused on the use of output code words produced as the iterations progress. In contrast, in the present method, one exploits the information available from the metrics computed for the constraint nodes of an LDPC code during the decoding process. In addition, the method involves the use of a waveform model that captures, better than do the waveform models of the prior methods, distortions introduced by receiver timing errors and transmitter/ receiver motions. An LDPC code is commonly represented by use of a bipartite graph containing two sets of nodes. In the graph corresponding to an (n,k) code, the n variable nodes correspond to the code word symbols and the n-k constraint nodes represent the constraints that the code places on the variable nodes in order for them to form a valid code word. The decoding procedure involves iterative computation
Spatially coupled low-density parity-check error correction for holographic data storage
Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro
2017-09-01
The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.
Encoding of QC-LDPC Codes of Rank Deficient Parity Matrix
Directory of Open Access Journals (Sweden)
Mohammed Kasim Mohammed Al-Haddad
2016-05-01
Full Text Available the encoding of long low density parity check (LDPC codes presents a challenge compared to its decoding. The Quasi Cyclic (QC LDPC codes offer the advantage for reducing the complexity for both encoding and decoding due to its QC structure. Most QC-LDPC codes have rank deficient parity matrix and this introduces extra complexity over the codes with full rank parity matrix. In this paper an encoding scheme of QC-LDPC codes is presented that is suitable for codes with full rank parity matrix and rank deficient parity matrx. The extra effort required by the codes with rank deficient parity matrix over the codes of full rank parity matrix is investigated.
International Nuclear Information System (INIS)
Huang Hai-Ping
2015-01-01
The statistical physics properties of low-density parity-check codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homogeneous degree distribution. We also show that the instability of the mean-field calculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is close to the dynamical transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentially numerous codewords sharing the identical ferromagnetic energy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets
Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua
2017-09-01
In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.
Improving a Power Line Communications Standard with LDPC Codes
Directory of Open Access Journals (Sweden)
Hsu Christine
2007-01-01
Full Text Available We investigate a power line communications (PLC scheme that could be used to enhance the HomePlug 1.0 standard, specifically its ROBO mode which provides modest throughput for the worst case PLC channel. The scheme is based on using a low-density parity-check (LDPC code, in lieu of the concatenated Reed-Solomon and convolutional codes in ROBO mode. The PLC channel is modeled with multipath fading and Middleton's class A noise. Clipping is introduced to mitigate the effect of impulsive noise. A simple and effective method is devised to estimate the variance of the clipped noise for LDPC decoding. Simulation results show that the proposed scheme outperforms the HomePlug 1.0 ROBO mode and has lower computational complexity. The proposed scheme also dispenses with the repetition of information bits in ROBO mode to gain time diversity, resulting in 4-fold increase in physical layer throughput.
Unitals and ovals of symmetric block designs in LDPC and space-time coding
Andriamanalimanana, Bruno R.
2004-08-01
An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.
Djordjevic, Ivan B
2007-04-02
The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.
LDPC Codes with Minimum Distance Proportional to Block Size
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low
Construction of Rate-Compatible LDPC Codes Utilizing Information Shortening and Parity Puncturing
Directory of Open Access Journals (Sweden)
Jones Christopher R
2005-01-01
Full Text Available This paper proposes a method for constructing rate-compatible low-density parity-check (LDPC codes. The construction considers the problem of optimizing a family of rate-compatible degree distributions as well as the placement of bipartite graph edges. A hybrid approach that combines information shortening and parity puncturing is proposed. Local graph conditioning techniques for the suppression of error floors are also included in the construction methodology.
Performance analysis of WS-EWC coded optical CDMA networks with/without LDPC codes
Huang, Chun-Ming; Huang, Jen-Fa; Yang, Chao-Chin
2010-10-01
One extended Welch-Costas (EWC) code family for the wavelength-division-multiplexing/spectral-amplitude coding (WDM/SAC; WS) optical code-division multiple-access (OCDMA) networks is proposed. This system has a superior performance as compared to the previous modified quadratic congruence (MQC) coded OCDMA networks. However, since the performance of such a network is unsatisfactory when the data bit rate is higher, one class of quasi-cyclic low-density parity-check (QC-LDPC) code is adopted to improve that. Simulation results show that the performance of the high-speed WS-EWC coded OCDMA network can be greatly improved by using the LDPC codes.
LDPC-PPM Coding Scheme for Optical Communication
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
Directory of Open Access Journals (Sweden)
Surbhi Sharma
2011-06-01
Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.
A novel construction method of QC-LDPC codes based on CRT for optical communications
Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-05-01
A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed based on Chinese remainder theory (CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate ( BER) of 10-7, the net coding gain ( NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field ( GF( q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.
Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.
Djordjevic, Ivan B
2010-05-01
I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.
A novel QC-LDPC code based on the finite field multiplicative group for optical communications
Yuan, Jian-guo; Xu, Liang; Tong, Qing-zhen
2013-09-01
A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.
Multiple component codes based generalized LDPC codes for high-speed optical transport.
Djordjevic, Ivan B; Wang, Ting
2014-07-14
A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.
Differentially Encoded LDPC Codes—Part II: General Case and Code Optimization
Directory of Open Access Journals (Sweden)
Li (Tiffany Jing
2008-01-01
Full Text Available This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC codes, especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code, however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently. Through extrinsic information transfer (EXIT analysis and a modified "convergence-constraint" density evolution (DE method developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection (or a recursive inner code in general, and demonstrate how to optimize these LDPC codes. The convergence-constraint method provides a useful extension to the conventional "threshold-constraint" method, and can match an outer LDPC code to any given inner code with the imperfectness of the inner decoder taken into consideration.
Peeling Decoding of LDPC Codes with Applications in Compressed Sensing
Directory of Open Access Journals (Sweden)
Weijun Zeng
2016-01-01
Full Text Available We present a new approach for the analysis of iterative peeling decoding recovery algorithms in the context of Low-Density Parity-Check (LDPC codes and compressed sensing. The iterative recovery algorithm is particularly interesting for its low measurement cost and low computational complexity. The asymptotic analysis can track the evolution of the fraction of unrecovered signal elements in each iteration, which is similar to the well-known density evolution analysis in the context of LDPC decoding algorithm. Our analysis shows that there exists a threshold on the density factor; if under this threshold, the recovery algorithm is successful; otherwise it will fail. Simulation results are also provided for verifying the agreement between the proposed asymptotic analysis and recovery algorithm. Compared with existing works of peeling decoding algorithm, focusing on the failure probability of the recovery algorithm, our proposed approach gives accurate evolution of performance with different parameters of measurement matrices and is easy to implement. We also show that the peeling decoding algorithm performs better than other schemes based on LDPC codes.
Statistical mechanics analysis of LDPC coding in MIMO Gaussian channels
Energy Technology Data Exchange (ETDEWEB)
Alamino, Roberto C; Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)
2007-10-12
Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases.
Statistical mechanics analysis of LDPC coding in MIMO Gaussian channels
International Nuclear Information System (INIS)
Alamino, Roberto C; Saad, David
2007-01-01
Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases
Weighted-Bit-Flipping-Based Sequential Scheduling Decoding Algorithms for LDPC Codes
Directory of Open Access Journals (Sweden)
Qing Zhu
2013-01-01
Full Text Available Low-density parity-check (LDPC codes can be applied in a lot of different scenarios such as video broadcasting and satellite communications. LDPC codes are commonly decoded by an iterative algorithm called belief propagation (BP over the corresponding Tanner graph. The original BP updates all the variable-nodes simultaneously, followed by all the check-nodes simultaneously as well. We propose a sequential scheduling algorithm based on weighted bit-flipping (WBF algorithm for the sake of improving the convergence speed. Notoriously, WBF is a low-complexity and simple algorithm. We combine it with BP to obtain advantages of these two algorithms. Flipping function used in WBF is borrowed to determine the priority of scheduling. Simulation results show that it can provide a good tradeoff between FER performance and computation complexity for short-length LDPC codes.
Short-Block Protograph-Based LDPC Codes
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
Differentially Encoded LDPC CodesÃ¢Â€Â”Part II: General Case and Code Optimization
Directory of Open Access Journals (Sweden)
Jing Li (Tiffany
2008-04-01
Full Text Available This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC codes, especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code, however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently. Through extrinsic information transfer (EXIT analysis and a modified Ã¢Â€Âœconvergence-constraintÃ¢Â€Â density evolution (DE method developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection (or a recursive inner code in general, and demonstrate how to optimize these LDPC codes. The convergence-constraint method provides a useful extension to the conventional Ã¢Â€Âœthreshold-constraintÃ¢Â€Â method, and can match an outer LDPC code to any given inner code with the imperfectness of the inner decoder taken into consideration.
Encoders for block-circulant LDPC codes
Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)
2009-01-01
Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.
Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui
2016-09-01
In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.
Performance analysis of LDPC codes on OOK terahertz wireless channels
Chun, Liu; Chang, Wang; Jun-Cheng, Cao
2016-02-01
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
Indian Academy of Sciences (India)
Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.
Ensemble Weight Enumerators for Protograph LDPC Codes
Divsalar, Dariush
2006-01-01
Recently LDPC codes with projected graph, or protograph structures have been proposed. In this paper, finite length ensemble weight enumerators for LDPC codes with protograph structures are obtained. Asymptotic results are derived as the block size goes to infinity. In particular we are interested in obtaining ensemble average weight enumerators for protograph LDPC codes which have minimum distance that grows linearly with block size. As with irregular ensembles, linear minimum distance property is sensitive to the proportion of degree-2 variable nodes. In this paper the derived results on ensemble weight enumerators show that linear minimum distance condition on degree distribution of unstructured irregular LDPC codes is a sufficient but not a necessary condition for protograph LDPC codes.
Power Allocation Optimization: Linear Precoding Adapted to NB-LDPC Coded MIMO Transmission
Directory of Open Access Journals (Sweden)
Tarek Chehade
2015-01-01
Full Text Available In multiple-input multiple-output (MIMO transmission systems, the channel state information (CSI at the transmitter can be used to add linear precoding to the transmitted signals in order to improve the performance and the reliability of the transmission system. This paper investigates how to properly join precoded closed-loop MIMO systems and nonbinary low density parity check (NB-LDPC. The q elements in the Galois field, GF(q, are directly mapped to q transmit symbol vectors. This allows NB-LDPC codes to perfectly fit with a MIMO precoding scheme, unlike binary LDPC codes. The new transmission model is detailed and studied for several linear precoders and various designed LDPC codes. We show that NB-LDPC codes are particularly well suited to be jointly used with precoding schemes based on the maximization of the minimum Euclidean distance (max-dmin criterion. These results are theoretically supported by extrinsic information transfer (EXIT analysis and are confirmed by numerical simulations.
Analysis of Non-binary Hybrid LDPC Codes
Sassatelli, Lucile; Declercq, David
2008-01-01
In this paper, we analyse asymptotically a new class of LDPC codes called Non-binary Hybrid LDPC codes, which has been recently introduced. We use density evolution techniques to derive a stability condition for hybrid LDPC codes, and prove their threshold behavior. We study this stability condition to conclude on asymptotic advantages of hybrid LDPC codes compared to their non-hybrid counterparts.
Rate-compatible protograph LDPC code families with linear minimum distance
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.
Implementation of Layered Decoding Architecture for LDPC Code using Layered Min-Sum Algorithm
Directory of Open Access Journals (Sweden)
Sandeep Kakde
2017-12-01
Full Text Available For binary field and long code lengths, Low Density Parity Check (LDPC code approaches Shannon limit performance. LDPC codes provide remarkable error correction performance and therefore enlarge the design space for communication systems.In this paper, we have compare different digital modulation techniques and found that BPSK modulation technique is better than other modulation techniques in terms of BER. It also gives error performance of LDPC decoder over AWGN channel using Min-Sum algorithm. VLSI Architecture is proposed which uses the value re-use property of min-sum algorithm and gives high throughput. The proposed work has been implemented and tested on Xilinx Virtex 5 FPGA. The MATLAB result of LDPC decoder for low bit error rate (BER gives bit error rate in the range of 10-1 to 10-3.5 at SNR=1 to 2 for 20 no of iterations. So it gives good bit error rate performance. The latency of the parallel design of LDPC decoder has also reduced. It has accomplished 141.22 MHz maximum frequency and throughput of 2.02 Gbps while consuming less area of the design.
Directory of Open Access Journals (Sweden)
Washington Fernández R
2009-04-01
Full Text Available En este trabajo se analiza y estudia el código chequeo de paridad de baja densidad irregular (LDPC, en un canal de línea eléctrica de baja tensión. Se analizan los modelos de ruido existentes para las líneas eléctricas de baja tensión. Se evalúa el desempeño del código LDPC irregular, en un canal de línea eléctrica de baja tensión para diferentes velocidades de transmisión (3, 10, 15 y 30 Mbps, considerando como parámetro de desempeño el BER versus SNR.In this work the irregular Low Density Parity Check code (LDPC is analyzed and studied, is used in a low voltage powerline. Noise models are analyzed for these low voltage lines. The performance of the LDPC code is evaluated in a low voltage line channel for rates of 3, 5, 15 and 30 Mbps, considering of BER vs SNR a parameter.
Decoding LDPC Convolutional Codes on Markov Channels
Directory of Open Access Journals (Sweden)
Kashyap Manohar
2008-01-01
Full Text Available Abstract This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.
Decoding LDPC Convolutional Codes on Markov Channels
Directory of Open Access Journals (Sweden)
Chris Winstead
2008-04-01
Full Text Available This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.
LDPC product coding scheme with extrinsic information for bit patterned media recoding
Directory of Open Access Journals (Sweden)
Seongkwon Jeong
2017-05-01
Full Text Available Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI and inter-track interference (ITI occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.
LDPC product coding scheme with extrinsic information for bit patterned media recoding
Jeong, Seongkwon; Lee, Jaejin
2017-05-01
Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.
DEFF Research Database (Denmark)
Rakêt, Lars Lau; Søgaard, Jacob; Salmistraro, Matteo
2012-01-01
We consider Distributed Video Coding (DVC) in presence of communication errors. First, we present DVC side information generation based on a new method of optical flow driven frame interpolation, where a highly optimized TV-L1 algorithm is used for the flow calculations and combine three flows....... Thereafter methods for exploiting the error-correcting capabilities of the LDPCA code in DVC are investigated. The proposed frame interpolation includes a symmetric flow constraint to the standard forward-backward frame interpolation scheme, which improves quality and handling of large motion. The three...... flows are combined in one solution. The proposed frame interpolation method consistently outperforms an overlapped block motion compensation scheme and a previous TV-L1 optical flow frame interpolation method with an average PSNR improvement of 1.3 dB and 2.3 dB respectively. For a GOP size of 2...
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
Rate-Compatible LDPC Codes with Linear Minimum Distance
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel
2009-01-01
A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation
Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding
Jeong, Seongkwon; Lee, Jaejin
2018-05-01
The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.
Kódování a efektivita LDPC kódů
Kozlík, Andrew
2011-01-01
Low-density parity-check (LDPC) codes are linear error correcting codes which are capable of performing near channel capacity. Furthermore, they admit efficient decoding algorithms that provide near optimum performance. Their main disadvantage is that most LDPC codes have relatively complex encoders. In this thesis, we begin by giving a detailed discussion of the sum-product decoding algorithm, we then study the performance of LDPC codes on the binary erasure channel under sum-product decodin...
Protograph LDPC Codes Over Burst Erasure Channels
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.
Construction and Iterative Decoding of LDPC Codes Over Rings for Phase-Noisy Channels
Directory of Open Access Journals (Sweden)
William G. Cowley
2008-04-01
Full Text Available This paper presents the construction and iterative decoding of low-density parity-check (LDPC codes for channels affected by phase noise. The LDPC code is based on integer rings and designed to converge under phase-noisy channels. We assume that phase variations are small over short blocks of adjacent symbols. A part of the constructed code is inherently built with this knowledge and hence able to withstand a phase rotation of 2ÃÂ€/M radians, where Ã¢Â€ÂœMÃ¢Â€Â is the number of phase symmetries in the signal set, that occur at different observation intervals. Another part of the code estimates the phase ambiguity present in every observation interval. The code makes use of simple blind or turbo phase estimators to provide phase estimates over every observation interval. We propose an iterative decoding schedule to apply the sum-product algorithm (SPA on the factor graph of the code for its convergence. To illustrate the new method, we present the performance results of an LDPC code constructed over Ã¢Â„Â¤4 with quadrature phase shift keying (QPSK modulated signals transmitted over a static channel, but affected by phase noise, which is modeled by the Wiener (random-walk process. The results show that the code can withstand phase noise of 2Ã¢ÂˆÂ˜ standard deviation per symbol with small loss.
