WorldWideScience

Sample records for parity space approach

  1. Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

    Directory of Open Access Journals (Sweden)

    Moath Kassim

    2018-05-01

    Full Text Available To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA. PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C, PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC, to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor (Wa with a weighting factor based on the Euclidean distance (Wd, and the third approach proposes applying Wd,TC,andC, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1 identify and isolate a drifted sensor that should undergo calibration, (2 identify a faulty sensor/s due to long and continuous missing data range, and (3 identify a healthy sensor. Keywords: Nuclear Reactors

  2. Purchasing power parity a different approach

    OpenAIRE

    Σακελλής, Παναγιώτης

    2001-01-01

    Historically, Purchasing Power Parity (henceforth PPP) provides the simplest explanation of long-run exchange rate determination, according to which the equilibrium exchange rate between domestic and foreign currencies equals the ratio between domestic and foreign prices. A few years ago, PPP validity theory seemed like a fairly dull research topic. On the one hand the unavoidable effects of floating exchange rates made it obvious to even its most stubborn defenders that PPP is not a short-ru...

  3. Neural redundancy applied to the parity space for signal validation

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu; Martinez, Aquilino Senra

    2005-01-01

    The objective of signal validation is to provide more reliable information from the plant sensor data The method presented in this work introduces the concept of neural redundancy and applies it to the space parity method [1] to overcome an inherent deficiency of this method - the determination of the best estimative of the redundant measures when they are inconsistent. The concept of neural redundancy consists on the calculation of a redundancy through neural networks based on the time series of the own state variable. Therefore, neural networks, dynamically trained with the time series, will estimate the current value of the own measure, which will be used as referee of the redundant measures in the parity space. For this purpose the neural network should have the capacity to supply the neural redundancy in real time and with maximum error corresponding to the group deviation. The historical series should be enough to allow the estimate of the next value, during transients and at the same time, it should be optimized to facilitate the retraining of the neural network to each acquisition. In order to have the capacity to reproduce the tendency of the time series even under accident condition, the dynamic training of the neural network privileges the recent points of the time series. The tests accomplished with simulated data of a nuclear plant, demonstrated that this method applied on the parity space method improves the signal validation process. (author)

  4. Neural redundancy applied to the parity space for signal validation

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: cmnap@ien.gov.br; Martinez, Aquilino Senra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia]. E-mail: aquilino@lmp.br

    2005-07-01

    The objective of signal validation is to provide more reliable information from the plant sensor data The method presented in this work introduces the concept of neural redundancy and applies it to the space parity method [1] to overcome an inherent deficiency of this method - the determination of the best estimative of the redundant measures when they are inconsistent. The concept of neural redundancy consists on the calculation of a redundancy through neural networks based on the time series of the own state variable. Therefore, neural networks, dynamically trained with the time series, will estimate the current value of the own measure, which will be used as referee of the redundant measures in the parity space. For this purpose the neural network should have the capacity to supply the neural redundancy in real time and with maximum error corresponding to the group deviation. The historical series should be enough to allow the estimate of the next value, during transients and at the same time, it should be optimized to facilitate the retraining of the neural network to each acquisition. In order to have the capacity to reproduce the tendency of the time series even under accident condition, the dynamic training of the neural network privileges the recent points of the time series. The tests accomplished with simulated data of a nuclear plant, demonstrated that this method applied on the parity space method improves the signal validation process. (author)

  5. Axial and parity anomalies and vacuum charge: A direct approach

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Blankenbecler, R.

    1985-01-01

    We study the axial and parity anomalies in Abelian gauge theories using the direct yet intuitive approach of counting the relative number of states of one chirality with respect to the other. A fundamental gauge-invariant quantity, the determinantal ratio, is introduced for this purpose. We find that the number of states is conserved and that the gauge fields differentially phase shift states of opposite chirality at infinite energies. This implies a relative flow of states at very large energies which must be compensated by a rearrangement of the density of states at finite energies. We then derive a sum rule which yields two alternative formulas for the index of a Dirac operator. One expresses the index in terms of its high-energy behavior, and the other in terms of the low-energy properties; these are the ''zero modes'' of definite chirality. Two examples are worked out in detail to clarify our general result. The physics of the axial anomaly is shown to translate into that of the parity anomaly in 2+1 dimensions, in which parity and chirality have interchanged roles. We also analyze the vacuum charge in regard to its high- and low-energy origin. The possibility of spectral flow is formulated and briefly discussed. In short, we provide a physical interpretation of certain mathematical indices, relate them to an extended version of Levinson's theorem of potential scattering, and simplify their evaluation

  6. PARITY IN THE COSMIC MICROWAVE BACKGROUND: SPACE ODDITY

    Energy Technology Data Exchange (ETDEWEB)

    Ben-David, Assaf; Kovetz, Ely D.; Itzhaki, Nissan, E-mail: bd.assaf@gmail.com, E-mail: elykovetz@gmail.com, E-mail: nitzhaki@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-03-20

    We search for a direction in the sky that exhibits parity symmetry under reflections through a plane. We use the natural estimator, which compares the power in even and odd l + m multipoles, and apply minimal blind masking of outliers to the Internal Linear Combination map in order to avoid large errors in the reconstruction of multipoles. The multipoles of the cut sky are calculated both naively and by using the covariance inversion method, and we estimate the significance of our results using {Lambda}CDM simulations. Focusing on low multipoles, 2 {<=} l {<=} l{sub max} with l{sub max} = 5, 6, or even 7, we find two perpendicular directions of even and odd parity in the map. While the even parity direction does not appear significant, the odd direction is quite significant-at least a 3.6{sigma} effect.

  7. No parity anomaly in massless QED3: A BPHZL approach

    International Nuclear Information System (INIS)

    Del Cima, O.M.; Franco, D.H.T.; Piguet, O.; Schweda, M.

    2009-01-01

    In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED 3 frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.

  8. B→τν: Opening up the charged Higgs parameter space with R-parity violation

    International Nuclear Information System (INIS)

    Bose, Roshni; Kundu, Anirban

    2012-01-01

    The theoretically clean channel B + →τ + ν shows a close to 3σ discrepancy between the Standard Model prediction and the data. This in turn puts a strong constraint on the parameter space of a two-Higgs doublet model, including R-parity conserving supersymmetry. The constraint is so strong that it almost smells of fine-tuning. We show how the parameter space opens up with the introduction of suitable R-parity violating interactions, and release the tension between data and theory.

  9. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    Science.gov (United States)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  10. Is space-time symmetry a suitable generalization of parity-time symmetry?

    International Nuclear Information System (INIS)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-01-01

    We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 00. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g

  11. International parity relations between Poland and Germany: a cointegrated VAR approach

    OpenAIRE

    Stazka, Agnieszka

    2008-01-01

    This paper analyses empirically the purchasing power parity, the uncovered interest parity and the real interest parity (Fisher parity) between Poland and Germany. The international parity relations are investigated jointly within the cointegrated VAR framework. Our analysis fails to find evidence that the parities, or any linear combinations of them, hold for our data set. We identify two long-run equilibrium relations: one imposing a long-run homogeneity restriction on the domestic (i.e. Po...

  12. Validity of Purchasing Power Parity in BRICS under a DFA Approach

    Directory of Open Access Journals (Sweden)

    Emmanuel Numapau Gyamfi

    2017-02-01

    Full Text Available This study tests the validity of the purchasing power parity (PPP theory in Brazil, Russia, India, Macao-China and South Africa. We examine real exchange rates of these countries for mean reversion. The Hurst exponent is our mean reversion measure which is evaluated by the Detrended Fluctuation Analysis (DFA in a rolling window to determine the validity of the PPP theory amongst these countries through time. Our results show persistence in real exchange rates; an indication not supporting the PPP theory in the five countries. The study contributes to the extant literature of the PPP theory in BRICS using the DFA approach in a rolling window through time.

  13. No parity anomaly in massless QED{sub 3}: A BPHZL approach

    Energy Technology Data Exchange (ETDEWEB)

    Del Cima, O.M. [Universidade Federal Fluminense (UFF), Polo Universitario de Rio das Ostras (PURO), Departamento de Ciencia e Tecnologia, Rua Recife s/n, 28890-000, Rio das Ostras, RJ (Brazil)], E-mail: wadodelcima@if.uff.br; Franco, D.H.T. [Universidade Federal de Vicosa (UFV), Departamento de Fisica - Campus Universitario, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil)], E-mail: dhtfranco@gmail.com; Piguet, O. [Universidade Federal do Espirito Santo (UFES), CCE, Departamento de Fisica, Campus Universitario de Goiabeiras, 29060-900, Vitoria, ES (Brazil)], E-mail: opiguet@pq.cnpq.br; Schweda, M. [Institut fuer Theoretische Physik, Technische Universitaet Wien (TU-Wien), Wiedner Hauptstrasse 8-10, A-1040, Vienna (Austria)], E-mail: mschweda@tph.tuwien.ac.at

    2009-09-14

    In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED{sub 3} frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.

  14. An improved single sensor parity space algorithm for sequential probability ratio test

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A. [Hungarian Academy of Sciences, Budapest (Hungary). Atomic Energy Research Inst.

    1995-12-01

    In our paper we propose a modification of the single sensor parity algorithm in order to make the statistical properties of the generated residual determinable in advance. The algorithm is tested via computer simulated ramp failure at the temperature readings of the pressurizer. (author).

  15. Anaemia in pregnancy: associations with parity, abortions and child spacing in primary healthcare clinic attendees in Trinidad and Tobago.

    Science.gov (United States)

    Uche-Nwachi, E O; Odekunle, A; Jacinto, S; Burnett, M; Clapperton, M; David, Y; Durga, S; Greene, K; Jarvis, J; Nixon, C; Seereeram, R; Poon-King, C; Singh, R

    2010-03-01

    To determine the prevalence of anaemia in antenatal clinic attendees; to investigate the effects of parity, age, gravidity, previous abortions, child spacing and other factors on the prevalence of anaemia in pregnancy. This was a retrospective and cross-sectional study. Antenatal records of 2287 pregnant women attending 40 public healthcare centres from January 2000 to December 2005 in Trinidad and Tobago were used. Data pertaining to the investigated variables were recorded. The national prevalence of anaemia was calculated and chi-square tests, odds ratios and logistic regression were used to assess the relationship between anaemia and each variable. The prevalence of anaemia was 15.3% (95% CI 13.4%, 16.6%). No significant difference in the prevalence of anaemia was found among the different clinics or counties. At the first haemoglobin reading, age was inversely related to the presence of anaemia, whereas gestational age at first visit was directly related. At the final haemoglobin reading, parity, gravidity, and previous spontaneous abortions were directly related to the prevalence of anaemia, while the number of visits was inversely related. Age was inversely associated to the severity of anaemia while gravidity was directly related. The prevalence of anaemia decreased by 18.7% from 1967. Despite this positive indication, women under 24 years and those commencing antenatal care after the first trimester are still at a higher risk for developing anaemia. Early commencement of antenatal care and close monitoring of the risk groups identified should be strongly advocated.

  16. Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables

    Science.gov (United States)

    Andrews, D. L.

    2018-03-01

    To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of structured or twisted light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.

  17. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  18. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  19. Parity violation in neutron resonances

    International Nuclear Information System (INIS)

    Mitchell, G.E.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Crawford, B.E.; Delheij, P.P.J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Masuda, Y.

    1997-01-01

    The observation of very large parity violation in neutron resonances has led to a new approach to the study of symmetry breaking in nuclei. The origin of the enhancement of parity violation is discussed, as well as the new (statistical) analysis approach. The TRIPLE experimental system and analysis methods, their improvements are described. Sign correlation and results from recent parity violation experiments are presented and discussed. (author)

  20. Parity mixing

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1975-01-01

    The field of parity mixing in light nuclei bears upon one of the exciting and active problems of physics--the nature of the fundamental weak interaction. It is also a subject where polarization techniques play a very important role. Weak interaction theory is first reviewed to motivate the parity mixing experiments. Two very attractive systems are discussed where the nuclear physics is so beautifully simple that the experimental observation of tiny effects directly measures parity violating (PV) nuclear matrix elements which are quite sensitive to the form of the basic weak interaction. Since the measurement of very small analyzing powers and polarizations may be of general interest to this conference, some discussion is devoted to experimental techniques

  1. Space Sustainment: A New Approach for America in Space

    Science.gov (United States)

    2014-12-01

    international community toward promoting market incentives in international space law. This would open up the competitive space for new entrants ...announces- new -space-situational-awareness-satellite-program.aspx. 29. Gruss, “U.S. Space Assets Face Growing Threat .” 30. McDougall, Heavens and the...November–December 2014 Air & Space Power Journal | 117 SCHRIEVER ESSAY WINNER SECOND PLACE Space Sustainment A New Approach for America in Space Lt

  2. Limnimeter and rain gauge FDI in sewer networks using an interval parity equations based detection approach and an enhanced isolation scheme

    OpenAIRE

    Puig Cayuela, Vicenç; Blesa Izquierdo, Joaquim

    2013-01-01

    In this paper, a methodology for limnimeter and rain-gauge fault detection and isolation (FDI) in sewer networks is presented. The proposed model based FDI approach uses interval parity equations for fault detection in order to enhance robustness against modelling errors and noise. They both are assumed unknown but bounded, following the so-called interval (or set-membership) approach. On the other hand, fault isolation relies on an algorithm that reasons using several fault signature matrice...

  3. Parity-non-conserving nuclear forces

    International Nuclear Information System (INIS)

    Desplanques, B.

    1979-01-01

    Theoretical and phenomenological approaches to parity-non-conserving nuclear forces are reviewed. Recent developments in the calculation of weak meson-nucleon coupling constants, whose knowledge is necessary to determine theoretically the parity-non-conserving nucleon-nucleon potential, are described. The consistency of different measurements of parity-non-conserving effects is discussed and the information they provide is compared to theoretical predictions

  4. Parity violation in nuclei

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector π-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in 21 Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in 21 Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ΔT = 1 experiments will be pushed still further, and that improved calculations will be made for the 6 Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis

  5. Judging children's participatory parity from social justice and the ...

    African Journals Online (AJOL)

    This article proposes a model for judging children's participatory parity in different social spaces. The notion of participatory parity originates in Nancy Fraser's normative theory for social justice, where it concerns the participatory status of adults. What, then, constitutes participatory parity for children? How should we judge ...

  6. Constructive approaches to the space NPP designing

    International Nuclear Information System (INIS)

    Eremin, A.G.; Korobkov, L.S.; Matveev, A.V.; Trukhanov, Yu.L.; Pyshko, A.P.

    2000-01-01

    An example of designing a space NPP intended for power supply of telecommunication satellite is considered. It is shown that the designing approach based on the introduction of a leading criterion and dividing the design problems in two independent groups (reactor with radiation shield and equipment module) permits to develop the optimal design of a space NPP [ru

  7. Purchasing Power Parity between the UK and the Euro Area

    OpenAIRE

    Giorgio Canarella; Stephen M. Miller; Stephen K. Pollard

    2012-01-01

    We use the Johansen cointegration approach to assess the empirical validity of the purchasing power parity (PPP) between the UK and the Euro Area, which we represent by Germany, the largest of its members. We conduct the empirical analysis in the context of the global financial crisis that began in 2007 and find that it directly affects the cointegration space. We fail to validate the Johansen and Juselius (1992) original hypothesis that nonstationarity of the PPP associates with the nonstati...

  8. Successful attack on permutation-parity-machine-based neural cryptography.

    Science.gov (United States)

    Seoane, Luís F; Ruttor, Andreas

    2012-02-01

    An algorithm is presented which implements a probabilistic attack on the key-exchange protocol based on permutation parity machines. Instead of imitating the synchronization of the communicating partners, the strategy consists of a Monte Carlo method to sample the space of possible weights during inner rounds and an analytic approach to convey the extracted information from one outer round to the next one. The results show that the protocol under attack fails to synchronize faster than an eavesdropper using this algorithm.

  9. Applications of the parity space technique to the validation of the water level measurement of pressurizer for steady state and transients

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Bath, L.

    1983-01-01

    During the design of disturbance analysis and surveillance systems, safety parameter display systems, computerized operator support systems or advanced control rooms, sensor signal validation is commonly considered as the first task to be performed. After an introduction of the anticipated benefits of the signal validation techniques and a brief survey of the methods under current practices, a signal validation technique based upon the parity space methodology is presented. The efficiency of the method applied to the detection and the identification of five types of failures is illustrated with two examples when three water level measurements of a pressurizer of a nuclear plant are redundant. In the first example the use of the analytical redundancy technique is presented when only two identical sensors are available. A detailed description of the dynamic model of the pressurizer is given. In the second example the case of the identical water level sensors is considered. Performances of the software developed on a computer DEC PDP 11 are finally given

  10. Fall of parity

    International Nuclear Information System (INIS)

    Forman, P.

    1982-01-01

    The historical background behind the discovery of the violation of parity by T. D. Lee and [N. Yand is described. The experimental techniques used by Chien-Shiung Wu, Ernst Ambler, and their collaborators at the Cryogenic Physics Laboratory of the NBS to first demonstrate the violation of parity are also described

  11. Competitiveness of photovoltaics in the German energy mix. Redefining the grid parity approach; Wettbewerbsfaehigkeit der Photovoltaik im deutschen Energiemix. Neudefinition des Ansatzes der Netzparitaet

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin [EuPD Research, Bonn (Germany); TU Bergakademie Freiberg (Germany). Lehrstuhl fuer Umwelt- und Ressourcenmanagement

    2013-09-15

    Photovoltaics are one of the fastest growing energy sources in the world. Despite high costs and a limited energy yield, attractive support schemes particularly the German renewable energy law have paved the way for the strong market growth of this technology within the last decade. Here the question arises as to when photovoltaics will reach a competitive level in Germany without the support of subsidies. The prominent grid parity approach is simple and considered critical in this discussion. It is critical because of the different references regarding the costs of electricity generated by a newly installed PV system and the electricity price of private households, which consists of electricity generation, distribution, sales as well as taxes and duties on the one hand. On the other hand, there are different time references in the calculation of electricity generation costs and electricity prices of private households. Transferring the approach of Levelized Costs of Electricity (LCOE) to all power generation plants within the energy mix means a redefinition of the grid parity of photovoltaics will be carried out. Here the electricity generation costs of photovoltaics as well as the energy mix will be calculated in the same way. The LCOE calculation refers to the whole life cycle of every power generation plant. That is why a balance between the high investment costs of photovoltaics and the increasing operation costs of fossil fuelled power plants is made. It can be shown that the reaching of competitiveness of photovoltaics in Germany depends on structural changes in electricity generation and it is to be realized within the anticipated time frame until the year 2020.

  12. Parity violation in electron scattering

    International Nuclear Information System (INIS)

    Lhuillier, D.

    2007-09-01

    The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)

  13. Testing R-parity with geometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University, London,Northampton Square, London EC1V 0HB (United Kingdom); School of Physics, NanKai University,94 Weijin Road, Tianjin, 300071 (China); Merton College, University of Oxford,Merton Street, OX1 4JD (United Kingdom); Jejjala, Vishnu [Mandelstam Institute for Theoretical Physics, NITheP, and School of Physics,University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, WITS 2050 (South Africa); Matti, Cyril [Department of Mathematics, City University, London,Northampton Square, London EC1V 0HB (United Kingdom); Mandelstam Institute for Theoretical Physics, NITheP, and School of Physics,University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, WITS 2050 (South Africa); Nelson, Brent D. [Department of Physics, Northeastern University,360 Huntington Avenue, Boston, MA 02115 (United States)

    2016-03-14

    We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. However there appears to be no geometrical preference for a fundamental Higgs bilinear in the superpotential, with operators that violate lepton number, such as νHH̄, generating vacuum moduli spaces equivalent to those with a fundamental bilinear.

  14. Energy dependence of the asymmetry-violated space parity of fragment emission from the 239PU fission by slow polarized neutrons

    International Nuclear Information System (INIS)

    Val'skij, G.V.; Zvezdkina, T.K.; Nikolaev, D.V.; Petrova, V.I.; Petrov, G.A.; Petukhov, A.K.; Pleva, Yu.S.; Tyukavin, V.A.

    1982-01-01

    Asymmetry violating parity in the fragment emission from fission of 239 Pu induced by polarized neutrons at six energy points in the interval 0.01 <= E <0.3 eV was measured. The results providing with an evidence in favour of the hypothesis that the asymmetry is independent on energy are discussed in view of the existing theoretical picture

  15. Purchasing-power-parity (PPP) approach to energy-efficiency measurement: implications for energy and environmental policy

    International Nuclear Information System (INIS)

    Birol, Fatih; Okogu, B.E.

    1997-01-01

    The weaknesses of the traditional measure of national output are well known and, in recent years, efforts to find more appropriate alternatives have intensified. One such methodology is the PPP approach which may capture the real value of the GDP. In general, this approach raises the incomes of developing countries by a substantial amount, and this has serious implications for energy indicators on which policies are usually based. A further problem is that non-commercial energy is usually left out of energy-intensity calculations. We analyze the issue of energy-efficiency and carry out calculations based on three approaches: the traditional approach, the PPP-based income approach and an approach which includes non-commercial energy. The results confirm the limitations of using the PPP approach, as its results in a spuriously high energy-efficiency level suggesting high technological sophistication for developing countries. The inclusion of non-commercial energy gives more complete picture. The main conclusion is that applying the PPP method in energy-intensity calculations may be misleading. (Author)

  16. Purchasing power parity and interest parity in the laboratory

    OpenAIRE

    Fisher, Eric O'N.

    2001-01-01

    This paper analyzes purchasing power parity and uncovered interest parity in the laboratory. It finds strong evidence that purchasing power parity, covered interest parity, and uncovered interest parity hold. Subjects are endowed with an intrinsically useless (green) currency that can be used to purchase another useless (red) currency. Green goods can be bought only with green currency, and red goods can be bought only with red currency. The foreign exchange markets are organized as call mark...

  17. Decoupling of parity- and SU(2)/sub R/-breaking scales: A new approach to left-right symmetric models

    International Nuclear Information System (INIS)

    Chang, D.; Mohapatra, R.N.; Parida, M.K.

    1984-01-01

    A new approach to left-right symmetric models is proposed, where the left-right discrete-symmetry- and SU(2)/sub R/-breaking scales are decoupled from each other. This changes the spectrum of physical Higgs bosons which leads to different patterns for gauge hierarchies in SU(2)/sub L/xSU(2)/sub R/xSU(4)/sub C/ and SO(10) models. Most interesting are two SO(10) symmetry-breaking chains with an intermediate U(1)/sub R/ symmetry. These are such as to provide new motivation to search for ΔB = 2 and right-handed current effects at low energies

  18. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    Science.gov (United States)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  19. Electron scattering violates parity

    CERN Multimedia

    2004-01-01

    Parity violation has been observed in collisions between electrons at the Stanford Linear Accelerator Center (SLAC) in the US. The resuls, which are in agreement with the Stanford Model of particle physics, also provide a new measurement of the weak charge of the electron (½ page)

  20. Parity violating electron scattering

    International Nuclear Information System (INIS)

    McKeown, R.D.

    1990-01-01

    Previous measurements of parity violation in electron scattering are reviewed with particular emphasis on experimental techniques. Significant progress in the attainment of higher precision is evident in these efforts. These pioneering experiments provide a basis for consideration of a future program of such measurements. In this paper some future plans and possibilities in this field are discussed

  1. AI Techniques for Space: The APSI Approach

    Science.gov (United States)

    Steel, R.; Niézette, M.; Cesta, A.; Verfaille, G., Lavagna, M.; Donati, A.

    2009-05-01

    This paper will outline the framework and tools developed under the Advanced Planning and Schedule Initiative (APSI) study performed by VEGA for the European Space Agency in collaboration with three academic institutions, ISTC-CNR, ONERA, and Politecnico di Milano. We will start by illustrating the background history to APSI and why it was needed, giving a brief summary of all the partners within the project and the rolls they played within it. We will then take a closer look at what APSI actually consists of, showing the techniques that were used and detailing the framework that was developed within the scope of the project. We will follow this with an elaboration on the three demonstration test scenarios that have been developed as part of the project, illustrating the re-use and synergies between the three cases along the way. We will finally conclude with a summary of some pros and cons of the approach devised during the project and outline future directions to be further investigated and expanded on within the context of the work performed within the project.

  2. Nuclear Parity with China?

    Science.gov (United States)

    2012-01-01

    nuclear force structure. It even is conceivable that a slow but steady expansion could have been accomplished without triggering a reaction by...Russia’s reactions , which would likely not be benign. • Achieving nuclear parity is not a matter of honor for China. Chinese leaders never have...analyzes that information, defines its interests, and decides how to act. China and the United States are exact opposites in this typography : China

  3. Reconsidering solar grid parity

    International Nuclear Information System (INIS)

    Yang, C.-J.

    2010-01-01

    Grid parity-reducing the cost of solar energy to be competitive with conventional grid-supplied electricity-has long been hailed as the tipping point for solar dominance in the energy mix. Such expectations are likely to be overly optimistic. A realistic examination of grid parity suggests that the cost-effectiveness of distributed photovoltaic (PV) systems may be further away than many are hoping for. Furthermore, cost-effectiveness may not guarantee commercial competitiveness. Solar hot water technology is currently far more cost-effective than photovoltaic technology and has already reached grid parity in many places. Nevertheless, the market penetration of solar water heaters remains limited for reasons including unfamiliarity with the technologies and high upfront costs. These same barriers will likely hinder the adoption of distributed solar photovoltaic systems as well. The rapid growth in PV deployment in recent years is largely policy-driven and such rapid growth would not be sustainable unless governments continue to expand financial incentives and policy mandates, as well as address regulatory and market barriers.

  4. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  5. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  6. From hadronic parity violation to electron parity-violating experiments

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2010-01-01

    The weak interaction is manifested in parity-violating observables. With the weak interaction extremely well known parity-violating measurements in hadronic systems can be used to deduce strong interaction effects in those systems. Parity-violating analyzing powers in electron-proton scattering have led to determining the strange quark contributions to the charge and magnetization distributions of the nucleon. Parity-violating electron-proton and electron-electron scattering can also be performed to test the predictions of the Standard Model in the 'running' of the electroweak mixing angle or sin 2 θ W .

  7. Parity horizons in shape dynamics

    International Nuclear Information System (INIS)

    Herczeg, Gabriel

    2016-01-01

    I introduce the notion of a parity horizon, and show that many simple solutions of shape dynamics possess them. I show that the event horizons of the known asymptotically flat black hole solutions of shape dynamics are parity horizons and that this notion of parity implies that these horizons possess a notion of CPT invariance that can in some cases be extended to the solution as a whole. I present three new solutions of shape dynamics with parity horizons and find that not only do event horizons become parity horizons in shape dynamics, but observer-dependent horizons and Cauchy horizons do as well. The fact that Cauchy horizons become (singular) parity horizons suggests a general chronology protection mechanism in shape dynamics that prevents the formation of closed timelike curves. (paper)

  8. A Psychosocial Approach to Understanding Underground Spaces

    Directory of Open Access Journals (Sweden)

    Eun H. Lee

    2017-03-01

    Full Text Available With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  9. Phase space approach to quantum dynamics

    International Nuclear Information System (INIS)

    Leboeuf, P.

    1991-03-01

    The Schroedinger equation for the time propagation of states of a quantised two-dimensional spherical phase space is replaced by the dynamics of a system of N particles lying in phase space. This is done through factorization formulae of analytic function theory arising in coherent-state representation, the 'particles' being the zeros of the quantum state. For linear Hamiltonians, like a spin in a uniform magnetic field, the motion of the particles is classical. However, non-linear terms induce interactions between the particles. Their time propagation is studied and it is shown that, contrary to integrable systems, for chaotic maps they tend to fill, as their classical counterpart, the whole phase space. (author) 13 refs., 3 figs

  10. An innovative approach to space education

    Science.gov (United States)

    Marton, Christine; Berinstain, Alain B.; Criswick, John

    1994-01-01

    At present, Canada does not have enough scientists to be competitive in the global economy, which is rapidly changing from a reliance on natural resources and industry to information and technology. Space is the final frontier and it is a multidisciplinary endeavor. It requires a knowledge of science and math, as well as non-science areas such as architecture and law. Thus, it can attract a large number of students with a diverse range of interests and career goals. An overview is presented of the space education program designed by Canadian Alumni of the International Space University (CAISU) to encourage students to pursue studies and careers in science and technology and to improve science literacy in Canada.

  11. Operator space approach to steering inequality

    International Nuclear Information System (INIS)

    Yin, Zhi; Marciniak, Marcin; Horodecki, Michał

    2015-01-01

    In Junge and Palazuelos (2011 Commun. Math. Phys. 306 695–746) and Junge et al (2010 Commun. Math. Phys. 300 715–39) the operator space theory was applied to study bipartite Bell inequalities. The aim of the paper is to follow this line of research and use the operator space technique to analyze the steering scenario. We obtain a bipartite steering functional with unbounded largest violation of steering inequality, as well as constructing all ingredients explicitly. It turns out that the unbounded largest violation is obtained by a non maximally entangled state. Moreover, we focus on the bipartite dichotomic case where we construct a steering functional with unbounded largest violation of steering inequality. This phenomenon is different to the Bell scenario where only the bounded largest violation can be obtained by any bipartite dichotomic Bell functional. (paper)

  12. A vector space approach to geometry

    CERN Document Server

    Hausner, Melvin

    2010-01-01

    The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.

  13. Stochastic inflation: Quantum phase-space approach

    International Nuclear Information System (INIS)

    Habib, S.

    1992-01-01

    In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to left-angle Φ 2 right-angle). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence

  14. R-parity breaking phenomenology

    International Nuclear Information System (INIS)

    Vissani, F.

    1996-02-01

    We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs

  15. Charge parity exotic mesons

    International Nuclear Information System (INIS)

    Burden, C.J.

    1998-01-01

    Full text: Evidence for a meson with exotic quantum numbers J PC 1 -+ , the ρ(1405), has been observed at the AGS at Brookhaven and Crystal Barrel at CERN. This meson is exotic to the extent that its quantum numbers are not consistent with the generalised Pauli exclusion principle applied to the naive constituent quark model. In a fully relativistic field theoretic treatment, however, there is nothing in principle to preclude the existence of charge parity exotics. Using our earlier covariant Bethe-Salpeter model of light-quark mesons with no new parameter fitting we demonstrate the existence of a q - q-bar bound state with the quantum numbers of the ρ

  16. R-parity violating supersymmetry

    CERN Document Server

    Barbier, R.; Besancon, M.; Chemtob, M.; Deandrea, A.; Dudas, E.; Fayet, Pierre; Lavignac, S.; Moreau, G.; Perez, E.; Sirois, Y.

    2004-01-01

    The possible appearance of R-parity violating couplings, and hence implicitly the question of lepton and baryon number conservation, has been emphasised since the early development of supersymmetric theories. The rich phenomenology implied by R-parity violation has now gained full attention in the search for supersymmetry. In this review, theoretical and phenomenological implications of R-parity violation in supersymmetric theories are discussed, in relation with particle and astroparticle physics. Fundamental aspects include the relation with continuous and discrete symmetries, up to more recent developments on the Abelian family symmetries and hierarchy of R-parity violating couplings. The question of the generation of the standard model neutrino masses and mixings is presented. The possible contributions of R-parity violating Yukawa couplings in processes involving virtual supersymmetric particles and the resulting constraints are reviewed. Finally, a survey of the direct production of supersymmetric parti...

  17. Autotracking from space - The TDRSS approach

    Science.gov (United States)

    Spearing, R. E.; Harper, W. R.

    The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.

  18. Application of Bayesian approach to estimate average level spacing

    International Nuclear Information System (INIS)

    Huang Zhongfu; Zhao Zhixiang

    1991-01-01

    A method to estimate average level spacing from a set of resolved resonance parameters by using Bayesian approach is given. Using the information given in the distributions of both levels spacing and neutron width, the level missing in measured sample can be corrected more precisely so that better estimate for average level spacing can be obtained by this method. The calculation of s-wave resonance has been done and comparison with other work was carried out

  19. The +vbar breakout during approach to Space Station Freedom

    Science.gov (United States)

    Dunham, Scott D.

    1993-01-01

    A set of burn profiles was developed to provide bounding jet firing histories for a +vbar breakout during approaches to Space Station Freedom. The delta-v sequences were designed to place the Orbiter on a safe trajectory under worst case conditions and to try to minimize plume impingement on Space Station Freedom structure.

  20. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  1. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables

  2. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. The current career limit is 400 rem to the blood forming organs. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation effects and this will be taken into account. In 1973 a committee of the National Research Council made a separate study of HZE particle effects and it was concluded that the attendant risks did not pose a hazard for low inclination near-earth orbit missions. Since that time work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 26 references, 1 figure, 7 tables

  3. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-01-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized

  4. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  5. Winning Cores in Parity Games

    DEFF Research Database (Denmark)

    Vester, Steen

    2016-01-01

    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting...... in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality...