Construction and Iterative Decoding of LDPC Codes Over Rings for Phase-Noisy Channels
Directory of Open Access Journals (Sweden)
Karuppasami Sridhar
2008-01-01
Full Text Available Abstract This paper presents the construction and iterative decoding of low-density parity-check (LDPC codes for channels affected by phase noise. The LDPC code is based on integer rings and designed to converge under phase-noisy channels. We assume that phase variations are small over short blocks of adjacent symbols. A part of the constructed code is inherently built with this knowledge and hence able to withstand a phase rotation of radians, where " " is the number of phase symmetries in the signal set, that occur at different observation intervals. Another part of the code estimates the phase ambiguity present in every observation interval. The code makes use of simple blind or turbo phase estimators to provide phase estimates over every observation interval. We propose an iterative decoding schedule to apply the sum-product algorithm (SPA on the factor graph of the code for its convergence. To illustrate the new method, we present the performance results of an LDPC code constructed over with quadrature phase shift keying (QPSK modulated signals transmitted over a static channel, but affected by phase noise, which is modeled by the Wiener (random-walk process. The results show that the code can withstand phase noise of standard deviation per symbol with small loss.
Differentially Encoded LDPC Codes—Part I: Special Case of Product Accumulate Codes
Directory of Open Access Journals (Sweden)
(Tiffany JingLi
2008-01-01
Full Text Available Part I of a two-part series investigates product accumulate codes, a special class of differentially-encoded low density parity check (DE-LDPC codes with high performance and low complexity, on flat Rayleigh fading channels. In the coherent detection case, Divsalar's simple bounds and iterative thresholds using density evolution are computed to quantify the code performance at finite and infinite lengths, respectively. In the noncoherent detection case, a simple iterative differential detection and decoding (IDDD receiver is proposed and shown to be robust for different Doppler shifts. Extrinsic information transfer (EXIT charts reveal that, with pilot symbol assisted differential detection, the widespread practice of inserting pilot symbols to terminate the trellis actually incurs a loss in capacity, and a more efficient way is to separate pilots from the trellis. Through analysis and simulations, it is shown that PA codes perform very well with both coherent and noncoherent detections. The more general case of DE-LDPC codes, where the LDPC part may take arbitrary degree profiles, is studied in Part II Li 2008.
Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes
Hamilton, Kathleen; Pryadko, Leonid
Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.
Djordjevic, Ivan B
2007-08-06
We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.
Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels
Wang, Han
2010-01-01
Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…
Techniques and Architectures for Hazard-Free Semi-Parallel Decoding of LDPC Codes
Directory of Open Access Journals (Sweden)
Rovini Massimo
2009-01-01
Full Text Available The layered decoding algorithm has recently been proposed as an efficient means for the decoding of low-density parity-check (LDPC codes, thanks to the remarkable improvement in the convergence speed (2x of the decoding process. However, pipelined semi-parallel decoders suffer from violations or "hazards" between consecutive updates, which not only violate the layered principle but also enforce the loops in the code, thus spoiling the error correction performance. This paper describes three different techniques to properly reschedule the decoding updates, based on the careful insertion of "idle" cycles, to prevent the hazards of the pipeline mechanism. Also, different semi-parallel architectures of a layered LDPC decoder suitable for use with such techniques are analyzed. Then, taking the LDPC codes for the wireless local area network (IEEE 802.11n as a case study, a detailed analysis of the performance attained with the proposed techniques and architectures is reported, and results of the logic synthesis on a 65 nm low-power CMOS technology are shown.
A PEG Construction of LDPC Codes Based on the Betweenness Centrality Metric
Directory of Open Access Journals (Sweden)
BHURTAH-SEEWOOSUNGKUR, I.
2016-05-01
Full Text Available Progressive Edge Growth (PEG constructions are usually based on optimizing the distance metric by using various methods. In this work however, the distance metric is replaced by a different one, namely the betweenness centrality metric, which was shown to enhance routing performance in wireless mesh networks. A new type of PEG construction for Low-Density Parity-Check (LDPC codes is introduced based on the betweenness centrality metric borrowed from social networks terminology given that the bipartite graph describing the LDPC is analogous to a network of nodes. The algorithm is very efficient in filling edges on the bipartite graph by adding its connections in an edge-by-edge manner. The smallest graph size the new code could construct surpasses those obtained from a modified PEG algorithm - the RandPEG algorithm. To the best of the authors' knowledge, this paper produces the best regular LDPC column-weight two graphs. In addition, the technique proves to be competitive in terms of error-correcting performance. When compared to MacKay, PEG and other recent modified-PEG codes, the algorithm gives better performance over high SNR due to its particular edge and local graph properties.
BER EVALUATION OF LDPC CODES WITH GMSK IN NAKAGAMI FADING CHANNEL
Directory of Open Access Journals (Sweden)
Surbhi Sharma
2010-06-01
Full Text Available LDPC codes (Low Density Parity Check Codes have already proved its efficacy while showing its performance near to the Shannon limit. Channel coding schemes are spectrally inefficient as using an unfiltered binary data stream to modulate an RF carrier that will produce an RF spectrum of considerable bandwidth. Techniques have been developed to improve this bandwidth inefficiency or spectral efficiency, and ease detection. GMSK or Gaussian-filtered Minimum Shift Keying uses a Gaussian Filter of an appropriate bandwidth so as to make system spectrally efficient. A Nakagami model provides a better explanation to less and more severe conditions than the Rayleigh and Rician model and provide a better fit to the mobile communication channel data. In this paper we have demonstrated the performance of Low Density Parity Check codes with GMSK modulation (BT product=0.25 technique in Nakagami fading channel. In results it is shown that average bit error rate decreases as the ‘m’ parameter increases (Less fading.
Blind Estimation of the Phase and Carrier Frequency Offsets for LDPC-Coded Systems
Directory of Open Access Journals (Sweden)
Houcke Sebastien
2010-01-01
Full Text Available Abstract We consider in this paper the problem of phase offset and Carrier Frequency Offset (CFO estimation for Low-Density Parity-Check (LDPC coded systems. We propose new blind estimation techniques based on the calculation and minimization of functions of the Log-Likelihood Ratios (LLR of the syndrome elements obtained according to the parity check matrix of the error-correcting code. In the first part of this paper, we consider phase offset estimation for a Binary Phase Shift Keying (BPSK modulation and propose a novel estimation technique. Simulation results show that the proposed method is very effective and outperforms many existing algorithms. Then, we modify the estimation criterion so that it can work for higher-order modulations. One interesting feature of the proposed algorithm when applied to high-order modulations is that the phase offset of the channel can be blindly estimated without any ambiguity. In the second part of the paper, we consider the problem of CFO estimation and propose estimation techniques that are based on the same concept as the ones presented for the phase offset estimation. The Mean Squared Error (MSE and Bit Error Rate (BER curves show the efficiency of the proposed estimation techniques.
Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization
Sassatelli, Lucile; Declercq, David
2007-01-01
In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...
High performance reconciliation for continuous-variable quantum key distribution with LDPC code
Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua
2015-03-01
Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.
Adaptive transmission based on multi-relay selection and rate-compatible LDPC codes
Su, Hualing; He, Yucheng; Zhou, Lin
2017-08-01
In order to adapt to the dynamical changeable channel condition and improve the transmissive reliability of the system, a cooperation system of rate-compatible low density parity check (RC-LDPC) codes combining with multi-relay selection protocol is proposed. In traditional relay selection protocol, only the channel state information (CSI) of source-relay and the CSI of relay-destination has been considered. The multi-relay selection protocol proposed by this paper takes the CSI between relays into extra account in order to obtain more chances of collabration. Additionally, the idea of hybrid automatic request retransmission (HARQ) and rate-compatible are introduced. Simulation results show that the transmissive reliability of the system can be significantly improved by the proposed protocol.
MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot
Daoud, Omar; Alani, Omar
This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.
LDPC Code Design for Nonuniform Power-Line Channels
Directory of Open Access Journals (Sweden)
Sanaei Ali
2007-01-01
Full Text Available We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.
Memory-efficient decoding of LDPC codes
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
Resource Efficient LDPC Decoders for Multimedia Communication
Chandrasetty, Vikram Arkalgud; Aziz, Syed Mahfuzul
2013-01-01
Achieving high image quality is an important aspect in an increasing number of wireless multimedia applications. These applications require resource efficient error correction hardware to detect and correct errors introduced by the communication channel. This paper presents an innovative flexible architecture for error correction using Low-Density Parity-Check (LDPC) codes. The proposed partially-parallel decoder architecture utilizes a novel code construction technique based on multi-level H...
On the performance of 1-level LDPC lattices
Sadeghi, Mohammad-Reza; Sakzad, Amin
2013-01-01
The low-density parity-check (LDPC) lattices perform very well in high dimensions under generalized min-sum iterative decoding algorithm. In this work we focus on 1-level LDPC lattices. We show that these lattices are the same as lattices constructed based on Construction A and low-density lattice-code (LDLC) lattices. In spite of having slightly lower coding gain, 1-level regular LDPC lattices have remarkable performances. The lower complexity nature of the decoding algorithm for these type ...
Fundamentals of convolutional coding
Johannesson, Rolf
2015-01-01
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
Yuan, Jian-guo; Zhou, Guang-xiang; Gao, Wen-chun; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-01-01
According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate ( BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications
Directory of Open Access Journals (Sweden)
M. Revathy
2015-01-01
Full Text Available Low-density parity-check (LDPC codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax, and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.
Revathy, M; Saravanan, R
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs
Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong
2016-12-01
In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.
Instanton-based techniques for analysis and reduction of error floors of LDPC codes
International Nuclear Information System (INIS)
Chertkov, Michael; Chilappagari, Shashi K.; Stepanov, Mikhail G.; Vasic, Bane
2008-01-01
We describe a family of instanton-based optimization methods developed recently for the analysis of the error floors of low-density parity-check (LDPC) codes. Instantons are the most probable configurations of the channel noise which result in decoding failures. We show that the general idea and the respective optimization technique are applicable broadly to a variety of channels, discrete or continuous, and variety of sub-optimal decoders. Specifically, we consider: iterative belief propagation (BP) decoders, Gallager type decoders, and linear programming (LP) decoders performing over the additive white Gaussian noise channel (AWGNC) and the binary symmetric channel (BSC). The instanton analysis suggests that the underlying topological structures of the most probable instanton of the same code but different channels and decoders are related to each other. Armed with this understanding of the graphical structure of the instanton and its relation to the decoding failures, we suggest a method to construct codes whose Tanner graphs are free of these structures, and thus have less significant error floors.
Instanton-based techniques for analysis and reduction of error floor of LDPC codes
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory; Chilappagari, Shashi K [Los Alamos National Laboratory; Stepanov, Mikhail G [Los Alamos National Laboratory; Vasic, Bane [SENIOR MEMBER, IEEE
2008-01-01
We describe a family of instanton-based optimization methods developed recently for the analysis of the error floors of low-density parity-check (LDPC) codes. Instantons are the most probable configurations of the channel noise which result in decoding failures. We show that the general idea and the respective optimization technique are applicable broadly to a variety of channels, discrete or continuous, and variety of sub-optimal decoders. Specifically, we consider: iterative belief propagation (BP) decoders, Gallager type decoders, and linear programming (LP) decoders performing over the additive white Gaussian noise channel (AWGNC) and the binary symmetric channel (BSC). The instanton analysis suggests that the underlying topological structures of the most probable instanton of the same code but different channels and decoders are related to each other. Armed with this understanding of the graphical structure of the instanton and its relation to the decoding failures, we suggest a method to construct codes whose Tanner graphs are free of these structures, and thus have less significant error floors.
Analysis of error floor of LDPC codes under LP decoding over the BSC
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory; Chilappagari, Shashi [UNIV OF AZ; Vasic, Bane [UNIV OF AZ; Stepanov, Mikhail [UNIV OF AZ
2009-01-01
We consider linear programming (LP) decoding of a fixed low-density parity-check (LDPC) code over the binary symmetric channel (BSC). The LP decoder fails when it outputs a pseudo-codeword which is not a codeword. We propose an efficient algorithm termed the instanton search algorithm (ISA) which, given a random input, generates a set of flips called the BSC-instanton and prove that: (a) the LP decoder fails for any set of flips with support vector including an instanton; (b) for any input, the algorithm outputs an instanton in the number of steps upper-bounded by twice the number of flips in the input. We obtain the number of unique instantons of different sizes by running the ISA sufficient number of times. We then use the instanton statistics to predict the performance of the LP decoding over the BSC in the error floor region. We also propose an efficient semi-analytical method to predict the performance of LP decoding over a large range of transition probabilities of the BSC.
Experimental demonstration of nonbinary LDPC convolutional codes for DP-64QAM/256QAM
Koike-Akino, T.; Sugihara, K.; Millar, D.S.; Pajovic, M.; Matsumoto, W.; Alvarado, A.; Maher, R.; Lavery, D.; Paskov, M.; Kojima, K.; Parsons, K.; Thomsen, B.C.; Savory, S.J.; Bayvel, P.
2016-01-01
We show the great potential of nonbinary LDPC convolutional codes (NB-LDPC-CC) with low-latency windowed decoding. It is experimentally demonstrated that NB-LDPC-CC can offer a performance improvement of up to 5 dB compared with binary coding.
Non-Binary Protograph-Based LDPC Codes: Analysis,Enumerators and Designs
Sun, Yizeng
2013-01-01
Non-binary LDPC codes can outperform binary LDPC codes using sum-product algorithm with higher computation complexity. Non-binary LDPC codes based on protographs have the advantage of simple hardware architecture. In the first part of this thesis, we will use EXIT chart analysis to compute the thresholds of different protographs over GF(q). Based on threshold computation, some non-binary protograph-based LDPC codes are designed and their frame error rates are compared with binary LDPC codes. ...
LDPC and SHA based iris recognition for image authentication
Directory of Open Access Journals (Sweden)
K. Seetharaman
2012-11-01
Full Text Available We introduce a novel way to authenticate an image using Low Density Parity Check (LDPC and Secure Hash Algorithm (SHA based iris recognition method with reversible watermarking scheme, which is based on Integer Wavelet Transform (IWT and threshold embedding technique. The parity checks and parity matrix of LDPC encoding and cancellable biometrics i.e., hash string of unique iris code from SHA-512 are embedded into an image for authentication purpose using reversible watermarking scheme based on IWT and threshold embedding technique. Simply by reversing the embedding process, the original image, parity checks, parity matrix and SHA-512 hash are extracted back from watermarked-image. For authentication, the new hash string produced by employing SHA-512 on error corrected iris code from live person is compared with hash string extracted from watermarked-image. The LDPC code reduces the hamming distance for genuine comparisons by a larger amount than for the impostor comparisons. This results in better separation between genuine and impostor users which improves the authentication performance. Security of this scheme is very high due to the security complexity of SHA-512, which is 2256 under birthday attack. Experimental results show that this approach can assure more accurate authentication with a low false rejection or false acceptance rate and outperforms the prior arts in terms of PSNR.
An experimental comparison of coded modulation strategies for 100 Gb/s transceivers
Sillekens, E.; Alvarado, A.; Okonkwo, C.; Thomsen, B.C.
2016-01-01
Coded modulation is a key technique to increase the spectral efficiency of coherent optical communication systems. Two popular strategies for coded modulation are turbo trellis-coded modulation (TTCM) and bit-interleaved coded modulation (BICM) based on low-density parity-check (LDPC) codes.
Construction of Protograph LDPC Codes with Linear Minimum Distance
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes
Directory of Open Access Journals (Sweden)
Cocco Giuseppe
2010-01-01
Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.
FPGA implementation of high-performance QC-LDPC decoder for optical communications
Zou, Ding; Djordjevic, Ivan B.
2015-01-01
Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.
Optical LDPC decoders for beyond 100 Gbits/s optical transmission.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2009-05-01
We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.
Optimisation des codes LDPC irréguliers et algorithmes de décodage des codes LDPC q-aires
Cances , Jean-Pierre
2013-01-01
Cette note technique rappelle les principes d'optimisation pour obtenir les profils de codes LDPC irréguliers performants et rappelle les principes des algorithmes de décodage utilizes pour les codes LDPC q-aires à grande efficacité spectrale.