  6. Parity violation experiments at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1993-01-01

    With longitudinally polarized protons at RHIC, even a 1 month dedicated run utilizing both approved major detectors could produce a significant search for new physics in hadron collisions via parity violation. Additionally, in the energy range of RHIC, large ''conventional'' parity violating effects are predicted due to the direct production of the weak bosons W ± and Z 0 . One can even envision measurements of the spin dependent sea-quark structure functions of nucleons using the single-spin parity violating asymmetry of W ± and Z 0

  7. Space Weather in the Machine Learning Era: A Multidisciplinary Approach

    Science.gov (United States)

    Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.

    2018-01-01

    The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.

  8. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han; Feng, Liang

    2018-01-01

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy

  9. Parity at the Planck scale

    Science.gov (United States)

    Arzano, Michele; Gubitosi, Giulia; Magueijo, João

    2018-06-01

    We explore the possibility that well known properties of the parity operator, such as its idempotency and unitarity, might break down at the Planck scale. Parity might then do more than just swap right and left polarized states and reverse the sign of spatial momentum k: it might generate superpositions of right and left handed states, as well as mix momenta of different magnitudes. We lay down the general formalism, but also consider the concrete case of the Planck scale kinematics governed by κ-Poincaré symmetries, where some of the general features highlighted appear explicitly. We explore some of the observational implications for cosmological fluctuations. Different power spectra for right handed and left handed tensor modes might actually be a manifestation of deformed parity symmetry at the Planck scale. Moreover, scale-invariance and parity symmetry appear deeply interconnected.

  10. The Purchasing Power Parity Hypothesis:

    African Journals Online (AJOL)

    2011-10-02

    Oct 2, 2011 ... reject the unit root hypothesis in real exchange rates may simply be due to the shortness ..... Violations of Purchasing Power Parity and Their Implications for Efficient ... Official Intervention in the Foreign Exchange Market:.

  11. Parity simulation for nuclear plant analysis

    International Nuclear Information System (INIS)

    Hansen, K.F.; Depiente, E.

    1986-01-01

    The analysis of the transient performance of nuclear plants is sufficiently complex that simulation tools are needed for design and safety studies. The simulation tools are needed for design and safety studies. The simulation tools are normally digital because of the speed, flexibility, generality, and repeatability of digital computers. However, communication with digital computers is an awkward matter, requiring special skill or training. The designer wishing to gain insight into system behavior must expend considerable effort in learning to use computer codes, or else have an intermediary communicate with the machine. There has been a recent development in analog simulation that simplifies the user interface with the simulator, while at the same time improving the performance of analog computers. This development is termed parity simulation and is now in routine use in analyzing power electronic network transients. The authors describe the concept of parity simulation and present some results of using the approach to simulate neutron kinetics problems

  12. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  13. a Web Service Approach for Linking Sensors and Cellular Spaces

    Science.gov (United States)

    Isikdag, U.

    2013-09-01

    More and more devices are starting to be connected to the Internet. In the future the Internet will not only be a communication medium for people, it will in fact be a communication environment for devices. The connected devices which are also referred as Things will have an ability to interact with other devices over the Internet, i.) provide information in interoperable form and ii.) consume /utilize such information with the help of sensors embedded in them. This overall concept is known as Internet-of- Things (IoT). This requires new approaches to be investigated for system architectures to establish relations between spaces and sensors. The research presented in this paper elaborates on an architecture developed with this aim, i.e. linking spaces and sensors using a RESTful approach. The objective is making spaces aware of (sensor-embedded) devices, and making devices aware of spaces in a loosely coupled way (i.e. a state/usage/function change in the spaces would not have effect on sensors, similarly a location/state/usage/function change in sensors would not have any effect on spaces). The proposed architecture also enables the automatic assignment of sensors to spaces depending on space geometry and sensor location.

  14. Real interest parity decomposition

    Directory of Open Access Journals (Sweden)

    Alex Luiz Ferreira

    2009-09-01

    Full Text Available The aim of this paper is to investigate the general causes of real interest rate differentials (rids for a sample of emerging markets for the period of January 1996 to August 2007. To this end, two methods are applied. The first consists of breaking the variance of rids down into relative purchasing power pariety and uncovered interest rate parity and shows that inflation differentials are the main source of rids variation; while the second method breaks down the rids and nominal interest rate differentials (nids into nominal and real shocks. Bivariate autoregressive models are estimated under particular identification conditions, having been adequately treated for the identified structural breaks. Impulse response functions and error variance decomposition result in real shocks as being the likely cause of rids.O objetivo deste artigo é investigar as causas gerais dos diferenciais da taxa de juros real (rids para um conjunto de países emergentes, para o período de janeiro de 1996 a agosto de 2007. Para tanto, duas metodologias são aplicadas. A primeira consiste em decompor a variância dos rids entre a paridade do poder de compra relativa e a paridade de juros a descoberto e mostra que os diferenciais de inflação são a fonte predominante da variabilidade dos rids; a segunda decompõe os rids e os diferenciais de juros nominais (nids em choques nominais e reais. Sob certas condições de identificação, modelos autorregressivos bivariados são estimados com tratamento adequado para as quebras estruturais identificadas e as funções de resposta ao impulso e a decomposição da variância dos erros de previsão são obtidas, resultando em evidências favoráveis a que os choques reais são a causa mais provável dos rids.

  15. Odd-parity light baryon resonances

    International Nuclear Information System (INIS)

    Gamermann, D.; Garcia-Recio, C.; Salcedo, L. L.; Nieves, J.

    2011-01-01

    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the π and N octets, the ρ nonet and the Δ decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S=0, -1, -2, -3 and spin J=(1/2), (3/2) and (5/2). Many of the poles generated can be associated with known N, Δ, Σ, Λ, Ξ and Ω resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin (1/2) and (3/2) can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Ξ(1620), Ξ(1690), Ξ(1950), Ξ(2250), Ω(2250) and Ω(2380) resonances, which have not been determined experimentally yet.

  16. Generalized Wigner functions in curved spaces: A new approach

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1988-01-01

    It is well known that, given a quantum field in Minkowski space, one can define Wigner functions f/sub W//sup N/(x 1 ,p 1 ,...,x/sub N/,p/sub N/) which (a) are convenient to analyze since, unlike the field itself, they are c-number quantities and (b) can be interpreted in a limited sense as ''quantum distribution functions.'' Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equations which make sense ''quasilocally'' for ''short-wavelength modes.'' This paper suggests a completely orthogonal approach for defining curved-space Wigner functions which generalizes instead an object such as the Fourier-transformed f/sub W/ 1 (k,p), which is effectively a two-point function viewed in terms of the ''natural'' creation and annihilation operators a/sup dagger/(p-(12k) and a(p+(12k). The approach suggested here lacks the precise phase-space interpretation implicit in the approach of Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any ''natural'' mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as for a source-free linear field in a static spacetime

  17. A simple coordinate space approach to three-body problems ...

    Indian Academy of Sciences (India)

    We show how to treat the dynamics of an asymmetric three-body system consisting of one heavy and two identical light particles in a simple coordinate space variational approach. The method is constructive and gives an efficient way of resolving a three-body system to an effective two-body system. It is illustrated by ...

  18. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  19. Parity nonconservation and nuclear polarizabilities

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs

  20. Permutation parity machines for neural synchronization

    International Nuclear Information System (INIS)

    Reyes, O M; Kopitzke, I; Zimmermann, K-H

    2009-01-01

    Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines

  1. A Proposal for the Common Safety Approach of Space Programs

    Science.gov (United States)

    Grimard, Max

    2002-01-01

    For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.

  2. The parity doublet model with fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Weyrich, Johannes; Smekal, Lorenz von [TU Darmstadt (Germany); Strodthoff, Nils [Universitaet Heidelberg (Germany)

    2014-07-01

    In the 1970s the Walecka model and the chiral Walecka model were developed and have since been studied intensively. It was noted early on, however, that the chiral model leads to massless Lee-Wick nuclear matter in the chirally restored phase. A promising variant to describe nuclear matter and chiral symmetry restoration consistently is the parity doublet model (or mirror model). It has already been treated in a mean field (MF) approach with promising results. This is motivation for us to to examine this model with functional renormalization group (FRG) methods, hence including full mesonic fluctuations.

  3. Truncated conformal space approach to scaling Lee-Yang model

    International Nuclear Information System (INIS)

    Yurov, V.P.; Zamolodchikov, Al.B.

    1989-01-01

    A numerical approach to 2D relativstic field theories is suggested. Considering a field theory model as an ultraviolet conformal field theory perturbed by suitable relevant scalar operator one studies it in finite volume (on a circle). The perturbed Hamiltonian acts in the conformal field theory space of states and its matrix elements can be extracted from the conformal field theory. Truncation of the space at reasonable level results in a finite dimensional problem for numerical analyses. The nonunitary field theory with the ultraviolet region controlled by the minimal conformal theory μ(2/5) is studied in detail. 9 refs.; 17 figs

  4. Approach to an Affordable and Sustainable Space Transportation System

    Science.gov (United States)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  5. Requirements and approach for a space tourism launch system

    Science.gov (United States)

    Penn, Jay P.; Lindley, Charles A.

    2003-01-01

    Market surveys suggest that a viable space tourism industry will require flight rates about two orders of magnitude higher than those required for conventional spacelift. Although enabling round-trip cost goals for a viable space tourism business are about 240/pound (529/kg), or 72,000/passenger round-trip, goals should be about 50/pound (110/kg) or approximately 15,000 for a typical passenger and baggage. The lower price will probably open space tourism to the general population. Vehicle reliabilities must approach those of commercial aircraft as closely as possible. This paper addresses the development of spaceplanes optimized for the ultra-high flight rate and high reliability demands of the space tourism mission. It addresses the fundamental operability, reliability, and cost drivers needed to satisfy this mission need. Figures of merit similar to those used to evaluate the economic viability of conventional commercial aircraft are developed, including items such as payload/vehicle dry weight, turnaround time, propellant cost per passenger, and insurance and depreciation costs, which show that infrastructure can be developed for a viable space tourism industry. A reference spaceplane design optimized for space tourism is described. Subsystem allocations for reliability, operability, and costs are made and a route to developing such a capability is discussed. The vehicle's ability to satisfy the traditional spacelift market is also shown.

  6. Photovoltaic: time for network parity

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Since 2012 the purchase tariff of photovoltaic power in Germany has been below the price of electricity for households which means that network parity has been reached. New economical schemes combining self-consumption and direct access to the power grid are now possible. (A.C.)

  7. Time reversal and parity tests

    International Nuclear Information System (INIS)

    Terwilliger, K.

    1975-01-01

    A recent review by Henley discusses the present status of Time Reversal and Parity symmetry violations, and comments on the implications for high energy hadron scattering. This note will briefly summarize the situation with particular attention to the sizes of possible effects, relating them to experimental accuracy available or reasonably possible at the ZGS

  8. Parity games and propositional proofs

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Pudlák, Pavel; Thapen, Neil

    2014-01-01

    Roč. 15, č. 2 (2014), s. 17 ISSN 1529-3785 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded arithmetic * mean payoff games * parity games Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2014 http://dl.acm.org/ citation .cfm?doid=2616911.2579822

  9. Parity games and propositional proofs

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Pudlák, Pavel; Thapen, Neil

    2014-01-01

    Roč. 15, č. 2 (2014), s. 17 ISSN 1529-3785 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded arithmetic * mean payoff games * parity games Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2014 http://dl.acm.org/citation.cfm?doid=2616911.2579822

  10. Supersymmetric models without R parity

    International Nuclear Information System (INIS)

    Ross, G.G.; Valle, J.W.F.

    1985-01-01

    We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)

  11. Purchasing Power Parity

    OpenAIRE

    Rudiger Dornbusch

    1985-01-01

    The paper is a survey of PPP theory and evidence prepared for the New Palgrave dictionary of economics. Following a statement of the absolute and relative versions of the theory, there is a brief sketch of the history of thought with emphasis on Cassel and the monetary approach. A theoretical part distinguishes structural and transitory deviations from PPP. The main basis for structural deviations is the Ricardo-Harrod-Balassa-Samuelson model of productivity differentials that affect the real...

  12. Approach to transaction management for Space Station Freedom

    Science.gov (United States)

    Easton, C. R.; Cressy, Phil; Ohnesorge, T. E.; Hector, Garland

    1990-01-01

    The Space Station Freedom Manned Base (SSFMB) will support the operation of the many payloads that may be located within the pressurized modules or on external attachment points. The transaction management (TM) approach presented provides a set of overlapping features that will assure the effective and safe operation of the SSFMB and provide a schedule that makes potentially hazardous operations safe, allocates resources within the capability of the resource providers, and maintains an environment conducive to the operations planned. This approach provides for targets of opportunity and schedule adjustments that give the operators the flexibility to conduct a vast majority of their operations with no conscious involvement with the TM function.

  13. State space approach to mixed boundary value problems.

    Science.gov (United States)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  14. Approach to transaction management for Space Station Freedom

    Science.gov (United States)

    Easton, C. R.; Cressy, Phil; Ohnesorge, T. E.; Hector, Garland

    1989-01-01

    An approach to managing the operations of the Space Station Freedom based on their external effects is described. It is assumed that there is a conflict-free schedule that, if followed, will allow only appropriate operations to occur. The problem is then reduced to that of ensuring that the operations initiated are within the limits allowed by the schedule, or that the external effects of such operations are within those allowed by the schedule. The main features of the currently adopted transaction management approach are discussed.

  15. Permutation parity machines for neural cryptography.

    Science.gov (United States)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  16. Permutation parity machines for neural cryptography

    International Nuclear Information System (INIS)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-01-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  17. Stuttering mostly speeds up solving parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.; Bobaru, M.; Havelund, K.; Holzmann, G.J.; Joshi, R.

    2011-01-01

    We study the process theoretic notion of stuttering equivalence in the setting of parity games. We demonstrate that stuttering equivalent vertices have the same winner in the parity game. This means that solving a parity game can be accelerated by minimising the game graph with respect to stuttering

  18. General background and approach to multibody dynamics for space applications

    Science.gov (United States)

    Santini, Paolo; Gasbarri, Paolo

    2009-06-01

    Multibody dynamics for space applications is dictated by space environment such as space-varying gravity forces, orbital and attitude perturbations, control forces if any. Several methods and formulations devoted to the modeling of flexible bodies undergoing large overall motions were developed in recent years. Most of these different formulations were aimed to face one of the main problems concerning the analysis of spacecraft dynamics namely the reduction of computer simulation time. By virtue of this, the use of symbolic manipulation, recursive formulation and parallel processing algorithms were proposed. All these approaches fall into two categories, the one based on Newton/Euler methods and the one based on Lagrangian methods; both of them have their advantages and disadvantages although in general, Newtonian approaches lend to a better understanding of the physics of problems and in particular of the magnitude of the reactions and of the corresponding structural stresses. Another important issue which must be addressed carefully in multibody space dynamics is relevant to a correct choice of kinematics variables. In fact, when dealing with flexible multibody system the resulting equations include two different types of state variables, the ones associated with large (rigid) displacements and the ones associated with elastic deformations. These two sets of variables have generally two different time scales if we think of the attitude motion of a satellite whose period of oscillation, due to the gravity gradient effects, is of the same order of magnitude as the orbital period, which is much bigger than the one associated with the structural vibration of the satellite itself. Therefore, the numerical integration of the equations of the system represents a challenging problem. This was the abstract and some of the arguments that Professor Paolo Santini intended to present for the Breakwell Lecture; unfortunately a deadly disease attacked him and shortly took him

  19. The nondiscovery of parity nonconservation

    International Nuclear Information System (INIS)

    Franklin, A.

    1989-01-01

    Although experiments in 1928 and 1930 provided evidence for the nonconservation of parity in the weak interactions, it was not until weak interactions were needed in the 1950s to match experiment to theory that these were re-examined. After describing the two experiments and their results, the author concludes that while errors existed, the early works did show parity nonconservation, but their contemporaries in the scientific community rejected their evidence, partly because the theoretical framework to explain it did not yet exist. High energy electron beams meant that experiments reproducing earlier work on beta decay were unlikely to be repeated and because the difference between thermion, C and decay electrons was not then understood. (UK)

  20. Leverage Aversion and Risk Parity

    DEFF Research Database (Denmark)

    Asness, Clifford; Frazzini, Andrea; Heje Pedersen, Lasse

    2012-01-01

    The authors show that leverage aversion changes the predictions of modern portfolio theory: Safer assets must offer higher risk-adjusted returns than riskier assets. Consuming the high risk-adjusted returns of safer assets requires leverage, creating an opportunity for investors with the ability...... to apply leverage. Risk parity portfolios exploit this opportunity by equalizing the risk allocation across asset classes, thus overweighting safer assets relative to their weight in the market portfolio....

  1. Conceptual design of jewellery: a space-based aesthetics approach

    Directory of Open Access Journals (Sweden)

    Tzintzi Vaia

    2017-01-01

    Full Text Available Conceptual design is a field that offers various aesthetic approaches to generation of nature-based product design concepts. Essentially, Conceptual Product Design (CPD uses similarities based on the geometrical forms and functionalities. Furthermore, the CAD-based freehand sketch is a primary conceptual tool in the early stages of the design process. The proposed Conceptual Product Design concept is dealing with jewelleries that are inspired from space. Specifically, a number of galaxy features, such as galaxy shapes, wormholes and graphical representation of planet magnetic field are used as inspirations. Those space-based design ideas at a conceptual level can lead to further opportunities for research and economic success of the jewellery industry. A number of illustrative case studies are presented and new opportunities can be derived for economic success.

  2. Implementing CDIO Approach in preparing engineers for Space Industry

    Directory of Open Access Journals (Sweden)

    Daneykin Yury

    2017-01-01

    Full Text Available The necessity to train highly qualified specialists leads to the development of the trajectory that can allow training specialists for the space industry. Several steps have been undertaken to reach this purpose. First, the University founded the Space Instrument Design Center that promotes a wide range of initiatives in the sphere of educating specialists, retraining specialists, carrying out research and collaborating with profiled enterprises. The University introduced Elite Engineering Education system to attract talented specialist and help them to follow individual trajectory to train unique specialist. The paper discusses the targets necessary for achievement to train specialists. Moreover, the paper presents the compliance of the attempts with the CDIO Approach, which is widely used in leading universities to improve engineering programs.

  3. Hybrid x-space: a new approach for MPI reconstruction.

    Science.gov (United States)

    Tateo, A; Iurino, A; Settanni, G; Andrisani, A; Stifanelli, P F; Larizza, P; Mazzia, F; Mininni, R M; Tangaro, S; Bellotti, R

    2016-06-07

    Magnetic particle imaging (MPI) is a new medical imaging technique capable of recovering the distribution of superparamagnetic particles from their measured induced signals. In literature there are two main MPI reconstruction techniques: measurement-based (MB) and x-space (XS). The MB method is expensive because it requires a long calibration procedure as well as a reconstruction phase that can be numerically costly. On the other side, the XS method is simpler than MB but the exact knowledge of the field free point (FFP) motion is essential for its implementation. Our simulation work focuses on the implementation of a new approach for MPI reconstruction: it is called hybrid x-space (HXS), representing a combination of the previous methods. Specifically, our approach is based on XS reconstruction because it requires the knowledge of the FFP position and velocity at each time instant. The difference with respect to the original XS formulation is how the FFP velocity is computed: we estimate it from the experimental measurements of the calibration scans, typical of the MB approach. Moreover, a compressive sensing technique is applied in order to reduce the calibration time, setting a fewer number of sampling positions. Simulations highlight that HXS and XS methods give similar results. Furthermore, an appropriate use of compressive sensing is crucial for obtaining a good balance between time reduction and reconstructed image quality. Our proposal is suitable for open geometry configurations of human size devices, where incidental factors could make the currents, the fields and the FFP trajectory irregular.

  4. CONSTRUCTION OF REGULAR LDPC LIKE CODES BASED ON FULL RANK CODES AND THEIR ITERATIVE DECODING USING A PARITY CHECK TREE

    Directory of Open Access Journals (Sweden)

    H. Prashantha Kumar

    2011-09-01

    Full Text Available Low density parity check (LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical Shannon limit for a memory less channel. LDPC codes are finding increasing use in applications like LTE-Networks, digital television, high density data storage systems, deep space communication systems etc. Several algebraic and combinatorial methods are available for constructing LDPC codes. In this paper we discuss a novel low complexity algebraic method for constructing regular LDPC like codes derived from full rank codes. We demonstrate that by employing these codes over AWGN channels, coding gains in excess of 2dB over un-coded systems can be realized when soft iterative decoding using a parity check tree is employed.

  5. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  6. Urban green spaces assessment approach to health, safety and environment

    Directory of Open Access Journals (Sweden)

    B. Akbari Neisiani

    2016-04-01

    Full Text Available The city is alive with dynamic systems, where parks and urban green spaces have high strategic importance which help to improve living conditions. Urban parks are used as visual landscape with so many benefits such as reducing stress, reducing air pollution and producing oxygen, creating opportunities for people to participate in physical activities, optimal environment for children and decreasing noise pollution. The importance of parks is such extent that are discussed as an indicator of urban development. Hereupon the design and maintenance of urban green spaces requires integrated management system based on international standards of health, safety and the environment. In this study, Nezami Ganjavi Park (District 6 of Tehran with the approach to integrated management systems have been analyzed. In order to identify the status of the park in terms of the requirements of the management system based on previous studies and all Tehran Municipality’s considerations, a check list has been prepared and completed by park survey and interview with green space experts. The results showed that the utility of health indicators were 92.33 % (the highest and environmental and safety indicators were 72 %, 84 % respectively. According to SWOT analysis in Nezami Ganjavi Park some of strength points are fire extinguishers, first aid box, annual testing of drinking water and important weakness is using unseparated trash bins also as an opportunities, there are some interesting factors for children and parents to spend free times. Finally, the most important threat is unsuitable park facilities for disabled.

  7. A Mellin space approach to the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, Rajesh [International Centre for Theoretical Sciences (ICTS-TIFR),Survey No. 151, Shivakote, Hesaraghatta Hobli, Bangalore North 560 089 (India); Kaviraj, Apratim [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Sen, Kallol [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan); Sinha, Aninda [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2017-05-05

    We describe in more detail our approach to the conformal bootstrap which uses the Mellin representation of CFT{sub d} four point functions and expands them in terms of crossing symmetric combinations of AdS{sub d+1} Witten exchange functions. We consider arbitrary external scalar operators and set up the conditions for consistency with the operator product expansion. Namely, we demand cancellation of spurious powers (of the cross ratios, in position space) which translate into spurious poles in Mellin space. We discuss two contexts in which we can immediately apply this method by imposing the simplest set of constraint equations. The first is the epsilon expansion. We mostly focus on the Wilson-Fisher fixed point as studied in an epsilon expansion about d=4. We reproduce Feynman diagram results for operator dimensions to O(ϵ{sup 3}) rather straightforwardly. This approach also yields new analytic predictions for OPE coefficients to the same order which fit nicely with recent numerical estimates for the Ising model (at ϵ=1). We will also mention some leading order results for scalar theories near three and six dimensions. The second context is a large spin expansion, in any dimension, where we are able to reproduce and go a bit beyond some of the results recently obtained using the (double) light cone expansion. We also have a preliminary discussion about numerical implementation of the above bootstrap scheme in the absence of a small parameter.

  8. A phase space approach to wave propagation with dispersion.

    Science.gov (United States)

    Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J

    2015-08-01

    A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.

  9. Comparison of two Minkowski-space approaches to heavy quarkonia

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Sofia; Biernat, Elmar P. [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Li, Yang [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); College of William and Mary, Department of Physics, Williamsburg, VA (United States); Maris, Pieter; Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); Pena, M.T. [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Universidade de Lisboa, Departamento de Fisica, Instituto Superior Tecnico, Lisbon (Portugal); Stadler, Alfred [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Universidade de Evora, Departamento de Fisica, Evora (Portugal)

    2017-10-15

    In this work we compare mass spectra and decay constants obtained from two recent, independent, and fully relativistic approaches to the quarkonium bound-state problem: the Basis Light-Front Quantization approach, where light-front wave functions are naturally formulated; and, the Covariant Spectator Theory (CST), based on a reorganization of the Bethe-Salpeter equation. Even though conceptually different, both solutions are obtained in Minkowski space. Comparisons of decay constants for more than ten states of charmonium and bottomonium show favorable agreement between the two approaches as well as with experiment where available. We also apply the Brodsky-Huang-Lepage prescription to convert the CST amplitudes into functions of light-front variables. This provides an ideal opportunity to investigate the similarities and differences at the level of the wave functions. Several qualitative features are observed in remarkable agreement between the two approaches even for the rarely addressed excited states. Leading-twist distribution amplitudes as well as parton distribution functions of heavy quarkonia are also analyzed. (orig.)

  10. The parity-preserving massive QED3: Vanishing β-function and no parity anomaly

    Directory of Open Access Journals (Sweden)

    O.M. Del Cima

    2015-11-01

    Full Text Available The parity-preserving massive QED3 exhibits vanishing gauge coupling β-function and is parity and infrared anomaly free at all orders in perturbation theory. Parity is not an anomalous symmetry, even for the parity-preserving massive QED3, in spite of some claims about the possibility of a perturbative parity breakdown, called parity anomaly. The proof is done by using the algebraic renormalization method, which is independent of any regularization scheme, based on general theorems of perturbative quantum field theory.

  11. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Science.gov (United States)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  12. Non-planar ABJ theory and parity

    International Nuclear Information System (INIS)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this Letter we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance. For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account.

  13. Non-planar ABJ Theory and Parity

    DEFF Research Database (Denmark)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance......While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....

  14. The Fixpoint-Iteration Algorithm for Parity Games

    Directory of Open Access Journals (Sweden)

    Florian Bruse

    2014-08-01

    Full Text Available It is known that the model checking problem for the modal mu-calculus reduces to the problem of solving a parity game and vice-versa. The latter is realised by the Walukiewicz formulas which are satisfied by a node in a parity game iff player 0 wins the game from this node. Thus, they define her winning region, and any model checking algorithm for the modal mu-calculus, suitably specialised to the Walukiewicz formulas, yields an algorithm for solving parity games. In this paper we study the effect of employing the most straight-forward mu-calculus model checking algorithm: fixpoint iteration. This is also one of the few algorithms, if not the only one, that were not originally devised for parity game solving already. While an empirical study quickly shows that this does not yield an algorithm that works well in practice, it is interesting from a theoretical point for two reasons: first, it is exponential on virtually all families of games that were designed as lower bounds for very particular algorithms suggesting that fixpoint iteration is connected to all those. Second, fixpoint iteration does not compute positional winning strategies. Note that the Walukiewicz formulas only define winning regions; some additional work is needed in order to make this algorithm compute winning strategies. We show that these are particular exponential-space strategies which we call eventually-positional, and we show how positional ones can be extracted from them.

  15. Local Strategy Improvement for Parity Game Solving

    OpenAIRE

    Friedmann, Oliver; Lange, Martin

    2010-01-01

    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may...

  16. Spontaneous parity violation and minimal Higgs models

    International Nuclear Information System (INIS)

    Chavez, H.; Martins Simoes, J.A.

    2007-01-01

    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition υ R >>υ L can be satisfied without introducing bidoublets, and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented. (orig.)

  17. Pre-Big Bang, space-time structure, asymptotic Universe. Spinorial space-time and a new approach to Friedmann-like equations

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2014-04-01

    Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95), while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2) spinor and the Lundmark-Lemaître-Hubble (LLH) expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of the standard

  18. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Debaprasad; /NCTS, Taipei /Taiwan, Natl. Taiwan U.; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-09-14

    In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of magnetized plasma. According to our model, the polarization and intensity of the CMB would be affected when traversing through the ICM due to non-trivial scalar photon interactions. We have calculated the evolution of such polarization and intensity collectively, known as the stokes parameters of the CMB photon during its journey through the ICM and tested our results against the Sunyaev-Zel'dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP violating parameter, {beta}, and a scale of alpha variation {omega}. Using the derived constrained on the photon-to-scalar conversion probability, {bar P}{sub {gamma}{yields}{phi}}, for Coma cluster in ref.[34] we found a contour plot in the ({omega},{beta}) parameter plane. The {beta} = 0 line in this parameter space corresponds to well-studied Maxwell-dilaton type models which has lower bound on {omega} {approx}> 6.4 x 10{sup 9} GeV. In general, as the absolute value of {beta} increases, lower bound on {omega} also increases. Our model in general predicts the modification of the CMB polarization with a non-trivial dependence on the parity violating coupling parameter {beta}. However, it is unconstrained in this particular study. We show that this effect can in principle be detected in the future measurements on CMB polarization such that {beta} can also be constrained.

  19. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  20. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  1. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  2. Extension of Space Food Shelf Life Through Hurdle Approach

    Science.gov (United States)

    Cooper, M. R.; Sirmons, T. A.; Froio-Blumsack, D.; Mohr, L.; Young, M.; Douglas, G. L.

    2018-01-01

    The processed and prepackaged space food system is the main source of crew nutrition, and hence central to astronaut health and performance. Unfortunately, space food quality and nutrition degrade to unacceptable levels in two to three years with current food stabilization technologies. Future exploration missions will require a food system that remains safe, acceptable and nutritious through five years of storage within vehicle resource constraints. The potential of stabilization technologies (alternative storage temperatures, processing, formulation, ingredient source, packaging, and preparation procedures), when combined in hurdle approach, to mitigate quality and nutritional degradation is being assessed. Sixteen representative foods from the International Space Station food system were chosen for production and analysis and will be evaluated initially and at one, three, and five years with potential for analysis at seven years if necessary. Analysis includes changes in color, texture, nutrition, sensory quality, and rehydration ratio when applicable. The food samples will be stored at -20 C, 4 C, and 21 C. Select food samples will also be evaluated at -80 C to determine the impacts of ultra-cold storage after one and five years. Packaging film barrier properties and mechanical integrity will be assessed before and after processing and storage. At the study conclusion, if tested hurdles are adequate, formulation, processing, and storage combinations will be uniquely identified for processed food matrices to achieve a five-year shelf life. This study will provide one of the most comprehensive investigations of long duration food stability ever completed, and the achievement of extended food system stability will have profound impacts to health and performance for spaceflight crews and for relief efforts and military applications on Earth.

  3. Space nuclear reactor system diagnosis: Knowledge-based approach

    International Nuclear Information System (INIS)

    Ting, Y.T.D.

    1990-01-01

    SP-100 space nuclear reactor system development is a joint effort by the Department of Energy, the Department of Defense and the National Aeronautics and Space Administration. The system is designed to operate in isolation for many years, and is possibly subject to little or no remote maintenance. This dissertation proposes a knowledge based diagnostic system which, in principle, can diagnose the faults which can either cause reactor shutdown or lead to another serious problem. This framework in general can be applied to the fully specified system if detailed design information becomes available. The set of faults considered herein is identified based on heuristic knowledge about the system operation. The suitable approach to diagnostic problem solving is proposed after investigating the most prevalent methodologies in Artificial Intelligence as well as the causal analysis of the system. Deep causal knowledge modeling based on digraph, fault-tree or logic flowgraph methodology would present a need for some knowledge representation to handle the time dependent system behavior. A proposed qualitative temporal knowledge modeling methodology, using rules with specified time delay among the process variables, has been proposed and is used to develop the diagnostic sufficient rule set. The rule set has been modified by using a time zone approach to have a robust system design. The sufficient rule set is transformed to a sufficient and necessary one by searching the whole knowledge base. Qualitative data analysis is proposed in analyzing the measured data if in a real time situation. An expert system shell - Intelligence Compiler is used to develop the prototype system. Frames are used for the process variables. Forward chaining rules are used in monitoring and backward chaining rules are used in diagnosis

  4. Religion and Communication Spaces. A Semio-pragmatic Approach

    Directory of Open Access Journals (Sweden)

    Roger Odin

    2015-11-01

    Full Text Available Following the reflection initiated in his book The Spaces of Communication, Roger Odin suggests a new distinction between physical communication spaces and mental communication spaces (spaces that we have inside us. The suggestion is exemplified by three film analyses dedicated to the relationships between religion and communication.

  5. The algebraic approach to space-time geometry

    International Nuclear Information System (INIS)

    Heller, M.; Multarzynski, P.; Sasin, W.

    1989-01-01

    A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)

  6. Novel Approaches to Cellular Transplantation from the US Space Program

    Science.gov (United States)

    Pellis, Neal R.; Homick, Jerry L. (Technical Monitor)

    1999-01-01

    Research in the treatment of type I diabetes is entering a new era that takes advantage of our knowledge in an ever increasing variety of scientific disciplines. Some may originate from very diverse sources, one of which is the Space Program at National Aeronautics and Space Administration (NASA). The Space Program contributes to diabetes-related research in several treatment modalities. As an ongoing effort for medical monitoring of personnel involved in space exploration activities NASA and the extramural scientific community investigate strategies for noninvasive estimation of blood glucose levels. Part of the effort in the space protein crystal growth program is high-resolution structural analysis insulin as a means to better understand the interaction with its receptor and with host immune components and as a basis for rational design of a "better" insulin molecule. The Space Program is also developing laser technology for potential early cataract detection as well as a noninvasive analyses for addressing preclinical diabetic retinopathy. Finally, NASA developed an exciting cell culture system that affords some unique advantages in the propagation and maintenance of mammalian cells in vitro. The cell culture system was originally designed to maintain cell suspensions with a minimum of hydrodynamic and mechanical sheer while awaiting launch into microgravity. Currently the commercially available NASA bioreactor (Synthecon, Inc., Houston, TX) is used as a research tool in basic and applied cell biology. In recent years there is continued strong interest in cellular transplantation as treatment for type I diabetes. The advantages are the potential for successful long-term amelioration and a minimum risk for morbidity in the event of rejection of the transplanted cells. The pathway to successful application of this strategy is accompanied by several substantial hurdles: (1) isolation and propagation of a suitable uniform donor cell population; (2) management of

  7. A Web Based Approach to Integrate Space Culture and Education

    Science.gov (United States)

    Gerla, F.

    2002-01-01

    , who can use it to prepare their lessons, retrieve information and organize the didactic material in order to support their lessons. We think it important to use a user centered "psychology" based on UM: we have to know the needs and expectations of the students. Our intent is to use usability tests not just to prove the site effectiveness and clearness, but also to investigate aesthetical preferences of children and young people. Physics, mathematics, chemistry are just some of the difficult learning fields connected with space technologies. Space culture is a potentially never-ending field, and our scope will be to lead students by hand in this universe of knowledge. This paper will present MARS activities in the framework of the above methodologies aimed at implementing a web based approach to integrate space culture and education. The activities are already in progress and some results will be presented in the final paper.

  8. An Open and Holistic Approach for Geo and Space Sciences

    Science.gov (United States)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  9. A cure for stuttering parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.; Roychoudhury, A.; D'Souza, M.

    2012-01-01

    We define governed stuttering bisimulation for parity games, weakening stuttering bisimulation by taking the ownership of vertices into account only when this might lead to observably different games. We show that governed stuttering bisimilarity is an equivalence for parity games and allows for a

  10. A cure for stuttering parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.

    2012-01-01

    We de¿ne governed stuttering bisimulation for parity games, weakening stuttering bisimulation by taking the ownership of vertices into account only when this might lead to observably different games. We show that governed stuttering bisimilarity is an equivalence for parity games and allows for a

  11. Weak NNM couplings and nuclear parity violation

    International Nuclear Information System (INIS)

    Holstein, B.R.

    1987-01-01

    After many years of careful theoretical and experimental study of nuclear parity violation, rough empirical values for weak parity violation nucleon-nucleon-meson vertices have been deduced. We address some of the physics which has been learned from this effort and show that it has implications for work going on outside this field. (author)

  12. Generating and Solving Symbolic Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis

    We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES) and then instantiates the PBES to a parity game. We

  13. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  14. Next Generation Space Interconnect Standard (NGSIS): a modular open standards approach for high performance interconnects for space

    Science.gov (United States)

    Collier, Charles Patrick

    2017-04-01

    The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.

  15. Can R-parity violation hide vanilla supersymmetry at the LHC?

    International Nuclear Information System (INIS)

    Asano, Masaki

    2012-09-01

    Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by the R-parity. However, if the R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the UDD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on the R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than a TeV are already excluded in constrained minimal supersymmetric standard model with R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with R-parity violation. We compare how R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.

  16. Can R-parity violation hide vanilla supersymmetry at the LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Masaki [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Rolbiecki, Krzysztof; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by the R-parity. However, if the R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the UDD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on the R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than a TeV are already excluded in constrained minimal supersymmetric standard model with R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with R-parity violation. We compare how R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.

  17. Analysis of Life Histories: A State Space Approach

    Directory of Open Access Journals (Sweden)

    Rajulton, Fernando

    2001-01-01

    Full Text Available EnglishThe computer package LIFEHIST written by the author, is meant for analyzinglife histories through a state-space approach. Basic ideas on which the various programs have beenbuilt are described in this paper in a non-mathematical language. Users can use various programs formultistate analyses based on Markov and semi-Markov frameworks and sequences of transitions implied inlife histories. The package is under constant revision and programs for using a few specific modelsthe author thinks will be useful for analyzing longitudinal data will be incorporated in the nearfuture.FrenchLe système d'ordinateur LIFEHIST écrit par l'auteur est établi pour analyser desévénements au cours de la vie par une approche qui tient compte des états aucours du temps. Les idées fondamentales à la base des divers programmes dumodule sont décrites dans un langage non-mathématique. Le systèmeLIFEHIST peut être utilisé pour des analyses Markov et semi-Markov desséquences d’événements au cours de la vie. Le module est sous révisionconstante, et des programmes que l’auteur compte ajouter pour l'usage dedonnées longitudinales sont décrit.

  18. A Reparametrization Approach for Dynamic Space-Time Models

    OpenAIRE

    Lee, Hyeyoung; Ghosh, Sujit K.

    2008-01-01

    Researchers in diverse areas such as environmental and health sciences are increasingly working with data collected across space and time. The space-time processes that are generally used in practice are often complicated in the sense that the auto-dependence structure across space and time is non-trivial, often non-separable and non-stationary in space and time. Moreover, the dimension of such data sets across both space and time can be very large leading to computational difficulties due to...

  19. On derivation of the parity-violating internucleon potential

    International Nuclear Information System (INIS)

    Zenkin, S.V.

    1980-01-01

    The parity-violating internucleon potential arising from the vector-meson exchange is considered in the framework of current algebras. An approach free of uncertainties caused by the Schwinger and seagull terms is proposed for the calculation of the effective P-odd NNV vertices. The final result coincides with that of the factorization approximation and may be regarded as a substantiation of the latter

  20. Parity violation and the masslessness of the neutrino

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1978-09-01

    It is proposed that the weak interaction be obtained by gauging the strong interaction chiral flavor group. The neutrinos are then four-component spinors. Pairs of right-handed neutrinos are allowed to condense into the vacuum. This produces maximal parity violation in both the quark and lepton sectors of the weak interaction, keeps the neutrinos massless, and also leads to the conventional Weinberg mixing pattern. The approach also in principle provides a way of calculating the Cabibbo angle. 11 references

  1. Parity violation and the masslessness of the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Mannheim, P.D.

    1978-09-01

    It is proposed that the weak interaction be obtained by gauging the strong interaction chiral flavor group. The neutrinos are then four-component spinors. Pairs of right-handed neutrinos are allowed to condense into the vacuum. This produces maximal parity violation in both the quark and lepton sectors of the weak interaction, keeps the neutrinos massless, and also leads to the conventional Weinberg mixing pattern. The approach also in principle provides a way of calculating the Cabibbo angle. 11 references.

  2. Field-theoretic approach to gravity in the flat space-time

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)

    1980-01-01

    In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.

  3. Mapping the Hot Spots: A Zoning Approach to Space Analysis and Design

    Science.gov (United States)

    Bunnell, Adam; Carpenter, Russell; Hensley, Emily; Strong, Kelsey; Williams, ReBecca; Winter, Rachel

    2016-01-01

    This article examines a preliminary approach to space design developed and implemented in Eastern Kentucky University's Noel Studio for Academic Creativity. The approach discussed here is entitled "hot spots," which has allowed the research team to observe trends in space usage and composing activities among students. This approach has…

  4. R-parity violation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dercks, Daniel [Universitaet Bonn, Physikalisches Institut, Bethe Center for Theoretical Physics, Bonn (Germany); Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Dreiner, Herbi; Krauss, Manuel E.; Opferkuch, Toby; Reinert, Annika [Universitaet Bonn, Physikalisches Institut, Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-12-15

    We investigate the phenomenology of the MSSM extended by a single R-parity-violating coupling at the unification scale. For all R-parity-violating couplings, we discuss the evolution of the particle spectra through the renormalization group equations and the nature of the lightest supersymmetric particle (LSP) within the CMSSM, as an example of a specific complete supersymmetric model. We use the nature of the LSP to classify the possible signatures. For each possible scenario we present in detail the current LHC bounds on the supersymmetric particle masses, typically obtained using simplified models. From this we determine the present coverage of R-parity-violating models at the LHC. We find several gaps, in particular for a stau-LSP, which is easily obtained in R-parity-violating models. Using the program CheckMATE we recast existing LHC searches to set limits on the parameters of all R-parity-violating CMSSMs. We find that virtually all of them are either more strongly constrained or similarly constrained in comparison to the R-parity-conserving CMSSM, including the anti U anti D anti D models. For each R-parity-violating CMSSM we then give the explicit lower mass bounds on all relevant supersymmetric particles. (orig.)

  5. Models of dynamical R-parity violation

    Energy Technology Data Exchange (ETDEWEB)

    Csáki, Csaba; Kuflik, Eric [Department of Physics, LEPP, Cornell University, Ithaca, NY 14853 (United States); Slone, Oren; Volansky, Tomer [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2015-06-08

    The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.

  6. A risk-based approach to flammable gas detector spacing.

    Science.gov (United States)

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  7. Approaching space-time through velocity in doubly special relativity

    International Nuclear Information System (INIS)

    Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.

    2004-01-01

    We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived

  8. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  9. Space-Wise approach for airborne gravity data modelling

    Science.gov (United States)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2017-05-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  10. A naturally narrow positive-parity Θ+

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Nazaryan, Vahagn

    2004-01-01

    We present a consistent color-flavor-spin-orbital wave function for a positive-parity Θ + that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive-parity Θ + lighter than its negative-parity counterpart. We consider decays of the Θ + and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths

  11. Grid parity: the quest for the Grail

    International Nuclear Information System (INIS)

    Bahjejian, L.

    2012-01-01

    The cost of photovoltaic systems is decreasing and the price of electrical power is increasing, so at one moment the 2 curves will meet and at that moment there will be grid parity, it means that the photovoltaic power will be as competitive as other energies and will need no more subsidies. In Denmark the electricity is so expensive that the grid parity has already been reached and photovoltaic power is developing there on the basis of net metering. According to the EPIA (European Association for Photovoltaic Industry), France, Germany, Italy, Spain and United-Kingdom will reach grid parity by 2020. (A.C.)

  12. Space commerce in a global economy - Comparison of international approaches to commercial space

    Science.gov (United States)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  13. Positronic complexes with unnatural parity

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-01-01

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10 -4 , 4.42x10 -4 , 15.14x10 -4 , and 21.80x10 -4 , respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly 3 P e , and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li + , e - , e - , e + ) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation

  14. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    Science.gov (United States)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  15. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.

    2007-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  16. Geometric approach to evolution problems in metric spaces

    NARCIS (Netherlands)

    Stojković, Igor

    2011-01-01

    This PhD thesis contains four chapters where research material is presented. In the second chapter the extension of the product formulas for semigroups induced by convex functionals, from the classical Hilbert space setting to the setting of general CAT(0) spaces. In the third chapter, the

  17. Evaluating public space pedestrian accessibility: a GIS approach

    NARCIS (Netherlands)

    Morar, T.; Bertolini, L.; Radoslav, R.

    2013-01-01

    Public spaces are sources of quality of life in neighborhoods. Seeking to help professionals and municipalities assess how well a public space can be used by the community it serves, this paper presents a GIS-based methodology for evaluating its pedestrian accessibility. The Romanian city of

  18. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  19. Construction of Rate-Compatible LDPC Codes Utilizing Information Shortening and Parity Puncturing

    Directory of Open Access Journals (Sweden)

    Jones Christopher R

    2005-01-01

    Full Text Available This paper proposes a method for constructing rate-compatible low-density parity-check (LDPC codes. The construction considers the problem of optimizing a family of rate-compatible degree distributions as well as the placement of bipartite graph edges. A hybrid approach that combines information shortening and parity puncturing is proposed. Local graph conditioning techniques for the suppression of error floors are also included in the construction methodology.

  20. Higgs boson production in the littlest Higgs model with T-parity at the ILC

    Science.gov (United States)

    Han, Jinzhong; Yang, Guang; Meng, Ming; Wang, Weijian; Li, Jingyun

    2018-04-01

    We investigate the Higgs boson production processes e+e‑→ ZH, e+e‑→ νν¯H, e+e‑→ tt¯H, e+e‑→ ZHH and e+e‑→ νν¯HH in the littlest Higgs model with T-parity (LHT) at the International Linear Collider (ILC). We calculate the LHT model predictions on the production rate of these processes at the ILC in the case of (un)polarized beams and the signal strengths of the production processes ZH and νν¯H with Higgs decaying to bb¯(gg,γγ). In the allowed parameter space, we find that the signal strengths μgg is most likely approach to the expected precision of the ILC.

  1. Polarized protons and parity violating asymmetries

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1984-01-01

    The potential for utilizing parity violating effects, associated with polarized protons, to study the standard model, proton structure, and new physics at the SPS Collider is summarized. 24 references

  2. Local Strategy Improvement for Parity Game Solving

    Directory of Open Access Journals (Sweden)

    Oliver Friedmann

    2010-06-01

    Full Text Available The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude.

  3. R-parity from the heterotic string

    International Nuclear Information System (INIS)

    Gaillard, Mary K.

    2004-01-01

    In T-duality invariant effective supergravity with gaugino condensation as the mechanism for supersymmetry breaking, there is a residual discrete symmetry that could play the role of R-parity in supersymmetric extensions of the Standard Model

  4. Space Station Freedom - Approaching the critical design phase

    Science.gov (United States)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  5. The Uncovered Interest Parity in the Foreign Exchange (FX Markets

    Directory of Open Access Journals (Sweden)

    Silvio Ricardo Micheloto

    2004-12-01

    Full Text Available This work verifies the uncovered interest rates parity (UIP in the FX (foreign exchange emerging markets by using the panel cointegration technique. The data involves several developing countries that compose the EMBI+ Global Index. We compare the results of several panel estimators: OLS (ordinary list square, DOLS (dynamic OLS and FMOLS (fully modified OLS. This new panel technique can handle problems of either non-stationary series (spurious regression or small problem. This latter problem has being considered one of the main causes for distorting the UIP empirical results. By using this approach, we check the UIP in the FX (foreign exchange emerging markets. These markets are more critical because they have been subjected to changing FX regimes and speculative attacks. Our results do not corroborate the uncovered interest parity for the developing countries in the recent years. Thus, the forward premium puzzle may hold in the FX emergent markets.

  6. Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations

    KAUST Repository

    Alghamdi, Moataz

    2017-06-18

    We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.

  7. Leptogenesis from R parity non-conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hambye, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Ma, E. [Riverside Univ. of California, Riverside, CA (United States). Dept. of Physics; Sarkar, U. [Physical Research Laboratory, Ahmedabad (India)

    2000-07-01

    It is known that realistic neutrino masses for neutrino oscillations may be obtained from R parity nonconserving supersymmetry. It is also known that such interactions would erase any preexisting lepton or baryon asymmetry of the Universe because of the inevitable intervention of the electroweak sphalerons. It is showed how a crucial subset of these R parity nonconserving terms may in fact create its own successful leptogenesis.

  8. Leptogenesis from R parity non-conservation

    International Nuclear Information System (INIS)

    Hambye, T.; Ma, E.

    2000-01-01

    It is known that realistic neutrino masses for neutrino oscillations may be obtained from R parity nonconserving supersymmetry. It is also known that such interactions would erase any preexisting lepton or baryon asymmetry of the Universe because of the inevitable intervention of the electroweak sphalerons. It is showed how a crucial subset of these R parity nonconserving terms may in fact create its own successful Leptogenesis

  9. Absolute purchasing power parity in industrial countries

    OpenAIRE

    Zhang, Zhibai; Bian, Zhicun

    2015-01-01

    Different from popular studies that focus on relative purchasing power parity, we study absolute purchasing power parity (APPP) in 21 main industrial countries. Three databases are used. Both the whole period and the sub-period are analyzed. The empirical proof shows that the phenomenon that APPP holds is common, and the phenomenon that APPP does not hold is also common. In addition, some country pairs and the pooled country data indicate that the nearer the GDPPs of two countries are, the mo...

  10. Little Higgs models and T parity

    International Nuclear Information System (INIS)

    Perelstein, Maxim

    2006-01-01

    Little Higgs models are an interesting extension of the standard model at the TeV scale. They provide a simple and attractive mechanism of electroweak symmetry breaking. We review one of the simplest models of this class, the littlest Higgs model, and its extension with T parity. The model with T parity satisfies precision electroweak constraints without fine-tuning, contains an attractive dark matter candidate, and leads to interesting phenomenology at the Large Hadron Collider (LHC). (author)

  11. Efficient Parallel Strategy Improvement for Parity Games

    OpenAIRE

    Fearnley, John

    2017-01-01

    We study strategy improvement algorithms for solving parity games. While these algorithms are known to solve parity games using a very small number of iterations, experimental studies have found that a high step complexity causes them to perform poorly in practice. In this paper we seek to address this situation. Every iteration of the algorithm must compute a best response, and while the standard way of doing this uses the Bellman-Ford algorithm, we give experimental results that show that o...

  12. Parity non-conservation in atoms

    International Nuclear Information System (INIS)

    Barkov, L.M.

    1982-01-01

    The parity non-conservation discovered in particle physics in 1959 has consequences on the behaviour of atoms illuminated by light of circular polarization. The theoretical treatments of this topic and recent experimental test of detecting the effects of parity non-conservation on atomic physics are listed, reviewed and illustrated. The main experimental results and limits are summarized. Proposed future experiments are discussed. (D.Gy.)

  13. Parity violation in two-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-P., E-mail: cpliu@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-03-15

    Nuclear few-body systems become attractive avenues for the study of low-energy parity violation because experiments start to meet the precision requirements and theoretical calculations can be performed reliably. In this talk, an attempt of parametrizing low-energy parity-violating observables by the Danilov parameters will be introduced. Analyses of two-nucleon observables, based on the modern phenomenological potentials or the one of effective field theory, will be discussed.

  14. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  15. The XML approach to implementing space link extension service management

    Science.gov (United States)

    Tai, W.; Welz, G. A.; Theis, G.; Yamada, T.

    2001-01-01

    A feasibility study has been conducted at JPL, ESOC, and ISAS to assess the possible applications of the eXtensible Mark-up Language (XML) capabilities to the implementation of the CCSDS Space Link Extension (SLE) Service Management function.

  16. Parity and the medicalization of addiction treatment.

    Science.gov (United States)

    Roy, Ken; Miller, Michael

    2010-06-01

    Parity, the idea that insurance coverage for the treatment of addiction should be on a par with insurance coverage for the treatment of other medical illnesses, is not a new idea, but the path to achieving "real parity" has been a long, hard and complex journey. Action by Congress to pass major parity legislation in 2008 was a huge step forward, but does not mean that parity has been achieved. Parity has required a paradigm shift in the understanding of addiction as a biological illness: many developments of science and policy changes by professional organizations and governmental entities have contributed to that paradigm shift. Access to adequate treatment for patients must acknowledge the paradigm shift reflected in parity as it has evolved to the current point: that this biological illness is widespread, that it is important that it be treated effectively, that appropriate third party payment for physician-provided or physician-supervised addiction treatment is critical for addiction medicine to become a part of the mainstream of our nation's healthcare delivery system, and that medical specialty care provides the most effective and cost effective benefit to patients and therefore to our society.

  17. Investigations on the parity of Fano resonances in photonic crystals

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Yu, Yi

    We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile.......We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile....

  18. Negative-Parity Baryon Masses Using O(a)-improved Fermion Action

    Energy Technology Data Exchange (ETDEWEB)

    M. Gockeler; R. Horsley; D. Pleiter; P.E.L. Rakow; G. Schierholz; C.M. Maynard; D.G. Richards

    2001-06-01

    We present a calculation of the mass of the lowest-lying negative-parity J=1/2{sup {minus}} state in quenched QCD. Results are obtained using a non-perturbatively {Omicron}(a)-improved clover fermion action, and a splitting found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes, and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.

  19. Negative-parity baryon masses using an Ο(α)-improved fermion action

    International Nuclear Information System (INIS)

    Goeckeler, M.; Rakow, P.E.L.; Maynard, C.M.; Richards, D.G.; Old Dominion Univ., Norfolk, VA

    2001-06-01

    We present a calculation of the mass of the lowest-lying negative-parity J = 1/2 - state in quenched QCD. Results are obtained using a non-perturbatively O(a)-improved clover fermion action, and a splitting is found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action. (orig.)

  20. The canonical Lagrangian approach to three-space general relativity

    Science.gov (United States)

    Shyam, Vasudev; Venkatesh, Madhavan

    2013-07-01

    We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.

  1. Lie-Hamilton systems on curved spaces: a geometrical approach

    Science.gov (United States)

    Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz

    2017-12-01

    A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.

  2. A multilevel control approach for a modular structured space platform

    Science.gov (United States)

    Chichester, F. D.; Borelli, M. T.

    1981-01-01

    A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.

  3. Mental Health Insurance Parity and Provider Wages.

    Science.gov (United States)

    Golberstein, Ezra; Busch, Susan H

    2017-06-01

    Policymakers frequently mandate that employers or insurers provide insurance benefits deemed to be critical to individuals' well-being. However, in the presence of private market imperfections, mandates that increase demand for a service can lead to price increases for that service, without necessarily affecting the quantity being supplied. We test this idea empirically by looking at mental health parity mandates. This study evaluated whether implementation of parity laws was associated with changes in mental health provider wages. Quasi-experimental analysis of average wages by state and year for six mental health care-related occupations were considered: Clinical, Counseling, and School Psychologists; Substance Abuse and Behavioral Disorder Counselors; Marriage and Family Therapists; Mental Health Counselors; Mental Health and Substance Abuse Social Workers; and Psychiatrists. Data from 1999-2013 were used to estimate the association between the implementation of state mental health parity laws and the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act and average mental health provider wages. Mental health parity laws were associated with a significant increase in mental health care provider wages controlling for changes in mental health provider wages in states not exposed to parity (3.5 percent [95% CI: 0.3%, 6.6%]; pwages. Health insurance benefit expansions may lead to increased prices for health services when the private market that supplies the service is imperfect or constrained. In the context of mental health parity, this work suggests that part of the value of expanding insurance benefits for mental health coverage was captured by providers. Given historically low wage levels of mental health providers, this increase may be a first step in bringing mental health provider wages in line with parallel health professions, potentially reducing turnover rates and improving treatment quality.

  4. The group approach to AdS space propagators

    International Nuclear Information System (INIS)

    Leonhardt, Thorsten; Manvelyan, Ruben; Ruehl, Werner

    2003-01-01

    We show that AdS two-point functions can be obtained by connecting two points in the interior of AdS space with one point on its boundary by a dual pair of Dobrev's boundary-to-bulk intertwiners and integrating over the boundary point

  5. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    Science.gov (United States)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  6. An approach to developing user interfaces for space systems

    Science.gov (United States)

    Shackelford, Keith; McKinney, Karen

    1993-08-01

    Inherent weakness in the traditional waterfall model of software development has led to the definition of the spiral model. The spiral model software development lifecycle model, however, has not been applied to NASA projects. This paper describes its use in developing real time user interface software for an Environmental Control and Life Support System (ECLSS) Process Control Prototype at NASA's Marshall Space Flight Center.

  7. Real-space renormalization group approach to driven diffusive systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2006-11-24

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.

  8. Real-space renormalization group approach to driven diffusive systems

    International Nuclear Information System (INIS)

    Hanney, T; Stinchcombe, R B

    2006-01-01

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase

  9. Quantitative approach to measuring the cerebrospinal fluid space with CT

    Energy Technology Data Exchange (ETDEWEB)

    Zeumer, H.; Hacke, W.; Hartwich, P.

    1982-01-01

    A method for measuring the subarachnoid space by using an independent CT evaluation unit is described. The normal values have been calculated for patients, according to age, and three examples are presented demonstrating reversible decrease of brain volume in patients suffering anorexia nervosa and chronic alcoholism.

  10. Long-Term Memory: A State-Space Approach

    Science.gov (United States)

    Kiss, George R.

    1972-01-01

    Some salient concepts derived from the information sciences and currently used in theories of human memory are critically reviewed. The application of automata theory is proposed as a new approach in this field. The approach is illustrated by applying it to verbal memory. (Author)

  11. A Conceptual Approach for Optimising Bus Stop Spacing

    Science.gov (United States)

    Johar, Amita; Jain, S. S.; Garg, P. k.

    2017-06-01

    An efficient public transportation system is essential of any country. The growth, development and shape of the urban areas are mainly due to availability of good transportation (Shah et al. in Inst Town Plan India J 5(3):50-59, 1). In developing countries, like India, travel by local bus in a city is very common. The accidents, congestion, pollution and appropriate location of bus stops are the major problems arising in metropolitan cities. Among all the metropolitan cities in India, Delhi has highest percentage of growth of population and vehicles. Therefore, it is important to adopt efficient and effective ways to improve mobility in different metropolitan cities in order to overcome the problem and to reduce the number of private vehicles on the road. The primary objective of this paper is to present a methodology for developing a model for optimum bus stop spacing (OBSS). It describes the evaluation of existing urban bus route, data collection, development of model for optimizing urban bus route and application of model. In this work, the bus passenger generalized cost method is used to optimize the spacing between bus stops. For the development of model, a computer program is required to be written. The applicability of the model has been evaluated by taking the data of urban bus route of Delhi Transport Corporation (DTC) in Excel sheet in first phase. Later on, it is proposed to develop a programming in C++ language. The developed model is expected to be useful to transport planner for rational design of the spacing of bus stops to save travel time and to generalize operating cost. After analysis it is found that spacing between the bus stop comes out to be between 250 and 500 m. The Proposed Spacing of bus stops is done considering the points that they don't come nearer to metro/rail station, entry or exit of flyover and near traffic signal.

  12. Potentials for calculating both parity states in p-shell nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1989-01-01

    A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs

  13. Embodied Space: a Sensorial Approach to Spatial Experience

    Science.gov (United States)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  14. A Continuum Mechanical Approach to Geodesics in Shape Space

    Science.gov (United States)

    2010-01-01

    mean curvature flow equation. Calc. Var., 3:253–271, 1995. [30] Siddharth Manay, Daniel Cremers , Byung-Woo Hong, Anthony J. Yezzi, and Stefano Soatto...P. W. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc., 8:1–48, 2006. 37 [33] Peter W. Michor, David ... Cremers . Shape matching by variational computation of geodesics on a manifold. In Pattern Recognition, LNCS 4174, pages 142–151, 2006. [38] P

  15. Analytical Approach to Space- and Time-Fractional Burgers Equations

    International Nuclear Information System (INIS)

    Yıldırım, Ahmet; Mohyud-Din, Syed Tauseef

    2010-01-01

    A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed

  16. PARITY ODD BUBBLES IN HOT QCD

    International Nuclear Information System (INIS)

    KHARZEEV, D.; PISARSKI, R.D.; TYTGAT, M.H.G.

    1998-01-01

    We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N r a rrow ∞. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T d , is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero θ--parity odd bubbles--can arise at temperatures just below T d . Experimentally, parity odd bubbles have dramatic signatures: the ηprime meson, and especially the η meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as η r a rrow π 0 π 0 , are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define

  17. PARITY ODD BUBBLES IN HOT QCD.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.; PISARSKI,R.D.; TYTGAT,M.H.G.

    1998-04-16

    We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N {r_arrow} {infinity}. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T{sub d}, is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero {theta}--parity odd bubbles--can arise at temperatures just below T{sub d}. Experimentally, parity odd bubbles have dramatic signatures: the {eta}{prime} meson, and especially the {eta} meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as {eta} {r_arrow} {pi}{sup 0}{pi}{sup 0}, are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define.

  18. Generating and Solving Symbolic Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2014-07-01

    Full Text Available We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES and then instantiates the PBES to a parity game. We improved the translation from specification to PBES to preserve the structure of the specification in the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued Decision Diagrams (MDDs to represent sets and relations, thus enabling the tools to deal with very large systems. The transition relation is partitioned based on the structure of the specification, which allows for efficient manipulation of the MDDs. We performed two case studies on modular specifications, that demonstrate that the new method has better time and memory performance than existing PBES based tools and can be faster (but slightly less memory efficient than the symbolic model checker NuSMV.

  19. Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    International Nuclear Information System (INIS)

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-01-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected

  20. Space Acquisitions: Challenges Facing DOD as it Changes Approaches to Space Acquisitions

    Science.gov (United States)

    2016-03-09

    alternatives to support decisions about the future of space programs, there are gaps in cost and other data needed to weigh the pros and cons of changes to...preliminary work suggests there are gaps in cost and other data needed to weigh the pros and cons of changes to space systems. Second, most changes...Facebook, Flickr, Twitter, and YouTube . Subscribe to our RSS Feeds or E-mail Updates. Listen to our Podcasts and read The Watchblog. Visit GAO on the

  1. Parity for mental health and substance abuse care under managed care.

    Science.gov (United States)

    Frank, Richard G.; McGuire, Thomas G.

    1998-12-01

    BACKGROUND: Parity in insurance coverage for mental health and substance abuse has been a key goal of mental health and substance abuse care advocates in the United States during most of the past 20 years. The push for parity began during the era of indemnity insurance and fee for service payment when benefit design was the main rationing device in health care. The central economic argument for enacting legislation aimed at regulating the insurance benefit was to address market failure stemming from adverse selection. The case against parity was based on inefficiency related to moral hazard. Empirical analyses provided evidence that ambulatory mental health services were considerably more responsive to the terms of insurance than were ambulatory medical services. AIMS: Our goal in this research is to reexamine the economics of parity in the light of recent changes in the delivery of health care in the United States. Specifically managed care has fundamentally altered the way in which health services are rationed. Benefit design is now only one mechanism among many that are used to allocate health care resources and control costs. We examine the implication of these changes for policies aimed at achieving parity in insurance coverage. METHOD: We develop a theoretical approach to characterizing rationing under managed care. We then analyze the traditional efficiency concerns in insurance, adverse selection and moral hazard in the context of policy aimed at regulating health and mental health benefits under private insurance. RESULTS: We show that since managed care controls costs and utilization in new ways parity in benefit design no longer implies equal access to and quality of mental health and substance abuse care. Because costs are controlled by management under managed care and not primarily by out of pocket prices paid by consumers, demand response recedes as an efficiency argument against parity. At the same time parity in benefit design may accomplish less

  2. Parity violating nuclear force by meson mixing

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Niskanen, J.A.

    1990-01-01

    We study a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q bar q pair in the meson. Numerically its effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex and may partly be used to model this vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies

  3. Learning the Task Management Space of an Aircraft Approach Model

    Science.gov (United States)

    Krall, Joseph; Menzies, Tim; Davies, Misty

    2014-01-01

    Validating models of airspace operations is a particular challenge. These models are often aimed at finding and exploring safety violations, and aim to be accurate representations of real-world behavior. However, the rules governing the behavior are quite complex: nonlinear physics, operational modes, human behavior, and stochastic environmental concerns all determine the responses of the system. In this paper, we present a study on aircraft runway approaches as modeled in Georgia Tech's Work Models that Compute (WMC) simulation. We use a new learner, Genetic-Active Learning for Search-Based Software Engineering (GALE) to discover the Pareto frontiers defined by cognitive structures. These cognitive structures organize the prioritization and assignment of tasks of each pilot during approaches. We discuss the benefits of our approach, and also discuss future work necessary to enable uncertainty quantification.

  4. Coset Space Dimensional Reduction approach to the Standard Model

    International Nuclear Information System (INIS)

    Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.

    1988-01-01

    We present a unified theory in ten dimensions based on the gauge group E 8 , which is dimensionally reduced to the Standard Mode SU 3c xSU 2 -LxU 1 , which breaks further spontaneously to SU 3L xU 1em . The model gives similar predictions for sin 2 θ w and proton decay as the minimal SU 5 G.U.T., while a natural choice of the coset space radii predicts light Higgs masses a la Coleman-Weinberg

  5. Magnetic moment for the negative parity Λ→Σ0 transition in light cone QCD sum rules

    Directory of Open Access Journals (Sweden)

    T.M. Aliev

    2016-07-01

    Full Text Available The magnetic moment of the Λ→Σ0 transition between negative parity baryons is calculated in framework of the QCD sum rules approach by using the general form of the interpolating currents. The pollution arising from the positive-to-positive, and positive-to-negative parity baryons is eliminated by constructing the sum rules for different Lorentz structures. A comparison of our result with the predictions of the results of other approaches for the positive parity baryons is presented.