Design of ACM system based on non-greedy punctured LDPC codes
Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng
2017-08-01
In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.
Cooperative optimization and their application in LDPC codes
Chen, Ke; Rong, Jian; Zhong, Xiaochun
2008-10-01
Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.
Construction of Quasi-Cyclic LDPC Codes Based on Fundamental Theorem of Arithmetic
Directory of Open Access Journals (Sweden)
Hai Zhu
2018-01-01
Full Text Available Quasi-cyclic (QC LDPC codes play an important role in 5G communications and have been chosen as the standard codes for 5G enhanced mobile broadband (eMBB data channel. In this paper, we study the construction of QC LDPC codes based on an arbitrary given expansion factor (or lifting degree. First, we analyze the cycle structure of QC LDPC codes and give the necessary and sufficient condition for the existence of short cycles. Based on the fundamental theorem of arithmetic in number theory, we divide the integer factorization into three cases and present three classes of QC LDPC codes accordingly. Furthermore, a general construction method of QC LDPC codes with girth of at least 6 is proposed. Numerical results show that the constructed QC LDPC codes perform well over the AWGN channel when decoded with the iterative algorithms.
A good performance watermarking LDPC code used in high-speed optical fiber communication system
Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue
2015-07-01
A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.
Protograph LDPC Codes with Node Degrees at Least 3
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
A rate-compatible family of protograph-based LDPC codes built by expurgation and lengthening
Dolinar, Sam
2005-01-01
We construct a protograph-based rate-compatible family of low-density parity-check codes that cover a very wide range of rates from 1/2 to 16/17, perform within about 0.5 dB of their capacity limits for all rates, and can be decoded conveniently and efficiently with a common hardware implementation.
Min-Max decoding for non binary LDPC codes
Savin, Valentin
2008-01-01
Iterative decoding of non-binary LDPC codes is currently performed using either the Sum-Product or the Min-Sum algorithms or slightly different versions of them. In this paper, several low-complexity quasi-optimal iterative algorithms are proposed for decoding non-binary codes. The Min-Max algorithm is one of them and it has the benefit of two possible LLR domain implementations: a standard implementation, whose complexity scales as the square of the Galois field's cardinality and a reduced c...
Analysis of Minimal LDPC Decoder System on a Chip Implementation
Directory of Open Access Journals (Sweden)
T. Palenik
2015-09-01
Full Text Available This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC. The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation.
FPGA implementation of low complexity LDPC iterative decoder
Verma, Shivani; Sharma, Sanjay
2016-07-01
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
High-throughput GPU-based LDPC decoding
Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin
2010-08-01
Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.
Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B
2012-04-09
Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.
An LDPC decoder architecture for wireless sensor network applications.
Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido
2012-01-01
The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.
An LDPC Decoder Architecture for Wireless Sensor Network Applications
Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido
2012-01-01
The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724
Directory of Open Access Journals (Sweden)
Eric Psota
2010-01-01
Full Text Available The error mechanisms of iterative message-passing decoders for low-density parity-check codes are studied. A tutorial review is given of the various graphical structures, including trapping sets, stopping sets, and absorbing sets that are frequently used to characterize the errors observed in simulations of iterative decoding of low-density parity-check codes. The connections between trapping sets and deviations on computation trees are explored in depth using the notion of problematic trapping sets in order to bridge the experimental and analytic approaches to these error mechanisms. A new iterative algorithm for finding low-weight problematic trapping sets is presented and shown to be capable of identifying many trapping sets that are frequently observed during iterative decoding of low-density parity-check codes on the additive white Gaussian noise channel. Finally, a new method is given for characterizing the weight of deviations that result from problematic trapping sets.
LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.
Djordjevic, Ivan B; Arabaci, Murat
2010-11-22
An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.
LDPC coding for QKD at higher photon flux levels based on spatial entanglement of twin beams in PDC
International Nuclear Information System (INIS)
Daneshgaran, Fred; Mondin, Marina; Bari, Inam
2014-01-01
Twin beams generated by Parametric Down Conversion (PDC) exhibit quantum correlations that has been effectively used as a tool for many applications including calibration of single photon detectors. By now, detection of multi-mode spatial correlations is a mature field and in principle, only depends on the transmission and detection efficiency of the devices and the channel. In [2, 4, 5], the authors utilized their know-how on almost perfect selection of modes of pairwise correlated entangled beams and the optimization of the noise reduction to below the shot-noise level, for absolute calibration of Charge Coupled Device (CCD) cameras. The same basic principle is currently being considered by the same authors for possible use in Quantum Key Distribution (QKD) [3, 1]. The main advantage in such an approach would be the ability to work with much higher photon fluxes than that of a single photon regime that is theoretically required for discrete variable QKD applications (in practice, very weak laser pulses with mean photon count below one are used).The natural setup of quantization of CCD detection area and subsequent measurement of the correlation statistic needed to detect the presence of the eavesdropper Eve, leads to a QKD channel model that is a Discrete Memoryless Channel (DMC) with a number of inputs and outputs that can be more than two (i.e., the channel is a multi-level DMC). This paper investigates the use of Low Density Parity Check (LDPC) codes for information reconciliation on the effective parallel channels associated with the multi-level DMC. The performance of such codes are shown to be close to the theoretical limits.
Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted
2010-09-13
We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).
Trellis and turbo coding iterative and graph-based error control coding
Schlegel, Christian B
2015-01-01
This new edition has been extensively revised to reflect the progress in error control coding over the past few years. Over 60% of the material has been completely reworked, and 30% of the material is original. Convolutional, turbo, and low density parity-check (LDPC) coding and polar codes in a unified framework. Advanced research-related developments such as spatial coupling. A focus on algorithmic and implementation aspects of error control coding.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.
Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko
2008-08-18
Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.
High Girth Column-Weight-Two LDPC Codes Based on Distance Graphs
Directory of Open Access Journals (Sweden)
Gabofetswe Malema
2007-01-01
Full Text Available LDPC codes of column weight of two are constructed from minimal distance graphs or cages. Distance graphs are used to represent LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1's in each row (row weight is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.
Results on Parity-Check Matrices With Optimal Stopping And/Or Dead-End Set Enumerators
Weber, J.H.; Abdel-Ghaffar, K.A.S.
2008-01-01
The performance of iterative decoding techniques for linear block codes correcting erasures depends very much on the sizes of the stopping sets associated with the underlying Tanner graph, or, equivalently, the parity-check matrix representing the code. In this correspondence, we introduce the
Hardwarearchitektur für einen universellen LDPC Decoder
Directory of Open Access Journals (Sweden)
C. Beuschel
2009-05-01
Full Text Available Im vorliegenden Beitrag wird eine universelle Decoderarchitektur für einen Low-Density Parity-Check (LDPC Code Decoder vorgestellt. Anders als bei den in der Literatur häufig beschriebenen Architekturen für strukturierte Codes ist die hier vorgestellte Architektur frei programmierbar, so dass jeder beliebige LDPC Code durch eine Änderung der Initialisierung des Speichers für die Prüfmatrix mit derselben Hardware decodiert werden kann. Die größte Herausforderung beim Entwurf von teilparallelen LDPC Decoder Architekturen liegt im konfliktfreien Datenaustausch zwischen mehreren parallelen Speichern und Berechnungseinheiten, wozu ein Mapping und Scheduling Algorithmus benötigt wird. Der hier vorgestellte Algorithmus stützt sich auf Graphentheorie und findet für jeden beliebigen LDPC Code eine für die Architektur optimale Lösung. Damit sind keine Wartezyklen notwendig und die Parallelität der Architektur wird zu jedem Zeitpunkt voll ausgenutzt.
Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions.
Zhang, Shaoliang; Arabaci, Murat; Yaman, Fatih; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Inada, Yoshihisa; Ogata, Takaaki; Aoki, Yasuhiro
2011-09-26
The performance of rate-0.8 4-ary LDPC code has been studied in a 50 GHz-spaced 40 Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10 dB is obtained at BER of 10(-6). With the aid of time-interleaving polarization multiplexing and MAP detection, 10,560 km transmission over legacy dispersion managed fiber is achieved without any countable errors. The proposed nonbinary quasi-cyclic LDPC code achieves an uncoded BER threshold at 4×10(-2). Potential issues like phase ambiguity and coding length are also discussed when implementing LDPC in current coherent optical systems. © 2011 Optical Society of America
Characterization and Optimization of LDPC Codes for the 2-User Gaussian Multiple Access Channel
Directory of Open Access Journals (Sweden)
Declercq David
2007-01-01
Full Text Available We address the problem of designing good LDPC codes for the Gaussian multiple access channel (MAC. The framework we choose is to design multiuser LDPC codes with joint belief propagation decoding on the joint graph of the 2-user case. Our main result compared to existing work is to express analytically EXIT functions of the multiuser decoder with two different approximations of the density evolution. This allows us to propose a very simple linear programming optimization for the complicated problem of LDPC code design with joint multiuser decoding. The stability condition for our case is derived and used in the optimization constraints. The codes that we obtain for the 2-user case are quite good for various rates, especially if we consider the very simple optimization procedure.
Threshold Multi Split-Row algorithm for decoding irregular LDPC codes
Directory of Open Access Journals (Sweden)
Chakir Aqil
2017-12-01
Full Text Available In this work, we propose a new threshold multi split-row algorithm in order to improve the multi split-row algorithm for LDPC irregular codes decoding. We give a complete description of our algorithm as well as its advantages for the LDPC codes. The simulation results over an additive white gaussian channel show that an improvement in code error performance between 0.4 dB and 0.6 dB compared to the multi split-row algorithm.
A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system
Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang
2015-11-01
A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.
Low Complexity Encoder of High Rate Irregular QC-LDPC Codes for Partial Response Channels
Directory of Open Access Journals (Sweden)
IMTAWIL, V.
2011-11-01
Full Text Available High rate irregular QC-LDPC codes based on circulant permutation matrices, for efficient encoder implementation, are proposed in this article. The structure of the code is an approximate lower triangular matrix. In addition, we present two novel efficient encoding techniques for generating redundant bits. The complexity of the encoder implementation depends on the number of parity bits of the code for the one-stage encoding and the length of the code for the two-stage encoding. The advantage of both encoding techniques is that few XOR-gates are used in the encoder implementation. Simulation results on partial response channels also show that the BER performance of the proposed code has gain over other QC-LDPC codes.
Protograph based LDPC codes with minimum distance linearly growing with block size
Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.
Design and Analysis of Adaptive Message Coding on LDPC Decoder with Faulty Storage
Directory of Open Access Journals (Sweden)
Guangjun Ge
2018-01-01
Full Text Available Unreliable message storage severely degrades the performance of LDPC decoders. This paper discusses the impacts of message errors on LDPC decoders and schemes improving the robustness. Firstly, we develop a discrete density evolution analysis for faulty LDPC decoders, which indicates that protecting the sign bits of messages is effective enough for finite-precision LDPC decoders. Secondly, we analyze the effects of quantization precision loss for static sign bit protection and propose an embedded dynamic coding scheme by adaptively employing the least significant bits (LSBs to protect the sign bits. Thirdly, we give a construction of Hamming product code for the adaptive coding and present low complexity decoding algorithms. Theoretic analysis indicates that the proposed scheme outperforms traditional triple modular redundancy (TMR scheme in decoding both threshold and residual errors, while Monte Carlo simulations show that the performance loss is less than 0.2 dB when the storage error probability varies from 10-3 to 10-4.
Analysis and Construction of Full-Diversity Joint Network-LDPC Codes for Cooperative Communications
Directory of Open Access Journals (Sweden)
Capirone Daniele
2010-01-01
Full Text Available Transmit diversity is necessary in harsh environments to reduce the required transmit power for achieving a given error performance at a certain transmission rate. In networks, cooperative communication is a well-known technique to yield transmit diversity and network coding can increase the spectral efficiency. These two techniques can be combined to achieve a double diversity order for a maximum coding rate on the Multiple-Access Relay Channel (MARC, where two sources share a common relay in their transmission to the destination. However, codes have to be carefully designed to obtain the intrinsic diversity offered by the MARC. This paper presents the principles to design a family of full-diversity LDPC codes with maximum rate. Simulation of the word error rate performance of the new proposed family of LDPC codes for the MARC confirms the full diversity.
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
Drăghici, S.; Proştean, O.; Răduca, E.; Haţiegan, C.; Hălălae, I.; Pădureanu, I.; Nedeloni, M.; (Barboni Haţiegan, L.
2017-01-01
In this paper a method with which a set of characteristic functions are associated to a LDPC code is shown and also functions that represent the evolution density of messages that go along the edges of a Tanner graph. Graphic representations of the density evolution are shown respectively the study and simulation of likelihood threshold that render asymptotic boundaries between which there are decodable codes were made using MathCad V14 software.
Directory of Open Access Journals (Sweden)
Rovini Massimo
2009-01-01
Full Text Available This is a reply to the comments by Gunnam et al. "Comments on 'Techniques and architectures for hazard-free semi-parallel decoding of LDPC codes'", EURASIP Journal on Embedded Systems, vol. 2009, Article ID 704174 on our recent work "Techniques and architectures for hazard-free semi-parallel decoding of LDPC codes", EURASIP Journal on Embedded Systems, vol. 2009, Article ID 723465.
A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation
Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen
In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
Low Complexity Approach for High Throughput Belief-Propagation based Decoding of LDPC Codes
Directory of Open Access Journals (Sweden)
BOT, A.
2013-11-01
Full Text Available The paper proposes a low complexity belief propagation (BP based decoding algorithm for LDPC codes. In spite of the iterative nature of the decoding process, the proposed algorithm provides both reduced complexity and increased BER performances as compared with the classic min-sum (MS algorithm, generally used for hardware implementations. Linear approximations of check-nodes update function are used in order to reduce the complexity of the BP algorithm. Considering this decoding approach, an FPGA based hardware architecture is proposed for implementing the decoding algorithm, aiming to increase the decoder throughput. FPGA technology was chosen for the LDPC decoder implementation, due to its parallel computation and reconfiguration capabilities. The obtained results show improvements regarding decoding throughput and BER performances compared with state-of-the-art approaches.
Coded Modulation in C and MATLAB
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
Progressive transmission of images over fading channels using rate-compatible LDPC codes.
Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul
2006-12-01
In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.
A mean field theory of coded CDMA systems
International Nuclear Information System (INIS)
Yano, Toru; Tanaka, Toshiyuki; Saad, David
2008-01-01
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems
A mean field theory of coded CDMA systems
Energy Technology Data Exchange (ETDEWEB)
Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp
2008-08-15
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.
Design of a VLSI Decoder for Partially Structured LDPC Codes
Directory of Open Access Journals (Sweden)
Fabrizio Vacca
2008-01-01
of their parity matrix can be partitioned into two disjoint sets, namely, the structured and the random ones. For the proposed class of codes a constructive design method is provided. To assess the value of this method the constructed codes performance are presented. From these results, a novel decoding method called split decoding is introduced. Finally, to prove the effectiveness of the proposed approach a whole VLSI decoder is designed and characterized.
Study of bifurcation behavior of two-dimensional turbo product code decoders
International Nuclear Information System (INIS)
He Yejun; Lau, Francis C.M.; Tse, Chi K.
2008-01-01
Turbo codes, low-density parity-check (LDPC) codes and turbo product codes (TPCs) are high performance error-correction codes which employ iterative algorithms for decoding. Under different conditions, the behaviors of the decoders are different. While the nonlinear dynamical behaviors of turbo code decoders and LDPC decoders have been reported in the literature, the dynamical behavior of TPC decoders is relatively unexplored. In this paper, we investigate the behavior of the iterative algorithm of a two-dimensional TPC decoder when the input signal-to-noise ratio (SNR) varies. The quantity to be measured is the mean square value of the posterior probabilities of the information bits. Unlike turbo decoders or LDPC decoders, TPC decoders do not produce a clear 'waterfall region'. This is mainly because the TPC decoding algorithm does not converge to 'indecisive' fixed points even at very low SNR values
Study of bifurcation behavior of two-dimensional turbo product code decoders
Energy Technology Data Exchange (ETDEWEB)
He Yejun [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China); Lau, Francis C.M. [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China)], E-mail: encmlau@polyu.edu.hk; Tse, Chi K. [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China)
2008-04-15
Turbo codes, low-density parity-check (LDPC) codes and turbo product codes (TPCs) are high performance error-correction codes which employ iterative algorithms for decoding. Under different conditions, the behaviors of the decoders are different. While the nonlinear dynamical behaviors of turbo code decoders and LDPC decoders have been reported in the literature, the dynamical behavior of TPC decoders is relatively unexplored. In this paper, we investigate the behavior of the iterative algorithm of a two-dimensional TPC decoder when the input signal-to-noise ratio (SNR) varies. The quantity to be measured is the mean square value of the posterior probabilities of the information bits. Unlike turbo decoders or LDPC decoders, TPC decoders do not produce a clear 'waterfall region'. This is mainly because the TPC decoding algorithm does not converge to 'indecisive' fixed points even at very low SNR values.
Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.
Liu, Tao; Lin, Changyu; Djordjevic, Ivan B
2016-06-27
In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.
A Novel Modified Algorithm with Reduced Complexity LDPC Code Decoder
Directory of Open Access Journals (Sweden)
Song Yang
2014-10-01
Full Text Available A novel efficient decoding algorithm reduced the sum-product algorithm (SPA Complexity with LPDC code is proposed. Base on the hyperbolic tangent rule, modified the Check node update with two horizontal process, which have similar calculation, Motivated by the finding that sun- min (MS algorithm reduce the complexity reducing the approximation error in the horizontal process, simplify the information weight small part. Compared with the exiting approximations, the proposed method is less computational complexity than SPA algorithm. Simulation results show that the author algorithm can achieve performance very close SPA.
45 Gb/s low complexity optical front-end for soft-decision LDPC decoders.
Sakib, Meer Nazmus; Moayedi, Monireh; Gross, Warren J; Liboiron-Ladouceur, Odile
2012-07-30
In this paper a low complexity and energy efficient 45 Gb/s soft-decision optical front-end to be used with soft-decision low-density parity-check (LDPC) decoders is demonstrated. The results show that the optical front-end exhibits a net coding gain of 7.06 and 9.62 dB for post forward error correction bit error rate of 10(-7) and 10(-12) for long block length LDPC(32768,26803) code. The performance over a hard decision front-end is 1.9 dB for this code. It is shown that the soft-decision circuit can also be used as a 2-bit flash type analog-to-digital converter (ADC), in conjunction with equalization schemes. At bit rate of 15 Gb/s using RS(255,239), LDPC(672,336), (672, 504), (672, 588), and (1440, 1344) used with a 6-tap finite impulse response (FIR) equalizer will result in optical power savings of 3, 5, 7, 9.5 and 10.5 dB, respectively. The 2-bit flash ADC consumes only 2.71 W at 32 GSamples/s. At 45 GSamples/s the power consumption is estimated to be 4.95 W.
Recursive construction of (J,L (J,L QC LDPC codes with girth 6
Directory of Open Access Journals (Sweden)
Mohammad Gholami
2016-06-01
Full Text Available In this paper, a recursive algorithm is presented to generate some exponent matrices which correspond to Tanner graphs with girth at least 6. For a J×L J×L exponent matrix E E, the lower bound Q(E Q(E is obtained explicitly such that (J,L (J,L QC LDPC codes with girth at least 6 exist for any circulant permutation matrix (CPM size m≥Q(E m≥Q(E. The results show that the exponent matrices constructed with our recursive algorithm have smaller lower-bound than the ones proposed recently with girth 6
A Simple Scheme for Belief Propagation Decoding of BCH and RS Codes in Multimedia Transmissions
Directory of Open Access Journals (Sweden)
Marco Baldi
2008-01-01
Full Text Available Classic linear block codes, like Bose-Chaudhuri-Hocquenghem (BCH and Reed-Solomon (RS codes, are widely used in multimedia transmissions, but their soft-decision decoding still represents an open issue. Among the several approaches proposed for this purpose, an important role is played by the iterative belief propagation principle, whose application to low-density parity-check (LDPC codes permits to approach the channel capacity. In this paper, we elaborate a new technique for decoding classic binary and nonbinary codes through the belief propagation algorithm. We focus on RS codes included in the recent CDMA2000 standard, and compare the proposed technique with the adaptive belief propagation approach, that is able to ensure very good performance but with higher complexity. Moreover, we consider the case of long BCH codes included in the DVB-S2 standard, for which we show that the usage of “pure” LDPC codes would provide better performance.
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Optimal Codes for the Burst Erasure Channel
Hamkins, Jon
2010-01-01
Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure
Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.
Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B
2017-10-15
We experimentally demonstrate self-adaptive coded 5×100 Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.
On the equivalence of Ising models on ‘small-world’ networks and LDPC codes on channels with memory
International Nuclear Information System (INIS)
Neri, Izaak; Skantzos, Nikos S
2014-01-01
We demonstrate the equivalence between thermodynamic observables of Ising spin-glass models on small-world lattices and the decoding properties of error-correcting low-density parity-check codes on channels with memory. In particular, the self-consistent equations for the effective field distributions in the spin-glass model within the replica symmetric ansatz are equivalent to the density evolution equations forr Gilbert–Elliott channels. This relationship allows us to present a belief-propagation decoding algorithm for finite-state Markov channels and to compute its performance at infinite block lengths from the density evolution equations. We show that loss of reliable communication corresponds to a first order phase transition from a ferromagnetic phase to a paramagnetic phase in the spin glass model. The critical noise levels derived for Gilbert–Elliott channels are in very good agreement with existing results in coding theory. Furthermore, we use our analysis to derive critical noise levels for channels with both memory and asymmetry in the noise. The resulting phase diagram shows that the combination of asymmetry and memory in the channel allows for high critical noise levels: in particular, we show that successful decoding is possible at any noise level of the bad channel when the good channel is good enough. Theoretical results at infinite block lengths using density evolution equations aree compared with average error probabilities calculated from a practical implementation of the corresponding decoding algorithms at finite block lengths. (paper)
Polynomial theory of error correcting codes
Cancellieri, Giovanni
2015-01-01
The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.
Code-Hopping Based Transmission Scheme for Wireless Physical-Layer Security
Directory of Open Access Journals (Sweden)
Liuguo Yin
2018-01-01
Full Text Available Due to the broadcast and time-varying natures of wireless channels, traditional communication systems that provide data encryption at the application layer suffer many challenges such as error diffusion. In this paper, we propose a code-hopping based secrecy transmission scheme that uses dynamic nonsystematic low-density parity-check (LDPC codes and automatic repeat-request (ARQ mechanism to jointly encode and encrypt source messages at the physical layer. In this scheme, secret keys at the transmitter and the legitimate receiver are generated dynamically upon the source messages that have been transmitted successfully. During the transmission, each source message is jointly encoded and encrypted by a parity-check matrix, which is dynamically selected from a set of LDPC matrices based on the shared dynamic secret key. As for the eavesdropper (Eve, the uncorrectable decoding errors prevent her from generating the same secret key as the legitimate parties. Thus she cannot select the correct LDPC matrix to recover the source message. We demonstrate that our scheme can be compatible with traditional cryptosystems and enhance the security without sacrificing the error-correction performance. Numerical results show that the bit error rate (BER of Eve approaches 0.5 as the number of transmitted source messages increases and the security gap of the system is small.
On the Performance of a Multi-Edge Type LDPC Code for Coded Modulation
Cronie, H.S.
2005-01-01
We present a method to combine error-correction coding and spectral-efficient modulation for transmission over the Additive White Gaussian Noise (AWGN) channel. The code employs signal shaping which can provide a so-called shaping gain. The code belongs to the family of sparse graph codes for which
Error-correction coding and decoding bounds, codes, decoders, analysis and applications
Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak
2017-01-01
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...
A Low-Complexity Joint Detection-Decoding Algorithm for Nonbinary LDPC-Coded Modulation Systems
Wang, Xuepeng; Bai, Baoming; Ma, Xiao
2010-01-01
In this paper, we present a low-complexity joint detection-decoding algorithm for nonbinary LDPC codedmodulation systems. The algorithm combines hard-decision decoding using the message-passing strategy with the signal detector in an iterative manner. It requires low computational complexity, offers good system performance and has a fast rate of decoding convergence. Compared to the q-ary sum-product algorithm (QSPA), it provides an attractive candidate for practical applications of q-ary LDP...
Channel coding techniques for wireless communications
Deergha Rao, K
2015-01-01
The book discusses modern channel coding techniques for wireless communications such as turbo codes, low-density parity check (LDPC) codes, space–time (ST) coding, RS (or Reed–Solomon) codes and convolutional codes. Many illustrative examples are included in each chapter for easy understanding of the coding techniques. The text is integrated with MATLAB-based programs to enhance the understanding of the subject’s underlying theories. It includes current topics of increasing importance such as turbo codes, LDPC codes, Luby transform (LT) codes, Raptor codes, and ST coding in detail, in addition to the traditional codes such as cyclic codes, BCH (or Bose–Chaudhuri–Hocquenghem) and RS codes and convolutional codes. Multiple-input and multiple-output (MIMO) communications is a multiple antenna technology, which is an effective method for high-speed or high-reliability wireless communications. PC-based MATLAB m-files for the illustrative examples are provided on the book page on Springer.com for free dow...
UEP Concepts in Modulation and Coding
Directory of Open Access Journals (Sweden)
Werner Henkel
2010-01-01
Full Text Available First unequal error protection (UEP proposals date back to the 1960's (Masnick and Wolf; 1967, but now with the introduction of scalable video, UEP develops to a key concept for the transport of multimedia data. The paper presents an overview of some new approaches realizing UEP properties in physical transport, especially multicarrier modulation, or with LDPC and Turbo codes. For multicarrier modulation, UEP bit-loading together with hierarchical modulation is described allowing for an arbitrary number of classes, arbitrary SNR margins between the classes, and arbitrary number of bits per class. In Turbo coding, pruning, as a counterpart of puncturing is presented for flexible bit-rate adaptations, including tables with optimized pruning patterns. Bit- and/or check-irregular LDPC codes may be designed to provide UEP to its code bits. However, irregular degree distributions alone do not ensure UEP, and other necessary properties of the parity-check matrix for providing UEP are also pointed out. Pruning is also the means for constructing variable-rate LDPC codes for UEP, especially controlling the check-node profile.
Joint Carrier-Phase Synchronization and LDPC Decoding
Simon, Marvin; Valles, Esteban
2009-01-01
A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine
Co-operation of digital nonlinear equalizers and soft-decision LDPC FEC in nonlinear transmission.
Tanimura, Takahito; Oda, Shoichiro; Hoshida, Takeshi; Aoki, Yasuhiko; Tao, Zhenning; Rasmussen, Jens C
2013-12-30
We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.
Optimized Fast Walsh–Hadamard Transform on GPUs for non-binary LDPC decoding
Andrade, Joao; Falcao, Gabriel; Silva, Vitor
2014-01-01
The Fourier Transform Sum-Product Algorithm (FT-SPA) used in non-binary Low-Density Parity-Check (LDPC) decoding makes extensive use of the Walsh–Hadamard Transform (WHT). We have developed a massively parallel Fast Walsh–Hadamard Transform (FWHT) which exploits the Graphics Processing Unit (GPU) pipeline and memory hierarchy, thereby minimizing the level of memory bank conflicts and maximizing the number of returned instructions per clock cycle for different generations of graphics processor...
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K
2017-12-04
Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.
Simulasi Teknik Pengkodean Regular Low Density Parity Check Code Pada Sistem MC-CDMA
Tonny Juliandy
2009-01-01
Sebagai efek dari perkembangan jaman, teknologi telekomunikasi khususnya dalam sistem komunikasi wireless, dituntut untuk dapat menyediakan layanan data yang berkecepatan tinggi (high data rate) dengan Quality of Service (QoS) yang reliable dengan kata lain memiliki Bit Error Rate (BER) yang kecil dengan daya sekecil mungkin). Masalah yang timbul dalam komunikasi bergerak adalah adanya multipath fading, yang mengakibatkan adanya kesalahan data yang diterima pada Receiver menjadi meningkat.Sis...
Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William
2010-08-02
High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.
Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes
Savin, Valentin
2009-01-01
In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...
Near-Capacity Coding for Discrete Multitone Systems with Impulse Noise
Directory of Open Access Journals (Sweden)
Kschischang Frank R
2006-01-01
Full Text Available We consider the design of near-capacity-achieving error-correcting codes for a discrete multitone (DMT system in the presence of both additive white Gaussian noise and impulse noise. Impulse noise is one of the main channel impairments for digital subscriber lines (DSL. One way to combat impulse noise is to detect the presence of the impulses and to declare an erasure when an impulse occurs. In this paper, we propose a coding system based on low-density parity-check (LDPC codes and bit-interleaved coded modulation that is capable of taking advantage of the knowledge of erasures. We show that by carefully choosing the degree distribution of an irregular LDPC code, both the additive noise and the erasures can be handled by a single code, thus eliminating the need for an outer code. Such a system can perform close to the capacity of the channel and for the same redundancy is significantly more immune to the impulse noise than existing methods based on an outer Reed-Solomon (RS code. The proposed method has a lower implementation complexity than the concatenated coding approach.
Performance of sparse graph codes on a four-dimensional CDMA System in AWGN and multipath fading
CSIR Research Space (South Africa)
Vlok, JD
2007-09-01
Full Text Available (bit) = 1× 10−5. Index Terms—Block Turbo codes (BTC), complex spread- ing sequences (CSS), channel modelling, log-likelihood ratio (LLR), low-density parity-check (LDPC) codes, multi-layered- modulation (MLM), multi-dimensional (MD), repeat...~ ~ ~ ~ 1,3 −1 1,2 −1 1,2 1,2 1,3 1,3 2,3 2,3 −1 Fig. 4. Three-dimensional block turbo decoder structure The output of SISO module m is a 3D cube ΛE,m;m = 1, 2, 3, containing the extrinsic log-likelihood ratio (LLR) of each data bit xk...
Directory of Open Access Journals (Sweden)
Atamewoue Surdive
2017-12-01
Full Text Available In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.
LDPC Decoding on GPU for Mobile Device
Directory of Open Access Journals (Sweden)
Yiqin Lu
2016-01-01
Full Text Available A flexible software LDPC decoder that exploits data parallelism for simultaneous multicode words decoding on the mobile device is proposed in this paper, supported by multithreading on OpenCL based graphics processing units. By dividing the check matrix into several parts to make full use of both the local memory and private memory on GPU and properly modify the code capacity each time, our implementation on a mobile phone shows throughputs above 100 Mbps and delay is less than 1.6 millisecond in decoding, which make high-speed communication like video calling possible. To realize efficient software LDPC decoding on the mobile device, the LDPC decoding feature on communication baseband chip should be replaced to save the cost and make it easier to upgrade decoder to be compatible with a variety of channel access schemes.
Fehenberger, Tobias
2018-02-01
This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.
Combined Source-Channel Coding of Images under Power and Bandwidth Constraints
Directory of Open Access Journals (Sweden)
Fossorier Marc
2007-01-01
Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.
Combined Source-Channel Coding of Images under Power and Bandwidth Constraints
Directory of Open Access Journals (Sweden)
Marc Fossorier
2007-01-01
Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M=2k. Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.
A Scalable Architecture of a Structured LDPC Decoder
Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon
2004-01-01
We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.
Turbo-Gallager Codes: The Emergence of an Intelligent Coding ...
African Journals Online (AJOL)
Today, both turbo codes and low-density parity-check codes are largely superior to other code families and are being used in an increasing number of modern communication systems including 3G standards, satellite and deep space communications. However, the two codes have certain distinctive characteristics that ...
Constellation labeling optimization for bit-interleaved coded APSK
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
Bilayer Protograph Codes for Half-Duplex Relay Channels
Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria
2013-01-01
Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive
Worst configurations (instantons) for compressed sensing over reals: a channel coding approach
International Nuclear Information System (INIS)
Chertkov, Michael; Chilappagari, Shashi K.; Vasic, Bane
2010-01-01
We consider Linear Programming (LP) solution of a Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees the error-free reconstruction over reals for properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop a technique to discover sparse vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns, so called instantons, degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design CS-Instanton Search Algorithm (ISA) generating a sparse vector, called CS-instanton, such that the BasP fails on the instanton, while its action on any modification of the CS-instanton decreasing a properly defined norm is successful. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. Performance of the CS-ISA is tested on example of a randomly generated 512 * 120 matrix, that outputs the shortest instanton (error vector) pattern of length 11.