  6. Parity nonconservation in 19 Ne atomic nucleus

    International Nuclear Information System (INIS)

    Popescu, Sorina; Dumitrescu, Ovidiu

    1997-01-01

    The possibility to extract from the experiment the necessary information concerning the charged and neutral current contributions to the structure of the weak interactions that violate the parity conservation law is investigated. The parity nonconservation (PNC) induced by weak hadron-hadron interactions, investigated via 'pairs' of low energy nuclear physics processes, is proposed. The low energy physics processes considered here are emission of polarized gamma rays from oriented and unoriented nuclei. Some comments on PNC nucleon-nucleon (PNC-NN) interaction are presented. Explicit expressions for some gamma asymmetry PNC observables are retrieved. Applications to A=19 atomic nuclei are done. A new experiment is proposed. (authors)

  7. The young Sakharov and his isotopic parity

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1992-01-01

    In this paper an account is given of A.D. Sakharov's 1947 discovery, while a post-graduate student at F.I.A.N. (Moscow), of his quantum number isotopic parity as a consequence of the charge symmetry of nuclear forces, a property generally accepted as early as 1936. His applications of it are discussed and it is demonstrated from the data today that his tentative suggestion that the small partial width (∼35 eV) for α-decay from 20 Ne (13.649 MeV) to 16 O was due to isotopic parity violation was correct

  8. Parity doubling in the baryon string model

    International Nuclear Information System (INIS)

    Khokhlachev, S.B.

    1990-01-01

    The nature of parity doubling of baryon states with non-zero angular momentum is considered. The idea of explaining this phenomenon lies in the fact that the rotation of the gluon string leads to a centrifugal potential for quarks. The quarks on the string form a quark-diquark system. Quark tunneling from one end of the string to the other is not probable for systems with large angular momentum due to a large centrifugal potential, and the smallness of the underbarrier transition amplitude explains the small mass difference of the states with opposite parity. (orig.)

  9. Constraints on a Parity-Conserving Interaction

    Science.gov (United States)

    van Oers, Willem T. H.

    Time-reversal-invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with parity violating (P-odd)/time-reversal-invariance-odd (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron (with a present upper limit of 6 × 10-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is less than 10-4 times the weak interaction strength. Experimental limits on a P-even/T-odd interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges it can be shown that only charged rho-meson exchange and A1-meson exchange can lead to a P-even/T-odd interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which will possibly be comparable. All other experiments, like gamma decay experiments, detailed balance experiments, polarization-analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order of magnitude less sensitive. The question then emerges: is there room for further experimentation?

  10. Parity dependence of the nuclear level density at high excitation

    International Nuclear Information System (INIS)

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  11. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    International Nuclear Information System (INIS)

    Paul Reimer; Peter Bosted; John Arrington; Hamlet Mkrtchyan; Xiaochao Zheng

    2006-01-01

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q 2 , low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (∼ 0.5 x 10 -4 ) these studies may be completed with in a relatively brief period

  12. Approach to design space from retrospective quality data.

    Science.gov (United States)

    Puñal Peces, Daniel; García-Montoya, Encarna; Manich, Albert; Suñé-Negre, Josep Maria; Pérez-Lozano, Pilar; Miñarro, Montse; Ticó, Josep Ramon

    2016-01-01

    Nowadays, the entire manufacturing process is based on the current GMPs, which emphasize the reproducibility of the process, and companies have a lot of recorded data about their processes. The establishment of the design space (DS) from retrospective data for a wet compression process. A design of experiments (DoE) with historical data from 4 years of industrial production has been carried out using the experimental factors as the results of the previous risk analysis and eight key parameters (quality specifications) that encompassed process and quality control data. Software Statgraphics 5.0 was applied, and data were processed to obtain eight DS as well as their safe and working ranges. Experience shows that it is possible to determine DS retrospectively, being the greatest difficulty in handling and processing of high amounts of data; however, the practicality of this study is very interesting as it let have the DS with minimal investment in experiments since actual production batch data are processed statistically.

  13. Space and Time as Relations: The Theoretical Approach of Leibniz

    Directory of Open Access Journals (Sweden)

    Basil Evangelidis

    2018-04-01

    Full Text Available The epistemological rupture of Copernicus, the laws of planetary motions of Kepler, the comprehensive physical observations of Galileo and Huygens, the conception of relativity, and the physical theory of Newton were components of an extremely fertile and influential cognitive environment that prompted the restless Leibniz to shape an innovative theory of space and time. This theory expressed some of the concerns and intuitions of the scientific community of the seventeenth century, in particular the scientific group of the Academy of Sciences of Paris, but remained relatively unknown until the twentieth century. After Einstein, however, the relational theory of Leibniz gained wider respect and fame. The aim of this article is to explain how Leibniz foresaw relativity, through his critique of contemporary mechanistic philosophy.

  14. Advanced free space optics (FSO) a systems approach

    CERN Document Server

    Majumdar, Arun K

    2015-01-01

    This book provides a comprehensive, unified tutorial covering the most recent advances in the technology of free-space optics (FSO). It is an all-inclusive source of information on the fundamentals of FSO as well as up-to-date information on the state-of-the-art in technologies available today. This text is intended for graduate students, and will also be useful for research scientists and engineers with an interest in the field. FSO communication is a practical solution for creating a three dimensional global broadband communications grid, offering bandwidths far beyond what is possible in the Radio Frequency (RF) range. However, the attributes of atmospheric turbulence and scattering impose perennial limitations on availability and reliability of FSO links. From a systems point-of-view, this groundbreaking book provides a thorough understanding of channel behavior, which can be used to design and evaluate optimum transmission techniques that operate under realistic atmospheric conditions. Topics addressed...

  15. Accessibility of green space in urban areas: an examination of various approaches to measure it

    OpenAIRE

    Zhang, Xin

    2007-01-01

    In the present research, we attempt to improve the methods used for measuring accessibility of green spaces by combining two components of accessibility-distance and demand relative to supply. Three modified approaches (Joseph and Bantock gravity model measure, the two-step floating catchment area measure and a measure based on kernel densities) will be applied for measuring accessibility to green spaces. We select parks and public open spaces (metropolitan open land) of south London as a cas...

  16. A state space approach for the eigenvalue problem of marine risers

    KAUST Repository

    Alfosail, Feras; Nayfeh, Ali H.; Younis, Mohammad I.

    2017-01-01

    A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using

  17. A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks

    Science.gov (United States)

    2017-12-05

    A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views, opinions and/or findings contained in this...Technology (MIT) Title: A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks Report Term: 0-Other Email: tlp...students presented progress and received feedback from the research group . o wrote papers on their research and submitted them to leading conferences

  18. Coordination between Subway and Urban Space: A Networked Approach

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2014-05-01

    Full Text Available This paper selects Changsha as a case study and constructs the models of the subway network and the urban spatial network by using planning data. In the network models, the districts of Changsha are regarded as nodes and the connections between each pair of districts are regarded as edges. The method is based on quantitative analysis of the node weights and the edge weights, which are defined in the complex network theory. And the structures of subway and urban space are visualized in the form of networks. Then, through analyzing the discrepancy coefficients of the corresponding nodes and edges, the paper carries out a comparison between the two networks to evaluate the coordination. The results indicate that only 21.4% of districts and 13.2% of district connections have a rational coordination. Finally, the strategies are put forward for optimization, which suggest adjusting subway transit density, regulating land-use intensity and planning new mass transits for the uncoordinated parts.

  19. Parity and the spin{statistics connection

    Indian Academy of Sciences (India)

    A simple demonstration of the spin-statistics connection for general causal fields is obtained by using the parity operation to exchange spatial coordinates in the scalar product of a locally commuting field operator, evaluated at position x, with the same field operator evaluated at -x, at equal times.

  20. Parity violation in deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Souder, P. [Syracuse Univ., NY (United States)

    1994-04-01

    AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.

  1. Parity nonconservation in Zeeman atomic transitions

    International Nuclear Information System (INIS)

    Kraftmakher, A.Ya.

    1990-01-01

    The abilities to observe the parity violation at the radiofrequency transitions between the hyperfine and Zeeman terms of the atomic levels are considered. The E-1 amplitudes fo the Zeeman transitions of heavy atoms in weak magnetic fields are larger, than for the light atoms hyperfine transitions at the same wavelength. 9 refs

  2. Systemic sclerosis, birth order and parity.

    Science.gov (United States)

    Russo, Paul A J; Lester, Susan; Roberts-Thomson, Peter J

    2014-06-01

    A recent study identified increasing birth order to be a risk factor for the development of systemic sclerosis (SSc). This finding supports the theory that transplacental microchimerism may be a key pathological event in the initiation of SSc. We investigated the relationship between birth order and parity and the age of onset of SSc in South Australia. A retrospective analysis of patient data in the South Australian Scleroderma Register was performed. Data were obtained from a mailed questionnaire. Control data was collected prospectively using a similar questionnaire. The relationship between birth order, family size or parity and risk of subsequent development of SSc was analyzed by mixed effects logistic regression analysis. Three hundred and eighty-seven index probands were identified and compared with 457 controls. Controls were well matched for gender, but not for age. No statistically significant relationship was identified between SSc and birth order, parity in females, family size, age at first pregnancy in females or gender of first child in parous females. Our data suggests that parity, age at first pregnancy and the gender of the first child are not relevant factors in our understanding of the epidemiology and pathogenesis of SSc. Birth order and family size in both genders also appears irrelevant. These results argue against microchimerism as being relevant in the pathogenesis of SSc and add further support to the theory that stochastic events may be important in the etiopathogenesis of SSc. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  3. Obstacles to Gender Parity in Engineering Education

    Science.gov (United States)

    Rohatynskyj, Marta; Davidson, Valerie; Stiver, Warren; Hayward, Maren

    2008-01-01

    Low rates of women's enrolment in engineering programs has been identified as a global problem within the general concern to enable women to attain parity in education in all areas. A Western women in engineering meta-narrative is identified which contains a complex of obstacles that typify the situation of Western women. The question is asked…

  4. Purchasing Power Parity and Heterogeneous Mean Reversion

    NARCIS (Netherlands)

    C.G. Koedijk (Kees); B. Tims (Ben); M.A. van Dijk (Mathijs)

    2005-01-01

    textabstractThis paper analyzes the properties of multivariate tests of purchasing power parity (PPP) that fail to take heterogeneity in the speed of mean reversion across real exchange rates into account. We compare the performance of homogeneous and heterogeneous unit root testing methodologies.

  5. Purchasing Power Parity and the Euro Area

    NARCIS (Netherlands)

    C.G. Koedijk (Kees); B. Tims (Ben); M.A. van Dijk (Mathijs)

    2004-01-01

    textabstractThis paper analyzes purchasing power parity (PPP) for the euro area. We study the impact of the introduction of the euro in 1999 on the behavior of real exchange rates. We test the PPP hypothesis for a panel of real exchange rates within the euro area over the period 1973-2003. Our

  6. Determination of the K*(1800) spin parity

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, G W; Carnegie, R K; Cashmore, R J; Davier, M; Dunwoodie, W M; Lasinski, T A; Leith, D W.G.S.; Matthews, J A.J.; Walden, P; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA)

    1976-02-16

    A spherical harmonic moment analysis of the reactions K/sup -/p..-->..K/sup -/..pi../sup +/n and K/sup +/p..-->..K/sup +/..pi../sup -/..delta../sup + +/ at 13 GeV/c demonstrates the existence of a broad K* state with mass in the vicinity of 1800 MeV and spin parity 3/sup -/.

  7. Parity violation in neutron induced reactions

    International Nuclear Information System (INIS)

    Gudkov, V.P.

    1991-06-01

    The theory of parity violation in neutron induced reactions is discussed. Special attention is paid to the energy dependence and enhancement factors for the various types of nuclear reactions and the information which might be obtained from P-violating effects in nuclei. (author)

  8. Justification of a "Crucial" Experiment: Parity Nonconservation.

    Science.gov (United States)

    Franklin, Allan; Smokler, Howard

    1981-01-01

    Presents history, nature of evidence evaluated, and philosophical questions to justify the view that experiments on parity nonconservation were "crucial" experiments in the sense that they decided unambiguously and within a short period of time for the appropriate scientific community, between two or more competing theories or classes of theories.…

  9. Contraceptive Use: Implication for Completed Fertility, Parity ...

    African Journals Online (AJOL)

    Erah

    NDHS, 2008 dataset on married women aged 45-49 was used. Chi-square ... About 26.0% of the women ever used contraception, while 9.0% of the women were underweight. Parity ..... Working Paper, Labour and Population, 2004. 2.

  10. A measurement of the eta' spin parity

    International Nuclear Information System (INIS)

    Cerrada, M.; Wagner, F.; Chaloupka, V.; Hemingway, R.J.; Holmgren, S.O.; Losty, M.J.; Loverre, P.F.; Marzano, F.; Blokzijl, R.; Jongejans, B.; Massaro, G.G.G.; Schotanus, D.J.; Tiecke, H.G.; Timmermans, J.J.M.; Foster, B.; McDowell, W.L.

    1977-01-01

    The spin parity of the eta'(958) is studied in the reaction K - p→eta'Λ at 4.2 GeV/c, using bubble chamber data with a statistical sensitivity of 128 events/μb. The data unambiguously prefer the 0 - assignment. (Auth.)

  11. A measurement of the eta ' spin parity

    CERN Document Server

    Cerrada, M; Chaloupka, V; Foster, B; Hemingway, R J; Holmgren, S O; Jongejans, B; Losty, Michael J; Loverre, P F; Marzano, F; Massaro, G G G; McDowell, W L; Schotanus, D J; Tiecke, H G; Timmermans, J; Wagner, F

    1977-01-01

    The spin parity of the eta '(958) is studied in the reaction K/sup -/p to eta ' Lambda at 4.2 GeV/c, using bubble chamber data with a statistical sensitivity of 128 events/ mu b. The data unambiguously prefer the 0/sup -/ assignment. (18 refs).

  12. Nonlinear parity readout with a microwave photodetector

    Science.gov (United States)

    Schöndorf, M.; Wilhelm, F. K.

    2018-04-01

    Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.

  13. A Cost Effective System Design Approach for Critical Space Systems

    Science.gov (United States)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically

  14. The Influence of International Parity on the Exchange Rate: Purchasing Power Parity and International Fisher Effect

    OpenAIRE

    Oana Mionel

    2012-01-01

    This article assesses the impact of the inflation and interest rates on the exchange rates. The analysis tests the relation between the inflation rate and the exchange rate by applying the Purchasing Power Parity Theory, while the relation between the interest rate and the inflation rate is tested by applying the International Fisher Effect Theory. In order to test the Purchasing Power Parity the study takes into account the period of time between 1990 – 2009, and the following countries – th...

  15. Relationship between parity and bone mass in postmenopausal women according to number of parities and age.

    Science.gov (United States)

    Heidari, Behzad; Heidari, Parnaz; Nourooddini, Haj Ghorban; Hajian-Tilaki, Karim Ollah

    2013-01-01

    To investigate the impact of multiple pregnancies on postmenopausal bone mineral density (BMD). BMD at the femoral neck (FN) and lumbar spine (LS) was measured by dual energy X-ray absorptiometry (DXA) method. Diagnosis of osteoporosis (OP) was confirmed by World Health Organization criteria. Women were stratified according to number of parity as 7 parity groups as well as in age groups of or = 65 years. BMD values and frequency of OP were compared across the groups according to age. Multiple logistic regression analysis with calculation of adjusted odds ratio (OR) was used for association. A total of 264 women with mean age of 63 +/- 8.7 and mean menopausal duration of 15.8 +/- 10.2 years were studied. LS-OP and FN-OP were observed in 28% and 58.3% of women, respectively. There were significant differences in BMD values across different parity groups at both sites of LS and FN (p = 0.011 and p = 0.036, respectively). Parity 4-7 (vs. 7 significantly decreased LS-BMD and FN-BMD as compared with 0-7 parity (p = 0.006 and p = 0.009, respectively). Parity > 7 increased the risk of LS-OP by OR = 1.81 (95% CI 1.03-3.1, p = 0.037) and FN-OP by OR = 1.67 (95% CI 0.97-2.8, p = 0.063). In addition, women with high parity had lower BMD decline at LS and FN by age (> or = 65 vs. 7 is associated with spinal trabecular bone loss in younger postmenopausal women as well as an osteoprotective effect against age-related bone loss, which counteracts the early negative effect. Therefore, parity should not be considered as a risk factor for postmenopausal osteoporosis.

  16. Searches for Prompt R-Parity-Violating Supersymmetry at the LHC

    International Nuclear Information System (INIS)

    Redelbach, Andreas

    2015-01-01

    Searches for supersymmetry (SUSY) at the LHC frequently assume the conservation of R-parity in their design, optimization, and interpretation. In the case that R-parity is not conserved, constraints on SUSY particle masses tend to be weakened with respect to R-parity-conserving models. We review the current status of searches for R-parity-violating (RPV) supersymmetry models at the ATLAS and CMS experiments, limited to 8 TeV search results published or submitted for publication as of the end of March 2015. All forms of renormalisable RPV terms leading to prompt signatures have been considered in the set of analyses under review. Discussing results for searches for prompt R-parity-violating SUSY signatures summarizes the main constraints for various RPV models from LHC Run I and also defines the basis for promising signal regions to be optimized for Run II. In addition to identifying highly constrained regions from existing searches, also gaps in the coverage of the parameter space of RPV SUSY are outlined

  17. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  18. Spatial Polygamy and Contextual Exposures (SPACEs): Promoting Activity Space Approaches in Research on Place and Health

    Science.gov (United States)

    Matthews, Stephen A.; Yang, Tse-Chuan

    2014-01-01

    Exposure science has developed rapidly and there is an increasing call for greater precision in the measurement of individual exposures across space and time. Social science interest in an individual’s environmental exposure, broadly conceived, has arguably been quite limited conceptually and methodologically. Indeed, we appear to lag behind our exposure science colleagues in our theories, data, and methods. In this paper we discuss a framework based on the concept of spatial polygamy to demonstrate the need to collect new forms of data on human spatial behavior and contextual exposures across time and space. Adopting new data and methods will be essential if we want to better understand social inequality in terms of exposure to health risks and access to health resources. We discuss the opportunities and challenges focusing on the potential seemingly offered by focusing on human mobility, and specifically the utilization of activity space concepts and data. A goal of the paper is to spatialize social and health science concepts and research practice vis-a-vis the complexity of exposure. The paper concludes with some recommendations for future research focusing on theoretical and conceptual development, promoting research on new types of places and human movement, the dynamic nature of contexts, and on training. “When we elect wittingly or unwittingly, to work within a level … we tend to discern or construct – whichever emphasis you prefer – only those kinds of systems whose elements are confined to that level.”Otis Dudley Duncan (1961, p. 141). “…despite the new ranges created by improved transportation, local government units have tended to remain medieval in size.”Torsten Hägerstrand (1970, p.18) “A detective investigating a crime needs both tools and understanding. If he has no fingerprint powder, he will fail to find fingerprints on most surfaces. If he does not understand where the criminal is likely to have put his fingers, he will not

  19. Quantifying space, understanding minds: A visual summary approach

    Directory of Open Access Journals (Sweden)

    Mark Simpson

    2017-06-01

    Full Text Available This paper presents an illustrated, validated taxonomy of research that compares spatial measures to human behavior. Spatial measures quantify the spatial characteristics of environments, such as the centrality of intersections in a street network or the accessibility of a room in a building from all the other rooms. While spatial measures have been of interest to spatial sciences, they are also of importance in the behavioral sciences for use in modeling human behavior. A high correlation between values for spatial measures and specific behaviors can provide insights into an environment's legibility, and contribute to a deeper understanding of human spatial cognition. Research in this area takes place in several domains, which makes a full understanding of existing literature difficult. To address this challenge, we adopt a visual summary approach. Literature is analyzed, and recurring topics are identified and validated with independent inter-rater agreement tasks in order to create a robust taxonomy for spatial measures and human behavior. The taxonomy is then illustrated with a visual representation that allows for at-a-glance visual access to the content of individual research papers in a corpus. A public web interface has been created that allows interested researchers to add to the database and create visual summaries for their research papers using our taxonomy.

  20. A behavioral approach to shared mapping of peripersonal space between oneself and others.

    Science.gov (United States)

    Teramoto, Wataru

    2018-04-03

    Recent physiological studies have showed that some visuotactile brain areas respond to other's peripersonal spaces (PPS) as they would their own. This study investigates this PPS remapping phenomenon in terms of human behavior. Participants placed their left hands on a tabletop screen where visual stimuli were projected. A vibrotactile stimulator was attached to the tip of their index finger. While a white disk approached or receded from the hand in the participant's near or far space, the participant was instructed to quickly detect a target (vibrotactile stimulation, change in the moving disk's color or both). When performing this task alone, the participants exhibited shorter detection times when the disk approached the hand in their near space. In contrast, when performing the task with a partner across the table, the participants exhibited shorter detection times both when the disk approached their own hand in their near space and when it approached the partner's hand in the partner's near space but the participants' far space. This phenomenon was also observed when the body parts from which the visual stimuli approached/receded differed between the participant and partner. These results suggest that humans can share PPS representations and/or body-derived attention/arousal mechanisms with others.

  1. Combining Statistical Methodologies in Water Quality Monitoring in a Hydrological Basin - Space and Time Approaches

    OpenAIRE

    Costa, Marco; A. Manuela Gonçalves

    2012-01-01

    In this work are discussed some statistical approaches that combine multivariate statistical techniques and time series analysis in order to describe and model spatial patterns and temporal evolution by observing hydrological series of water quality variables recorded in time and space. These approaches are illustrated with a data set collected in the River Ave hydrological basin located in the Northwest region of Portugal.

  2. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2012-10-01

    Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

  3. Inequivalent solutions for Dirac spin-(1/2) particles under conservation of parity I

    International Nuclear Information System (INIS)

    Liu, C. J.

    2010-01-01

    Inequivalent invariance constraints upon solutions for Dirac spin-(1/2) particles under conservation of space inversion, time reversal, and charge conjugation have been established, respectively, from standard representation. For space inversion we explicitly show that the wave functions for zero mass neutrinos satisfy only one constraint. For free particles we show that the conventional plane wave solutions as well as Foldy-Wouthuysen representation conditionally comply with the inversion constraints. As a result, only two positive energy solutions and two negative energy solutions can be established. Instead, by law of conservation of parity one shall obtain four linearly independent plane wave solutions which hold not only for positive energies but also for negative energies. We explicitly point out why conventional approach fails to obtain such result. In contrast with free particles one expects intuitively that in a Coulomb field, one can establish twice as many as conventional solutions. Indeed, one shall find easily from inversion constraints that additional linearly independent degenerate bound states have to be established. We present the explicit result.

  4. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  5. Photovoltaic is redolent of grid parity

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2015-01-01

    This article indicates and comments the current trends of decrease of photovoltaic costs and increase of electricity prices. As a result, grid parity is starting to be reached in some countries (Mexico city, California, Australia, Italy, Germany, Israel, Chile) and nearly in southern France only, as the prices of residential electricity are rather low and therefore don't give any chance to network parity for solar photovoltaic. Curves of evolutions of photovoltaic costs and retail electricity prices are given for different towns (Berlin, London, Rome, Madrid, Marseilles, San Francisco, Sydney, and Copiapo in Chile). These evolutions are a positive factor for the development of self-consumption. The article thus evokes the PV-NET project which gathers several European regions or countries to test and assess different economic solutions of self-consumption

  6. Parity nonconservation in two-nucleon systems

    International Nuclear Information System (INIS)

    Nagle, D.E.

    1975-01-01

    The observation of a violation of the parity symmetry in two-nucleon systems implies the presence of a weak hadronic force. The positive effect reported by Lobashov et al. in the reaction np → dγ, for the circular polarization of the gamma ray, would imply a large value for the parity nonconserving (PNC) amplitude. A transmission experiment has been undertaken for 15-MeV longitudinally polarized protons on hydrogen. A transmission experiment for 6-GeV polarized protons on Be and on H 2 O is in progress at the ZGS at Argonne National Laboratory. The current results of the latter two experiments are summarized, and the relation to theoretical calculations is discussed. (2 figures, 1 table) (U.S.)

  7. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Green, A.A.

    1994-01-01

    The status of parity violation in the compound nucleus is reviewed. The results of previous experimental results obtained by scattering polarized epithermal neutrons from heavy nuclei in the 3-p and 4-p p-wave strength function peaks are presented. Experimental techniques are presented. The extraction of the mean squared matrix element of the parity-violating interaction, M 2 , between compound-nuclear levels and the relationship of M 2 to the coupling strengths in the meson exchange weak nucleon-nucleon potential are discussed. The tendency of measured asymmetries to have a common sign and theoretical implications are discussed. New experimental results are presented that show that the common sign phenomenon is not universal, as theoretical models developed up to now would predict

  8. Parity nonconserving optical rotation in atomic lead

    International Nuclear Information System (INIS)

    Emmons, T.P. Jr.

    1984-01-01

    A measurement of parity nonconserving optical rotation has been performed on the 1.28 μm atomic lead magnetic dipole transition. Although the technique used in this measurement was similar to that used in earlier measurements done on the 0.876 μm line in atomic bismuth, important differences exist. These are discussed in detail. Since the accuracy of this measurement is limited by systematic errors, a complete analysis of the data is included with a lengthy discussion of systematic effects. The final value obtained for the optical rotation is given. This agrees with atomic calculations based on the Weinberg-Salam-Galshow model for weak interactions. A discussion of the limits on weak interaction theories placed by all the atomic parity nonconservation experiments appears in the conclusion

  9. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  10. Gender Parity in Critical Care Medicine.

    Science.gov (United States)

    Mehta, Sangeeta; Burns, Karen E A; Machado, Flavia R; Fox-Robichaud, Alison E; Cook, Deborah J; Calfee, Carolyn S; Ware, Lorraine B; Burnham, Ellen L; Kissoon, Niranjan; Marshall, John C; Mancebo, Jordi; Finfer, Simon; Hartog, Christiane; Reinhart, Konrad; Maitland, Kathryn; Stapleton, Renee D; Kwizera, Arthur; Amin, Pravin; Abroug, Fekri; Smith, Orla; Laake, Jon H; Shrestha, Gentle S; Herridge, Margaret S

    2017-08-15

    Clinical practice guidelines are systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances. These documents inform and shape patient care around the world. In this Perspective we discuss the importance of diversity on guideline panels, the disproportionately low representation of women on critical care guideline panels, and existing initiatives to increase the representation of women in corporations, universities, and government. We propose five strategies to ensure gender parity within critical care medicine.

  11. Odd-parity baryons: progress and problems

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1981-01-01

    The odd-parity baryons have provided a graveyard for many cherished ideas about hadrons. The simple quark shell model, with QCD-inspired phenomenological perturbations, is the only model able to describe the states with even partial qualitative success. There are also important unexplained residual dynamical effects. Resonance decays can be accounted for, provided the usual spectator model is abandoned. Better experimental data could help to sort out the many remaining puzzles

  12. Do Firms Believe in Interest Rate Parity?

    OpenAIRE

    Matthew R. McBrady; Sandra Mortal; Michael J. Schill

    2010-01-01

    Using a broad sample of international corporate bond offerings, we provide evidence that corporate borrowers make opportunistic currency choices, in that they denominate the currency of their bonds in a manner that is inconsistent with a belief in either covered or uncovered interest rate parity. Using firm-level tests, we identify a number of characteristics of firms that engage in opportunistic behavior. We observe that large issuers located in developed markets with investment-grade rating...

  13. Nonlinear Trend and Purchasing Power Parity

    OpenAIRE

    luo, yinghao

    2016-01-01

    Abstract. After the collapse of the Bretton Woods system, the evidence on the purchasing power parity (PPP) in the long run is still a matter of debate. The difficulties of the problem are the possible nonstationarity of relative price indices and nominal exchange rates. The traditional ways to deal with nonstationarity such as unit root model and cointegration have some problems. In this paper, to deal with nonstationarity, we apply the Hodrick-Prescott (HP) trend-cycle filter in real busine...

  14. Negative parity non-strange baryons

    International Nuclear Information System (INIS)

    Stancu, F.; Stassart, P.

    1991-01-01

    Our previous study is extended to negative parity baryon resonances up to J=(9/2) - . The framework is a semi-relativistic constituent quark model. The quark-quark interaction contains a Coulomb plus linear confinement terms and a short distance spin-spin and tensor terms. It is emphasized that a linear confinement potential gives too large a mass to the D 35 (1930) resonance. (orig.)

  15. A phase-space approach to atmospheric dynamics based on observational data. Theory and applications

    International Nuclear Information System (INIS)

    Wang Risheng.

    1994-01-01

    This thesis is an attempt to develop systematically a phase-space approach to the atmospheric dynamics based on the theoretical achievement and application experiences in nonlinear time-series analysis. In particular, it is concerned with the derivation of quantities for describing the geometrical structure of the observed dynamics in phase-space (dimension estimation) and the examination of the observed atmospheric fluctuations in the light of phase-space representation. The thesis is, therefore composed of three major parts, i.e. an general survey of the theory of statistical approaches to dynamic systems, the methodology designed for the present study and specific applications with respect to dimension estimation and to a phase-space analysis of the tropical stratospheric quasi-biennial oscillation. (orig./KW)

  16. Excited negative parity bands in 160Yb

    Science.gov (United States)

    Saha, A.; Bhattacharjee, T.; Curien, D.; Dedes, I.; Mazurek, K.; Banerjee, S. R.; Rajbanshi, S.; Bisoi, A.; de Angelis, G.; Bhattacharya, Soumik; Bhattacharyya, S.; Biswas, S.; Chakraborty, A.; Das Gupta, S.; Dey, B.; Goswami, A.; Mondal, D.; Pandit, D.; Palit, R.; Roy, T.; Singh, R. P.; Saha Sarkar, M.; Saha, S.; Sethi, J.

    2018-03-01

    Negative parity rotational bands in {} 70160Yb{}90 nucleus have been studied. They were populated in the 148Sm(16O, 4n)160Yb reaction at 90 MeV. The gamma-coincidence data have been collected using Indian National Gamma Array composed of twenty Compton suppressed clover germanium (Ge) detectors. Double gating on triple gamma coincidence data were selectively used to develop the decay scheme for these negative parity bands by identifying and taking care of the multiplet transitions. The even- and odd-spin negative parity bands in 160Yb have been studied by comparing the reduced transition probability ratios with the similar bands in neighbouring even-even rare earth nuclei. It is concluded that the concerned odd-spin and even-spin bands are not signature partners and that their structures are compatible with those of the ‘pear-shape’ and ‘pyramid-shape’ oscillations, respectively, the octupole shapes superposed with the quadrupole shape of the ground-state.

  17. Symbols, spaces and materiality: a transmission-based approach to Aegean Bronze Age ritual.

    OpenAIRE

    Briault, C.

    2005-01-01

    This thesis explores the transmission of ritual practices in the second millennium BC Aegean. In contrast to previous approaches, which often overlook gaps in the diachronic record, emphasising continuity in cult practice over very long timescales, it is argued here that through charting the spatial and temporal distributions of three broad material types (cult symbols, spaces and objects), it is possible to document the spread of cult practice over time and space, and, crucially, to monitor ...

  18. Solar chimney: A sustainable approach for ventilation and building space conditioning

    Directory of Open Access Journals (Sweden)

    Lal, S.,

    2013-03-01

    Full Text Available The residential and commercial buildings demand increase with rapidly growing population. It leads to the vertical growth of the buildings and needs proper ventilation and day-lighting. The natural air ventilation system is not significantly works in conventional structure, so fans and air conditioners are mandatory to meet the proper ventilation and space conditioning. Globally building sector consumed largest energy and utmost consumed in heating, ventilation and space conditioning. This load can be reduced by application of solar chimney and integrated approaches in buildings for heating, ventilation and space conditioning. It is a sustainable approach for these applications in buildings. The authors are reviewed the concept, various method of evaluation, modelings and performance of solar chimney variables, applications and integrated approaches.

  19. Quasi Cyclic Low Density Parity Check Code for High SNR Data Transfer

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2010-06-01

    Full Text Available An improved Quasi Cyclic Low Density Parity Check code (QC-LDPC is proposed to reduce the complexity of the Low Density Parity Check code (LDPC while obtaining the similar performance. The proposed QC-LDPC presents an improved construction at high SNR with circulant sub-matrices. The proposed construction yields a performance gain of about 1 dB at a 0.0003 bit error rate (BER and it is tested on 4 different decoding algorithms. Proposed QC-LDPC is compared with the existing QC-LDPC and the simulation results show that the proposed approach outperforms the existing one at high SNR. Simulations are also performed varying the number of horizontal sub matrices and the results show that the parity check matrix with smaller horizontal concatenation shows better performance.

  20. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joe

    2000-01-01

    This paper describes, in viewgraph form, the faster, better, cheaper approach to space missions. The topics include: 1) What drives "Faster, Better, Cheaper"? 2) Why Space Programs are Costly; 3) Background; 4) Aerospace Project Management (Old Culture); 5) Aerospace Project Management (New Culture); 6) Scope of Analysis Limited to Engineering Management Culture; 7) Qualitative Analysis; 8) Some Basic Principles of the New Culture; 9) Cause and Effect; 10) "New Ways of Doing Business" Survey Results; 11) Quantitative Analysis; 12) Recent Space System Cost Trends; 13) Spacecraft Dry Weight Trend; 14) Complexity Factor Trends; 15) Cost Normalization; 16) Cost Normalization Algorithm; 17) Unnormalized Cost vs. Normalized Cost; and 18) Concluding Observations.

  1. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    Science.gov (United States)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  2. Littlest Higgs with T-parity. Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel de

    2013-11-15

    The Littlest Higgs model with T-parity is providing an attractive solution to the fine-tuning problem. This solution is only entirely natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. We examine the constraints using the latest results from the 8 TeV run at the LHC. Both direct searches and Higgs precision physics are taken into account. The constraints from Higgs couplings are by now competing with electroweak precision tests and both combined exclude f up to 694 GeV. At the same time limits from direct searches now become competitive and constrain f to be larger than 638 GeV. We show that the Littlest Higgs model parameter space is slowly driven into the TeV range. Furthermore, we develop a strategy on how to optimise present supersymmetry searches for the considered model, with the goal to improve the constraints and yield more stringent limits on f.

  3. Lateral skull base approaches in the management of benign parapharyngeal space tumors.

    Science.gov (United States)

    Prasad, Sampath Chandra; Piccirillo, Enrico; Chovanec, Martin; La Melia, Claudio; De Donato, Giuseppe; Sanna, Mario

    2015-06-01

    To evaluate the role of lateral skull base approaches in the management of benign parapharyngeal space tumors and to propose an algorithm for their surgical approach. Retrospective study of patients with benign parapharyngeal space tumors. The clinical features, radiology and preoperative management of skull base neurovasculature, the surgical approaches and overall results were recorded. 46 patients presented with 48 tumors. 12 were prestyloid and 36 poststyloid. 19 (39.6%) tumors were paragangliomas, 15 (31.25%) were schwannomas and 11 (23%) were pleomorphic adenomas. Preoperative embolization was performed in 19, stenting of the internal carotid artery in 4 and permanent balloon occlusion in 2 patients. 19 tumors were approached by the transcervical, 13 by transcervical-transparotid, 5 by transcervical-transmastoid, 6, 1 and 2 tumors by the infratemporal fossa approach types A, B and D, respectively. Total radical tumor removal was achieved in 46 (96%) of the cases. Lateral skull base approaches have an advantage over other approaches in the management of benign tumors of the parapharyngeal space due to the fact that they provide excellent exposure with less morbidity. The use of microscope combined with bipolar cautery reduces morbidity. Stenting of internal carotid artery gives a chance for complete tumor removal with arterial preservation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Quantum quasi-cyclic low-density parity-check error-correcting codes

    International Nuclear Information System (INIS)

    Yuan, Li; Gui-Hua, Zeng; Lee, Moon Ho

    2009-01-01

    In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated. (general)

  5. An Autonomous Sensor Tasking Approach for Large Scale Space Object Cataloging

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    The field of Space Situational Awareness (SSA) has progressed over the last few decades with new sensors coming online, the development of new approaches for making observations, and new algorithms for processing them. Although there has been success in the development of new approaches, a missing piece is the translation of SSA goals to sensors and resource allocation; otherwise known as the Sensor Management Problem (SMP). This work solves the SMP using an artificial intelligence approach called Deep Reinforcement Learning (DRL). Stable methods for training DRL approaches based on neural networks exist, but most of these approaches are not suitable for high dimensional systems. The Asynchronous Advantage Actor-Critic (A3C) method is a recently developed and effective approach for high dimensional systems, and this work leverages these results and applies this approach to decision making in SSA. The decision space for the SSA problems can be high dimensional, even for tasking of a single telescope. Since the number of SOs in space is relatively high, each sensor will have a large number of possible actions at a given time. Therefore, efficient DRL approaches are required when solving the SMP for SSA. This work develops a A3C based method for DRL applied to SSA sensor tasking. One of the key benefits of DRL approaches is the ability to handle high dimensional data. For example DRL methods have been applied to image processing for the autonomous car application. For example, a 256x256 RGB image has 196608 parameters (256*256*3=196608) which is very high dimensional, and deep learning approaches routinely take images like this as inputs. Therefore, when applied to the whole catalog the DRL approach offers the ability to solve this high dimensional problem. This work has the potential to, for the first time, solve the non-myopic sensor tasking problem for the whole SO catalog (over 22,000 objects) providing a truly revolutionary result.

  6. Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction

    International Nuclear Information System (INIS)

    Wang Qiong; He Zhi; Yao Chun-Mei

    2015-01-01

    We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. (paper)

  7. Urban Multisensory Laboratory, AN Approach to Model Urban Space Human Perception

    Science.gov (United States)

    González, T.; Sol, D.; Saenz, J.; Clavijo, D.; García, H.

    2017-09-01

    An urban sensory lab (USL or LUS an acronym in Spanish) is a new and avant-garde approach for studying and analyzing a city. The construction of this approach allows the development of new methodologies to identify the emotional response of public space users. The laboratory combines qualitative analysis proposed by urbanists and quantitative measures managed by data analysis applications. USL is a new approach to go beyond the borders of urban knowledge. The design thinking strategy allows us to implement methods to understand the results provided by our technique. In this first approach, the interpretation is made by hand. However, our goal is to combine design thinking and machine learning in order to analyze the qualitative and quantitative data automatically. Now, the results are being used by students from the Urbanism and Architecture courses in order to get a better understanding of public spaces in Puebla, Mexico and its interaction with people.

  8. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  9. State-space approach for evaluating the soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Cassaro, F.A.M.; Tominaga, T.T.; Bacchi, O.O.S.; Oliveira, J.C.M.; Dourado-Neto, D.

    2004-01-01

    Using as examples one sugarcane and one forage oat experiment, both carried out in the State of Sao Paulo, Brazil, this chapter presents recent state-space approaches used to evaluate the relation between soil and plant properties. A contrast is made between classical statistics methodologies that do not take into account the sampling position coordinates, and the more recently used methodologies which include the position coordinates, and allow a better interpretation of the field-sampled data. Classical concepts are first introduced, followed by spatially referenced methodologies like the autocorrelation function, the cross correlation function, and the state-space approach. Two variations of the state-space approach are given: one emphasizes the evolution of the state system while the other based on the bayesian formulation emphasizes the evolution of the estimated observations. It is concluded that these state-space analyses using dynamic regression models improve data analyses and are therefore recommended for analyzing time and space data series related to the performance of a given soil-plant-atmosphere system. (author)

  10. Approaching control for tethered space robot based on disturbance observer using super twisting law

    Science.gov (United States)

    Hu, Yongxin; Huang, Panfeng; Meng, Zhongjie; Wang, Dongke; Lu, Yingbo

    2018-05-01

    Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.

  11. An Effective Approach Control Scheme for the Tethered Space Robot System

    Directory of Open Access Journals (Sweden)

    Zhongjie Meng

    2014-09-01

    Full Text Available The tethered space robot system (TSR, which is composed of a platform, a gripper and a space tether, has great potential in future space missions. Given the relative motion among the platform, tether, gripper and the target, an integrated approach model is derived. Then, a novel coordinated approach control scheme is presented, in which the tether tension, thrusters and the reaction wheel are all utilized. It contains the open-loop trajectory optimization, the feedback trajectory control and attitude control. The numerical simulation results show that the rendezvous between TSR and the target can be realized by the proposed coordinated control scheme, and the propellant consumption is efficiently reduced. Moreover, the control scheme performs well in the presence of the initial state's perturbations, actuator characteristics and sensor errors.

  12. Activity markers and household space in Swahili urban contexts: An integrated geoarchaeological approach

    DEFF Research Database (Denmark)

    Wynne-Jones, Stephanie; Sulas, Federica

    , this paper draws from recent work at a Swahili urban site to illustrate the potential and challenges of an integrated geoarchaeological approach to the study of household space. The site of Songo Mnara (14th–16thc. AD) thrived as a Swahili stonetown off the coast of Tanzania. Here, our work has concentrated...

  13. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  14. Concept of Draft International Standard for a Unified Approach to Space Program Quality Assurance

    Science.gov (United States)

    Stryzhak, Y.; Vasilina, V.; Kurbatov, V.

    2002-01-01

    For want of the unified approach to guaranteed space project and product quality assurance, implementation of many international space programs has become a challenge. Globalization of aerospace industry and participation of various international ventures with diverse quality assurance requirements in big international space programs requires for urgent generation of unified international standards related to this field. To ensure successful fulfillment of space missions, aerospace companies should design and process reliable and safe products with properties complying or bettering User's (or Customer's) requirements. Quality of the products designed or processed by subcontractors (or other suppliers) should also be in compliance with the main user (customer)'s requirements. Implementation of this involved set of unified requirements will be made possible by creating and approving a system (series) of international standards under a generic title Space Product Quality Assurance based on a system consensus principle. Conceptual features of the baseline standard in this system (series) should comprise: - Procedures for ISO 9000, CEN and ECSS requirements adaptation and introduction into space product creation, design, manufacture, testing and operation; - Procedures for quality assurance at initial (design) phases of space programs, with a decision on the end product made based on the principle of independence; - Procedures to arrange incoming inspection of products delivered by subcontractors (including testing, audit of supplier's procedures, review of supplier's documentation), and space product certification; - Procedures to identify materials and primary products applied; - Procedures for quality system audit at the component part, primary product and materials supplier facilities; - Unified procedures to form a list of basic performances to be under configuration management; - Unified procedures to form a list of critical space product components, and unified

  15. An integrated mission approach to the space exploration initiative will ensure success

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  16. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  17. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  18. Parity violation in polarized electron scattering

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1980-10-01

    The weak forces are responsible for the decay of radioactive nuclei, and it was in these decay processes where parity non-conservation was first observed. Beta decay occurs through emission of e + or e - particles, indicating that the weak force can carry charge of both signs, and it was natural to speculate on the existence of a neutral component of the weak force. Even though weak neutral forces had not been observed it was conjectured that a neutral component of weak decay could exist, and Zel'dovich in 1957 suggested that parity violating effects may be observable in electron scattering and in atomic spectra. More than twenty years have passed since the early conjectures, and a great deal has been learned. Progress in quantum field theory led to the development of the SU(2) x U(1) gauge theory of weak and electromagnetic interactions and provided a renormalizable theory with a minimum of additional assumptions. Gauge theories predicted the existence of a new force, the neutral current interaction. This new interaction was first seen in 1973 in the Gargamelle bubble chamber at CERN. Today the neutral currents are accepted as well established, and it is the details of the neutral current structure that occupy attention. In particular the role that electrons play cannot be tested readily in neutrino beams (recent neutrino-electron scattering experiments are, however, rapidly improving this situation) and therefore interest in electron-hadron neutral current effects has been high. Parity violation is a unique signature of weak currents, and measurements of its size are a particularly important and sensitive means for determining the neutral current structure

  19. New parity, same old attitude towards psychotherapy?

    Science.gov (United States)

    Clemens, Norman A

    2010-03-01

    Full parity of health insurance benefits for treatment of mental illness, including substance use disorders, is a major achievement. However, the newly-published regulations implementing the legislation strongly endorse aggressive managed care as a way of containing costs for the new equality of coverage. Reductions in "very long episodes of out-patient care," hospitalization, and provider fees, along with increased utilization, are singled out as achievements of managed care. Medical appropriateness as defined by expert medical panels is to be the basis of authorizing care, though clinicians are familiar with a history of insurance companies' application of "medical necessity" to their own advantage. The regulations do not single out psychotherapy for attention, but long-term psychotherapy geared to the needs of each patient appears to be at risk. The author recommends that the mental health professions strongly advocate for the growing evidence base for psychotherapy including long-term therapy for complex mental disorders; respect for the structure and process of psychotherapy individualized to patients' needs; awareness of the costs of aggressive managed care in terms of money, time, administrative burden, and interference with the therapy; and recognition of the extensive training and experience required to provide psychotherapy as well as the stresses and demands of the work. Parity in out-of-network benefits could lead to aggressive management of care given by non-network practitioners. Since a large percentage of psychiatrists and other mental health professionals stay out of networks, implementation of parity for out-of-network providers will have to be done in a way that respects the conditions under which they would be willing and able to provide services, especially psychotherapy, to insured patients. The shortage of psychiatrists makes this an important access issue for the insured population in need of care.

  20. Parity nonconservation in the hydrogen atom

    International Nuclear Information System (INIS)

    Chupp, T.E.

    1983-01-01

    The development of experiments to detect parity nonconserving (PNC) mixing of the 2s/sub a/2/ and 2p/sub 1/2/ levels of the hydrogen atom in a 570 Gauss magnetic field is described. The technique involves observation of an asymmetry in the rate of microwave induced transitions at 1608 MHz due to the interference of two amplitudes, one produced by applied microwave and static electric fields and the other produced by an applied microwave field and the 2s/sub 1/2/-2p/sub 1/2/ mixing inducd by a PNC Hamiltonian

  1. Parity violating asymmetries in polarized electron scattering

    International Nuclear Information System (INIS)

    Derman, E.; Marciano, W.J.

    1979-01-01

    We discuss parity violating asymmetries between the scattering of right and left-handed electrons on a variety of targets. Implications for gauge theories from recent SLAC results on deep-inelastic electron-deuterium and electron-proton scattering are examined. A derivation of the asymmetry for electron-electron scattering is given, its advantages are pointed out, and the feasibility of such a measurement is discussed. Other proposed or contemplated asymmetry experiments are reviewed and the necessity of including the Collins-Wilczek-Zee hadronic axial isoscalar current contribution in asymmetry predictions is noted

  2. Parity violation experiments at intermediate energies

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1996-06-01

    The status of the TRIUMF 221 MeV proton-proton violation experiment is reviewed. Several other proton-proton parity violation experiments in the in the intermediate energy range, currently in various stages of preparation, are discussed. A new experiment at an energy of 5.13 GeV (and if confirmed also at an energy of tens of GeV) is needed to follow on the earlier unexpected large result obtained at 5.13 GeV. (author)

  3. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    Science.gov (United States)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    environment and methodology, with associated laboratories that uses lean development methods and creativity-enhancing processes to invent and develop new solutions for space exploration. This paper will discuss the Swamp Works approach to developing space mining and resource extraction systems and the vision of space development it serves. The ultimate goal of the Swamp Works is to expand human civilization into the solar system via the use of local resources utilization. By mining and using the local resources in situ, it is conceivable that one day the logistics supply train from Earth can be eliminated and Earth independence of a space-based community will be enabled.

  4. A state space approach for the eigenvalue problem of marine risers

    KAUST Repository

    Alfosail, Feras

    2017-10-05

    A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using the modified Gram–Schmidt orthonormalization process as an intermediate step during the numerical integration process with the fourth-order Runge–Kutta scheme. The obtained results are validated against those obtained with other numerical methods, such as the finite-element, Galerkin, and power-series methods, and are found to be in good agreement. The state-space approach is shown to be computationally more efficient than the other methods. Also, we investigate the effect of a high applied tension, a high apparent weight, and higher-order modes on the accuracy of the numerical scheme. We demonstrate that, by applying the orthonormalization process, the stability and convergence of the approach are significantly improved.

  5. Parity anomalies in gauge theories in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Rao, S.; Yahalom, R.

    1986-01-01

    We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs

  6. A Declarative Design Approach to Modeling Traditional and Non-Traditional Space Systems

    Science.gov (United States)

    Hoag, Lucy M.

    The space system design process is known to be laborious, complex, and computationally demanding. It is highly multi-disciplinary, involving several interdependent subsystems that must be both highly optimized and reliable due to the high cost of launch. Satellites must also be capable of operating in harsh and unpredictable environments, so integrating high-fidelity analysis is important. To address each of these concerns, a holistic design approach is necessary. However, while the sophistication of space systems has evolved significantly in the last 60 years, improvements in the design process have been comparatively stagnant. Space systems continue to be designed using a procedural, subsystem-by-subsystem approach. This method is inadequate since it generally requires extensive iteration and limited or heuristic-based search, which can be slow, labor-intensive, and inaccurate. The use of a declarative design approach can potentially address these inadequacies. In the declarative programming style, the focus of a problem is placed on what the objective is, and not necessarily how it should be achieved. In the context of design, this entails knowledge expressed as a declaration of statements that are true about the desired artifact instead of explicit instructions on how to implement it. A well-known technique is through constraint-based reasoning, where a design problem is represented as a network of rules and constraints that are reasoned across by a solver to dynamically discover the optimal candidate(s). This enables implicit instantiation of the tradespace and allows for automatic generation of all feasible design candidates. As such, this approach also appears to be well-suited to modeling adaptable space systems, which generally have large tradespaces and possess configurations that are not well-known a priori. This research applied a declarative design approach to holistic satellite design and to tradespace exploration for adaptable space systems. The

  7. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  8. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  9. Κ-meson decays and parity violation

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1989-01-01

    Between 1948 and 1954 many Κ-meson decay modes were observed, including the tau, pion and xi positives, in emulsion experiments all with masses around 500 MeV. An attempt was made to rationalize the various names for the new particles being discovered. A period of experimental consolidation followed. An attempt was then made to determine the spin parity of the three-pion system from tau plus decay using matrix calculations. New stripped emulsion techniques now permitted a secondary-particle track to be followed to its endpoint. Stacked emulsions were flown in balloons to study Κ mesons and hyperons using cosmic radiation. Later similar work used the new particle accelerators, the Cosmotron and the Bevatron as sources. The author showed that the tau plus and theta plus were competing decay modes of the same Κ + meson, but this meant that parity conservation was violated. Later theoreticians T D Lee and C N Yang provided evidence for this surprising idea from their work on semileptonic weak interactions. (UK)

  10. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    -correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful......Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  11. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    Science.gov (United States)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  12. Space-time uncertainty and approaches to D-brane field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    2008-01-01

    In connection with the space-time uncertainty principle which gives a simple qualitative characterization of non-local or non-commutative nature of short-distance space-time structure in string theory, the author's recent approaches toward field theories for D-branes are briefly outlined, putting emphasis on some key ideas lying in the background. The final section of the present report is devoted partially to a tribute to Yukawa on the occasion of the centennial of his birth. (author)

  13. THE PRINCIPLES AND METHODS OF INFORMATION AND EDUCATIONAL SPACE SEMANTIC STRUCTURING BASED ON ONTOLOGIC APPROACH REALIZATION

    Directory of Open Access Journals (Sweden)

    Yurij F. Telnov

    2014-01-01

    Full Text Available This article reveals principles of semantic structuring of information and educational space of objects of knowledge and scientific and educational services with use of methods of ontologic engineering. Novelty of offered approach is interface of ontology of a content and ontology of scientific and educational services that allows to carry out effective composition of services and objects of knowledge according to models of professional competences and requirements being trained. As a result of application of methods of information and educational space semantic structuring integration of use of the diverse distributed scientific and educational content by educational institutions for carrying out scientific researches, methodical development and training is provided.

  14. A perturbative approach to the redshift space correlation function: beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-08-01

    We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with ≤ 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpc h ≤ s ≤ 180Mpc/ h . Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.

  15. A perturbative approach to the redshift space correlation function: beyond the Standard Model

    Science.gov (United States)

    Bose, Benjamin; Koyama, Kazuya

    2017-08-01

    We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.

  16. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. Space and place concepts analysis based on semiology approach in residential architecture

    Directory of Open Access Journals (Sweden)

    Mojtaba Parsaee

    2015-12-01

    Full Text Available Space and place are among the fundamental concepts in architecture about which many discussions have been held and the complexity and importance of these concepts were focused on. This research has introduced an approach to better cognition of the architectural concepts based on theory and method of semiology in linguistics. Hence, at first the research investigates the concepts of space and place and explains their characteristics in architecture. Then, it reviews the semiology theory and explores its concepts and ideas. After obtaining the principles of theory and also the method of semiology, they are redefined in an architectural system based on an adaptive method. Finally, the research offers a conceptual model which is called the semiology approach by considering the architectural system as a system of signs. The approach can be used to decode the content of meanings and forms and analyses of the architectural mechanism in order to obtain its meanings and concepts. In this way and based on this approach, the residential architecture of the traditional city of Bushehr – Iran was analyzed as a case of study and its concepts were extracted. The results of this research demonstrate the effectiveness of this approach in structure detection and identification of an architectural system. Besides, this approach has the capability to be used in processes of sustainable development and also be a basis for deconstruction of architectural texts. The research methods of this study are qualitative based on comparative and descriptive analyses.

  18. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  19. Researching on Hawking Effect in a Kerr Space Time via Open Quantum System Approach

    International Nuclear Information System (INIS)

    Liu, Wen-Biao; Liu, Xian-Ming

    2014-01-01

    It has been proposed that Hawking radiation from a Schwarzschild or a de Sitter spacetime can be understood as the manifestation of thermalization phenomena in the framework of an open quantum system. Through examining the time evolution of a detector interacting with vacuum massless scalar fields, it is found that the detector would spontaneously excite with a probability the same as the thermal radiation at Hawking temperature. Following the proposals, the Hawking effect in a Kerr space time is investigated in the framework of an open quantum systems. It is shown that Hawking effect of the Kerr space time can also be understood as the the manifestation of thermalization phenomena via open quantum system approach. Furthermore, it is found that near horizon local conformal symmetry plays the key role in the quantum effect of the Kerr space time

  20. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  1. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

    1992-01-01

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

  2. An integrated mission approach to the space exploration initiative will ensure success

    Science.gov (United States)

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  3. A Principled Approach to the Specification of System Architectures for Space Missions

    Science.gov (United States)

    McKelvin, Mark L. Jr.; Castillo, Robert; Bonanne, Kevin; Bonnici, Michael; Cox, Brian; Gibson, Corrina; Leon, Juan P.; Gomez-Mustafa, Jose; Jimenez, Alejandro; Madni, Azad

    2015-01-01

    Modern space systems are increasing in complexity and scale at an unprecedented pace. Consequently, innovative methods, processes, and tools are needed to cope with the increasing complexity of architecting these systems. A key systems challenge in practice is the ability to scale processes, methods, and tools used to architect complex space systems. Traditionally, the process for specifying space system architectures has largely relied on capturing the system architecture in informal descriptions that are often embedded within loosely coupled design documents and domain expertise. Such informal descriptions often lead to misunderstandings between design teams, ambiguous specifications, difficulty in maintaining consistency as the architecture evolves throughout the system development life cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly inefficient to cope with ever-increasing system complexity. We apply the principles of component-based design and platform-based design to the development of the system architecture for a practical space system to demonstrate feasibility of our approach using SysML. Our results show that we are able to apply a systematic design method to manage system complexity, thus enabling effective data management, semantic coherence and traceability across different levels of abstraction in the design chain. Just as important, our approach enables interoperability among heterogeneous tools in a concurrent engineering model based design environment.

  4. Multiscale Analysis of Time Irreversibility Based on Phase-Space Reconstruction and Horizontal Visibility Graph Approach

    Science.gov (United States)

    Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan

    Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.

  5. The balance space approach to multicriteria decision making—involving the decision maker

    OpenAIRE

    Ehrgott, M.

    2002-01-01

    The balance space approach (introduced by Galperin in 1990) provides a new view on multicriteria optimization. Looking at deviations from global optimality of the different objectives, balance points and balance numbers are defined when either different or equal deviations for each objective are allowed. Apportioned balance numbers allow the specification of proportions among the deviations. Through this concept the decision maker can be involved in the decision process. In this paper we prov...

  6. Approaching the new reality. [changes in NASA space programs due to US economy

    Science.gov (United States)

    Diaz, Al V.

    1993-01-01

    The focus on more frequent access to space through smaller, less costly missions, and on NASA's role as a source of technological advance within the U.S. economy is discussed. The Pluto fast flyby mission is examined as an illustration of this approach. Testbeds are to be developed to survive individual programs, becoming permanent facilities, to allow for technological upgrades on an ongoing basis.

  7. Against Strong Ethical Parity: Situated Cognition Theses and Transcranial Brain Stimulation.

    Science.gov (United States)

    Heinrichs, Jan-Hendrik

    2017-01-01

    According to a prominent suggestion in the ethics of transcranial neurostimulation the effects of such devices can be treated as ethically on par with established, pre-neurotechnological alterations of the mind. This parity allegedly is supported by situated cognition theories showing how external devices can be part of a cognitive system. This article will evaluate this suggestion. It will reject the claim, that situated cognition theories support ethical parity. It will however point out another reason, why external carriers or modifications of the mental might come to be considered ethically on par with internal carriers. Section "Why Could There Be Ethical Parity between Neural Tissue and External Tools?" presents the ethical parity theses between external and internal carriers of the mind as well as neurotechnological alterations and established alterations. Section "Extended, Embodied, Embedded: Situated Cognition as a Relational Thesis" will elaborate the different situated cognition approaches and their relevance for ethics. It will evaluate, whether transcranial stimulation technologies are plausible candidates for situated cognition theses. Section "On the Ethical Relevance of Situated Cognition Theses" will discuss criteria for evaluating whether a cognitive tool is deeply embedded with a cognitive system and apply these criteria to transcranial brain stimulation technologies. Finally it will discuss the role diverse versions of situated cognition theory can play in the ethics of altering mental states, especially the ethics of transcranial brain stimulation technologies.

  8. Coffee Index as Quick and Simple Indicator of Purchasing Power Parity

    Directory of Open Access Journals (Sweden)

    Jakub Fischer

    2018-03-01

    Full Text Available Purchasing Power Parity is the corner stone of all international comparisons. Various approaches to Purchasing Power Parity, such as the Big Mac Index, KFC Index, iPad Index, Tall Latte Index or Ikea Index were popularized to the broader audience besides the OECD Purchasing Power Parity indices. The aim of this paper is to develop a new ready-to-use quick and simple index based on the prices of Nespresso coffee’s capsules and show the main challenges of such indices as well as of the PPP concept. For the purpose of our research the data on the Nespresso capsules prices were collected. Taking into account also the popularity (demand side of the capsules types, the Espresso line was chosen as the basis for which all further calculations are made. The Nespresso Index provides us with clear evidence that the Law of One Price cannot work in recent world because of three key features. Firstly, differences in taxes make the perfect parity impossible. Secondly, the price discrimination prevents the rational subjects from arbitrage. Finally, the changes in the exchange rate make such indices highly volatile. Despite these weaknesses, the Nespresso Index could be used as the useful supplement of the OECD PPP as it is low cost, easy and fast to compute and digestible for the lay public.

  9. A model for quasi parity-doublet spectra with strong coriolis mixing

    International Nuclear Information System (INIS)

    Minkov, N.; Drenska, S.; Strecker, M.

    2013-01-01

    The model of coherent quadrupole and octupole motion (CQOM) is combined with the reflection-asymmetric deformed shell model (DSM) in a way allowing fully microscopic description of the Coriolis decoupling and K-mixing effects in the quasi parity-doublet spectra of odd-mass nuclei. In this approach the even-even core is considered within the CQOM model, while the odd nucleon is described within DSM with pairing interaction. The Coriolis decoupling/mixing factors are calculated through a parity-projection of the single-particle wave function. Expressions for the Coriolis mixed quasi parity-doublet levels are obtained in the second order of perturbation theory, while the K-mixed core plus particle wave function is obtained in the first order. Expressions for the B(E1), B(E2) and B(E3) reduced probabilities for transitions within and between different quasi-doublets are obtained by using the total K-mixed wave function. The model scheme is elaborated in a form capable of describing the yrast and non-yrast quasi parity-doublet spectra in odd-mass nuclei. (author)

  10. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Science.gov (United States)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  11. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  12. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  13. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  14. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  15. Study of positive-parity yrast band in 83Rb

    International Nuclear Information System (INIS)

    Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Bhattacharya, S.; Saha Sarkar, M.; Goswami, A.; Muralithar, S.; Singh, R.P.; Kumar, R.; Bhowmik, R.K.

    2005-01-01

    The properties of the positive-parity yrast band in the odd-A 81,83,85 Rb (Z=37) isotopes show remarkable changes as N increases. The objective of the present work is to study the structure of the lowest positive-parity band in 83 Rb from lifetime studies

  16. Parents' Child Care Experience: Effects of Sex and Parity.

    Science.gov (United States)

    Gilpin, Andrew R.; Glanville, Bradley B.

    1985-01-01

    Surveyed 94 couples to determine effects on child care experience associated with gender, parity, and various other demographic variables. As expected, women had higher scores than men. Experience was a linear function of parity for men, but not for women, and was unrelated to attitudes toward women. Implications for child care responsibility are…

  17. R-parity violating supersymmetry and neutrino physics: experimental signatures

    CERN Document Server

    Mitsou, Vasiliki A.

    2015-10-09

    $R$-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its $R$-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this paper, we discuss RPV scenarios where neutrino masses are naturally generated, namely RPV through bilinear terms (bRPV) and the $\\mu$-from-$\

  18. Separation of the 1+ /1- parity doublet in 20Ne

    Science.gov (United States)

    Beller, J.; Stumpf, C.; Scheck, M.; Pietralla, N.; Deleanu, D.; Filipescu, D. M.; Glodariu, T.; Haxton, W.; Idini, A.; Kelley, J. H.; Kwan, E.; Martinez-Pinedo, G.; Raut, R.; Romig, C.; Roth, R.; Rusev, G.; Savran, D.; Tonchev, A. P.; Tornow, W.; Wagner, J.; Weller, H. R.; Zamfir, N.-V.; Zweidinger, M.

    2015-02-01

    The (J , T) = (1 , 1) parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE = E (1-) - E (1+) = - 3.2(± 0.7) stat(-1.2+0.6)sys keV and the ratio of their integrated cross sections Is,0(+) /Is,0(-) = 29(± 3) stat(-7+14)sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46-0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations.

  19. Effect of parity on endometrial glands in gravid rabbits | Pulei ...

    African Journals Online (AJOL)

    Effect of parity on endometrial glands in gravid rabbits. ... Anatomy Journal of Africa ... Image J. Endometrial gland density was noted to decrease with a rise in parity such that the percentage proportion in the primigravid rabbit was 45% compared to that of 34% and 37.5% in the biparous and multiparous groups respectively.

  20. Parity and isospin in pion condensation and tensor binding

    International Nuclear Information System (INIS)

    Pace, E.; Palumbo, F.

    1978-01-01

    In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)

  1. Evaluation of the influence of maternal parity on neonatal ...

    African Journals Online (AJOL)

    Maternal Parity has been shown to increase the risk of adverse neonatal outcomes, such as intrauterine growth restriction (IUGR), prematurity, and mortality. The study was designed to evaluate the influence of maternal parity on neonatal anthropometric parameters among Hausas in Kano. Five hundred and twenty one ...

  2. Parity violation in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs

  3. Possible Odd Parity State in 128Xe

    International Nuclear Information System (INIS)

    Broman, L.; Malmskog, S.G.

    1966-07-01

    Gamma lines in the decay of I have been measured by means of a Ge(Li) detector. The following gamma ray energies have been obtained: 442.5 ± 0.05, 526.5 ± 0.5, 742.4 ±1.0, 969.0 ± 1.0, and 1136.5 ±2.0 keV. The 1136.5 keV transition defines a level in 128 Xe at 1579 ± 2 keV. From the log ft = 7.8 ± 0.3 of the (β - feeding, this level is believed to have an odd parity. Upper limits of gamma ray intensities for transitions around eV are used to set a limit for the population of the expected 0 + level originating from the two-phonon quadrupole vibration

  4. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  5. Nuclear parity violation in effective field theory

    International Nuclear Information System (INIS)

    Zhu Shilin; Maekawa, C.M.; Holstein, B.R.; Ramsey-Musolf, M.J.; Kolck, U. van

    2005-01-01

    We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV πNN coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV

  6. Constraints of a Parity-Conserving Interaction

    Science.gov (United States)

    van Oers, Willem T. H.

    2002-09-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron (room for further experimentation?

  7. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  8. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  9. Parity violation in electron scattering; Violation de parite en diffusion d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D

    2007-09-15

    The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)

  10. A GOCE-only global gravity field model by the space-wise approach

    DEFF Research Database (Denmark)

    Migliaccio, Frederica; Reguzzoni, Mirko; Gatti, Andrea

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...

  11. Thyroid Cartilage Window Approach to Extract a Foreign Body after Migration into the Paraglottic Space

    Directory of Open Access Journals (Sweden)

    Sheikha Alkhudher

    2018-01-01

    Full Text Available We report a case of fish bone impaction in the paraglottic space, which caused palsy of the left vocal cord. The patient was a 45-year-old man. He presented with throat pain and hoarseness of voice for approximately one week. The diagnosis was made after careful history taking and confirmed by the use of computed tomography scan as the fish bone was not visible endoscopically under local and general anaesthesia. The patient underwent thyroid cartilage window approach, and the fish bone was retrieved. His symptoms have improved significantly, and he did not require tracheostomy. Other cases reported the removal of foreign bodies by other techniques such as laryngofissure and posterolateral approach. Our case is different in that we used a modification of thyroplasty type 1 technique as it has less reported complications than other approaches that were published in literature.

  12. Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach

    Science.gov (United States)

    Kumral, Mustafa; Ozer, Umit

    2013-03-01

    Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution

  13. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    Science.gov (United States)

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  14. Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    International Nuclear Information System (INIS)

    Sartori, G; Valente, G

    2003-01-01

    Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space R n , can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown

  15. Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, G; Valente, G [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy)

    2003-02-21

    Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space R{sup n}, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.