The missing evaluation codes from order domain theory
DEFF Research Database (Denmark)
Andersen, Henning Ejnar; Geil, Olav
The Feng-Rao bound gives a lower bound on the minimum distance of codes defined by means of their parity check matrices. From the Feng-Rao bound it is clear how to improve a large family of codes by leaving out certain rows in their parity check matrices. In this paper we derive a simple lower...... generalized Hamming weight. We interpret our methods into the setting of order domain theory. In this way we fill in an obvious gap in the theory of order domains. The improved codes from the present paper are not in general equal to the Feng-Rao improved codes but the constructions are very much related....
On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2010-10-25
We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).
Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting
2010-06-21
In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).
An Area-Efficient Reconfigurable LDPC Decoder with Conflict Resolution
Zhou, Changsheng; Huang, Yuebin; Huang, Shuangqu; Chen, Yun; Zeng, Xiaoyang
Based on Turbo-Decoding Message-Passing (TDMP) and Normalized Min-Sum (NMS) algorithm, an area efficient LDPC decoder that supports both structured and unstructured LDPC codes is proposed in this paper. We introduce a solution to solve the memory access conflict problem caused by TDMP algorithm. We also arrange the main timing schedule carefully to handle the operations of our solution while avoiding much additional hardware consumption. To reduce the memory bits needed, the extrinsic message storing strategy is also optimized. Besides the extrinsic message recover and the accumulate operation are merged together. To verify our architecture, a LDPC decoder that supports both China Multimedia Mobile Broadcasting (CMMB) and Digital Terrestrial/ Television Multimedia Broadcasting (DTMB) standards is developed using SMIC 0.13µm standard CMOS process. The core area is 4.75mm2 and the maximum operating clock frequency is 200MHz. The estimated power consumption is 48.4mW at 25MHz for CMMB and 130.9mW at 50MHz for DTMB with 5 iterations and 1.2V supply.
Hrouza, Ondřej
2012-01-01
Práce se zabývá problematikou LDPC kódů. Jsou zde popsány metody vytváření paritní matice, kde je kladen důraz především na strukturované vytváření této matice za použití konečné geometrie: Euklidovské geometrie a projektivní geometrie. Další oblastí, které se práce věnuje je dekódování LDPC kódů. Práce porovnává čtyři dekódovací metody: Hard-Decision algoritmus, Bit-Flipping algoritmus, The Sum-Product algoritmus a Log Likelihood algoritmus, při kterých je kladen důraz především na iterativn...
Random linear codes in steganography
Directory of Open Access Journals (Sweden)
Kamil Kaczyński
2016-12-01
Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB
Verification-Based Interval-Passing Algorithm for Compressed Sensing
Wu, Xiaofu; Yang, Zhen
2013-01-01
We propose a verification-based Interval-Passing (IP) algorithm for iteratively reconstruction of nonnegative sparse signals using parity check matrices of low-density parity check (LDPC) codes as measurement matrices. The proposed algorithm can be considered as an improved IP algorithm by further incorporation of the mechanism of verification algorithm. It is proved that the proposed algorithm performs always better than either the IP algorithm or the verification algorithm. Simulation resul...
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.
High Order Modulation Protograph Codes
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods for designing protograph-based bit-interleaved code modulation that is general and applies to any modulation. The general coding framework can support not only multiple rates but also adaptive modulation. The method is a two stage lifting approach. In the first stage, an original protograph is lifted to a slightly larger intermediate protograph. The intermediate protograph is then lifted via a circulant matrix to the expected codeword length to form a protograph-based low-density parity-check code.
Opportunistic error correction for OFDM-based DVB systems
Shao, X.; Slump, Cornelis H.
2013-01-01
DVB-T2 (second generation terrestrial digital video broadcasting) employs LDPC (Low Density Parity Check) codes combined with BCH (Bose-Chaudhuri-Hocquengham) codes, which has a better performance in comparison to convolutional and Reed-Solomon codes used in other OFDM-based DVB systems. However,
Construction and decoding of a class of algebraic geometry codes
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd
1989-01-01
A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...
LDPC-based iterative joint source-channel decoding for JPEG2000.
Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane
2007-02-01
A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.
Σχεδίαση και υλοποίηση ενός LDPC αποκωδικοποιητή για DVB-S2 συστήματα
Κορδώνη, Μαρίνα
2009-01-01
Tα σύγχρονα τηλεπικοινωνιακά συστήματα έχουν υιοθετήσει κώδικες διόρθωσης λαθών με στόχο να αυξήσουν της αξιοπιστία των συστημάτων κατά τη μετάδοση πληροφορίας. Οι LDPC (Low-Density-Parity-Check codes) κώδικες είναι μία κατηγορία κωδίκων που πρόσφατα άρχισαν να απασχολούν την επιστημονική κοινότητα κι αυτό γιατί διαθέτουν εξαιρετικές επιδόσεις. Οι κώδικες αυτοί είναι γραμμικοί block κώδικες με απόδοση πολύ κοντά στο όριο του Shannon. Επιπλέον, ο εύκολος παραλληλισμός της διαδικασίας αποκωδικο...
Error-correction coding for digital communications
Clark, G. C., Jr.; Cain, J. B.
This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.
On the reduced-complexity of LDPC decoders for beyond 400 Gb/s serial optical transmission
Djordjevic, Ivan B.; Xu, Lei; Wang, Ting
2010-12-01
Two reduced-complexity (RC) LDPC decoders are proposed, which can be used in combination with large-girth LDPC codes to enable beyond 400 Gb/s serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.45 dB worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further evaluate the proposed algorithms for use in beyond 400 Gb/s serial optical transmission in combination with PolMUX 32-IPQ-based signal constellation and show that low BERs can be achieved for medium optical SNRs, while achieving the net coding gain above 11.4 dB.
On locality of Generalized Reed-Muller codes over the broadcast erasure channel
Alloum, Amira; Lin, Sian Jheng; Al-Naffouri, Tareq Y.
2016-01-01
, and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet
Convolutional cylinder-type block-circulant cycle codes
Directory of Open Access Journals (Sweden)
Mohammad Gholami
2013-06-01
Full Text Available In this paper, we consider a class of column-weight two quasi-cyclic low-density paritycheck codes in which the girth can be large enough, as an arbitrary multiple of 8. Then we devote a convolutional form to these codes, such that their generator matrix can be obtained by elementary row and column operations on the parity-check matrix. Finally, we show that the free distance of the convolutional codes is equal to the minimum distance of their block counterparts.
Ultraviolet Communication for Medical Applications
2014-05-01
MATLAB features were coded but not used in the test bench. First, FEC using low density parity checking ( LDPC ) codes was implemented but not used...modulation, and demodulation. MATLAB code is freely available for encryption, and a toolbox is available for the Zephyr Bioharness to capture streams... MATLAB 5 MATLAB communication system code was implemented in a basic, functional way for the first milestone test. Tested data rate was 50 kbps and
Introduction to digital mobile communication
Akaiwa, Yoshihiko
2015-01-01
Introduces digital mobile communications with an emphasis on digital transmission methods This book presents mathematical analyses of signals, mobile radio channels, and digital modulation methods. The new edition covers the evolution of wireless communications technologies and systems. The major new topics are OFDM (orthogonal frequency domain multiplexing), MIMO (multi-input multi-output) systems, frequency-domain equalization, the turbo codes, LDPC (low density parity check code), ACELP (algebraic code excited linear predictive) voice coding, dynamic scheduling for wireless packet data t
Evaluation Codes from Order Domain Theory
DEFF Research Database (Denmark)
Andersen, Henning Ejnar; Geil, Hans Olav
2008-01-01
bound is easily extended to deal with any generalized Hamming weights. We interpret our methods into the setting of order domain theory. In this way we fill in an obvious gap in the theory of order domains. [28] T. Shibuya and K. Sakaniwa, A Dual of Well-Behaving Type Designed Minimum Distance, IEICE......The celebrated Feng-Rao bound estimates the minimum distance of codes defined by means of their parity check matrices. From the Feng-Rao bound it is clear how to improve a large family of codes by leaving out certain rows in their parity check matrices. In this paper we derive a simple lower bound...... on the minimum distance of codes defined by means of their generator matrices. From our bound it is clear how to improve a large family of codes by adding certain rows to their generator matrices. The new bound is very much related to the Feng-Rao bound as well as to Shibuya and Sakaniwa's bound in [28]. Our...
Rate-adaptive BCH coding for Slepian-Wolf coding of highly correlated sources
DEFF Research Database (Denmark)
Forchhammer, Søren; Salmistraro, Matteo; Larsen, Knud J.
2012-01-01
This paper considers using BCH codes for distributed source coding using feedback. The focus is on coding using short block lengths for a binary source, X, having a high correlation between each symbol to be coded and a side information, Y, such that the marginal probability of each symbol, Xi in X......, given Y is highly skewed. In the analysis, noiseless feedback and noiseless communication are assumed. A rate-adaptive BCH code is presented and applied to distributed source coding. Simulation results for a fixed error probability show that rate-adaptive BCH achieves better performance than LDPCA (Low......-Density Parity-Check Accumulate) codes for high correlation between source symbols and the side information....
Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs
Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken
2015-09-01
To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-01-01
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-06-29
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Zhongwei Si
2015-06-01
Full Text Available Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.
Spherical reconciliation for a continuous-variable quantum key distribution
International Nuclear Information System (INIS)
Lu Zhao; Shi Jian-Hong; Li Feng-Guang
2017-01-01
Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD. (paper)
Efficient decoding of random errors for quantum expander codes
Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony
2017-01-01
We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...
PERFORMANCE EVOLUTION OF PAPR REDUCTION IN OFDM WITH AND WITHOUT LDPC TECHNIQUE
Punit Upmanyu*; Prof. Saurabh Gaur
2016-01-01
The OFDM is one of the proven multicarrier modulation techniques, which provides high spectral efficiency, low implementation complexity, less vulnerability to echoes and non-linear distortion. Apart from the above advantages presently this technique is used by almost all wireless standards and above. The one major shortcoming in the implementation of this system is the high PAPR (peak-to-average power ratio) of this system. In this paper, Irregular Low-Density-Parity Check encoder is used ef...
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.
2017-11-01
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.
The serial message-passing schedule for LDPC decoding algorithms
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
Blind Recognition of Binary BCH Codes for Cognitive Radios
Directory of Open Access Journals (Sweden)
Jing Zhou
2016-01-01
Full Text Available A novel algorithm of blind recognition of Bose-Chaudhuri-Hocquenghem (BCH codes is proposed to solve the problem of Adaptive Coding and Modulation (ACM in cognitive radio systems. The recognition algorithm is based on soft decision situations. The code length is firstly estimated by comparing the Log-Likelihood Ratios (LLRs of the syndromes, which are obtained according to the minimum binary parity check matrixes of different primitive polynomials. After that, by comparing the LLRs of different minimum polynomials, the code roots and generator polynomial are reconstructed. When comparing with some previous approaches, our algorithm yields better performance even on very low Signal-Noise-Ratios (SNRs with lower calculation complexity. Simulation results show the efficiency of the proposed algorithm.
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
Video over DSL with LDGM Codes for Interactive Applications
Directory of Open Access Journals (Sweden)
Laith Al-Jobouri
2016-05-01
Full Text Available Digital Subscriber Line (DSL network access is subject to error bursts, which, for interactive video, can introduce unacceptable latencies if video packets need to be re-sent. If the video packets are protected against errors with Forward Error Correction (FEC, calculation of the application-layer channel codes themselves may also introduce additional latency. This paper proposes Low-Density Generator Matrix (LDGM codes rather than other popular codes because they are more suitable for interactive video streaming, not only for their computational simplicity but also for their licensing advantage. The paper demonstrates that a reduction of up to 4 dB in video distortion is achievable with LDGM Application Layer (AL FEC. In addition, an extension to the LDGM scheme is demonstrated, which works by rearranging the columns of the parity check matrix so as to make it even more resilient to burst errors. Telemedicine and video conferencing are typical target applications.
High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems
Directory of Open Access Journals (Sweden)
Wang Yanxia
2006-01-01
Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.
Measurement Techniques for Clock Jitter
Lansdowne, Chatwin; Schlesinger, Adam
2012-01-01
NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.
Αρχιτεκτονική και υλοποίηση κωδικοποιητών VLSI για κώδικες LDPC
Mahdi, Ahmed
2010-01-01
Η διόρθωση λαθών με κώδικες LDPC είναι μεγάλου ενδιαφέροντος σε σημαντικές νέες τηλεπικοινωνιακές εφαρμογές, όπως δορυφορικό Digital Video Broadcast (DVB) DVB-S2, IEEE 802.3an (10GBASE-T) και IEEE 802.16 (WiMAX). Οι κώδικες LDPC ανήκουν στην κατηγορία των γραμμικών μπλοκ κωδικών. Πρόκειται για κώδικες ελέγχου και διόρθωσης σφαλμάτων μετάδοσης, με κυριότερο χαρακτηριστικό τους τον χαμηλής πυκνότητας πίνακα ελέγχου ισοτιμίας (Low Density Parity Check), από τον οποίο και πήραν το όνομά του...
Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei
2009-03-01
Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.
Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication
Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn
2014-11-01
Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.
Low-complexity video encoding method for wireless image transmission in capsule endoscope.
Takizawa, Kenichi; Hamaguchi, Kiyoshi
2010-01-01
This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.
Robotic Mobile System's Performance-Based MIMO-OFDM Technology
Directory of Open Access Journals (Sweden)
Omar Alani
2009-10-01
Full Text Available In this paper, a predistortion neural network (PDNN architecture has been imposed to the Sniffer Mobile Robot (SNFRbot that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR. Simulation results show that using PDNN resulted in better PAPR performance than the previously published work that is based on linear coding, such as Low Density Parity Check (LDPC codes and turbo encoding whether using flat fading channel or a Doppler spread channel.
Image content authentication based on channel coding
Zhang, Fan; Xu, Lei
2008-03-01
The content authentication determines whether an image has been tampered or not, and if necessary, locate malicious alterations made on the image. Authentication on a still image or a video are motivated by recipient's interest, and its principle is that a receiver must be able to identify the source of this document reliably. Several techniques and concepts based on data hiding or steganography designed as a means for the image authentication. This paper presents a color image authentication algorithm based on convolution coding. The high bits of color digital image are coded by the convolution codes for the tamper detection and localization. The authentication messages are hidden in the low bits of image in order to keep the invisibility of authentication. All communications channels are subject to errors introduced because of additive Gaussian noise in their environment. Data perturbations cannot be eliminated but their effect can be minimized by the use of Forward Error Correction (FEC) techniques in the transmitted data stream and decoders in the receiving system that detect and correct bits in error. This paper presents a color image authentication algorithm based on convolution coding. The message of each pixel is convolution encoded with the encoder. After the process of parity check and block interleaving, the redundant bits are embedded in the image offset. The tamper can be detected and restored need not accessing the original image.
Indian Academy of Sciences (India)
successful consumer products of all time - the Compact Disc. (CD) digital audio .... We can make ... only 2 t additional parity check symbols are required, to be able to correct t .... display information (contah'ling music related data and a table.
Non-binary Entanglement-assisted Stabilizer Quantum Codes
Riguang, Leng; Zhi, Ma
2011-01-01
In this paper, we show how to construct non-binary entanglement-assisted stabilizer quantum codes by using pre-shared entanglement between the sender and receiver. We also give an algorithm to determine the circuit for non-binary entanglement-assisted stabilizer quantum codes and some illustrated examples. The codes we constructed do not require the dual-containing constraint, and many non-binary classical codes, like non-binary LDPC codes, which do not satisfy the condition, can be used to c...
Capacity Maximizing Constellations
Barsoum, Maged; Jones, Christopher
2010-01-01
Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity
FPGA implementation of advanced FEC schemes for intelligent aggregation networks
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.
Channel coding for underwater acoustic single-carrier CDMA communication system
Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong
2017-01-01
CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.
Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage
Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.
2010-01-01
The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.
Interior point decoding for linear vector channels
International Nuclear Information System (INIS)
Wadayama, T
2008-01-01
In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem
25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.
Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S
2013-01-28
We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.
Interior point decoding for linear vector channels
Energy Technology Data Exchange (ETDEWEB)
Wadayama, T [Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555 (Japan)], E-mail: wadayama@nitech.ac.jp
2008-01-15
In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem.
SCaN Network Ground Station Receiver Performance for Future Service Support
Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung
2012-01-01
Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.
High-Performance CCSDS AOS Protocol Implementation in FPGA
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.