  16. Space-Hotel Early Bird - An Educational and Public Outreach Approach

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    education and public outreach can be combined and how a cooperation among an association, the industry and academia can work successfully. Representatives of the DGLR and the academia developed a method to spread space related knowledge in a short time to a motivated working group. The project was a great success in the sense to involve other disciplines in space related topics by interdisciplinary work and in the sense of public and educational outreach. With more than 2.3 million contacts the DGLR e.V. promoted space and the vision of living (in) space to the public. The task of the paper is mainly to describe the approach and the experience made related to the organization, lectures, financing and outreach efforts in respect to similar future international outreach activities, which are planned for the 54th International Astronautical Congress in Bremen/Germany. www.spacehotel.org

  17. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  18. Ab initio calculation of molecular energies including parity violating interactions

    International Nuclear Information System (INIS)

    Bakasov, A.; Ha Taekyu; Quack, M.

    1995-01-01

    A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, E pv . The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between E pv values in the RHF-CIS framework and those in the RHF-SDE framework: the E pv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10 -19 E H (DZ ** basis set) while the maximal E pv value for the RHF-SDE formalism is just 3.635 X 10 -20 E H (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of E pv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total E pv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of E pv . To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of E pv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity

  19. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  20. A New Approach to Space Situational Awareness using Small Ground-Based Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Cliff S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    This report discusses a new SSA approach evaluated by Pacific Northwest National Laboratory (PNNL) that may lead to highly scalable, small telescope observing stations designed to help manage the growing space surveillance burden. Using the methods and observing tools described in this report, the team was able to acquire and track very faint satellites (near Pluto’s apparent brightness). Photometric data was collected and used to correlate object orbital position as a function of atomic clock-derived time. Object apparent brightness was estimated by image analysis and nearby star calibration. The measurement performance was only limited by weather conditions, object brightness, and the sky glow at the observation site. In the future, these new SSA technologies and techniques may be utilized to protect satellite assets, detect and monitor orbiting debris fields, and support Outer Space Treaty monitoring and transparency.

  1. Semiclassical moment of inertia shell-structure within the phase-space approach

    International Nuclear Information System (INIS)

    Gorpinchenko, D V; Magner, A G; Bartel, J; Blocki, J P

    2015-01-01

    The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase-space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows us to express the shell components of the moment of inertia quite accurately in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, which is in good agreement with the corresponding quantum calculations. (paper)

  2. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  3. Parity and Overweight/Obesity in Peruvian Women.

    Science.gov (United States)

    Huayanay-Espinoza, Carlos A; Quispe, Renato; Poterico, Julio A; Carrillo-Larco, Rodrigo M; Bazo-Alvarez, Juan Carlos; Miranda, J Jaime

    2017-10-19

    The rise in noncommunicable diseases and their risk factors in developing countries may have changed or intensified the effect of parity on obesity. We aimed to assess this association in Peruvian women using data from a nationally representative survey. We used data from Peru's Demographic and Health Survey, 2012. Parity was defined as the number of children ever born to a woman. We defined overweight as having a body mass index (BMI, kg/m 2 ) of 25.0 to 29.9 and obesity as a BMI ≥30.0. Generalized linear models were used to evaluate the association between parity and BMI and BMI categories, by area of residence and age, adjusting for confounders. Data from 16,082 women were analyzed. Mean parity was 2.25 (95% confidence interval [CI], 2.17-2.33) among rural women and 1.40 (95% CI, 1.36-1.43) among urban women. Mean BMI was 26.0 (standard deviation, 4.6). We found evidence of an association between parity and BMI, particularly in younger women; BMI was up to 4 units higher in rural areas and 2 units higher in urban areas. An association between parity and BMI categories was observed in rural areas as a gradient, being highest in younger women. We found a positive association between parity and overweight/obesity. This relationship was stronger in rural areas and among younger mothers.

  4. Parameter retrieval of chiral metamaterials based on the state-space approach.

    Science.gov (United States)

    Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali

    2013-08-01

    This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.

  5. A potential theory approach to an algorithm of conceptual space partitioning

    Directory of Open Access Journals (Sweden)

    Roman Urban

    2017-12-01

    Full Text Available A potential theory approach to an algorithm of conceptual space partitioning This paper proposes a new classification algorithm for the partitioning of a conceptual space. All the algorithms which have been used until now have mostly been based on the theory of Voronoi diagrams. This paper proposes an approach based on potential theory, with the criteria for measuring similarities between objects in the conceptual space being based on the Newtonian potential function. The notion of a fuzzy prototype, which generalizes the previous definition of a prototype, is introduced. Furthermore, the necessary conditions that a natural concept must meet are discussed. Instead of convexity, as proposed by Gärdenfors, the notion of geodesically convex sets is used. Thus, if a concept corresponds to a set which is geodesically convex, it is a natural concept. This definition applies, for example, if the conceptual space is an Euclidean space. As a by-product of the construction of the algorithm, an extension of the conceptual space to d-dimensional Riemannian manifolds is obtained.   Algorytm podziału przestrzeni konceptualnych przy użyciu teorii potencjału W niniejszej pracy zaproponowany został nowy algorytm podziału przestrzeni konceptualnej. Dotąd podział taki zazwyczaj wykorzystywał teorię diagramów Voronoi. Nasze podejście do problemu oparte jest na teorii potencjału Miara podobieństwa pomiędzy elementami przestrzeni konceptualnej bazuje na Newtonowskiej funkcji potencjału. Definiujemy pojęcie rozmytego prototypu, który uogólnia dotychczas stosowane definicje prototypu. Ponadto zajmujemy się warunkiem koniecznym, który musi spełniać naturalny koncept. Zamiast wypukłości zaproponowanej przez Gärdenforsa, rozważamy linie geodezyjne w obszarze odpowiadającym danemu konceptowi naturalnemu, otrzymując warunek mówiący, że koncept jest konceptem naturalnym, jeżeli zbiór odpowiadający temu konceptowi jest geodezyjnie wypuk

  6. Parity and age at menopause in a Danish sample

    DEFF Research Database (Denmark)

    Jeune, B

    1986-01-01

    A random sample of 151 Danish women who had undergone natural menopause reported the age at which this occurred and answered a questionnaire. A significant association was found between parity and age at menopause after correction for the effects of age at the first and last births, weight, smoking...... and occupation. However, there is no evidence that the age at menopause has fallen in recent decades, even though the average parity in developed populations has dropped dramatically over this period. It is therefore possible that potential fertility is a confounding variable in the relationship between parity...... and age at menopause....

  7. A new source for parity violating nuclear force

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Niskanen, J.A.

    1989-02-01

    We propose a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q-antiq pari in the meson. Numerically is effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies

  8. Orotracheal Intubation Using the Retromolar Space: A Reliable Alternative Intubation Approach to Prevent Dental Injury

    Directory of Open Access Journals (Sweden)

    Linh T. Nguyen

    2016-01-01

    Full Text Available Despite recent advances in airway management, perianesthetic dental injury remains one of the most common anesthesia-related adverse events and cause for malpractice litigation against anesthesia providers. Recommended precautions for prevention of dental damage may not always be effective because these techniques involve contact and pressure exerted on vulnerable teeth. We describe a novel approach using the retromolar space to insert a flexible fiberscope for tracheal tube placement as a reliable method to achieve atraumatic tracheal intubation. Written consent for publication has been obtained from the patient.

  9. A study of space shuttle energy management, approach and landing analysis

    Science.gov (United States)

    Morth, R.

    1973-01-01

    The steering system of the space shuttle vehicle is presented for the several hundred miles of flight preceding landing. The guidance scheme is characterized by a spiral turn to dissipate excess potential energy (altitude) prior to a standard straight-in final approach. In addition, the system features pilot oriented control, drag brakes, phugoid damping, and a navigational capacity founded upon an inertial measurement unit and an on-board computer. Analytic formulas are used to calculate, represent, and insure the workability of the system's specifications

  10. Parity and time invariance violation in mercury

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Dzuba, V.A.; Flambaum, V.V.; Kozlov, M.G.

    2002-01-01

    Full text: In a recent experiment, a stringent upper limit was placed on the atomic electric dipole moment (EDM) of 199 Hg corresponding to the best limit on an atomic EDM to date. This limit can be interpreted in terms of a limit on a parity-and time-invariance violating (P,T-odd) nuclear electric moment, the Schiff moment. This moment can arise in the nucleus due to an intrinsic EDM of an unpaired nucleon or a P,T-odd interaction between nucleons. In previous calculations the electrostatic potential of the Schiff moment was expressed in a singular form which must be treated carefully to avoid divergences in the electronic matrix elements. We have shown that the electric field distribution inside the nucleus arising from the Schiff moment is constant and directed along the nuclear spin. This allows us to express the Schiff moment in a form more convenient for numerical relativistic atomic calculations. We have calculated the atomic EDM induced in Hg due to the Schiff moment (for which no direct calculation has previously been performed) and have placed new limits on the fundamental P,T-odd parameters. These limits strongly constrain competing theories of CP-violation

  11. BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space

    Science.gov (United States)

    Öttinger, Hans Christian

    2018-04-01

    We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development. We present a new representation of ghost fields that combines desirable self-adjointness properties with canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of matter are discussed in detail.

  12. Researcher’s Academic Culture in the Educational Space of the University: Linguo-Axiological Approach

    Directory of Open Access Journals (Sweden)

    Olena Semenog

    2017-06-01

    Full Text Available The article is devoted to the nature of the concepts “classic University”, “cultural and educational space of the University”, “research activity of future professional”, “researcher’s academic culture” and approach to academic culture as the basis of research culture in a university. It is defined that the concept of academic culture is complex. We are talking in general about the culture at the university, values, traditions, norms, rules of scientific research, and the scientific language culture, the culture of spirituality and morality, the culture of communication between science tutors and students, a culture of unique pedagogical action of master and his social, moral responsibility for the studying results. The formation of academic culture and own style, is better to develop on the positions of personal-activity, competence, axiological, cultural, acmeological approaches.

  13. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    Science.gov (United States)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  14. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    Science.gov (United States)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  15. The systems approach for applying artificial intelligence to space station automation (Invited Paper)

    Science.gov (United States)

    Grose, Vernon L.

    1985-12-01

    The progress of technology is marked by fragmentation -- dividing research and development into ever narrower fields of specialization. Ultimately, specialists know everything about nothing. And hope for integrating those slender slivers of specialty into a whole fades. Without an integrated, all-encompassing perspective, technology becomes applied in a lopsided and often inefficient manner. A decisionary model, developed and applied for NASA's Chief Engineer toward establishment of commercial space operations, can be adapted to the identification, evaluation, and selection of optimum application of artificial intelligence for space station automation -- restoring wholeness to a situation that is otherwise chaotic due to increasing subdivision of effort. Issues such as functional assignments for space station task, domain, and symptom modules can be resolved in a manner understood by all parties rather than just the person with assigned responsibility -- and ranked by overall significance to mission accomplishment. Ranking is based on the three basic parameters of cost, performance, and schedule. This approach has successfully integrated many diverse specialties in situations like worldwide terrorism control, coal mining safety, medical malpractice risk, grain elevator explosion prevention, offshore drilling hazards, and criminal justice resource allocation -- all of which would have otherwise been subject to "squeaky wheel" emphasis and support of decision-makers.

  16. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  17. Third International Scientific and Practical Conference «Space Travel is Approaching Reality» (Successful Event in Difficult Times

    Directory of Open Access Journals (Sweden)

    Matusevych Tetiana

    2015-02-01

    Full Text Available The article analyzes the presentations of participants of III International Scientific and Practical Conference «Space Travel – approaching reality», held on 6–7 November 2014 in Kharkiv, Ukraine

  18. COGNITIVE APPROACH TO THE STEREOTYPICAL PLACEMENT OF WOMEN IN VISUAL ADVERTISING SPACE

    Directory of Open Access Journals (Sweden)

    Simona Amankevičiūtė

    2013-10-01

    Full Text Available This article conceptualizes the image of women in the sexist advertisements of the 1950s and 60s and in current advertising discourse by combining the research traditions of both cognitive linguistics and semiotic image analysis. The aim of the research is to try to evaluate how canonical positionings of women in the hyperreality of advertisements may slip into everyday discourse (stereotype space and to present an interpretation of the creators’ visual lexicon. It is presumed that the traditional (formed by feminist linguists approach to sexist advertising as an expression of an androcentric worldview in culture may be considered too subjectively critical. This study complements an interpretation of women’s social roles in advertising with cognitive linguistic insights on the subject’s (woman’s visualisation and positioning in ad space. The article briefly overviews the feminist approach to women’s place in public discourse, and discusses the relevance of Goffman’s Gender Studies to an investigation of women’s images in advertising. The scholar’s contribution to adapting cognitive frame theory for an investigation of visuals in advertising is also discussed. The analysed ads were divided into three groups by Goffman’s classification, according to the concrete visuals used to represent women’s bodies or parts thereof: dismemberment, commodification, and subordination ritual. The classified stereotypical images of women’s bodies are discussed as visual metonymy, visual metaphor, and image schemas.

  19. Contaminant ingress into multizone buildings: An analytical state-space approach

    KAUST Repository

    Parker, Simon

    2013-08-13

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-space approach is adopted to represent the concentration dynamics within multizone buildings. Analysis based on this approach is used to demonstrate that the exposure in every interior location is limited to the exterior exposure in the absence of removal mechanisms. Estimates are also developed for the short term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models of residential buildings. Quantitative measures are provided of the standard deviation of concentration and exposure within a range of residential multizone buildings. Ratios of the maximum short term concentrations and exposures to single zone building estimates are also provided for the same buildings. © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  20. Resolving kinematic redundancy with constraints using the FSP (Full Space Parameterization) approach

    International Nuclear Information System (INIS)

    Pin, F.G.; Tulloch, F.A.

    1996-01-01

    A solution method is presented for the motion planning and control of kinematically redundant serial-link manipulators in the presence of motion constraints such as joint limits or obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed Full Space Parameterization (FSP) method to generate a parameterized expression for the entire space of solutions of the unconstrained system. At each time step, a constrained optimization technique is then used to analytically find the specific joint motion solution that satisfies the desired task objective and all the constraints active during the time step. The method is applicable to systems operating in a priori known environments or in unknown environments with sensor-based obstacle detection. The derivation of the analytical solution is first presented for a general type of kinematic constraint and is then applied to the problem of motion planning for redundant manipulators with joint limits and obstacle avoidance. Sample results using planar and 3-D manipulators with various degrees of redundancy are presented to illustrate the efficiency and wide applicability of constrained motion planning using the FSP approach

  1. Analysis tools for discovering strong parity violation at hadron colliders

    International Nuclear Information System (INIS)

    Backovic, Mihailo; Ralston, John P.

    2011-01-01

    Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or 'azimuthal flow'. Analysis uses the representations of the orthogonal group O(2) and dihedral groups D N necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single 'reaction plane'. Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of 'event-shape sorting' to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.

  2. Some simple criteria for gauged R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.P.

    1992-07-01

    Some simple conditions which are sufficient to guarantee that R- parity survives as an unbroken gauged discrete subgroup of the continuous gauge symmetry in certain supersymmetric extensions of the standard model are presented.

  3. Study of positive parity bands in 137Pr

    International Nuclear Information System (INIS)

    Agarwal, Priyanka; Kumar, Suresh; Jain, A.K.; Singh, Sukhjeet; Malik, S.S.; Sinha, Rishi Kumar; Dhal, Anukul; Chaturvedi, L.; Muralithar, S.; Singh, R.P.; Madhavan, N.; Kumar, Rakesh; Bhowmik, R.K.; Pancholi, S.C.; Jain, H.C.

    2006-01-01

    In this paper the analysis and interpretation of the positive parity states in 137 Pr have been reported. The detailed interpretation with configuration assignments and the calculations for the bands will be reported

  4. Magic state parity-checker with pre-distilled components

    Directory of Open Access Journals (Sweden)

    Earl T. Campbell

    2018-03-01

    Full Text Available Magic states are eigenstates of non-Pauli operators. One way of suppressing errors present in magic states is to perform parity measurements in their non-Pauli eigenbasis and postselect on even parity. Here we develop new protocols based on non-Pauli parity checking, where the measurements are implemented with the aid of pre-distilled multiqubit resource states. This leads to a two step process: pre-distillation of multiqubit resource states, followed by implementation of the parity check. These protocols can prepare single-qubit magic states that enable direct injection of single-qubit axial rotations without subsequent gate-synthesis and its associated overhead. We show our protocols are more efficient than all previous comparable protocols with quadratic error reduction, including the protocols of Bravyi and Haah.

  5. Noise-tolerant parity learning with one quantum bit

    Science.gov (United States)

    Park, Daniel K.; Rhee, June-Koo K.; Lee, Soonchil

    2018-03-01

    Demonstrating quantum advantage with less powerful but more realistic devices is of great importance in modern quantum information science. Recently, a significant quantum speedup was achieved in the problem of learning a hidden parity function with noise. However, if all data qubits at the query output are completely depolarized, the algorithm fails. In this work, we present a quantum parity learning algorithm that exhibits quantum advantage as long as one qubit is provided with nonzero polarization in each query. In this scenario, the quantum parity learning naturally becomes deterministic quantum computation with one qubit. Then the hidden parity function can be revealed by performing a set of operations that can be interpreted as measuring nonlocal observables on the auxiliary result qubit having nonzero polarization and each data qubit. We also discuss the source of the quantum advantage in our algorithm from the resource-theoretic point of view.

  6. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  7. Testing for purchasing power parity in 21 African countries using several unit root tests

    Science.gov (United States)

    Choji, Niri Martha; Sek, Siok Kun

    2017-04-01

    Purchasing power parity is used as a basis for international income and expenditure comparison through the exchange rate theory. However, empirical studies show disagreement on the validity of PPP. In this paper, we conduct the testing on the validity of PPP using panel data approach. We apply seven different panel unit root tests to test the validity of the purchasing power parity (PPP) hypothesis based on the quarterly data on real effective exchange rate for 21 African countries from the period 1971: Q1-2012: Q4. All the results of the seven tests rejected the hypothesis of stationarity meaning that absolute PPP does not hold in those African Countries. This result confirmed the claim from previous studies that standard panel unit tests fail to support the PPP hypothesis.

  8. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    Science.gov (United States)

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  9. On the static Casimir effect with parity-breaking mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, C.D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina); Remaggi, M.L. [Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza (Argentina)

    2017-03-15

    We study the Casimir interaction energy due to the vacuum fluctuations of the electromagnetic (EM) field in the presence of two mirrors, described by 2+1-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions and evaluate the interaction energy for several particular situations. (orig.)

  10. Association of secondary sex ratio with smoking and parity.

    Science.gov (United States)

    Beratis, Nicholas G; Asimacopoulou, Aspasia; Varvarigou, Anastasia

    2008-03-01

    To assess the sex ratio in offspring of smoking and nonsmoking mothers in relationship to parity. Prospective study. University hospital. The authors studied 2,108 term singleton neonates born between 1993 and 2002, 665 from smoking mothers and 1,443 from nonsmoking mothers. A prospective recording of maternal age, parity and smoking status, and gender of neonates delivered over a 10-year period. Secondary sex ratio in regard to maternal smoking and parity. The offspring sex ratio in the total sample studied was 1.09; in the offspring of smoking and nonsmoking mothers, it was 1.26 and 1.03, respectively, a statistically significant difference. In the offspring of smoking women who had parity 1, 2, and >or=3, it was 1.47, 1.35, and 0.92, whereas in those of nonsmoking women, it was 1.04, 1.00, and 1.03, respectively (the differences of the parity 1 and 2 groups between the offspring of smoking and nonsmoking mothers were statistically significant). Logistic regression analysis showed that the possibility of a boy being delivered by a mother who smoked was significantly greater in primiparous women than in women who had parity >or=3, independent of the maternal age. Conversely, parity did not affect significantly the sex ratio in the offspring of nonsmoking women. The findings suggest that among women who smoked, significantly more male than female offspring are born from primiparous women, whereas women who had parity >or=3 gave birth to more female offspring; biparous women give birth to significantly more male offspring, but the offspring sex ratio declined with the number of cigarettes when the mothers smoked >or=10 cigarettes per day.

  11. Gender parity in Senegal – A continuing struggle

    OpenAIRE

    Tøraasen, Marianne

    2017-01-01

    In 2010, the Senegalese women’s movement, supported by political elites and international norms, managed to push for the adoption of one of the world’s most radical gender quota laws to date. This was achieved without the support of the powerful religious leaders, the marabouts. However, the marabouts fought back in the 2014 local elections and thwarted the full implementation of parity. This CMI Insight explores the on-going fight for parity in Senegal.

  12. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  13. Experimental search for parity nonconservation in atomic thallium

    International Nuclear Information System (INIS)

    Commins, E.D.

    1978-01-01

    In the lecture an experimental search for parity nonconservation in the 6 2 P/sub 1/2/--7 2 P/sub 1/2/ transition in atomic thallium is described. The reason for the choice of this particular transition, a description of the method, the results to data, and a brief description of the future plans are given. The very preliminary results suggest that the Weinberg--Salam model correctly describes parity nonconservation effects in atoms. 5 references

  14. Parity- and time-reversal-violating moments of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Jordy de, E-mail: devries@kvi.nl [KVI, theory group (Netherlands)

    2013-03-15

    I present the calculation of parity- and time-reversal-violating moments of the nucleon and light nuclei, originating from the QCD {theta}-bar term and effective dimension-six operators. By applying chiral effective field theory these calculations are performed in a unified framework. I argue that measurements of a few light-nuclear electric dipole moments would shed light on the mechanism of parity and time-reversal violation.

  15. Parity proofs of the Kochen–Specker theorem based on the Lie algebra E8

    International Nuclear Information System (INIS)

    Waegell, Mordecai; Aravind, P K

    2015-01-01

    The 240 root vectors of the Lie algebra E8 lead to a system of 120 rays in a real eight-dimensional Hilbert space that contains a large number of parity proofs of the Kochen–Specker (KS) theorem. After introducing the rays in a triacontagonal representation due to Coxeter, we present their KS diagram in the form of a ‘basis table’ showing all 2025 bases (i.e., sets of eight mutually orthogonal rays) formed by the rays. Only a few of the bases are actually listed, but simple rules are given, based on the symmetries of E8, for obtaining all the other bases from the ones shown. The basis table is an object of great interest because all the parity proofs of E8 can be exhibited as subsets of it. We show how the triacontagonal representation of E8 facilitates the identification of substructures that are more easily searched for their parity proofs. We have found hundreds of different types of parity proofs, ranging from 9 bases (or contexts) at the low end to 35 bases at the high end, and involving projectors of various ranks and multiplicities. After giving an overview of the proofs we found, we present a few concrete examples of the proofs that illustrate both their generic features as well as some of their more unusual properties. In particular, we present a proof involving 34 rays and 9 bases that appears to provide the most compact proof of the KS theorem found to date in eight-dimensions. (paper)

  16. Is rooftop solar PV at socket parity without subsidies?

    International Nuclear Information System (INIS)

    Hagerman, Shelly; Jaramillo, Paulina; Morgan, M. Granger

    2016-01-01

    Installations of rooftop solar photovoltaic (PV) technology in the United States have increased dramatically in recent years, in large part because of state and federal subsidies. In the future, such subsidies may be reduced or eliminated. From the homeowner's perspective, solar PV is competitive when it can produce electricity at a cost equivalent to the retail electricity rate, a condition sometimes referred to as “socket parity”. In assessing the economic viability of residential solar PV, most existing literature considers only a few locations and fails to consider the differences in PV system cost and electricity prices that exist across the U.S. We combined insolation data from more than 1000 locations, installation costs by region, and county-level utility rates to provide a more complete economic assessment of rooftop solar PV across the U.S. We calculated the break-even electricity prices and evaluated the reductions in installed costs needed to reach socket parity. Among the scenarios considered, we estimate that only Hawaii has achieved socket parity without the use of subsidies. With subsidies, six states reach socket parity, yet widespread parity is still not achieved. We find that high installation costs and financing rates are two of the largest barriers to socket parity. - Highlights: • We evaluate the economic viability of residential rooftop solar PV across the U.S. • Widespread socket parity has not been achieved in the U.S. without subsidies. • Net metering may be critical for the economic viability of rooftop solar PV.

  17. [Obesity in Brazilian women: association with parity and socioeconomic status].

    Science.gov (United States)

    Ferreira, Regicely Aline Brandão; Benicio, Maria Helena D'Aquino

    2015-05-01

    To determine the influence of reproductive history on the prevalence of obesity in Brazilian women and the possible modifying effect of socioeconomic variables on the association between parity and excess weight. A retrospective analysis of complex sample data collected as part of the 2006 Brazilian National Survey on Demography and Health, which included a group representative of women of childbearing age in Brazil was conducted. The study included 11 961 women aged 20 to 49 years. The association between the study factor (parity) and the outcome of interest (obesity) was tested using logistic regression analysis. The adjusted effect of parity on obesity was assessed in a multiple regression model containing control variables: age, family purchasing power, as defined by the Brazilian Association of Research Enterprises (ABEP), schooling, and health care. Significance level was set at below 0.05. The prevalence of obesity in the study population was 18.6%. The effect of parity on obesity was significant (P for trend parity and age. Family purchase power had a significant odds ratio for obesity only in the unadjusted analysis. In the adjusted model, this variable did not explain obesity. The present findings suggest that parity has an influence on obesity in Brazilian women of childbearing age, with higher prevalence in women vs. without children.

  18. Parity-violating internucleon potential and strong-interaction enhancement

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1976-01-01

    The NNπ and NNV vertices that enter the parity-violating internucleon potential are calculated in the Cabibbo and Weinberg-Salam models, using a mechanism whereby octet enhancement results from the short-distance behavior of the current-current product. A quark model is used to calculate the NNπ vertex, and for the NNV vertices, a modified factorization approach is proposed. The Cabibbo NNπ vertex is estimated to be an order of magnitude smaller than previous calculations had indicated and arguments against the previous method are given. In the Weinberg model the NNπ vertex is A (N 0 /sub -/) = 1.3 sin 2 theta/subW/A (Λ 0 /sub -/), with only neutral currents contributing. In both models the NNV vertices with only neutral currents contributing. In both models the NNV vertices, however, reasonable values of the enhancement parameters are not expected to be large enough to explain by themselves the large circular polarization measured in n + p → d+γ

  19. On spontaneous parity breaking in three-dimensional gauge-Higgs systems

    International Nuclear Information System (INIS)

    Ambjoern, J.; Farakos, K.; Shaposhnikov, M.E.

    1991-04-01

    We address the question of spontaneous breaking of parity in three-dimensional euclidian SU(2) gauge-Higgs theory by Monte Carlo simulations. We observe no sign of spontaneous parity breaking in the behaviour of local gauge invariant operators. However, the presence of parity odd terms in the action can induce a phase transition to a parity odd ground state. (orig.)

  20. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 2. Darboux spaces D{sub III} and D{sub IV}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-08-15

    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces D{sub III} and D{sub IV} five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively. (orig.)

  1. Parity generator and parity checker in the modified trinary number system using savart plate and spatial light modulator

    Science.gov (United States)

    Ghosh, Amal K.

    2010-09-01

    The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).

  2. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review

    Directory of Open Access Journals (Sweden)

    Andre Santos Nouri

    2018-03-01

    Full Text Available Based on the Köppen Geiger (KG classification system, this review article examines existing studies and projects that have endeavoured to address local outdoor thermal comfort thresholds through Public Space Design (PSD. The review is divided into two sequential stages, whereby (1 overall existing approaches to pedestrian thermal comfort thresholds are reviewed within both quantitative and qualitative spectrums; and (2 the different techniques and measures are reviewed and framed into four Measure Review Frameworks (MRFs, in which each type of PSD measure is presented alongside its respective local scale urban specificities/conditions and their resulting thermal attenuation outcomes. The result of this review article is the assessment of how current practices of PSD within three specific subcategories of the KG ‘Temperate’ group have addressed microclimatic aggravations such as elevated urban temperatures and Urban Heat Island (UHI effects. Based upon a bottom-up approach, the interdisciplinary practice of PSD is hence approached as a means to address existing and future thermal risk factors within the urban public realm in an era of potential climate change.

  3. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    International Nuclear Information System (INIS)

    Yeh, L.

    1992-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena

  4. Application of a computationally efficient geostatistical approach to characterizing variably spaced water-table data

    International Nuclear Information System (INIS)

    Quinn, J.J.

    1996-01-01

    Geostatistical analysis of hydraulic head data is useful in producing unbiased contour plots of head estimates and relative errors. However, at most sites being characterized, monitoring wells are generally present at different densities, with clusters of wells in some areas and few wells elsewhere. The problem that arises when kriging data at different densities is in achieving adequate resolution of the grid while maintaining computational efficiency and working within software limitations. For the site considered, 113 data points were available over a 14-mi 2 study area, including 57 monitoring wells within an area of concern of 1.5 mi 2 . Variogram analyses of the data indicate a linear model with a negligible nugget effect. The geostatistical package used in the study allows a maximum grid of 100 by 100 cells. Two-dimensional kriging was performed for the entire study area with a 500-ft grid spacing, while the smaller zone was modeled separately with a 100-ft spacing. In this manner, grid cells for the dense area and the sparse area remained small relative to the well separation distances, and the maximum dimensions of the program were not exceeded. The spatial head results for the detailed zone were then nested into the regional output by use of a graphical, object-oriented database that performed the contouring of the geostatistical output. This study benefitted from the two-scale approach and from very fine geostatistical grid spacings relative to typical data separation distances. The combining of the sparse, regional results with those from the finer-resolution area of concern yielded contours that honored the actual data at every measurement location. The method applied in this study can also be used to generate reproducible, unbiased representations of other types of spatial data

  5. A multifractal approach to space-filling recovery for PET quantification

    Energy Technology Data Exchange (ETDEWEB)

    Willaime, Julien M. Y., E-mail: julien.willaime@siemens.com; Aboagye, Eric O. [Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith Hospital, London W12 0NN (United Kingdom); Tsoumpas, Charalampos [Division of Medical Physics, University of Leeds, LS2 9JT (United Kingdom); Turkheimer, Federico E. [Department of Neuroimaging, Institute of Psychiatry, King’s College London, London SE5 8AF (United Kingdom)

    2014-11-01

    Purpose: A new image-based methodology is developed for estimating the apparent space-filling properties of an object of interest in PET imaging without need for a robust segmentation step and used to recover accurate estimates of total lesion activity (TLA). Methods: A multifractal approach and the fractal dimension are proposed to recover the apparent space-filling index of a lesion (tumor volume, TV) embedded in nonzero background. A practical implementation is proposed, and the index is subsequently used with mean standardized uptake value (SUV {sub mean}) to correct TLA estimates obtained from approximate lesion contours. The methodology is illustrated on fractal and synthetic objects contaminated by partial volume effects (PVEs), validated on realistic {sup 18}F-fluorodeoxyglucose PET simulations and tested for its robustness using a clinical {sup 18}F-fluorothymidine PET test–retest dataset. Results: TLA estimates were stable for a range of resolutions typical in PET oncology (4–6 mm). By contrast, the space-filling index and intensity estimates were resolution dependent. TLA was generally recovered within 15% of ground truth on postfiltered PET images affected by PVEs. Volumes were recovered within 15% variability in the repeatability study. Results indicated that TLA is a more robust index than other traditional metrics such as SUV {sub mean} or TV measurements across imaging protocols. Conclusions: The fractal procedure reported here is proposed as a simple and effective computational alternative to existing methodologies which require the incorporation of image preprocessing steps (i.e., partial volume correction and automatic segmentation) prior to quantification.

  6. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  7. A new approach to the analysis of the phase space of f(R)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, S., E-mail: sante.carloni@tecnico.ulisboa.pt [Centro Multidisciplinar de Astrofisica—CENTRA, Instituto Superior Tecnico – IST, Universidade de Lisboa – UL, Avenida Rovisco Pais 1, 1049-001 (Portugal)

    2015-09-01

    We propose a new dynamical system formalism for the analysis of f(R) cosmologies. The new approach eliminates the need for cumbersome inversions to close the dynamical system and allows the analysis of the phase space of f(R)-gravity models which cannot be investigated using the standard technique. Differently form previously proposed similar techniques, the new method is constructed in such a way to associate to the fixed points scale factors, which contain four integration constants (i.e. solutions of fourth order differential equations). In this way a new light is shed on the physical meaning of the fixed points. We apply this technique to some f(R) Lagrangians relevant for inflationary and dark energy models.

  8. Solar pumping of solid state lasers for space mission: a novel approach

    Science.gov (United States)

    Boetti, N. G.; Lousteau, J.; Negro, D.; Mura, E.; Scarpignato, G. C.; Perrone, G.; Milanese, D.; Abrate, S.