Simulations of linear and Hamming codes using SageMath
Timur, Tahta D.; Adzkiya, Dieky; Soleha
2018-03-01
Digital data transmission over a noisy channel could distort the message being transmitted. The goal of coding theory is to ensure data integrity, that is, to find out if and where this noise has distorted the message and what the original message was. Data transmission consists of three stages: encoding, transmission, and decoding. Linear and Hamming codes are codes that we discussed in this work, where encoding algorithms are parity check and generator matrix, and decoding algorithms are nearest neighbor and syndrome. We aim to show that we can simulate these processes using SageMath software, which has built-in class of coding theory in general and linear codes in particular. First we consider the message as a binary vector of size k. This message then will be encoded to a vector with size n using given algorithms. And then a noisy channel with particular value of error probability will be created where the transmission will took place. The last task would be decoding, which will correct and revert the received message back to the original message whenever possible, that is, if the number of error occurred is smaller or equal to the correcting radius of the code. In this paper we will use two types of data for simulations, namely vector and text data.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-09-15
We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
Neural network decoder for quantum error correcting codes
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
Advanced hardware design for error correcting codes
Coussy, Philippe
2015-01-01
This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.
Diseño de decodificadores de altas prestaciones para código LDPC
Angarita Preciado, Fabian Enrique
2013-01-01
En esta tesis se han investigado los algoritmos de decodificación para códigos de comprobación de paridad de baja densidad (LDPC) y las arquitecturas para la implementación hardware de éstos. El trabajo realizado se centra en los algoritmos del tipo de intercambio de mensajes para códigos estructurados los cuales se incluyen en varios estándares de comunicaciones. Inicialmente se han evaluado las prestaciones de los algoritmos existentes Sum-product, Min-Sum y las principales variantes de...
Nonlinear demodulation and channel coding in EBPSK scheme.
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.
Directory of Open Access Journals (Sweden)
Hongwei ZHAO
2014-09-01
Full Text Available In this paper, the capacity of the BICM system over AWGN channels is first analyzed; the curves of BICM capacity versus SNR are also got by the Monte-Carlo simulations===?=== and compared with the curves of the CM capacity. Based on the analysis results, we simulate the error performances of BICM system with LDPC codes. Simulation results show that the capacity of BICM system with LDPC codes is enormously influenced by the mapping methods. Given a certain modulation method, the BICM system can obtain about 2-3 dB gain with Gray mapping compared with Non-Gray mapping. Meanwhile, the simulation results also demonstrate the correctness of the theory analysis.
Energy Technology Data Exchange (ETDEWEB)
CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory
2007-01-10
The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes and their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.
Comments on “Techniques and Architectures for Hazard-Free Semi-Parallel Decoding of LDPC Codes”
Directory of Open Access Journals (Sweden)
Mark B. Yeary
2009-01-01
Full Text Available This is a comment article on the publication “Techniques and Architectures for Hazard-Free Semi-Parallel Decoding of LDPC Codes” Rovini et al. (2009. We mention that there has been similar work reported in the literature before, and the previous work has not been cited correctly, for example Gunnam et al. (2006, 2007. This brief note serves to clarify these issues.
How could the replica method improve accuracy of performance assessment of channel coding?
Energy Technology Data Exchange (ETDEWEB)
Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of technology, Yokohama 226-8502 (Japan)], E-mail: kaba@dis.titech.ac.jp
2009-12-01
We explore the relation between the techniques of statistical mechanics and information theory for assessing the performance of channel coding. We base our study on a framework developed by Gallager in IEEE Trans. Inform. Theory IT-11, 3 (1965), where the minimum decoding error probability is upper-bounded by an average of a generalized Chernoff's bound over a code ensemble. We show that the resulting bound in the framework can be directly assessed by the replica method, which has been developed in statistical mechanics of disordered systems, whereas in Gallager's original methodology further replacement by another bound utilizing Jensen's inequality is necessary. Our approach associates a seemingly ad hoc restriction with respect to an adjustable parameter for optimizing the bound with a phase transition between two replica symmetric solutions, and can improve the accuracy of performance assessments of general code ensembles including low density parity check codes, although its mathematical justification is still open.
Qu, Zhen; Djordjevic, Ivan B
2017-08-15
We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.
On the optimum signal constellation design for high-speed optical transport networks.
Liu, Tao; Djordjevic, Ivan B
2012-08-27
In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.
Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan
2018-02-01
Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.
Analysis and Design of Binary Message-Passing Decoders
DEFF Research Database (Denmark)
Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard
2012-01-01
Binary message-passing decoders for low-density parity-check (LDPC) codes are studied by using extrinsic information transfer (EXIT) charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the L-value domain. A hard decision channel results...... message-passing decoders. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived....... in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary...
Joint beam design and user selection over non-binary coded MIMO interference channel
Li, Haitao; Yuan, Haiying
2013-03-01
In this paper, we discuss the problem of sum rate improvement for coded MIMO interference system, and propose joint beam design and user selection over interference channel. Firstly, we have formulated non-binary LDPC coded MIMO interference networks model. Then, the least square beam design for MIMO interference system is derived, and the low complexity user selection is presented. Simulation results confirm that the sum rate can be improved by the joint user selection and beam design comparing with single interference aligning beamformer.
On locality of Generalized Reed-Muller codes over the broadcast erasure channel
Alloum, Amira
2016-07-28
One to Many communications are expected to be among the killer applications for the currently discussed 5G standard. The usage of coding mechanisms is impacting broadcasting standard quality, as coding is involved at several levels of the stack, and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet coding mechanisms based on previous schemes and designed for the foregoing LTE or other broadcasting standards; our purpose is to investigate the use of Generalized Reed Muller codes and the value of their locality property in their progressive decoding for Broadcast/Multicast communication schemes with real time video delivery. Our results are meant to bring insight into the use of locally decodable codes in Broadcasting. © 2016 IEEE.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-01
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-15
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Directory of Open Access Journals (Sweden)
Jiahui Meng
2018-01-01
Full Text Available In order to improve the performance of non-binary low-density parity check codes (LDPC hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER of 10−5 over an additive white Gaussian noise (AWGN channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
Analysis of soft-decision FEC on non-AWGN channels.
Cho, Junho; Xie, Chongjin; Winzer, Peter J
2012-03-26
Soft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels. We use a conditionally bivariate Gaussian noise model (CBGN) to analyze the impact of correlations among the signal's two quadrature components, and assess the effect of CBGN on SD-FEC performance using the density evolution of low-density parity-check (LDPC) codes. On a CBGN channel generating severely elliptic noise clouds, it is shown that more than 3 dB of coding gain are attainable by utilizing correlation information. Our analyses also give insights into potential improvements of the detection performance for fiber-optic transmission systems assisted by SD-FEC.
Pryadko, Leonid P.; Dumer, Ilya; Kovalev, Alexey A.
2015-03-01
We construct a lower (existence) bound for the threshold of scalable quantum computation which is applicable to all stabilizer codes, including degenerate quantum codes with sublinear distance scaling. The threshold is based on enumerating irreducible operators in the normalizer of the code, i.e., those that cannot be decomposed into a product of two such operators with non-overlapping support. For quantum LDPC codes with logarithmic or power-law distances, we get threshold values which are parametrically better than the existing analytical bound based on percolation. The new bound also gives a finite threshold when applied to other families of degenerate quantum codes, e.g., the concatenated codes. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
DEFF Research Database (Denmark)
Høholdt, Tom; Janwa, Heeralal
2009-01-01
We characterize optimaal bipartitet expander graphs and give nessecary and sufficient conditions for optimality. We determine the expansion parameters of the BIBD graphs and show that they yield optimal expander graphs and also bipartitet Ramanujan graphs. in particular, we show that the bipartit...
FPGA-Based Channel Coding Architectures for 5G Wireless Using High-Level Synthesis
Directory of Open Access Journals (Sweden)
Swapnil Mhaske
2017-01-01
Full Text Available We propose strategies to achieve a high-throughput FPGA architecture for quasi-cyclic low-density parity-check codes based on circulant-1 identity matrix construction. By splitting the node processing operation in the min-sum approximation algorithm, we achieve pipelining in the layered decoding schedule without utilizing additional hardware resources. High-level synthesis compilation is used to design and develop the architecture on the FPGA hardware platform. To validate this architecture, an IEEE 802.11n compliant 608 Mb/s decoder is implemented on the Xilinx Kintex-7 FPGA using the LabVIEW FPGA Compiler in the LabVIEW Communication System Design Suite. Architecture scalability was leveraged to accomplish a 2.48 Gb/s decoder on a single Xilinx Kintex-7 FPGA. Further, we present rapidly prototyped experimentation of an IEEE 802.16 compliant hybrid automatic repeat request system based on the efficient decoder architecture developed. In spite of the mixed nature of data processing—digital signal processing and finite-state machines—LabVIEW FPGA Compiler significantly reduced time to explore the system parameter space and to optimize in terms of error performance and resource utilization. A 4x improvement in the system throughput, relative to a CPU-based implementation, was achieved to measure the error-rate performance of the system over large, realistic data sets using accelerated, in-hardware simulation.
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.
Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-06-16
Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.
Energy Technology Data Exchange (ETDEWEB)
Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1966-09-01
This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)
Directory of Open Access Journals (Sweden)
Gou Hosoya
2013-01-01
Full Text Available Approximate calculation of channel log-likelihood ratio (LLR for wireless channels using Padé approximation is presented. LLR is used as an input of iterative decoding for powerful error-correcting codes such as low-density parity-check (LDPC codes or turbo codes. Due to the lack of knowledge of the channel state information of a wireless fading channel, such as uncorrelated fiat Rayleigh fading channels, calculations of exact LLR for these channels are quite complicated for a practical implementation. The previous work, an LLR calculation using the Taylor approximation, quickly becomes inaccurate as the channel output leaves some derivative point. This becomes a big problem when higher order modulation scheme is employed. To overcome this problem, a new LLR approximation using Padé approximation, which expresses the original function by a rational form of two polynomials with the same total number of coefficients of the Taylor series and can accelerate the Taylor approximation, is devised. By applying the proposed approximation to the iterative decoding and the LDPC codes with some modulation schemes, we show the effectiveness of the proposed methods by simulation results and analysis based on the density evolution.
Potts glass reflection of the decoding threshold for qudit quantum error correcting codes
Jiang, Yi; Kovalev, Alexey A.; Pryadko, Leonid P.
We map the maximum likelihood decoding threshold for qudit quantum error correcting codes to the multicritical point in generalized Potts gauge glass models, extending the map constructed previously for qubit codes. An n-qudit quantum LDPC code, where a qudit can be involved in up to m stabilizer generators, corresponds to a ℤd Potts model with n interaction terms which can couple up to m spins each. We analyze general properties of the phase diagram of the constructed model, give several bounds on the location of the transitions, bounds on the energy density of extended defects (non-local analogs of domain walls), and discuss the correlation functions which can be used to distinguish different phases in the original and the dual models. This research was supported in part by the Grants: NSF PHY-1415600 (AAK), NSF PHY-1416578 (LPP), and ARO W911NF-14-1-0272 (LPP).
Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM
Directory of Open Access Journals (Sweden)
Berger ChristianR
2010-01-01
Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Directory of Open Access Journals (Sweden)
Fabio Burderi
2007-05-01
Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
Antônio Unias de Lucena
2015-01-01
Resumo: O emprego de códigos LDPC em comunicações ópticas vem recebendo especial atenção nos últimos anos devido à sua elevada capacidade de correção de erros, fato que possibilita enlaces mais longos e com maior capacidade de transmissão. A presente dissertação apresenta um estudo de códigos LDPC binários, irregulares e estruturados (IE-LDPC), bem como, uma comparação do desempenho de dois algoritmos de decodificação comumente utilizados na decodificação de códigos LDPC: o algoritmo soma-pro...
DEFF Research Database (Denmark)
Cox, Geoff
Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...
Directory of Open Access Journals (Sweden)
Anthony McCosker
2014-03-01
Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.
Frame Synchronization Without Attached Sync Markers
Hamkins, Jon
2011-01-01
We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).
Energy Technology Data Exchange (ETDEWEB)
Ravishankar, C., Hughes Network Systems, Germantown, MD
1998-05-08
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the
Optimal codes as Tanner codes with cyclic component codes
DEFF Research Database (Denmark)
Høholdt, Tom; Pinero, Fernando; Zeng, Peng
2014-01-01
In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...
International Nuclear Information System (INIS)
Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.
2017-09-01
This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)
DEFF Research Database (Denmark)
Soon, Winnie; Cox, Geoff
2018-01-01
a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...
International Nuclear Information System (INIS)
Rattan, D.S.
1993-11-01
NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases
Energy Technology Data Exchange (ETDEWEB)
Delbecq, J.M
1999-07-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
DEFF Research Database (Denmark)
Ejsing-Duun, Stine; Hansbøl, Mikala
Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...
International Nuclear Information System (INIS)
Lindemuth, I.R.
1979-01-01
This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.
International Nuclear Information System (INIS)
Altomare, S.; Minton, G.
1975-02-01
PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)
International Nuclear Information System (INIS)
Gara, P.; Martin, E.
1983-01-01
The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils [fr
Directory of Open Access Journals (Sweden)
Valenzise G
2009-01-01
Full Text Available In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%.
Performance and Complexity Evaluation of Iterative Receiver for Coded MIMO-OFDM Systems
Directory of Open Access Journals (Sweden)
Rida El Chall
2016-01-01
Full Text Available Multiple-input multiple-output (MIMO technology in combination with channel coding technique is a promising solution for reliable high data rate transmission in future wireless communication systems. However, these technologies pose significant challenges for the design of an iterative receiver. In this paper, an efficient receiver combining soft-input soft-output (SISO detection based on low-complexity K-Best (LC-K-Best decoder with various forward error correction codes, namely, LTE turbo decoder and LDPC decoder, is investigated. We first investigate the convergence behaviors of the iterative MIMO receivers to determine the required inner and outer iterations. Consequently, the performance of LC-K-Best based receiver is evaluated in various LTE channel environments and compared with other MIMO detection schemes. Moreover, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared with different modulation orders and coding rates. Simulation results show that LC-K-Best based receiver achieves satisfactory performance-complexity trade-offs.
Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken
2018-04-01
A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.
From concatenated codes to graph codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
Automatic coding method of the ACR Code
International Nuclear Information System (INIS)
Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi
1993-01-01
The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Gagie, Travis
2005-01-01
We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.
Vector Network Coding Algorithms
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...
Energy Technology Data Exchange (ETDEWEB)
Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com
2013-03-15
In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.
SimCommSys: taking the errors out of error-correcting code simulations
Directory of Open Access Journals (Sweden)
Johann A. Briffa
2014-06-01
Full Text Available In this study, we present SimCommSys, a simulator of communication systems that we are releasing under an open source license. The core of the project is a set of C + + libraries defining communication system components and a distributed Monte Carlo simulator. Of principal interest is the error-control coding component, where various kinds of binary and non-binary codes are implemented, including turbo, LDPC, repeat-accumulate and Reed–Solomon. The project also contains a number of ready-to-build binaries implementing various stages of the communication system (such as the encoder and decoder, a complete simulator and a system benchmark. Finally, SimCommSys also provides a number of shell and python scripts to encapsulate routine use cases. As long as the required components are already available in SimCommSys, the user may simulate complete communication systems of their own design without any additional programming. The strict separation of development (needed only to implement new components and use (to simulate specific constructions encourages reproducibility of experimental work and reduces the likelihood of error. Following an overview of the framework, we provide some examples of how to use the framework, including the implementation of a simple codec, the specification of communication systems and their simulation.
Diagnostic Coding for Epilepsy.
Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R
2016-02-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Coding of Neuroinfectious Diseases.
Barkley, Gregory L
2015-12-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Directory of Open Access Journals (Sweden)
P. Beinschob
2010-11-01
Full Text Available In this paper we present a novel approach in Multiple-Input Multiple Output (MIMO Orthogonal Frequency Division Multiplexing (OFDM channel estimation technique based on a Decision Directed Recursive Least Squares (RLS algorithm in which no pilot symbols need to be integrated in the data after a short initial preamble. The novelty and key concept of the proposed technique is the block-wise causal and anti-causal RLS processing that yields two independent processings of RLS along with the associated decisions. Due to the usage of low density parity check (LDPC channel code, the receiver operates with soft information, which enables us to introduce a new modification of the Turbo principle as well as a simple information combining approach based on approximated aposteriori log-likelihood ratios (LLRs. Although the computational complexity is increased by both of our approaches, the latter is relatively less complex than the former. Simulation results show that these implementations outperform the simple RLS-DDCE algorithm and yield lower bit error rates (BER and more accurate channel estimates.