    2017-11-01

    Solar pumped laser (SPL) can find wide applications in space missions, especially for long lasting ones. In this paper a new technological approach for the realization of a SPL based on fiber laser technology is proposed. We present a preliminary study, focused on the active material performance evaluation, towards the realization of a Nd3+ -doped fiber laser made of phosphate glass materials, emitting at 1.06 μm. For this research several Nd3+ -doped phosphate glass samples were fabricated, with concentration of Nd3+ up to 10 mol%. Physical and thermal properties of the glasses were measured and their spectroscopic properties are described. The effect of Nd3+ doping concentration on emission spectra and lifetimes was investigated in order to study the concentration quenching effect on luminescence performance.

  9. Groups, matrices, and vector spaces a group theoretic approach to linear algebra

    CERN Document Server

    Carrell, James B

    2017-01-01

    This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory ...

  10. Reliability modeling of a hard real-time system using the path-space approach

    International Nuclear Information System (INIS)

    Kim, Hagbae

    2000-01-01

    A hard real-time system, such as a fly-by-wire system, fails catastrophically (e.g. losing stability) if its control inputs are not updated by its digital controller computer within a certain timing constraint called the hard deadline. To assess and validate those systems' reliabilities by using a semi-Markov model that explicitly contains the deadline information, we propose a path-space approach deriving the upper and lower bounds of the probability of system failure. These bounds are derived by using only simple parameters, and they are especially suitable for highly reliable systems which should recover quickly. Analytical bounds are derived for both exponential and Wobble failure distributions encountered commonly, which have proven effective through numerical examples, while considering three repair strategies: repair-as-good-as-new, repair-as-good-as-old, and repair-better-than-old

  11. Phase-space description of wave packet approach to electronic transport in nanoscale systems

    International Nuclear Information System (INIS)

    Szydłowski, D; Wołoszyn, M; Spisak, B J

    2013-01-01

    The dynamics of conduction electrons in resonant tunnelling nanosystems is studied within the phase-space approach based on the Wigner distribution function. The time evolution of the distribution function is calculated from the time-dependent quantum kinetic equation for which an effective numerical method is presented. Calculations of the transport properties of a double-barrier resonant tunnelling diode are performed to illustrate the proposed techniques. Additionally, analysis of the transient effects in the nanosystem is carried out and it is shown that for some range of the bias voltage the temporal variations of electronic current can take negative values. The explanation of this effect is based on the analysis of the time changes of the Wigner distribution function. The decay time of the temporal current oscillations in the nanosystem as a function of the bias voltage is determined. (paper)

  12. Truncated Hilbert Space Approach for the 1+1D phi^4 Theory

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    (an informal seminar, not a regular string seminar) We used the massive analogue of the truncated conformal space approach to study the broken phase of the 1+1 dimensional scalar phi^4 model in finite volume, similarly to the work by S. Rychkov and L. Vitale. In our work, the finite size spectrum was determined numerically using an effective eigensolver routine, which was followed by a simple extrapolation in the cutoff energy. We analyzed both the periodic and antiperiodic sectors. The results were compared with semiclassical and Bethe-Yang results as well as perturbation theory. We obtained the coupling dependence of the infinite volume breather and kink masses for moderate couplings. The results fit well with semiclassics and perturbative estimations, and confirm the conjecture of Mussardo that at most two neutral excitations can exist in the spectrum. We believe that improving our method with the renormalization procedure of Rychkov et al. enables to measure further interesting quantities such as decay ra...

  13. A new approach for the evaluation of the effective electrode spacing in spherical ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, Ahmed M., E-mail: maghrabism@yahoo.com [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Tersa Street 12211, Giza P.O. Box: 136 (Egypt); Shqair, Mohammed [Physics Department, Faculty of Science and Humanities, Sattam Bin Abdul Aziz University, Alkharj (Saudi Arabia)

    2016-10-21

    Proper determination of the effective electrode spacing (d{sub eff}) of an ion chamber ensures proper determination of its collection efficiency either in continuous or in pulsed radiation in addition to the proper evaluation of the transit time. Boag's method for the determination of d{sub eff} assumes the spherical shape of the internal electrode of the spherical ion chambers which is not always true, except for some cases, its common shape is cylindrical. Current work provides a new approach for the evaluation of the effective electrode spacing in spherical ion chambers considering the cylindrical shape of the internal electrode. Results indicated that d{sub eff} values obtained through current work are less than those obtained using Boag's method by factors ranging from 12.1% to 26.9%. Current method also impacts the numerically evaluated collection efficiency (f) where values obtained differ by factors up to 3% at low potential (V) values while at high V values minor differences were noticed. Additionally, impacts on the evaluation of the transit time (τ{sub i}) were obtained. It is concluded that approximating the internal electrode as a sphere may result in false values of d{sub eff}, f, and τ{sub i}.

  14. Space station electrical power distribution analysis using a load flow approach

    Science.gov (United States)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  15. Ethical approach to digital skills. Sense and use in virtual educational spaces

    Directory of Open Access Journals (Sweden)

    Juan GARCÍA-GUTIÉRREZ

    2013-12-01

    Full Text Available In the context of technology and cyberspace, should we do everything we can do? The answer given to this question is not ethical, is political: safety. The safety and security are overshadowing the ethical question about the meaning of technology. Cyberspace imposes a "new logic" and new forms of "ownership". When it comes to the Internet in relation to children not always adopt logic of accountability to the cyberspace, Internet showing a space not only ethical and technical. We talk about safe Internet, Internet healthy, and Internet Fit for Children... why not talk over Internet ethics? With this work we approach digital skills as those skills that help us to position ourselves and guide us in cyberspace. Something that is not possible without also ethical skills. So, in this article we will try to build and propose a model for analyzing the virtual learning spaces (and cyberspace in general based on the categories of "use" and "sense" as different levels of ownership that indicate the types of competences needed to access cyberspace.  

  16. Scattering in quantum field theory: the M.P.S.A. approach in complex momentum space

    International Nuclear Information System (INIS)

    Bros, J.

    1981-02-01

    In this course, we intend to show how 'Many-Particle Structure Analysis' (M.P.S.A.) can be worked out in the standard field-theoretical framework, by using integral relations in complex momentum space involving 'l-particle irreducible kernels'. The ultimate purpose of this approach is to obtain the best possible knowledge of the singularities (location, nature, type of ramification) and of the ambient holomorphy (or meromorphy) domains of the n-point Green functions and scattering amplitudes, and at the same time to derive analytic structural equations for them which display the global organization of these singularities. The generation of Landau singularities for integrals and Fredholm resolvents, taken on cycles in complex space, will be explained on the basis of the Picard-Lefschetz formula (presented and used in simple situations). Among various results described, we present and analyse a structural equation for the six-point function (and for the 3 → 3 particle scattering function), valid in a domain containing the three-particle normal threshold

  17. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  18. A novel method for creating working space during endoscopic thyroidectomy via bilateral areolar approach.

    Science.gov (United States)

    Tan, Yi-Hong; Du, Guo-Neng; Xiao, Yu-Gen; Qiu, Wan-Shou; Wu, Tao

    2013-12-01

    Endoscopic thyroidectomy (ET) can be performed through the bilateral areolar approach (BAA). A working space (WS) is typically created on the surface of the pectoral fascia in the chest wall and in the subplatysmal space in the neck. There are several limitations of using this WS. The aim of this study was to establish a new WS for ET. A retrospective review was performed on 85 patients with benign thyroid nodules who had undergone ET through a BAA. A WS was created between the anterior and poster layers of the superficial pectoral fascia (SPF) in the chest and underneath the deep layer of the investing layer (IL) in the neck. The time for creating the WS was 7.2 ± 2.1 (range, 5-12) minutes. No hemorrhage occurred during the procedure. Fat liquefaction occurred in 2 patients. Edema of the neck skin flap presented as lack of a suprasternal notch. No skin numbness occurred. No patient required postoperative pain medication. All patients were extremely satisfied with the cosmetic results. This new method of establishing a WS between the two layers of the SPF and underneath the IL is simple and fast, provides good exposure, yields less postoperative pain, and has a lower risk of skin burn.

  19. Modelling airborne gravity data by means of adapted Space-Wise approach

    Science.gov (United States)

    Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea

    2017-04-01

    Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.

  20. Design Space Approach for Preservative System Optimization of an Anti-Aging Eye Fluid Emulsion.

    Science.gov (United States)

    Lourenço, Felipe Rebello; Francisco, Fabiane Lacerda; Ferreira, Márcia Regina Spuri; Andreoli, Terezinha De Jesus; Löbenberg, Raimar; Bou-Chacra, Nádia

    2015-01-01

    The use of preservatives must be optimized in order to ensure the efficacy of an antimicrobial system as well as the product safety. Despite the wide variety of preservatives, the synergistic or antagonistic effects of their combinations are not well established and it is still an issue in the development of pharmaceutical and cosmetic products. The purpose of this paper was to establish a space design using a simplex-centroid approach to achieve the lowest effective concentration of 3 preservatives (methylparaben, propylparaben, and imidazolidinyl urea) and EDTA for an emulsion cosmetic product. Twenty-two formulae of emulsion differing only by imidazolidinyl urea (A: 0.00 to 0.30% w/w), methylparaben (B: 0.00 to 0.20% w/w), propylparaben (C: 0.00 to 0.10% w/w) and EDTA (D: 0.00 to 0.10% w/w) concentrations were prepared. They were tested alone and in binary, ternary and quaternary combinations. Aliquots of these formulae were inoculated with several microorganisms. An electrochemical method was used to determine microbial burden immediately after inoculation and after 2, 4, 8, 12, 24, 48, and 168 h. An optimization strategy was used to obtain the concentrations of preservatives and EDTA resulting in a most effective preservative system of all microorganisms simultaneously. The use of preservatives and EDTA in combination has the advantage of exhibiting a potential synergistic effect against a wider spectrum of microorganisms. Based on graphic and optimization strategies, we proposed a new formula containing a quaternary combination (A: 55%; B: 30%; C: 5% and D: 10% w/w), which complies with the specification of a conventional challenge test. A design space approach was successfully employed in the optimization of concentrations of preservatives and EDTA in an emulsion cosmetic product.

  1. Finite frequency shear wave splitting tomography: a model space search approach

    Science.gov (United States)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  2. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    International Nuclear Information System (INIS)

    Yeh, L.

    1993-01-01

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented

  3. Disease severity, not operative approach, drives organ space infection after pediatric appendectomy.

    Science.gov (United States)

    Kelly, Kristin N; Fleming, Fergal J; Aquina, Christopher T; Probst, Christian P; Noyes, Katia; Pegoli, Walter; Monson, John R T

    2014-09-01

    This study examines patient and operative factors associated with organ space infection (OSI) in children after appendectomy, specifically focusing on the role of operative approach. Although controversy exists regarding the risk of increased postoperative intra-abdominal infections after laparoscopic appendectomy, this approach has been largely adopted in the treatment of pediatric acute appendicitis. Children aged 2 to 18 years undergoing open or laparoscopic appendectomy for acute appendicitis were selected from the 2012 American College of Surgeons Pediatric National Surgical Quality Improvement Program database. Univariate analysis compared patient and operative characteristics with 30-day OSI and incisional complication rates. Factors with a P value of less than 0.1 and clinical importance were included in the multivariable logistic regression models. A P value less than 0.05 was considered significant. For 5097 children undergoing appendectomy, 4514 surgical procedures (88.6%) were performed laparoscopically. OSI occurred in 155 children (3%), with half of these infections developing postdischarge. Significant predictors for OSI included complicated appendicitis, preoperative sepsis, wound class III/IV, and longer operative time. Although 5.2% of patients undergoing open surgery developed OSI (odds ratio = 1.82; 95% confidence interval, 1.21-2.76; P = 0.004), operative approach was not associated with increased relative odds of OSI (odds ratio = 0.99; confidence interval, 0.64-1.55; P = 0.970) after adjustment for other risk factors. Overall, the model had excellent predictive ability (c-statistic = 0.837). This model suggests that disease severity, not operative approach, as previously suggested, drives OSI development in children. Although 88% of appendectomies in this population were performed laparoscopically, these findings support utilization of the surgeon's preferred surgical technique and may help guide postoperative counsel in high-risk children.

  4. Effect of parity on healthy promotion lifestyle behavior in women.

    Science.gov (United States)

    Nazik, Hakan; Nazik, Evşen; Özdemir, Funda; Gül, Şule; Tezel, Ayfer; Narin, Raziye

    2015-01-01

    Health-promoting lifestyle behaviors are not only for the prevention of a disease or discomfort, but are also behaviors that aim to improve the individual's general health and well-being. Nurses have an important position in the development of healthy lifestyle behaviors in women. The aim of this study was to assess the effect of parity on health-promoting lifestyle behaviors in women. This descriptive and cross-sectional survey was performed in Adana, Turkey. This study was conducted with 352 women. The questionnaire consisted of two parts; the first part consisted of questions that assessed the socio-demographic and obstetric characteristics, and the second part employed the "Health Promotion Lifestyle Profile Scale" (HPLP). Data analysis included percentage, arithmetic average, and ANOVA tests. The results revealed that 24.1% of the women had no parity, 13.6% had one parity, 30.7% had two parities, 14.6% had three parities, and 17% had four and above parities. The mean total HPLP was 126.66±18.12 (interpersonal support subscale, 24.46±4.02; nutrition subscale, 21.59±3.92; self-actualization subscale, 24.42±4.30; stress management subscale, 18.73±3.81; health responsibility subscale, 21.75±4.31; and exercise subscale, 15.71±4.22). The health behavior of women was moderate. A statistically significant correlation was found between the number of parities and the Health Responsibility, Nutrition, Interpersonal Support, which is the subscale of the HPLP Scale.

  5. Parity-Check Network Coding for Multiple Access Relay Channel in Wireless Sensor Cooperative Communications

    Directory of Open Access Journals (Sweden)

    Du Bing

    2010-01-01

    Full Text Available A recently developed theory suggests that network coding is a generalization of source coding and channel coding and thus yields a significant performance improvement in terms of throughput and spatial diversity. This paper proposes a cooperative design of a parity-check network coding scheme in the context of a two-source multiple access relay channel (MARC model, a common compact model in hierarchical wireless sensor networks (WSNs. The scheme uses Low-Density Parity-Check (LDPC as the surrogate to build up a layered structure which encapsulates the multiple constituent LDPC codes in the source and relay nodes. Specifically, the relay node decodes the messages from two sources, which are used to generate extra parity-check bits by a random network coding procedure to fill up the rate gap between Source-Relay and Source-Destination transmissions. Then, we derived the key algebraic relationships among multidimensional LDPC constituent codes as one of the constraints for code profile optimization. These extra check bits are sent to the destination to realize a cooperative diversity as well as to approach MARC decode-and-forward (DF capacity.

  6. The Influence of International Parity on the Exchange Rate: Purchasing Power Parity and International Fisher Effect

    Directory of Open Access Journals (Sweden)

    Oana Mionel

    2012-02-01

    Full Text Available This article assesses the impact of the inflationand interest rates on the exchange rates.The analysis tests the relation between the inflation rate and the exchange rate by applying thePurchasing Power Parity Theory, while the relationbetween the interest rate and the inflation rate istested by applying the International Fisher EffectTheory. In order to test the Purchasing Power Paritythe study takes into account the period of time between 1990 – 2009, and the following countries –the USA, Germany, the UK, Switzerland, Canada, Japan and China. As for testing the InternationalFisher Effect Theory the period of time is the same, 1990 – 2009, but a few countries are different –the USA, Germany, the UK, Switzerland, Canada, Australia and New Zeeland. Thus, both theoriesanalyse the USA as home country.

  7. R-parity-violating production of single top squarks with R-parity-conserving decays

    International Nuclear Information System (INIS)

    Berger, E.L.; Harris, B.W.; Sullivan, Z.

    1999-01-01

    Single-top-squark production probes R-parity-violating extensions of the minimal supersymmetric standard model though the λ 3ij double p rime coupling. For top-squark masses in the range 180-325 GeV, and λ 3ij double p rime > 0.02-0.06, we show that discovery of the top squark is possible with 2 fb -1 of integrated luminosity at run II of the Fermilab Tevatron. The bound on λ 3ij double p rime can be reduced by up to an order of magnitude with existing data from run I, and by two orders of magnitude at run II if the top squark is not found

  8. A simulation based optimization approach to model and design life support systems for manned space missions

    Science.gov (United States)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  9. Application of a Systems Engineering Approach to Support Space Reactor Development

    International Nuclear Information System (INIS)

    Wold, Scott

    2005-01-01

    In 1992, approximately 25 Russian and 12 U.S. engineers and technicians were involved in the transport, assembly, inspection, and testing of over 90 tons of Russian equipment associated with the Thermionic System Evaluation Test (TSET) Facility. The entire Russian Baikal Test Stand, consisting of a 5.79 m tall vacuum chamber and related support equipment, was reassembled and tested at the TSET facility in less than four months. In November 1992, the first non-nuclear operational test of a complete thermionic power reactor system in the U.S. was accomplished three months ahead of schedule and under budget. A major factor in this accomplishment was the application of a disciplined top-down systems engineering approach and application of a spiral development model to achieve the desired objectives of the TOPAZ International Program (TIP). Systems Engineering is a structured discipline that helps programs and projects conceive, develop, integrate, test and deliver products and services that meet customer requirements within cost and schedule. This paper discusses the impact of Systems Engineering and a spiral development model on the success of the TOPAZ International Program and how the application of a similar approach could help ensure the success of future space reactor development projects

  10. Robust mode space approach for atomistic modeling of realistically large nanowire transistors

    Science.gov (United States)

    Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2018-01-01

    Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.

  11. Applying the system engineering approach to devise a master’s degree program in space technology in developing countries

    Science.gov (United States)

    Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa

    2010-11-01

    Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group

  12. Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 8, č. 6 (2016), s. 52 ISSN 2073-8994 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : parity-time symmetry * Schrodinger equation * physical Hilbert space * inner-product metric operator * real exceptional points * solvable models * quantum Big Bang * quantum Inflation period Subject RIV: BE - Theoretical Physics Impact factor: 1.457, year: 2016

  13. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Sinyukov, Yu.M.

    2004-01-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions

  14. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  15. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  16. A parity checker circuit based on microelectromechanical resonator logic elements

    Energy Technology Data Exchange (ETDEWEB)

    Hafiz, Md Abdullah Al, E-mail: abdullah.hafiz@kaust.edu.sa [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Li, Ren [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Younis, Mohammad I. [PSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Fariborzi, Hossein [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2017-03-03

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro-resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized. - Highlights: • A 4-bit parity checker circuit is proposed and demonstrated based on MEMS resonator based logic elements. • Multiple copies of MEMS resonator based XOR logic gates are used to construct a complex logic circuit. • Functionality and feasibility of micro-resonator based logic platform is demonstrated.

  17. Parity and the Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Ovesen, Per; Ipsen, Sidsel; Lundbye-Christensen, Søren

    year 2004 and information on type, date, interval from birth to diagnosis of diabetes was recorded. A total of 1717 cases were diagnosed with diabetes in the follow-up period of 23 yearswhich ich correspond to 1,7%. The women in the study were between 13 and 50 years old at the time of delivery. We...... grouped the study population in age groups: the young (age 13-22 years) comprising 19% of the total births, middle group (23-29 years) comprising 55% of the births and old group (30-50 years) comprising 26% of the births. In all groups there was a significant effect of parity on the development......  The relationship between parity and diabetes has been discussed for many years and the subject is still controversial.  Some investigations show that parity, particularly five or more births, might be associated with higher incidence of diabetes, whereas others found no association. We performed...

  18. Fault tolerance in parity-state linear optical quantum computing

    International Nuclear Information System (INIS)

    Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei

    2010-01-01

    We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.

  19. Analysis of parity violating nuclear effects at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Desplanques, B; Missimer, J [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1978-05-15

    The authors present an analysis of parity-violating nuclear effects at low energy which attempts to circumvent the uncertainties due to the weak and strong nucleon-nucleon interactions at short distances. Extending Danilov's parametrization of the parity-violating nucleon-nucleon scattering amplitude, they introduce six parameters: one for the long-range contribution due to the pion exchange and five for the shorter-range contributions. This choice gives an accurate representation of parity-violating effects in the nucleon-nucleon system up to a lab energy of 75 MeV. For calculations in nuclei, an effective two-body potential is derived in terms of the parameters. The analysis of presently measured effects shows that they are consistent, and, in particular, that the circular polarization of photons in n + p ..-->.. d + ..gamma.. is not incompatible with the other measurements. It does not imply a dominant isotensor component.

  20. R-parity violation and the cosmological gravitino problem

    International Nuclear Information System (INIS)

    Moreau, G.; Chemtob, M.

    2002-01-01

    Based on the R-parity violation option of the minimal supersymmetric standard model, we examine the scenario where the massive gravitino, a relic from the hot big-bang, is the lightest supersymmetric particle and can decay through one or several of the trilinear R-parity violating interactions. We calculate the rates of the gravitino decay via the various three-body decay channels with final states involving three quarks and/or leptons. By taking into account the present constraints on the trilinear R-parity violating coupling constants and assuming the gravitino and scalar superpartner masses do not exceed ∼80 TeV, it turns out that the gravitinos could easily have decayed before the present epoch but not earlier than the big-bang nucleosynthesis one. Therefore, the considered scenario would upset the standard big-bang nucleosynthesis scenario and we conclude that it does not seem to constitute a natural solution for the cosmological gravitino problem

  1. Parity violation in proton-proton scattering at 230 MEV

    International Nuclear Information System (INIS)

    Birchall, J.; Bowman, J.D.; Davis, C.A.

    1988-01-01

    Below /similar to/300 MeV six meson-nucleon coupling strengths are required to describe the weak interaction of nucleons. Many experiments have found parity-violating effects in nuclear systems, but only four significant, independent constraints exist. A new measurement is proposed where measurable effects are predicted with minimal dependence on nuclear interaction models, yielding information complementary to previous results. This is a measurement of the parity-violating analyzing power. A/sub z/ in p-p scattering at 230 MeV, which is shown to be sensitive to the weak rho-nucleon coupling. This measurement, at a precision of +- 2 x 10/sup -8/, together with a proposed measurement by the University of Washington group at I.L.L. of the parity-violating neutron spin rotation, will provide the fifth and sixth independent constraints needed to determine the weak meson-nucleon coupling constants

  2. Controlled parity switch of persistent currents in quantum ladders

    Science.gov (United States)

    Filippone, Michele; Bardyn, Charles-Edouard; Giamarchi, Thierry

    2018-05-01

    We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes Φ and χ . We show that the coupling between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ . Specifically, we demonstrate that varying χ by 2 π (one flux quantum) leads to an apparent fermion-number parity switch. We find that persistent currents exhibit a robust 4 π periodicity as a function of χ , despite the fact that χ →χ +2 π leads to modifications of order 1 /N of the energy spectrum, where N is the number of sites in each ladder leg. We show that these parity-switch and 4 π periodicity effects are robust with respect to temperature and disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic analogs of the effects.

  3. Spin and parity measurement of the Λ(1405) baryon

    Science.gov (United States)

    Moriya, K.; Schumacher, R. A.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bellis, M.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Dey, B.; Djalali, C.; Dugger, M.; Dupré, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Griffioen, K. A.; Hafidi, K.; Hakobyan, H.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Seder, E.; Senderovich, I.; Smith, E. S.; Sokhan, D.; Smith, G. D.; Stepanyan, S.; Strauch, S.; Tang, W.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Ziegler, V.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-02-01

    A determination of the spin and parity of the Λ(1405) is presented using photoproduction data from the CLAS detector at Jefferson Lab. The reaction γ+p→K++Λ(1405) is analyzed in the decay channel Λ(1405)→Σ ++π-, where the decay distribution to Σ+π- and the variation of the Σ+ polarization with respect to the Λ(1405) polarization direction determines the parity. The Λ(1405) is produced, in the energy range 2.55parity JP=1/2-, as expected by most theories.

  4. Parity violation and superconductivity in doped Mott insulators

    International Nuclear Information System (INIS)

    Khveshchenko, D.Y.; Kogan, Y.I.

    1990-01-01

    The authors study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU(2N)-symmetric generalization of the system involved the authors give the arguments supporting the existence of these states at a filling number different from one-half. The authors derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. This paper establishes the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation

  5. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-11

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  6. Parity violation and superconductivity in doped Mott insulators

    International Nuclear Information System (INIS)

    Khveshchenko, D.V.; Kogan, Ya.I.

    1989-12-01

    We study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU(2N)-symmetric generalization of the system involved we give the arguments supporting the existence of these states at a filling number different from one-half. We derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. We establish that the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation. (author). 48 refs, 3 figs

  7. New even and odd parity levels of neutral praseodymium

    International Nuclear Information System (INIS)

    Syed, T I; Siddiqui, I; Shamim, K; Uddin, Z; Guthöhrlein, G H; Windholz, L

    2011-01-01

    The hyperfine (hf) structure of some spectral lines of the praseodymium atom has been investigated by the laser-induced fluorescence method in a hollow cathode discharge lamp. We report the discovery of 18 new energy levels of even parity and 22 new energy levels of odd parity and their magnetic dipole hf interaction constants A. Using these newly discovered levels, 268 lines were classified by means of laser spectroscopy, 97 of them by laser excitation and 171 via laser-induced fluorescence. In addition, 23 lines, observed in a Fourier transform spectrum, were classified by means of their wavenumbers and their hf patterns.

  8. Minimal flavour violation and neutrino masses without R-parity

    DEFF Research Database (Denmark)

    Arcadi, G.; Di Luzio, L.; Nardecchia, M.

    2012-01-01

    symmetry breaking all the couplings of the superpotential including the R-parity violating ones. If R-parity violation is responsible for neutrino masses, our setup can be seen as an extension of MFV to the lepton sector. We analyze two patterns based on the non-abelian flavour symmetries SU(3)(4) circle...... times SU(4) and SU(3)(5). In the former case the total lepton number and the lepton flavour number are broken together, while in the latter the lepton number can be broken independently by an abelian spurion, so that visible effects and peculiar correlations can be envisaged in flavour changing charged...

  9. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al; Li, Ren; Younis, Mohammad I.; Fariborzi, Hossein

    2017-01-01

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  10. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  11. A new energy-efficient control approach for space telescope drive system

    Science.gov (United States)

    Zhou, Wangping; Wang, Yong

    Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  12. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC

    International Nuclear Information System (INIS)

    VOGELSANG, W.; PERDEKAMP, M.; SURROW, B.

    2007-01-01

    The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of √s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory. Also, new observables, such

  13. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    Science.gov (United States)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    2000-01-01

    Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.

  14. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, Zürich (Switzerland); Okumura, Teppei [Institute for the Early Universe, Ewha Womans University, Seoul, S. Korea (Korea, Republic of); Desjacques, Vincent, E-mail: zvlah@physik.uzh.ch, E-mail: seljak@physik.uzh.ch, E-mail: teppei@ewha.ac.kr, E-mail: Vincent.Desjacques@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics (CAP) Université de Genéve, Genéve (Switzerland)

    2013-10-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.

  15. Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo

    Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrela......Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based...... on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology...... and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter...

  16. A rationalized approach to the imaging of space-occupying lesions in the liver

    International Nuclear Information System (INIS)

    Engelbrecht, H.E.

    1985-01-01

    A rational approach to the imaging of mass lesions within the liver has been presented. An attempt has been made to advocate a philosophy which emphasizes the importance of considering pathological, biochemical, clinical and likely management criteria in each case before selecting a first-line imaging procedure. The subject is presented under three headings: i) What That is, clinical and pathological criteria for assesing the nature of a suspected space-occupying lesion in the liver; ii) Why That is a projection of the likely practical value of the result; iii) How That is determination of a logical imaging program depending on the assesment of criteria under the first two headings. The following examples of active treatment are discussed: partial hepotectomy, highly vascular lesions, toxaemia and pyrexia. The following factors influence the decision of the imaging procedure to be used: the accuracy of the modality in relation to the suspected lesion, local availability of equipment and expentise, invasive versus non-invasive aspects and cost-effectiveness

  17. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  18. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

    Science.gov (United States)

    Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

    2005-01-01

    Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

  19. Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes

    OpenAIRE

    Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman

    2011-01-01

    Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...

  20. The long and short run forcing variables of purchasing power parity of ASEAN-5

    OpenAIRE

    Abdalrahman AbuDalu; Elsadig Musa Ahmed

    2013-01-01

    This study examines the long-run and short-run forcing variables of purchasing power parity (PPP) for ASEAN-5 currencies vis-a-vis the U.S. dollar, i.e., their real effective exchange rate (REER). This study uses the autoregressive distributed lag (ARDL) approach to co-integration over the period 1991:Q1 – 2006:Q2. Our empirical results suggest that the domestic money supply (M1) is a significant long run forcing variable for the REERs of Malaysia, Indonesia, the Philippines, and Singapore. H...

  1. Predicting temperature and moisture distributions in conditioned spaces using the zonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, K.C. [Parana Pontifical Catholic Univ., Curitiba (Brazil); Wurtz, E.; Inard, C. [La Rochelle Univ., La Rochelle, Cedex (France). LEPTAB

    2005-07-01

    Moisture interacts with building elements in a number of different ways that impact upon building performance, causing deterioration of building materials, as well as contributing to poor indoor air quality. In humid climates, moisture represents one of the major loads in conditioned spaces. It is therefore important to understand and model moisture transport accurately. This paper discussed an intermediate zonal approach to building a library of data in order to predict whole hygrothermal behavior in conditioned rooms. The zonal library included 2 models in order to consider building envelope moisture buffering effects as well as taking into account the dynamic aspect of jet airflow in the zonal method. The zonal library was then applied to a case study to show the impact of external humidity on the whole hygrothermal performance of a room equipped with a vertical fan-coil unit. The proposed theory was structured into 3 groups representing 3 building domains: indoor air; envelope; and heating, ventilation and air conditioning (HVAC) systems. The indoor air sub-model related to indoor air space, where airflow speed was considered to be low. The envelope sub-model related to the radiation exchanges between the envelope and its environment as well as to the heat and mass transfers through the envelope material. The HVAC system sub-model referred to the whole system including equipment, control and specific airflow from the equipment. All the models were coupled into SPARK, where the resulting set of non-linear equations were solved simultaneously. A case study of a large office conditioned by a vertical fan-coil unit with a rectangular air supply diffuser was presented. Details of the building's external and internal environment were provided, as well as convective heat and mass transfer coefficients and temperature distributions versus time. Results of the study indicated that understanding building material moisture buffering effects is as important as

  2. From parity violation to hadronic structure and more

    CERN Document Server

    Jager, K; Kox, S; Lhuillier, D; Maas, F; Page, S; Papanicolas, C; Stiliaris, S; Wiele, J; 3rd International Workshop on From Parity Violation to Hadronic Structure and More (PAVI06); PAVI 06; PAVI 2006

    2007-01-01

    This book contains the proceedings of the third international workshop on “From Parity Violation to Hadronic Structure and more ...” which was held from May 16 to May 20, 2006, at the George Eliopoulos conference center on the Greek island of Milos. It is part of a series that started in Mainz in 2002 and was followed by a second workshop in Grenoble in 2004. While originally initiated by the extraction of the strangeness contribution to the electromagnetic form factors of the nucleon, the workshop series has continuously broadened the focus to the application of Parity Violation using hadronic probes and to Parity Violation experiments in atomic physics. Meanwhile there have been many exciting new proposals for using Parity Violation in other areas like in the search for new physics beyond the standard model or in exploring hadron structure. There are also close connections to the open question on the size of the two photon exchange amplitude. Fifty years after the 1956 proposal of Lee and Yang to test t...

  3. Analysis tools for discovering strong parity violation at hadron colliders

    Science.gov (United States)

    Backović, Mihailo; Ralston, John P.

    2011-07-01

    Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or “azimuthal flow.” Analysis uses the representations of the orthogonal group O(2) and dihedral groups DN necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single “reaction plane.” Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of “event-shape sorting” to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.

  4. The uncovered parity properties of the Czech Koruna

    Czech Academy of Sciences Publication Activity Database

    Derviz, Alexis

    2002-01-01

    Roč. 11, č. 1 (2002), s. 17-37 ISSN 1210-0455 R&D Projects: GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : uncovered parity * asset prices * international consumption-based capital asset pricing model Subject RIV: AH - Economics

  5. Weak interactions, quark masses and spontaneous violation of parity

    International Nuclear Information System (INIS)

    Kingsley, R.L.

    1976-09-01

    A six quark model is discussed for the weak interactions of hadrons in which parity is violated spontaneously in an SU(2) x U(1) gauge theory. Quarks with very small masses are required and their weak interactions approximate those of the Weinberg-Salam model. Suppression of strangeness-changing neutral currents requires at least seven quarks. (author)

  6. 7 CFR 989.61 - Above parity situations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Above parity situations. 989.61 Section 989.61 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...) of the act. [42 FR 37202, July 20, 1977] Trade Practices ...

  7. Maternal Parity and Blood Oxidative Stress in Mother and Neonate

    OpenAIRE

    Golalizadeh; Shobeiri; Ranjbar; Nazari

    2016-01-01

    Background Parturition has been associated with free radicals, itself linked with poor pregnancy outcome. Objectives This study aimed to investigate the relationship between oxidative stress biomarkers levels of maternal and cord blood samples at the second stage of labor with the maternal parity number. Materials and Methods In this analytical cross-sectional study, subjects were ...

  8. Parity violation workshop: CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1986-01-01

    This paper discusses the use of electron scattering experiments for exploring parity violation in the nuclear domain. It is shown how such experiments can test the structure of strong interactions, the local gauge theory quantum chromodynamics based on color, and the unified gauge theory of electroweak interactions. 14 refs., 13 figs., 1 tab

  9. Purchasing Power Parity : Evidence from a New Test

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1999-01-01

    Most economists intuitively consider purchasing power parity (PPP) to be true. Nevertheless, quite surprisingly, the empirical literature is not very supportive for PPP. In this paper, however, we find evidence in favor of PPP using a new test. The test is embedded in a Markov regime-switching model

  10. A brief survey of atomic parity nonconservation experiments

    International Nuclear Information System (INIS)

    He Maoqi; Zhao Youyuan; Cai Shengshan; Zhang ZHiming

    1990-01-01

    The authors present a brief description of the basic idea of atomic parity nonconservation (PNC) effect, introduce the methods and results of measuring PNC, analyse the reasons to continue with atomic PNC experiments and suggest some ideas to improve the measure of PNC

  11. Violation of G-parity in antinucleon-nucleon annihilation

    International Nuclear Information System (INIS)

    Green, A.M.; Sainio, M.E.; Moussallam, B.; Niskanen, J.A.; Wycech, S.

    1991-01-01

    A strategy is proposed for investigating the violation of G-parity in the annihilation reaction anti np → π + π 0 . As illustrations π 0 -η mixing and the mass difference effects are considered. This leads to an asymmetry of about 1% in the cross section. (orig.)

  12. Violation of interest-rate parity: a Polish example

    Science.gov (United States)

    Przystawa, Jerzy; Wolf, Marek

    2000-09-01

    The mechanism of the so-called “Bagsik Oscillator” is presented and discussed. In essence, it is a repeated exploitation of arbitrage opportunities that resulted from a marked departure from the interest-rate parity relationship between the local Polish currency and the western currencies.

  13. Nuclear isospin mixing and elastic parity-violating electron scattering

    International Nuclear Information System (INIS)

    Moreno, O.; Sarriguren, P.; Moya de Guerra, E.; Udias, J.M.; Donnelly, T.W.; Sick, I.

    2009-01-01

    The influence of nuclear isospin mixing on parity-violating elastic electron scattering is studied for the even-even, N=Z nuclei 12 C, 24 Mg, 28 Si, and 32 S. Their ground-state wave functions have been obtained using a self-consistent axially-symmetric mean-field approximation with density-dependent effective two-body Skyrme interactions. Some differences from previous shell-model calculations appear for the isovector Coulomb form factors which play a role in determining the parity-violating asymmetry. To gain an understanding of how these differences arise, the results have been expanded in a spherical harmonic oscillator basis. Results are obtained not only within the plane-wave Born approximation, but also using the distorted-wave Born approximation for comparison with potential future experimental studies of parity-violating electron scattering. To this end, for each nucleus the focus is placed on kinematic ranges where the signal (isospin-mixing effects on the parity-violating asymmetry) and the experimental figure-of-merit are maximized. Strangeness contributions to the asymmetry are also briefly discussed, since they and the isospin mixing contributions may play comparable roles for the nuclei being studied at the low momentum transfers of interest in the present work.

  14. Contribution of working memory in the parity and proportional judgments

    NARCIS (Netherlands)

    Szymanik, J.K.; Zajenkowski, M.

    2011-01-01

    This paper presents experimental evidence on the differences in a sentence-picture verification task under additional memory load between parity and proportional quantifiers. We asked subjects to memorize strings of four or six digits, then to decide whether a quantified sentence was true for a

  15. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.

    Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then

  16. Hadronic parity violation and inelastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Liu, C.-P.; Prezeau, G.; Ramsey-Musolf, M.J.

    2003-01-01

    We compute contributions to the parity-violating (PV) inelastic electron-deuteron scattering asymmetry arising from hadronic PV. While hadronic PV effects can be relatively important in PV threshold electrodisintegration, we find that they are highly suppressed at quasielastic kinematics. The interpretation of the PV quasielastic asymmetry is, thus, largely unaffected by hadronic PV

  17. Parity non-conserving effects in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    Desplanques, B.

    1990-01-01

    The present lecture reviews the motivations which led to study the contribution of the neutron-nucleus component to parity-non-conserving effects observed in medium-heavy nuclei and considers its present status. It is shown that it cannot account for those experimental data. The order interpretation of these effects, which cannot lead to precise statements, is schematically described

  18. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    Science.gov (United States)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  19. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    Science.gov (United States)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  20. Unitals and ovals of symmetric block designs in LDPC and space-time coding

    Science.gov (United States)

    Andriamanalimanana, Bruno R.

    2004-08-01

    An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.

  1. Path integral approach for quantum motion on spaces of non-constant curvature according to Koenigs - Three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    2007-08-01

    In this contribution a path integral approach for the quantum motion on three-dimensional spaces according to Koenigs, for short''Koenigs-Spaces'', is discussed. Their construction is simple: One takes a Hamiltonian from three-dimensional flat space and divides it by a three-dimensional superintegrable potential. Such superintegrable potentials will be the isotropic singular oscillator, the Holt-potential, the Coulomb potential, or two centrifugal potentials, respectively. In all cases a non-trivial space of non-constant curvature is generated. In order to obtain a proper quantum theory a curvature term has to be incorporated into the quantum Hamiltonian. For possible bound-state solutions we find equations up to twelfth order in the energy E. (orig.)

  2. Finite differences versus finite elements in slab geometry, even-parity transport theory

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Noh, T.

    1993-01-01

    There continues to be considerable interest in the application of the even-parity transport equation to problems of radiation transfer and neutron transport. The motivation for this interest arises from several potential advantages of this equation when compared with the more traditional first-order form of the equation. First, assuming that the scalar flux is of primary interest, the angular domain under consideration is one-half of that required for the first-order equation. Thus, for the same degree of accuracy, one would hopefully require substantiably fewer unknown values of the dependent variable to be determined. Secondly, the elliptic-like nature of the set of even-parity equations should allow certain parallel computer architectures to be used more readily. In a recent paper, it was shown that for neutron transport applications in slab geometry, finite differencing the even-parity equation on the cell edges yields algebraic equations with numerical properties that are superior to the traditional diamond difference approach. Specifically, a positive, second-order method with a rapidly convergent iteration approach emerged from cell-edge differencing. Additionally, for radiation transfer problems that are optically thick, it was shown that cell-edge differencing demonstrates better behavior than does diamond-differencing. However, some problems in accuracy could occur due to vacuum boundaries as well as at interfaces between very different types of material regions. These problems emerge from a boundary-layer analysis of the so called open-quotes thickclose quotes diffusion limit. For neutronics calculations, which are the subject of this paper, however, the open-quotes thickclose quotes diffusion limit analysis has little applicability, and the cell-edge differencing derived previously seems to have considerable promise. 13 refs., 2 figs., 3 tabs

  3. Commercial Space Transportation and Approaches to landing sites over Maritime Areas

    OpenAIRE

    Morlang, Frank; Hampe, Jens; Kaltenhäuser, Sven; Schmitt, Dirk-Roger

    2015-01-01

    Commercial Space Transportation becomes an international business and requires landing opportunities all over the world. Hence the integration of space vehicles in other airspace than the US NAS is an important topic to be considered. The Single European Sky ATM Research Programme (SESAR) is preparing the implementation of a new ATM system in Europe. The requirements are defined by the concept of the shared Business Trajectory and System Wide Information Management (SWIM). Space vehicle op...

  4. The lattice spinor QED Hamiltonian critique of the continuous space approach

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1993-01-01

    We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs

  5. Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport

    OpenAIRE

    Gonzales, Eric J.; Geroliminis, Nikolas; Cassidy, Michael J.; Daganzo, Carlos F.

    2008-01-01

    A macroscopic modeling approach is proposed for allocating a city’s road space among competing transport modes. In this approach, a city or neighborhood street network is viewed as a reservoir with aggregated traffic. Taking the number of vehicles (accumulation) in a reservoir as input, we show how one can reliably predict system performance in terms of person and vehicle hours spent in the system and person and vehicle kilometers traveled. The approach is used here to unveil two important ...

  6. Soft-Decision-Data Reshuffle to Mitigate Pulsed Radio Frequency Interference Impact on Low-Density-Parity-Check Code Performance

    Science.gov (United States)

    Ni, Jianjun David

    2011-01-01

    This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.

  7. Scalable multi-grid preconditioning techniques for the even-parity S_N solver in UNIC

    International Nuclear Information System (INIS)

    Mahadevan, Vijay S.; Smith, Michael A.

    2011-01-01

    The Even-parity neutron transport equation with FE-S_N discretization is solved traditionally using SOR preconditioned CG method at the lowest level of iterations in order to compute the criticality in reactor analysis problems. The use of high order isoparametric finite elements prohibits the formation of the discrete operator explicitly due to memory constraints in peta scale architectures. Hence, a h-p multi-grid preconditioner based on linear tessellation of the higher order mesh is introduced here for the space-angle system and compared against SOR and Algebraic MG black-box solvers. The performance and scalability of the multi-grid scheme was determined for two test problems and found to be competitive in terms of both computational time and memory requirements. The implementation of this preconditioner in an even-parity solver like UNIC from ANL can further enable high fidelity calculations in a scalable manner on peta flop machines. (author)

  8. Purchasing power parity theory in a model without international trade of goods

    OpenAIRE

    Läufer, Nikolaus K. A.

    1980-01-01

    In recent discussions it frequently occurs that the Purchasing Power Parity Theory is identified with Jevons law of one price. By pointing to real world obstacles working against perfect goods arbitrage it is then erroneously concluded that the Purchasing Power Parity Theory cannot be valid while a dinstiction between an absolute version and a relative version of the Purchasing Power Parity Theory is neglected. In the present paper it is shown that the Purchasing Power Parity Theory in the re...

  9. Trial and Error: A new Approach to Space-Bounded Learning

    DEFF Research Database (Denmark)

    Ameur, F.; Fischer, Paul; Hoeffgen, H.-U.

    1996-01-01

    A pac-learning algorithm is d-space bounded, if it stores at most d examples from the sample at any time. We characterize the d-space learnable concept classes. For this purpose we introduce the compression parameter of a concept class 𝒞 and design our trial and error learning algorithm. We ...

  10. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below

    CERN Document Server

    Gigli, Nicola

    2018-01-01

    The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

  11. A compressive sensing approach to the calculation of the inverse data space

    KAUST Repository

    Khan, Babar Hasan; Saragiotis, Christos; Alkhalifah, Tariq Ali

    2012-01-01

    Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion

  12. The Cube and the Poppy Flower: Participatory Approaches for Designing Technology-Enhanced Learning Spaces

    Science.gov (United States)

    Casanova, Diogo; Mitchell, Paul

    2017-01-01

    This paper presents an alternative method for learning space design that is driven by user input. An exploratory study was undertaken at an English university with the aim of redesigning technology-enhanced learning spaces. Two provocative concepts were presented through participatory design workshops during which students and teachers reflected…

  13. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  14. 7 CFR 5.1 - Parity index and index of prices received by farmers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Parity index and index of prices received by farmers... § 5.1 Parity index and index of prices received by farmers. (a) The parity index and related indices... farmers, interest, taxes, and farm wage rates, as revised May 1976 and published in the May 28, 1976, and...

  15. Building HIA approaches into strategies for green space use: an example from Plymouth's (UK) Stepping Stones to Nature project.

    Science.gov (United States)

    Richardson, J; Goss, Z; Pratt, A; Sharman, J; Tighe, M

    2013-12-01

    The health and well-being benefits of access to green space are well documented. Research suggests positive findings regardless of social group, however barriers exist that limit access to green space, including proximity, geography and differing social conditions. Current public health policy aims to broaden the range of environmental public health interventions through effective partnership working, providing opportunities to work across agencies to promote the use of green space. Health Impact Assessment (HIA) is a combination of methods and procedures to assess the potential health and well-being impacts of policies, developments and projects. It provides a means by which negative impacts can be mitigated and positive impacts can be enhanced, and has potential application for assessing green space use. This paper describes the application of a HIA approach to a multi-agency project (Stepping Stones to Nature--SS2N) in the UK designed to improve local green spaces and facilitate green space use in areas classified as having high levels of deprivation. The findings suggest that the SS2N project had the potential to provide significant positive benefits in the areas of physical activity, mental and social well-being. Specific findings for one locality identified a range of actions that could be taken to enhance benefits, and mitigate negative factors such as anti-social behaviour. The HIA approach proved to be a valuable process through which impacts of a community development/public health project could be enhanced and negative impacts prevented at an early stage; it illustrates how a HIA approach could enhance multi-agency working to promote health and well-being in communities.

  16. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    Science.gov (United States)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  17. Search for Squarks in R-parity Violating Supersymmetry in ep Collisions at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Thompson, G.; Thompson, P.D.; Toll, T.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von den Driesch, M.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2011-01-01

    A search for squarks in R-parity violating supersymmetry is performed in e^+- p collisions at HERA using the H1 detector. The full data sample taken at a centre-of-mass energy sqrt{s}=319 GeV is used for the analysis, corresponding to an integrated luminosity of 255 pb^-1 of e^+ p and 183 pb^-1 of e^- p collision data. The resonant production of squarks via a Yukawa coupling lambda' is considered, taking into account direct and indirect R-parity violating decay modes. Final states with jets and leptons are investigated. No evidence for squark production is found and mass dependent limits on lambda' are obtained in the framework of the Minimal Supersymmetric Standard Model and in the Minimal Supergravity Model. In the considered part of the parameter space, for a Yukawa coupling of electromagnetic strength lambda'= 0.3, squarks of all flavours are excluded up to masses of 275 GeV at 95% confidence level, with down-type squarks further excluded up to masses of 290 GeV.

  18. Searches at HERA for Squarks in R-Parity Violating Supersymmetry

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazarian, S.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchian, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A search for squarks in R-parity violating supersymmetry is performed in e^+p collisions at HERA at a centre of mass energy of 300 GeV, using H1 data corresponding to an integrated luminosity of 37 pb^(-1). The direct production of single squarks of any generation in positron-quark fusion via a Yukawa coupling lambda' is considered, taking into account R-parity violating and conserving decays of the squarks. No significant deviation from the Standard Model expectation is found. The results are interpreted in terms of constraints within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM and the minimal Supergravity model, and their sensitivity to the model parameters is studied in detail. For a Yukawa coupling of electromagnetic strength, squark masses below 260 GeV are excluded at 95% confidence level in a large part of the parameter space. For a 100 times smaller coupling strength masses up to 182 GeV are excluded.

  19. Search for squarks in R-parity violating supersymmetry in ep collisions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)](and others)

    2010-10-15

    A search for squarks in R-parity violating supersymmetry is performed in e{sup {+-}}p collisions at HERA using the H1 detector. The full data sample taken at a centre-of-mass energy {radical}(s)=319 GeV is used for the analysis, corresponding to an integrated luminosity of 255 pb{sup -1} of e{sup +}p and 183 pb{sup -1} of e{sup -}p collision data. The resonant production of squarks via a Yukawa coupling {lambda}{sup '} is considered, taking into account direct and indirect R-parity violating decay modes. Final states with jets and leptons are investigated. No evidence for squark production is found and mass dependent limits on {lambda}{sup '} are obtained in the framework of the Minimal Supersymmetric Standard Model and in the Minimal Supergravity Model. In the considered part of the parameter space, for a Yukawa coupling of electromagnetic strength {lambda}{sup '}=0.3, squarks of all flavours are excluded up to masses of 275 GeV at 95% confidence level, with down.type squarks further excluded up to masses of 290 GeV. (orig.)

  20. Search for Squark Production in R-Parity Violating Supersymmetry at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.D.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.G.; Wissing, Ch.; Woehrling, E.E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2004-01-01

    A search for squarks in R-parity violating supersymmetry is performed in e+/- p collisions at HERA using the H1 detector. The data were taken at a centre-of-mass energy of 319 GeV and correspond to an integrated luminosity of 64.3 pb-1 for e+p collisions and 13.5 pb-1 for e-p collisions. The resonant production of squarks via a Yukawa coupling lambda' is considered, taking into account direct and indirect R-parity violating decay modes. No evidence for squark production is found in the multi-lepton and multi-jet final state topologies investigated. Mass dependent limits on lambda' are obtained in the framework of the Minimal Supersymmetric Standard Model. In addition, the results are interpreted in terms of constraints on the parameters of the minimal Supergravity model. At the 95% confidence level squarks of all flavours with masses up to 275 GeV are excluded in a large part of the parameter space for a Yukawa coupling of electromagnetic strength. For a coupling strength 100 times smaller, masses up to 220 G...

  1. Search for squarks in R-parity violating supersymmetry in ep collisions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Barrelet, E. [Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; South, D.; Staykova, Z.; Steder, M.; Toll, T.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)] [and others

    2011-03-15

    A search for squarks in R-parity violating supersymmetry is performed in e {sup {+-}} p collisions at HERA using the H1 detector. The full data sample taken at a centre-of-mass energy {radical}(s)=319 GeV is used for the analysis, corresponding to an integrated luminosity of 255 pb{sup -1} of e {sup +} p and 183 pb{sup -1} of e {sup -} p collision data. The resonant production of squarks via a Yukawa coupling {lambda}' is considered, taking into account direct and indirect R-parity violating decay modes. Final states with jets and leptons are investigated. No evidence for squark production is found and mass dependent limits on {lambda}' are obtained in the framework of the Minimal Supersymmetric Standard Model and in the Minimal Supergravity Model. In the considered part of the parameter space, for a Yukawa coupling of electromagnetic strength {lambda}'=0.3, squarks of all flavours are excluded up to masses of 275 GeV at 95% confidence level, with down-type squarks further excluded up to masses of 290 GeV. (orig.)

  2. On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach

    International Nuclear Information System (INIS)

    Beleggia, M.; Graef, M. de

    2003-01-01

    A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given

  3. Space base laser torque applied on LEO satellites of various geometries at satellite’s closest approach

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2013-12-01

    Full Text Available In light of using laser power in space applications, the motivation of this paper is to use a space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is assumed that there is a space station that fires laser beam toward the satellite so the beam spreading due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser torque is calculated at the point of closest approach between the space station and some sun synchronous low Earth orbit cubesats. The numerical application shows that space based laser torque has a significant contribution on the LEO cubesats. It has a maximum value in the order of 10−8 Nm which is comparable with the residual magnetic moment. However, it has a minimum value in the order 10−11 Nm which is comparable with the aerodynamic and gravity gradient torque. Consequently, space based laser torque can be used as an active attitude control system.

  4. Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach

    Science.gov (United States)

    Lukierski, Jerzy; Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel; Woronowicz, Mariusz

    2018-02-01

    We consider new Abelian twists of Poincare algebra describing nonsymmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generating quantum Poincare-Hopf algebra providing quantum Poincare symmetries, and by considering the quantization which provides Hopf algebroid describing class of quantum relativistic phase spaces with built-in quantum Poincare covariance. If we assume that Lorentz generators are orbital i.e. do not describe spin degrees of freedom, one can embed the considered generalized phase spaces into the ones describing the quantum-deformed Heisenberg algebras.

  5. A compressive sensing approach to the calculation of the inverse data space

    KAUST Repository

    Khan, Babar Hasan

    2012-01-01

    Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion techniques has seen mitigation of some artifacts. We reformulate the problem by taking advantage of some of the developments from the field of Compressive Sensing. The seismic data is compressed at the sensor level by recording projections of the traces. We then process this compressed data directly to estimate the inverse data space. Due to the smaller number of data set we also gain in terms of computational complexity.

  6. New Li-Yau-Hamilton Inequalities for the Ricci Flow via the Space-Time Approach

    OpenAIRE

    Chow, Bennett; Knopf, Dan

    2002-01-01

    We generalize Hamilton's matrix Li-Yau-type Harnack estimate for the Ricci flow by considering the space of all LYH (Li-Yau-Hamilton) quadratics that arise as curvature tensors of space-time connections satisfying the Ricci flow with respect to the natural space-time degenerate metric. As a special case, we employ scaling arguments to derive a linear-type matrix LYH estimate. The new LYH quadratics obtained in this way are associated to the system of the Ricci flow coupled to a 1-form and a 2...

  7. Green's functions in Bianchi type-I spaces. Relation between Minkowski and Euclidean approaches

    International Nuclear Information System (INIS)

    Bukhbinder, I.L.; Kirillova, E.N.

    1988-01-01

    A theory is considered for a free scalar field with a conformal connection in a curved space-time with a Bianchi type-I metric. A representation is obtained for the Green's function G∼ in in in the form of an integral of a Schwinger-DeWitt kernel along a contour in a plane of complex-valued proper time. It is shown how as transition may be accomplished from Green's functions in space with the Euclidean signature to Green's functions in space with Minkowski signature and vice versa

  8. About One Approach to Determine the Weights of the State Space Method

    Directory of Open Access Journals (Sweden)

    I. K. Romanova

    2015-01-01

    Full Text Available The article studies methods of determining weight coefficients, also called coefficients of criteria importance in multiobjective optimization (MOO. It is assumed that these coefficients indicate a degree of individual criteria influence on the final selection (final or summary assessment: the more is coefficient, the greater is contribution of its corresponding criterion.Today in the framework of modern information systems to support decision making for various purposes a number of methods for determining relative importance of criteria has been developed. Among those methods we can distinguish a utility method, method of weighted power average; weighted median; method of matching clustered rankings, method of paired comparison of importance, etc.However, it should be noted that different techniques available for calculating weights does not eliminate the main problem of multicriteria optimization namely, the inconsistency of individual criteria. The basis for solving multicriteria problems is a fundamental principle of multi-criteria selection i.e. Edgeworth - Pareto principle.Despite a large number of methods to determine the weights, the task remains relevant not only for reasons of evaluations subjectivity, but also because of the mathematical aspects. Today, recognized is the fact that, for example, such a popular method as linear convolution of private criteria, essentially, represents one of the heuristic approaches and, applying it, you can have got not the best final choice. Carlin lemma reflects the limits of the method application.The aim of this work is to offer one of the methods to calculate the weights applied to the problem of dynamic system optimization, the quality of which is determined by the criterion of a special type, namely integral quadratic quality criterion. The main challenge relates to the method of state space, which in the literature also is called the method of analytical design of optimal controllers.Despite the

  9. CSP electricity cost evolution and grid parities based on the IEA roadmaps

    International Nuclear Information System (INIS)

    Hernández-Moro, J.; Martínez-Duart, J.M.

    2012-01-01

    The main object of this paper consists in the development of a mathematical closed-form expression for the evaluation, in the period 2010–2050, of the levelized costs of energy (LCOE) of concentrating solar power (CSP) electricity. For this purpose, the LCOE is calculated using a life-cycle cost method, based on the net present value, the discounted cash flow technique and the technology learning curve approach. By this procedure, the LCOE corresponding to CSP electricity is calculated as a function of ten independent variables. Among these parameters, special attention has been put on the evaluation of the available solar resource, the analysis of the IEA predicted values for the cumulative installed capacity, the initial (2010) cost of the system, the discount and learning rates, etc. One significant contribution of our work is that the predicted evolution of the LCOEs strongly depend, not only on the particular values of the cumulative installed capacity function in the targeted years, but mainly on the specific curved time-paths which are followed by this function. The results obtained in this work are shown both graphically and numerically. Finally, the implications that the results could have in energy planning policies and grid parity calculations are discussed. - Highlights: ► A mathematical closed expression has been developed for calculating the evolution of CSP electricity costs. ► Our technique for the prediction of CSP electricity costs and grid parities is based on IEA Roadmaps. ► The time-table (2010–2050) of cumulative installed CSP capacity is key to electricity cost predictions. ► CSP grid parities can occur within next decade for sites with proper solar resources.

  10. Promoting gender parity in basic education: Lessons from a technical cooperation project in Yemen

    Science.gov (United States)

    Yuki, Takako; Mizuno, Keiko; Ogawa, Keiichi; Mihoko, Sakai

    2013-06-01

    Many girls are not sent to school in Yemen, despite basic education being free as well as compulsory for all children aged 6-15. Aiming to improve girls' enrolment by increasing parental and community involvement, the Japan International Cooperation Agency (JICA) offered a technical cooperation project in June 2005 called Broadening Regional Initiative for Developing Girls' Education (BRIDGE). Phase 1 of this project ran for three and a half years, piloting a participatory school management model supported by school grants in six districts of the Taiz Governorate in the Southwest of Yemen. To find out how successful this approach has been in a traditional society, the authors of this paper analysed the gender parity index (GPI) of the project's pilot schools. Based on data collected at three points in time (in the initial and final years of the project, and two years after the project's end), their findings suggest that interventions in school management which strongly emphasise girls' education can be effective in improving gender parity rather quickly, regardless of the schools' initial conditions. However, the authors also observe that the pilot schools' post-project performance in terms of gender parity is mixed. While the local government allocated budgets for school grants to all pilot schools even after the project's end, training and monitoring activities were cut back. The authors further observe that the variation in performance appears to be significantly correlated with school leaders' initial perceptions of gender equality and with the number of female teachers employed. These findings point to the importance of providing schools with continuous long-term guidance and of monitoring those which implement school improvement programmes.

  11. Distribution function approach to redshift space distortions. Part II: N-body simulations

    International Nuclear Information System (INIS)

    Okumura, Teppei; Seljak, Uroš; McDonald, Patrick; Desjacques, Vincent

    2012-01-01

    Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. In this paper we use results of N-body simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of μ, cosine of the angle between the Fourier mode and line of sight, then there are a finite number of terms contributing at each order. We present these terms and investigate their contribution to the total as a function of wavevector k. For μ 2 the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k ∼ 0.015hMpc −1 , 10% at k ∼ 0.05hMpc −1 at z = 0, while for k > 0.15hMpc −1 they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contributes negatively to the power, while the contribution from vorticity part of momentum density auto-correlation adds to the total power, but is an order of magnitude lower. For μ 4 term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k > 0.15hMpc −1 . For μ 6 and μ 8 we find it has very little power for k −1 , shooting up by 2–3 orders of magnitude between k −1 and k −1 . We also compare the expansion to the full 2-d P ss (k,μ), as well as to the monopole, quadrupole, and hexadecapole integrals of P ss (k,μ). For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kμ −1 at 6-th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into Fo

  12. Contaminant ingress into multizone buildings: An analytical state-space approach

    KAUST Repository

    Parker, Simon; Coffey, Chris; Gravesen, Jens; Kirkpatrick, James; Ratcliffe, Keith; Lingard, Bryan; Nally, James

    2013-01-01

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time

  13. Tensegrity Approaches to In-Space Construction of a 1g Growable Habitat

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal seeks to design a rotating habitat with a robotic system that constructs the structure and provides a habitat growth capability. The tensegrity...

  14. A Novel Approach of Sensitive Infrared Signal Detection for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an innovative frequency up-conversion device that will efficiently convert the infrared signals into visible/near-infrared signals to enable detection of...

  15. Molecular basis sets - a general similarity-based approach for representing chemical spaces.

    Science.gov (United States)

    Raghavendra, Akshay S; Maggiora, Gerald M

    2007-01-01

    A new method, based on generalized Fourier analysis, is described that utilizes the concept of "molecular basis sets" to represent chemical space within an abstract vector space. The basis vectors in this space are abstract molecular vectors. Inner products among the basis vectors are determined using an ansatz that associates molecular similarities between pairs of molecules with their corresponding inner products. Moreover, the fact that similarities between pairs of molecules are, in essentially all cases, nonzero implies that the abstract molecular basis vectors are nonorthogonal, but since the similarity of a molecule with itself is unity, the molecular vectors are normalized to unity. A symmetric orthogonalization procedure, which optimally preserves the character of the original set of molecular basis vectors, is used to construct appropriate orthonormal basis sets. Molecules can then be represented, in general, by sets of orthonormal "molecule-like" basis vectors within a proper Euclidean vector space. However, the dimension of the space can become quite large. Thus, the work presented here assesses the effect of basis set size on a number of properties including the average squared error and average norm of molecular vectors represented in the space-the results clearly show the expected reduction in average squared error and increase in average norm as the basis set size is increased. Several distance-based statistics are also considered. These include the distribution of distances and their differences with respect to basis sets of differing size and several comparative distance measures such as Spearman rank correlation and Kruscal stress. All of the measures show that, even though the dimension can be high, the chemical spaces they represent, nonetheless, behave in a well-controlled and reasonable manner. Other abstract vector spaces analogous to that described here can also be constructed providing that the appropriate inner products can be directly

  16. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  17. Out-of-Pocket and Health Care Spending Changes for Patients Using Orally Administered Anticancer Therapy After Adoption of State Parity Laws.

    Science.gov (United States)

    Dusetzina, Stacie B; Huskamp, Haiden A; Winn, Aaron N; Basch, Ethan; Keating, Nancy L

    2017-11-09

    Oral anticancer medications are increasingly important but costly treatment options for patients with cancer. By early 2017, 43 states and Washington, DC, had passed laws to ensure patients with private insurance enrolled in fully insured health plans pay no more for anticancer medications administered by mouth than anticancer medications administered by infusion. Federal legislation regarding this issue is currently pending. Despite their rapid acceptance, the changes associated with state adoption of oral chemotherapy parity laws have not been described. To estimate changes in oral anticancer medication use, out-of-pocket spending, and health plan spending associated with oral chemotherapy parity law adoption. Analysis of administrative health plan claims data from 2008-2012 for 3 large nationwide insurers aggregated by the Health Care Cost Institute. Data analysis was first completed in 2015 and updated in 2017. The study population included 63 780 adults living in 1 of 16 states that passed parity laws during the study period and who received anticancer drug treatment for which orally administered treatment options were available. Study analysis used a difference-in-differences approach. Time period before and after adoption of state parity laws, controlling for whether the patient was enrolled in a plan subject to parity (fully insured) or not (self-funded, exempt via the Employee Retirement Income Security Act). Oral anticancer medication use, out-of-pocket spending, and total health care spending. Of the 63 780 adults aged 18 through 64 years, 51.4% participated in fully insured plans and 48.6% in self-funded plans (57.2% were women; 76.8% were aged 45 to 64 years). The use of oral anticancer medication treatment as a proportion of all anticancer treatment increased from 18% to 22% (adjusted difference-in-differences risk ratio [aDDRR], 1.04; 95% CI, 0.96-1.13; P = .34) comparing months before vs after parity. In plans subject to parity laws, the

  18. Representing a Model Using Data Mining Approach for Maximizing Profit with Considering Product Assortment and Space Allocation Decisions

    Directory of Open Access Journals (Sweden)

    Manoochehr Ansari

    2016-12-01

    Full Text Available The choice of which products to stock among numerous competing products and how much space to allocate to those products are central decisions for retailers. This study aimed to apply data mining approach so that, we got needed information from large datasets of sale transactions to find the relations between products and to make product assortments. Thus, we represented a model for product assortment and space allocation. Research population was transactional data of a store, the sample included transactional data of one-month period in the time series. Data were collected in October and November, 2015 from Shaghayegh store. 525 transactions with regard to 79 different products were analyzed. Based on the result 10 product assortments formed although some products were allocated to more than 1 product category. By solving profit equation and finding volume increase indices we allocated spaces for each product assortment.

  19. Gravitino dark matter in R-parity breaking vacua

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Covi, L.; Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K.; Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics

    2007-02-15

    We show that in the case of small R-parity and lepton number breaking couplings, primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter are naturally consistent for gravitino masses m{sub 3/2} >or similar 5 GeV. We present a model where R-parity breaking is tied to B-L breaking, which predicts the needed small couplings. The metastable next-to-lightest superparticle has a decay length that is typically larger than a few centimeters, with characteristic signatures at the LHC. The photon flux produced by relic gravitino decays may be part of the apparent excess in the extragalactic diffuse gamma-ray flux obtained from the EGRET data for a gravitino mass m{sub 3/2}{proportional_to}10 GeV. In this case, a clear signal can be expected from GLAST in the near future. (orig.)

  20. A Fast Track towards the `Higgs' Spin and Parity

    CERN Document Server

    Ellis, John; Sanz, Veronica; You, Tevong

    2012-01-01

    The LHC experiments ATLAS and CMS have discovered a new boson that resembles the long-sought Higgs boson: it cannot have spin one, and has couplings to other particles that increase with their masses, but the spin and parity remain to be determined. We show here that the `Higgs' + gauge boson invariant-mass distribution in `Higgs'-strahlung events at the Tevatron or the LHC would be very different under the J^P = 0+, 0- and 2+ hypotheses, and could provide a fast-track indicator of the `Higgs' spin and parity. Our analysis is based on simulations of the experimental event selections and cuts using PYTHIA and Delphes, and incorporates statistical samples of `toy' experiments.