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...
Sze, Vivienne; Marpe, Detlev
2014-01-01
Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...
Generalized concatenated quantum codes
International Nuclear Information System (INIS)
Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei
2009-01-01
We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip
2012-01-01
This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....
Gao, Wen
2015-01-01
This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV
Abraham, Nikhil
2015-01-01
Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill
Locally orderless registration code
DEFF Research Database (Denmark)
2012-01-01
This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....
Manually operated coded switch
International Nuclear Information System (INIS)
Barnette, J.H.
1978-01-01
The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made
Jones, Lyell K; Ney, John P
2016-12-01
Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.
Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark
2012-01-01
A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…
Walker, Judy L
2000-01-01
When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...
Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.
Djordjevic, Ivan B
2011-07-18
In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.
DEFF Research Database (Denmark)
Soon, Winnie
2014-01-01
This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...
Djordjevic, Ivan; Vasic, Bane
2010-01-01
This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.
International Nuclear Information System (INIS)
Sacramento, A.M. do.
1989-01-01
This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to th...
International Nuclear Information System (INIS)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples
Xu, Mingliang; Su, Hao; Li, Yafei; Li, Xi; Liao, Jing; Niu, Jianwei; Lv, Pei; Zhou, Bing
2018-01-01
With the continued proliferation of smart mobile devices, Quick Response (QR) code has become one of the most-used types of two-dimensional code in the world. Aiming at beautifying the appearance of QR codes, existing works have developed a series of techniques to make the QR code more visual-pleasant. However, these works still leave much to be desired, such as visual diversity, aesthetic quality, flexibility, universal property, and robustness. To address these issues, in this paper, we pro...
Zhang, Linfan; Zheng, Shuang
2015-01-01
Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...
DEFF Research Database (Denmark)
Steensig, Jakob; Heinemann, Trine
2015-01-01
doing formal coding and when doing more “traditional” conversation analysis research based on collections. We are more wary, however, of the implication that coding-based research is the end result of a process that starts with qualitative investigations and ends with categories that can be coded...
DEFF Research Database (Denmark)
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...
A. van Deursen (Arie); L.M.F. Moonen (Leon); A. van den Bergh; G. Kok
2001-01-01
textabstractTwo key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from
Software Certification - Coding, Code, and Coders
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
International Nuclear Information System (INIS)
1997-01-01
The Network Code defines the rights and responsibilities of all users of the natural gas transportation system in the liberalised gas industry in the United Kingdom. This report describes the operation of the Code, what it means, how it works and its implications for the various participants in the industry. The topics covered are: development of the competitive gas market in the UK; key points in the Code; gas transportation charging; impact of the Code on producers upstream; impact on shippers; gas storage; supply point administration; impact of the Code on end users; the future. (20 tables; 33 figures) (UK)
Rice, R. F.; Lee, J. J.
1986-01-01
Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.
International Nuclear Information System (INIS)
Mueller, W.H.; Schneider, B.; Staeuble, J.
1984-01-01
This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)
International Nuclear Information System (INIS)
Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.
1993-11-01
This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms
International Nuclear Information System (INIS)
Kulikowska, T.
1999-01-01
The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)
Energy Technology Data Exchange (ETDEWEB)
2014-05-14
DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.
Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding
DEFF Research Database (Denmark)
Hansen, Johan Peder
We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....
An Optimal Linear Coding for Index Coding Problem
Pezeshkpour, Pouya
2015-01-01
An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...
DEFF Research Database (Denmark)
Andersen, Christian Ulrik
2007-01-01
Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...
International Nuclear Information System (INIS)
Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard
2010-01-01
We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.
Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
International Nuclear Information System (INIS)
Vokac, P.
1999-12-01
DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)
Phonological coding during reading.
Leinenger, Mallorie
2014-11-01
The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Energy Technology Data Exchange (ETDEWEB)
Visser, B. [Stork Product Eng., Amsterdam (Netherlands)
1996-09-01
To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
Waters, Joe
2012-01-01
Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown
International Nuclear Information System (INIS)
Reid, R.L.; Barrett, R.J.; Brown, T.G.
1985-03-01
The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged
Efficient Coding of Information: Huffman Coding -RE ...
Indian Academy of Sciences (India)
to a stream of equally-likely symbols so as to recover the original stream in the event of errors. The for- ... The source-coding problem is one of finding a mapping from U to a ... probability that the random variable X takes the value x written as ...
NR-code: Nonlinear reconstruction code
Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming
2018-04-01
NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.
International Nuclear Information System (INIS)
Elliot, B.
2005-01-01
Full text: The DARPA quantum network is now in initial operational, with six nodes performing quantum cryptography 24x7 across the Boston metro area between our campuses at Harvard University, Boston University, and BBN Technologies. In this talk, we present our recent activities, including the deployment of this network, building our Mark 1 Entangled QKD system, porting BBN QKD protocol software to NIST and Qinetiq freespace systems, performing initial design of a superconducting single photon detector with U. Rochester and NIST Boulder, and implementing a novel Low-Density Parity Check (LDPC) protocol for QKD. (author)
Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)
Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.
2012-01-01
The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.
Division for Early Childhood, Council for Exceptional Children, 2009
2009-01-01
The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…
Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H
2008-07-01
The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.
Indian Academy of Sciences (India)
Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.
DEFF Research Database (Denmark)
Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente
2013-01-01
is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...
International Nuclear Information System (INIS)
Lysenko, W.P.
1984-04-01
We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...
2013-03-26
... Energy Conservation Code. International Existing Building Code. International Fire Code. International... Code. International Property Maintenance Code. International Residential Code. International Swimming Pool and Spa Code International Wildland-Urban Interface Code. International Zoning Code. ICC Standards...
Validation of thermalhydraulic codes
International Nuclear Information System (INIS)
Wilkie, D.
1992-01-01
Thermalhydraulic codes require to be validated against experimental data collected over a wide range of situations if they are to be relied upon. A good example is provided by the nuclear industry where codes are used for safety studies and for determining operating conditions. Errors in the codes could lead to financial penalties, to the incorrect estimation of the consequences of accidents and even to the accidents themselves. Comparison between prediction and experiment is often described qualitatively or in approximate terms, e.g. ''agreement is within 10%''. A quantitative method is preferable, especially when several competing codes are available. The codes can then be ranked in order of merit. Such a method is described. (Author)
International Nuclear Information System (INIS)
Dershowitz, W; Herbert, A.; Long, J.
1989-03-01
The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)
Huffman coding in advanced audio coding standard
Brzuchalski, Grzegorz
2012-05-01
This article presents several hardware architectures of Advanced Audio Coding (AAC) Huffman noiseless encoder, its optimisations and working implementation. Much attention has been paid to optimise the demand of hardware resources especially memory size. The aim of design was to get as short binary stream as possible in this standard. The Huffman encoder with whole audio-video system has been implemented in FPGA devices.
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.N. (ed.)
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.
International Nuclear Information System (INIS)
Nelson, R.N.
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name
2014-01-01
While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.
Coded Splitting Tree Protocols
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar
2013-01-01
This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...
International Nuclear Information System (INIS)
Clancy, B.E.
1986-01-01
This chapter begins with a neutron transport equation which includes the one dimensional plane geometry problems, the one dimensional spherical geometry problems, and numerical solutions. The section on the ANISN code and its look-alikes covers problems which can be solved; eigenvalue problems; outer iteration loop; inner iteration loop; and finite difference solution procedures. The input and output data for ANISN is also discussed. Two dimensional problems such as the DOT code are given. Finally, an overview of the Monte-Carlo methods and codes are elaborated on
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
DEFF Research Database (Denmark)
2015-01-01
Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....
Supervised Convolutional Sparse Coding
Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter
2018-01-01
coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements
International Nuclear Information System (INIS)
Dunn, F.E.; Prohammer, F.G.; Weber, D.P.
1983-01-01
The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time
Montgomery County of Maryland — The Office of the County Attorney (OCA) processes Code Violation Citations issued by County agencies. The citations can be viewed by issued department, issued date...
Energy Technology Data Exchange (ETDEWEB)
Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)
1996-09-01
The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)
Code Disentanglement: Initial Plan
Energy Technology Data Exchange (ETDEWEB)
Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-27
The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.
Induction technology optimization code
International Nuclear Information System (INIS)
Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.
1992-01-01
A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs
Vermont Center for Geographic Information — (Link to Metadata) A ZIP Code Tabulation Area (ZCTA) is a statistical geographic entity that approximates the delivery area for a U.S. Postal Service five-digit...
Anderson, John B
2017-01-01
Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.
International Nuclear Information System (INIS)
Kulikowska, T.
2001-01-01
The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)
Critical Care Coding for Neurologists.
Nuwer, Marc R; Vespa, Paul M
2015-10-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Natarajan, Lakshmi; Hong, Yi; Viterbo, Emanuele
2014-01-01
The index coding problem involves a sender with K messages to be transmitted across a broadcast channel, and a set of receivers each of which demands a subset of the K messages while having prior knowledge of a different subset as side information. We consider the specific case of noisy index coding where the broadcast channel is Gaussian and every receiver demands all the messages from the source. Instances of this communication problem arise in wireless relay networks, sensor networks, and ...
Towards advanced code simulators
International Nuclear Information System (INIS)
Scriven, A.H.
1990-01-01
The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5
DEFF Research Database (Denmark)
Rennison, Betina Wolfgang
2016-01-01
extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....
International Nuclear Information System (INIS)
De Wit, R.; Jamieson, T.; Lord, M.; Lafortune, J.F.
1997-07-01
As a necessary component in the continuous improvement and refinement of methodologies employed in the nuclear industry, regulatory agencies need to periodically evaluate these processes to improve confidence in results and ensure appropriate levels of safety are being achieved. The independent and objective review of industry-standard computer codes forms an essential part of this program. To this end, this work undertakes an in-depth review of the computer code PEAR (Public Exposures from Accidental Releases), developed by Atomic Energy of Canada Limited (AECL) to assess accidental releases from CANDU reactors. PEAR is based largely on the models contained in the Canadian Standards Association (CSA) N288.2-M91. This report presents the results of a detailed technical review of the PEAR code to identify any variations from the CSA standard and other supporting documentation, verify the source code, assess the quality of numerical models and results, and identify general strengths and weaknesses of the code. The version of the code employed in this review is the one which AECL intends to use for CANDU 9 safety analyses. (author)
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The KENO-V code is the current release of the Oak Ridge multigroup Monte Carlo criticality code development. The original KENO, with 16 group Hansen-Roach cross sections and P 1 scattering, was one ot the first multigroup Monte Carlo codes and it and its successors have always been a much-used research tool for criticality studies. KENO-V is able to accept large neutron cross section libraries (a 218 group set is distributed with the code) and has a general P/sub N/ scattering capability. A supergroup feature allows execution of large problems on small computers, but at the expense of increased calculation time and system input/output operations. This supergroup feature is activated automatically by the code in a manner which utilizes as much computer memory as is available. The primary purpose of KENO-V is to calculate the system k/sub eff/, from small bare critical assemblies to large reflected arrays of differing fissile and moderator elements. In this respect KENO-V neither has nor requires the many options and sophisticated biasing techniques of general Monte Carlo codes
Code, standard and specifications
International Nuclear Information System (INIS)
Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail
2008-01-01
Radiography also same as the other technique, it need standard. This standard was used widely and method of used it also regular. With that, radiography testing only practical based on regulations as mentioned and documented. These regulation or guideline documented in code, standard and specifications. In Malaysia, level one and basic radiographer can do radiography work based on instruction give by level two or three radiographer. This instruction was produced based on guideline that mention in document. Level two must follow the specifications mentioned in standard when write the instruction. From this scenario, it makes clearly that this radiography work is a type of work that everything must follow the rule. For the code, the radiography follow the code of American Society for Mechanical Engineer (ASME) and the only code that have in Malaysia for this time is rule that published by Atomic Energy Licensing Board (AELB) known as Practical code for radiation Protection in Industrial radiography. With the existence of this code, all the radiography must follow the rule or standard regulated automatically.
Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding
Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong
2016-01-01
In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan
2005-01-01
We analyze the relation between iterative decoding and the extended parity check matrix. By considering a modified version of bit flipping, which produces a list of decoded words, we derive several relations between decodable error patterns and the parameters of the code. By developing a tree...... of codewords at minimal distance from the received vector, we also obtain new information about the code....
Resonance – Journal of Science Education | Indian Academy of ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Decoding Codes on Graphs - Low Density Parity Check Codes. A S Madhu Aditya Nori ... Author Affiliations. A S Madhu1 Aditya Nori1. Department of Computer Science and Automation Indian Institute of Science Bangalore 560012, India.
SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE
Directory of Open Access Journals (Sweden)
F.N. HASOON
2006-12-01
Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.
Nuclear code abstracts (1975 edition)
International Nuclear Information System (INIS)
Akanuma, Makoto; Hirakawa, Takashi
1976-02-01
Nuclear Code Abstracts is compiled in the Nuclear Code Committee to exchange information of the nuclear code developments among members of the committee. Enlarging the collection, the present one includes nuclear code abstracts obtained in 1975 through liaison officers of the organizations in Japan participating in the Nuclear Energy Agency's Computer Program Library at Ispra, Italy. The classification of nuclear codes and the format of code abstracts are the same as those in the library. (auth.)
Directory of Open Access Journals (Sweden)
Rumen Daskalov
2017-07-01
Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].
ACE - Manufacturer Identification Code (MID)
Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Optical coding theory with Prime
Kwong, Wing C
2013-01-01
Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct
International Nuclear Information System (INIS)
Delbecq, J.M.
1999-01-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
Adaptive distributed source coding.
Varodayan, David; Lin, Yao-Chung; Girod, Bernd
2012-05-01
We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.
Speech coding code- excited linear prediction
Bäckström, Tom
2017-01-01
This book provides scientific understanding of the most central techniques used in speech coding both for advanced students as well as professionals with a background in speech audio and or digital signal processing. It provides a clear connection between the whys hows and whats thus enabling a clear view of the necessity purpose and solutions provided by various tools as well as their strengths and weaknesses in each respect Equivalently this book sheds light on the following perspectives for each technology presented Objective What do we want to achieve and especially why is this goal important Resource Information What information is available and how can it be useful and Resource Platform What kind of platforms are we working with and what are their capabilities restrictions This includes computational memory and acoustic properties and the transmission capacity of devices used. The book goes on to address Solutions Which solutions have been proposed and how can they be used to reach the stated goals and ...
Spatially coded backscatter radiography
International Nuclear Information System (INIS)
Thangavelu, S.; Hussein, E.M.A.
2007-01-01
Conventional radiography requires access to two opposite sides of an object, which makes it unsuitable for the inspection of extended and/or thick structures (airframes, bridges, floors etc.). Backscatter imaging can overcome this problem, but the indications obtained are difficult to interpret. This paper applies the coded aperture technique to gamma-ray backscatter-radiography in order to enhance the detectability of flaws. This spatial coding method involves the positioning of a mask with closed and open holes to selectively permit or block the passage of radiation. The obtained coded-aperture indications are then mathematically decoded to detect the presence of anomalies. Indications obtained from Monte Carlo calculations were utilized in this work to simulate radiation scattering measurements. These simulated measurements were used to investigate the applicability of this technique to the detection of flaws by backscatter radiography
Energy Technology Data Exchange (ETDEWEB)
Quezada G, S.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Centeno P, J.; Sanchez M, H., E-mail: sequga@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico)
2017-09-15
This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)
Gallistel, C R
2017-07-01
Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.
1986-09-01
Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)
Vaucouleur, Sebastien
2011-02-01
We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.
The correspondence between projective codes and 2-weight codes
Brouwer, A.E.; Eupen, van M.J.M.; Tilborg, van H.C.A.; Willems, F.M.J.
1994-01-01
The hyperplanes intersecting a 2-weight code in the same number of points obviously form the point set of a projective code. On the other hand, if we have a projective code C, then we can make a 2-weight code by taking the multiset of points
Visualizing code and coverage changes for code review
Oosterwaal, Sebastiaan; van Deursen, A.; De Souza Coelho, R.; Sawant, A.A.; Bacchelli, A.
2016-01-01
One of the tasks of reviewers is to verify that code modifications are well tested. However, current tools offer little support in understanding precisely how changes to the code relate to changes to the tests. In particular, it is hard to see whether (modified) test code covers the changed code.
Directory of Open Access Journals (Sweden)
. SZD-SZZ
2017-03-01
Full Text Available Te Code was approved on December 12, 1992, at the 3rd regular meeting of the General Assembly of the Medical Chamber of Slovenia and revised on April 24, 1997, at the 27th regular meeting of the General Assembly of the Medical Chamber of Slovenia. The Code was updated and harmonized with the Medical Association of Slovenia and approved on October 6, 2016, at the regular meeting of the General Assembly of the Medical Chamber of Slovenia.
Supervised Convolutional Sparse Coding
Affara, Lama Ahmed
2018-04-08
Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.
International Nuclear Information System (INIS)
Delene, J.
1984-01-01
CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated
Ogunfunmi, Tokunbo
2010-01-01
It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech coding. Outlines key signal processing algorithms used to mitigate impairments to speech quality in VoIP networksOffering a detailed yet easily accessible introduction to the field, Principles of Speech Coding provides an in-depth examination of the
Evaluation Codes from an Affine Veriety Code Perspective
DEFF Research Database (Denmark)
Geil, Hans Olav
2008-01-01
Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...
Burton, John K.; Wildman, Terry M.
The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…
DEFF Research Database (Denmark)
Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki
2014-01-01
Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...
International Nuclear Information System (INIS)
Anon.
1988-01-01
A new coding system, 'Hazrad', for buildings and transportation containers for alerting emergency services personnel to the presence of radioactive materials has been developed in the United Kingdom. The hazards of materials in the buildings or transport container, together with the recommended emergency action, are represented by a number of codes which are marked on the building or container and interpreted from a chart carried as a pocket-size guide. Buildings would be marked with the familiar yellow 'radioactive' trefoil, the written information 'Radioactive materials' and a list of isotopes. Under this the 'Hazrad' code would be written - three symbols to denote the relative radioactive risk (low, medium or high), the biological risk (also low, medium or high) and the third showing the type of radiation emitted, alpha, beta or gamma. The response cards indicate appropriate measures to take, eg for a high biological risk, Bio3, the wearing of a gas-tight protection suit is advised. The code and its uses are explained. (U.K.)
Building Codes and Regulations.
Fisher, John L.
The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)
International Nuclear Information System (INIS)
Cooper, R.K.; Jones, M.E.
1989-01-01
The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. The authors focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that the authors will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. The plan of this paper is first to describe rather simply the concepts of emittance and brightness, then to describe rather briefly each of the codes TRANSPORT, PARMTEQ, TBCI, MARYLIE, and ISIS, indicating what physics is and is not included in each of them. It is expected that the vast majority of what is covered will apply equally well to protons and electrons (and other particles). This material is intended to be tutorial in nature and can in no way be expected to be exhaustive. 31 references, 4 figures
Kasperski, M.; Geurts, C.P.W.
2005-01-01
The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the
Anaïs Schaeffer
2013-01-01
This summer, CERN took part in the Google Summer of Code programme for the third year in succession. Open to students from all over the world, this programme leads to very successful collaborations for open source software projects. Image: GSoC 2013. Google Summer of Code (GSoC) is a global programme that offers student developers grants to write code for open-source software projects. Since its creation in 2005, the programme has brought together some 6,000 students from over 100 countries worldwide. The students selected by Google are paired with a mentor from one of the participating projects, which can be led by institutes, organisations, companies, etc. This year, CERN PH Department’s SFT (Software Development for Experiments) Group took part in the GSoC programme for the third time, submitting 15 open-source projects. “Once published on the Google Summer for Code website (in April), the projects are open to applications,” says Jakob Blomer, one of the o...
Department, HR
2010-01-01
The Code is intended as a guide in helping us, as CERN contributors, to understand how to conduct ourselves, treat others and expect to be treated. It is based around the five core values of the Organization. We should all become familiar with it and try to incorporate it into our daily life at CERN.
Energy Technology Data Exchange (ETDEWEB)
Hu, H.H.; Ford, D.; Le, H.; Park, S.; Cooke, K.L.; Bleakney, T.; Spanier, J.; Wilburn, N.P.; O' Reilly, B.; Carmichael, B.
1981-01-01
The objective is to analyze an overpower accident in an LMFBR. A simplified model of the primary coolant loop was developed in order to understand the instabilities encountered with the MELT III and SAS codes. The computer programs were translated for switching to the IBM 4331. Numerical methods were investigated for solving the neutron kinetics equations; the Adams and Gear methods were compared. (DLC)
Revised C++ coding conventions
Callot, O
2001-01-01
This document replaces the note LHCb 98-049 by Pavel Binko. After a few years of practice, some simplification and clarification of the rules was needed. As many more people have now some experience in writing C++ code, their opinion was also taken into account to get a commonly agreed set of conventions
Corporate governance through codes
Haxhi, I.; Aguilera, R.V.; Vodosek, M.; den Hartog, D.; McNett, J.M.
2014-01-01
The UK's 1992 Cadbury Report defines corporate governance (CG) as the system by which businesses are directed and controlled. CG codes are a set of best practices designed to address deficiencies in the formal contracts and institutions by suggesting prescriptions on the preferred role and
Error Correcting Codes -34 ...
Indian Academy of Sciences (India)
information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.
DEFF Research Database (Denmark)
Ivanov, Mikhail; Brännström, Frederik; Graell i Amat, Alexandre
2016-01-01
We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives ...
Software Defined Coded Networking
DEFF Research Database (Denmark)
Di Paola, Carla; Roetter, Daniel Enrique Lucani; Palazzo, Sergio
2017-01-01
the quality of each link and even across neighbouring links and using simulations to show that an additional reduction of packet transmission in the order of 40% is possible. Second, to advocate for the use of network coding (NC) jointly with software defined networking (SDN) providing an implementation...
Laëtitia Pedroso
2010-01-01
During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project. Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...
Khina, Anatoly
2016-08-15
We consider the problem of stabilizing an unstable plant driven by bounded noise over a digital noisy communication link, a scenario at the heart of networked control. To stabilize such a plant, one needs real-time encoding and decoding with an error probability profile that decays exponentially with the decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions of tree codes and anytime capacity, and provided the theoretical framework for studying such problems. Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take one more step towards practicality, by showing that these codes can be efficiently decoded using sequential decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We supplement our theoretical results with numerical simulations that demonstrate the effectiveness of the decoder in a control system setting.
Indian Academy of Sciences (India)
having a probability Pi of being equal to a 1. Let us assume ... equal to a 0/1 has no bearing on the probability of the. It is often ... bits (call this set S) whose individual bits add up to zero ... In the context of binary error-correct~ng codes, specifi-.
Jones, Dean P; Sies, Helmut
2015-09-20
The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.
Borges, J.
2014-01-01
A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...
Coding for urologic office procedures.
Dowling, Robert A; Painter, Mark
2013-11-01
This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff. Copyright © 2013 Elsevier Inc. All rights reserved.
Essential idempotents and simplex codes
Directory of Open Access Journals (Sweden)
Gladys Chalom
2017-01-01
Full Text Available We define essential idempotents in group algebras and use them to prove that every mininmal abelian non-cyclic code is a repetition code. Also we use them to prove that every minimal abelian code is equivalent to a minimal cyclic code of the same length. Finally, we show that a binary cyclic code is simplex if and only if is of length of the form $n=2^k-1$ and is generated by an essential idempotent.
Rate-adaptive BCH codes for distributed source coding
DEFF Research Database (Denmark)
Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren
2013-01-01
This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...
Entanglement-assisted quantum MDS codes constructed from negacyclic codes
Chen, Jianzhang; Huang, Yuanyuan; Feng, Chunhui; Chen, Riqing
2017-12-01
Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies q+1 ≤ d≤ n+2/2. Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.
Efficient convolutional sparse coding
Wohlberg, Brendt
2017-06-20
Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.
Coded Network Function Virtualization
DEFF Research Database (Denmark)
Al-Shuwaili, A.; Simone, O.; Kliewer, J.
2016-01-01
Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off......-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. In contrast, this letter proposes to leverage channel...... coding in order to enhance the robustness on NFV to hardware failure. The proposed approach targets the network function of uplink channel decoding, and builds on the algebraic structure of the encoded data frames in order to perform in-network coding on the signals to be processed at different servers...
Schnack, D. D.; Glasser, A. H.
1996-11-01
NIMROD is a new code system that is being developed for the analysis of modern fusion experiments. It is being designed from the beginning to make the maximum use of massively parallel computer architectures and computer graphics. The NIMROD physics kernel solves the three-dimensional, time-dependent two-fluid equations with neo-classical effects in toroidal geometry of arbitrary poloidal cross section. The NIMROD system also includes a pre-processor, a grid generator, and a post processor. User interaction with NIMROD is facilitated by a modern graphical user interface (GUI). The NIMROD project is using Quality Function Deployment (QFD) team management techniques to minimize re-engineering and reduce code development time. This paper gives an overview of the NIMROD project. Operation of the GUI is demonstrated, and the first results from the physics kernel are given.
International Nuclear Information System (INIS)
Rohmann, D.; Koehler, T.
1987-02-01
This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
International Nuclear Information System (INIS)
Doyle, Colin; Hone, Christopher; Nowlan, N.V.
1984-05-01
This Code of Practice introduces accepted safety procedures associated with the use of alpha, beta, gamma and X-radiation in secondary schools (pupils aged 12 to 18) in Ireland, and summarises good practice and procedures as they apply to radiation protection. Typical dose rates at various distances from sealed sources are quoted, and simplified equations are used to demonstrate dose and shielding calculations. The regulatory aspects of radiation protection are outlined, and references to statutory documents are given
Tokamak simulation code manual
International Nuclear Information System (INIS)
Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won
1995-01-01
The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs
Energy Technology Data Exchange (ETDEWEB)
N.V. Mokhov
2003-04-09
Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.
DEFF Research Database (Denmark)
Beck Jørgensen, Torben; Sørensen, Ditte-Lene
2013-01-01
Good governance is a broad concept used by many international organizations to spell out how states or countries should be governed. Definitions vary, but there is a clear core of common public values, such as transparency, accountability, effectiveness, and the rule of law. It is quite likely......, transparency, neutrality, impartiality, effectiveness, accountability, and legality. The normative context of public administration, as expressed in codes, seems to ignore the New Public Management and Reinventing Government reform movements....
Orthopedics coding and funding.
Baron, S; Duclos, C; Thoreux, P
2014-02-01
The French tarification à l'activité (T2A) prospective payment system is a financial system in which a health-care institution's resources are based on performed activity. Activity is described via the PMSI medical information system (programme de médicalisation du système d'information). The PMSI classifies hospital cases by clinical and economic categories known as diagnosis-related groups (DRG), each with an associated price tag. Coding a hospital case involves giving as realistic a description as possible so as to categorize it in the right DRG and thus ensure appropriate payment. For this, it is essential to understand what determines the pricing of inpatient stay: namely, the code for the surgical procedure, the patient's principal diagnosis (reason for admission), codes for comorbidities (everything that adds to management burden), and the management of the length of inpatient stay. The PMSI is used to analyze the institution's activity and dynamism: change on previous year, relation to target, and comparison with competing institutions based on indicators such as the mean length of stay performance indicator (MLS PI). The T2A system improves overall care efficiency. Quality of care, however, is not presently taken account of in the payment made to the institution, as there are no indicators for this; work needs to be done on this topic. Copyright © 2014. Published by Elsevier Masson SAS.
Bird, Robert; Nystrom, David; Albright, Brian
2017-10-01
The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.
Energy Technology Data Exchange (ETDEWEB)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.
International Nuclear Information System (INIS)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package
Quality Improvement of MARS Code and Establishment of Code Coupling
International Nuclear Information System (INIS)
Chung, Bub Dong; Jeong, Jae Jun; Kim, Kyung Doo
2010-04-01
The improvement of MARS code quality and coupling with regulatory auditing code have been accomplished for the establishment of self-reliable technology based regulatory auditing system. The unified auditing system code was realized also by implementing the CANDU specific models and correlations. As a part of the quality assurance activities, the various QA reports were published through the code assessments. The code manuals were updated and published a new manual which describe the new models and correlations. The code coupling methods were verified though the exercise of plant application. The education-training seminar and technology transfer were performed for the code users. The developed MARS-KS is utilized as reliable auditing tool for the resolving the safety issue and other regulatory calculations. The code can be utilized as a base technology for GEN IV reactor applications
Design of convolutional tornado code
Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu
2017-09-01
As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.
Containment Code Validation Matrix
International Nuclear Information System (INIS)
Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah
2014-01-01
The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description
Djordjevic, Ivan B
2010-04-12
The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.
Decoding of concatenated codes with interleaved outer codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom; Thommesen, Christian
2004-01-01
Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....
TASS code topical report. V.1 TASS code technical manual
International Nuclear Information System (INIS)
Sim, Suk K.; Chang, W. P.; Kim, K. D.; Kim, H. C.; Yoon, H. Y.
1997-02-01
TASS 1.0 code has been developed at KAERI for the initial and reload non-LOCA safety analysis for the operating PWRs as well as the PWRs under construction in Korea. TASS code will replace various vendor's non-LOCA safety analysis codes currently used for the Westinghouse and ABB-CE type PWRs in Korea. This can be achieved through TASS code input modifications specific to each reactor type. The TASS code can be run interactively through the keyboard operation. A simimodular configuration used in developing the TASS code enables the user easily implement new models. TASS code has been programmed using FORTRAN77 which makes it easy to install and port for different computer environments. The TASS code can be utilized for the steady state simulation as well as the non-LOCA transient simulations such as power excursions, reactor coolant pump trips, load rejections, loss of feedwater, steam line breaks, steam generator tube ruptures, rod withdrawal and drop, and anticipated transients without scram (ATWS). The malfunctions of the control systems, components, operator actions and the transients caused by the malfunctions can be easily simulated using the TASS code. This technical report describes the TASS 1.0 code models including reactor thermal hydraulic, reactor core and control models. This TASS code models including reactor thermal hydraulic, reactor core and control models. This TASS code technical manual has been prepared as a part of the TASS code manual which includes TASS code user's manual and TASS code validation report, and will be submitted to the regulatory body as a TASS code topical report for a licensing non-LOCA safety analysis for the Westinghouse and ABB-CE type PWRs operating and under construction in Korea. (author). 42 refs., 29 tabs., 32 figs
Construction of new quantum MDS codes derived from constacyclic codes
Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran
Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.
Combinatorial neural codes from a mathematical coding theory perspective.
Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L
2013-07-01
Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
Convolutional coding techniques for data protection
Massey, J. L.
1975-01-01
Results of research on the use of convolutional codes in data communications are presented. Convolutional coding fundamentals are discussed along with modulation and coding interaction. Concatenated coding systems and data compression with convolutional codes are described.
High Energy Transport Code HETC
International Nuclear Information System (INIS)
Gabriel, T.A.
1985-09-01
The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs
Benavente, L; Villanueva, M J; Vega, P; Casado, I; Vidal, J A; Castaño, B; Amorín, M; de la Vega, V; Santos, H; Trigo, A; Gómez, M B; Larrosa, D; Temprano, T; González, M; Murias, E; Calleja, S
2016-04-01
Intravenous thrombolysis with alteplase is an effective treatment for ischaemic stroke when applied during the first 4.5 hours, but less than 15% of patients have access to this technique. Mechanical thrombectomy is more frequently able to recanalise proximal occlusions in large vessels, but the infrastructure it requires makes it even less available. We describe the implementation of code stroke in Asturias, as well as the process of adapting various existing resources for urgent stroke care in the region. By considering these resources, and the demographic and geographic circumstances of our region, we examine ways of reorganising the code stroke protocol that would optimise treatment times and provide the most appropriate treatment for each patient. We distributed the 8 health districts in Asturias so as to permit referral of candidates for reperfusion therapies to either of the 2 hospitals with 24-hour stroke units and on-call neurologists and providing IV fibrinolysis. Hospitals were assigned according to proximity and stroke severity; the most severe cases were immediately referred to the hospital with on-call interventional neurology care. Patient triage was provided by pre-hospital emergency services according to the NIHSS score. Modifications to code stroke in Asturias have allowed us to apply reperfusion therapies with good results, while emphasising equitable care and managing the severity-time ratio to offer the best and safest treatment for each patient as soon as possible. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
DEFF Research Database (Denmark)
Nielsen, Rasmus Refslund
2002-01-01
This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed.......This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed....
WWER reactor physics code applications
International Nuclear Information System (INIS)
Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.
1994-01-01
The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs