WorldWideScience

Sample records for parietal lobule ba

  1. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule.

    Science.gov (United States)

    Chen, Quanjing; Garcea, Frank E; Jacobs, Robert A; Mahon, Bradford Z

    2018-06-01

    Prior neuroimaging and neuropsychological research indicates that the left inferior parietal lobule in the human brain is a critical substrate for representing object manipulation knowledge. In the present functional MRI study we used multivoxel pattern analyses to test whether action similarity among objects can be decoded in the inferior parietal lobule independent of the task applied to objects (identification or pantomime) and stimulus format in which stimuli are presented (pictures or printed words). Participants pantomimed the use of objects, cued by printed words, or identified pictures of objects. Classifiers were trained and tested across task (e.g., training data: pantomime; testing data: identification), stimulus format (e.g., training data: word format; testing format: picture) and specific objects (e.g., training data: scissors vs. corkscrew; testing data: pliers vs. screwdriver). The only brain region in which action relations among objects could be decoded across task, stimulus format and objects was the inferior parietal lobule. By contrast, medial aspects of the ventral surface of the left temporal lobe represented object function, albeit not at the same level of abstractness as actions in the inferior parietal lobule. These results suggest compulsory access to abstract action information in the inferior parietal lobe even when simply identifying objects.

  2. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of visuospatial Attention

    Directory of Open Access Journals (Sweden)

    Yan eWu

    2016-03-01

    Full Text Available The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS and diffusion magnetic resonance imaging (MRI techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. TMS results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus, with the ipsilateral inferior frontal gyrus, and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  3. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia

    2017-06-01

    Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study.

    Science.gov (United States)

    Tsujii, Takeo; Sakatani, Kaoru; Masuda, Sayako; Akiyama, Takekazu; Watanabe, Shigeru

    2011-09-15

    This study used off-line repetitive transcranial magnetic stimulation (rTMS) to examine the roles of the superior parietal lobule (SPL) and inferior frontal gyrus (IFG) in a deductive reasoning task. Subjects performed a categorical syllogistic reasoning task involving congruent, incongruent, and abstract trials. Twenty four subjects received magnetic stimulation to the SPL region prior to the task. In the other 24 subjects, TMS was administered to the IFG region before the task. Stimulation lasted for 10min, with an inter-pulse frequency of 1Hz. We found that bilateral SPL (Brodmann area (BA) 7) stimulation disrupted performance on abstract and incongruent reasoning. Left IFG (BA 45) stimulation impaired congruent reasoning performance while paradoxically facilitating incongruent reasoning performance. This resulted in the elimination of the belief-bias. In contrast, right IFG stimulation only impaired incongruent reasoning performance, thus enhancing the belief-bias effect. These findings are largely consistent with the dual-process theory of reasoning, which proposes the existence of two different human reasoning systems: a belief-based heuristic system; and a logic-based analytic system. The present findings suggest that the left language-related IFG (BA 45) may correspond to the heuristic system, while bilateral SPL may underlie the analytic system. The right IFG may play a role in blocking the belief-based heuristic system for solving incongruent reasoning trials. This study could offer an insight about functional roles of distributed brain systems in human deductive reasoning by utilizing the rTMS approach. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru

    2017-11-01

    Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8-11 years), adolescents (12-15 years), and young adults (18-23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. © The Author 2017. Published by Oxford University Press.

  6. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru

    2017-01-01

    Abstract Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8–11 years), adolescents (12–15 years), and young adults (18–23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. PMID:28968653

  7. Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches.

    Science.gov (United States)

    Wang, Jiaojian; Yang, Yong; Fan, Lingzhong; Xu, Jinping; Li, Changhai; Liu, Yong; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2015-01-01

    The superior parietal lobule (SPL) plays a pivotal role in many cognitive, perceptive, and motor-related processes. This implies that a mosaic of distinct functional and structural subregions may exist in this area. Recent studies have demonstrated that the ongoing spontaneous fluctuations in the brain at rest are highly structured and, like coactivation patterns, reflect the integration of cortical locations into long-distance networks. This suggests that the internal differentiation of a complex brain region may be revealed by interaction patterns that are reflected in different neuroimaging modalities. On the basis of this perspective, we aimed to identify a convergent functional organization of the SPL using multimodal neuroimaging approaches. The SPL was first parcellated based on its structural connections as well as on its resting-state connectivity and coactivation patterns. Then, post hoc functional characterizations and connectivity analyses were performed for each subregion. The three types of connectivity-based parcellations consistently identified five subregions in the SPL of each hemisphere. The two anterior subregions were found to be primarily involved in action processes and in visually guided visuomotor functions, whereas the three posterior subregions were primarily associated with visual perception, spatial cognition, reasoning, working memory, and attention. This parcellation scheme for the SPL was further supported by revealing distinct connectivity patterns for each subregion in all the used modalities. These results thus indicate a convergent functional architecture of the SPL that can be revealed based on different types of connectivity and is reflected by different functions and interactions. © 2014 Wiley Periodicals, Inc.

  8. Activation in the Right Inferior Parietal Lobule Reflects the Representation of Musical Structure beyond Simple Pitch Discrimination

    Science.gov (United States)

    Royal, Isabelle; Vuvan, Dominique T.; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle

    2016-01-01

    Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination. PMID:27195523

  9. [Successive subcortical hemorrhages in the superior parietal lobule and postcentral gyrus in a 23-year-old female].

    Science.gov (United States)

    Sato, K; Yoshikawa, H; Komai, K; Takamori, M

    1998-04-01

    We report a non-hypertensive 23-year-old female with successive hemorrhages in parietal subcortical regions. She had first experienced a transient pain in the left upper extremity one month before admission. She noticed dysesthesia in the same limb and weakness on her left hand, and, five days after, visited our hospital because of suddenly developed convulsion in the limb and loss of consciousness for a few minutes. Neurological examination revealed distal dominant flaccid paresis, positive pathological reflex and touch and position sense disturbances in the affected limb. Brain CT detected two high-density areas in the parietal lobe. Brain MRI demonstrated an acute phase subcortical hematoma in the left postcentral gyrus and a subacute phase one in the left superior parietal lobule. SPECT indicated hypoperfusion in the left frontal and parietal cortex. Cerebral angiography showed no abnormal findings. Her symptoms gradually improved, but left ulnar-type pseudoradicular sensory impairment remained on discharge. We considered the hemorrhage in this patient have arisen from rupture of cavernous hemangioma, because she was relatively young, the hematomas were oval in shape and successively developed in the left parietal lobe. Our patient suggests that a subcortical hemorrhage in the post-central gyrus causes flaccid paresis and pyramidal tract involvement.

  10. The inferior parietal lobule and recognition memory : expectancy violation or successful retrieval?

    OpenAIRE

    O'Connor, Akira R.; Han, Sanghoon; Dobbins, Ian G.

    2010-01-01

    Functional neuroimaging studies of episodic recognition demonstrate an increased lateral parietal response for studied versus new materials, often termed a retrieval success effect. Using a novel memory analog of attentional cueing, we manipulated the correspondence between anticipated and actual recognition evidence by presenting valid or invalid anticipatory cues (e. g., "likely old") before recognition judgments. Although a superior parietal region demonstrated the retrieval success patter...

  11. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  12. Repetitive transcranial magnetic stimulation reveals a role for the left inferior parietal lobule in matching observed kinematics during imitation.

    Science.gov (United States)

    Reader, Arran T; Royce, Ben P; Marsh, Jade E; Chivers, Katy-Jayne; Holmes, Nicholas P

    2018-04-01

    Apraxia (a disorder of complex movement) suggests that the left inferior parietal lobule (IPL) plays a role in kinematic or spatial aspects of imitation, which may be particularly important for meaningless (i.e. unfamiliar intransitive) actions. Mirror neuron theories indicate that the IPL is part of a frontoparietal system that can support imitation by linking observed and stored actions through visuomotor matching, and have less to say about different subregions of the left IPL, or how different types of action (i.e. meaningful or meaningless) are processed for imitation. We used repetitive transcranial magnetic stimulation (rTMS) to bridge this gap and better understand the roles of the left supramarginal gyrus (SMG) and left angular gyrus (AG) in imitation. We also examined whether these areas are differentially involved in meaningful and meaningless action imitation. We applied rTMS over the left SMG, over the left AG or during a no-rTMS baseline condition, and then asked participants to imitate a confederate's actions whilst the arm and hand movements of both individuals were motion-tracked. rTMS over both the left SMG and the left AG reduced the velocity of participants' finger movements relative to the actor during imitation of finger gestures, regardless of action meaning. Our results support recent claims in apraxia and confirm a role for the left IPL in kinematic processing during gesture imitation, regardless of action meaning. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Self-Face Recognition Begins to Share Active Region in Right Inferior Parietal Lobule with Proprioceptive Illusion During Adolescence.

    Science.gov (United States)

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2018-04-01

    We recently reported that right-side dominance of the inferior parietal lobule (IPL) in self-body recognition (proprioceptive illusion) task emerges during adolescence in typical human development. Here, we extend this finding by demonstrating that functional lateralization to the right IPL also develops during adolescence in another self-body (specifically a self-face) recognition task. We collected functional magnetic resonance imaging (fMRI) data from 60 right-handed healthy children (8-11 years), adolescents (12-15 years), and adults (18-23 years; 20 per group) while they judged whether a presented face was their own (Self) or that of somebody else (Other). We also analyzed fMRI data collected while they performed proprioceptive illusion task. All participants performed self-face recognition with high accuracy. Among brain regions where self-face-related activity (Self vs. Other) developed, only right IPL activity developed predominantly for self-face processing, with no substantial involvement in other-face processing. Adult-like right-dominant use of IPL emerged during adolescence, but was not yet present in childhood. Adult-like common activation between the tasks also emerged during adolescence. Adolescents showing stronger right-lateralized IPL activity during illusion also showed this during self-face recognition. Our results suggest the importance of the right IPL in neuronal processing of information associated with one's own body in typically developing humans.

  14. The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study.

    Science.gov (United States)

    Barbeau, Elise B; Chai, Xiaoqian J; Chen, Jen-Kai; Soles, Jennika; Berken, Jonathan; Baum, Shari; Watkins, Kate E; Klein, Denise

    2017-04-01

    Research to date suggests that second language acquisition results in functional and structural changes in the bilingual brain, however, in what way and how quickly these changes occur remains unclear. To address these questions, we studied fourteen English-speaking monolingual adults enrolled in a 12-week intensive French language-training program in Montreal. Using functional MRI, we investigated the neural changes associated with new language acquisition. The participants were scanned before the start of the immersion program and at the end of the 12 weeks. The fMRI scan aimed to investigate the brain regions recruited in a sentence reading task both in English, their first language (L1), and in French, their second language (L2). For the L1, fMRI patterns did not change from Time 1 to Time 2, while for the L2, the brain response changed between Time 1 and Time 2 in language-related areas. Of note, for the L2, there was higher activation at Time 2 compared to Time 1 in the left inferior parietal lobule (IPL) including the supramarginal gyrus. At Time 2 this higher activation in the IPL correlated with faster L2 reading speed. Moreover, higher activation in the left IPL at Time 1 predicted improvement in L2 reading speed from Time 1 to Time 2. Our results suggest that learning-induced plasticity occurred as early as 12 weeks into immersive second-language training, and that the IPL appears to play a special role in language learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Functional Clustering of the Human Inferior Parietal Lobule by Whole-Brain Connectivity Mapping of Resting-State Functional Magnetic Resonance Imaging Signals

    Science.gov (United States)

    Li, Chiang-Shan R.

    2014-01-01

    Abstract The human inferior parietal lobule (IPL) comprised the lateral bank of the intraparietal sulcus, angular gyrus, and supramarginal gyrus, defined on the basis of anatomical landmarks and cytoarchitectural organization of neurons. However, it is not clear as to whether the three areas represent functional subregions within the IPL. For instance, imaging studies frequently identified clusters of activities that cut across areal boundaries. Here, we used resting-state functional magnetic resonance imaging (fMRI) data to examine how individual voxels within the IPL are best clustered according to their connectivity to the whole brain. The results identified a best estimate of seven clusters that are hierarchically arranged as the anterior, middle, and posterior subregions. The anterior, middle, and posterior IPL are each significantly connected to the somatomotor areas, superior/middle/inferior frontal gyri, and regions of the default mode network. This functional segregation is supported by recent cytoarchitechtonics and tractography studies. IPL showed hemispheric differences in connectivity that accord with a predominantly left parietal role in tool use and language processing and a right parietal role in spatial attention and mathematical cognition. The functional clusters may also provide a more parsimonious and perhaps even accurate account of regional activations of the IPL during a variety of cognitive challenges, as reported in earlier fMRI studies. PMID:24308753

  16. One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking.

    Science.gov (United States)

    Vartanian, Oshin; Beatty, Erin L; Smith, Ingrid; Blackler, Kristen; Lam, Quan; Forbes, Sarah

    2018-02-23

    Contrary to earlier approaches that focused on the contributions of isolated brain regions to the emergence of creativity, there is now growing consensus that creative thought emerges from the interaction of multiple brain regions, often embedded within larger brain networks. Specifically, recent evidence from studies of divergent thinking suggests that kernel ideas emerge in posterior brain regions residing within the semantic system and/or the default mode network (DMN), and that the prefrontal cortex (PFC) regions within the executive control network (ECN) constrain those ideas for generating outputs that meet task demands. However, despite knowing that regions within these networks exhibit interaction, to date the direction of the relationship has not been tested directly. By applying Dynamic Causal Modeling (DCM) to fMRI data collected during a divergent thinking task, we tested the hypothesis that the PFC exerts unidirectional control over the middle temporal gyrus (MTG) and the inferior parietal lobule (IPL), vs. the hypothesis that these two sets of regions exert bidirectional control over each other (in the form of feedback loops). The data were consistent with the former model by demonstrating that the right inferior frontal gyrus (IFG) exerts unidirectional control over MTG and IPL, although the evidence was somewhat stronger in the case of the MTG than the IPL. Our findings highlight potential causal pathways that could underlie the neural bases of divergent thinking. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. Correspondent Functional Topography of the Human Left Inferior Parietal Lobule at Rest and Under Task Revealed Using Resting-State fMRI and Coactivation Based Parcellation.

    Science.gov (United States)

    Wang, Jiaojian; Xie, Sangma; Guo, Xin; Becker, Benjamin; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2017-03-01

    The human left inferior parietal lobule (LIPL) plays a pivotal role in many cognitive functions and is an important node in the default mode network (DMN). Although many previous studies have proposed different parcellation schemes for the LIPL, the detailed functional organization of the LIPL and the exact correspondence between the DMN and LIPL subregions remain unclear. Mounting evidence indicates that spontaneous fluctuations in the brain are strongly associated with cognitive performance at the behavioral level. However, whether a consistent functional topographic organization of the LIPL during rest and under task can be revealed remains unknown. Here, they used resting-state functional connectivity (RSFC) and task-related coactivation patterns separately to parcellate the LIPL and identified seven subregions. Four subregions were located in the supramarginal gyrus (SMG) and three subregions were located in the angular gyrus (AG). The subregion-specific networks and functional characterization revealed that the four anterior subregions were found to be primarily involved in sensorimotor processing, movement imagination and inhibitory control, audition perception and speech processing, and social cognition, whereas the three posterior subregions were mainly involved in episodic memory, semantic processing, and spatial cognition. The results revealed a detailed functional organization of the LIPL and suggested that the LIPL is a functionally heterogeneous area. In addition, the present study demonstrated that the functional architecture of the LIPL during rest corresponds with that found in task processing. Hum Brain Mapp 38:1659-1675, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The effect of rTMS over the inferior parietal lobule on EEG sensorimotor reactivity differs according to self-reported traits of autism in typically developing individuals.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Cantarella, Simona; Fitzgerald, Paul B; Russo, Riccardo

    2013-12-06

    Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex-C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas-FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved.

  19. Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography.

    Science.gov (United States)

    Makris, N; Preti, M G; Wassermann, D; Rathi, Y; Papadimitriou, G M; Yergatian, C; Dickerson, B C; Shenton, M E; Kubicki, M

    2013-09-01

    The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer's disease as well as attention-deficit/hyperactivity disorder and schizophrenia.

  20. [Neuroanatomy of the Parietal Association Areas].

    Science.gov (United States)

    Kobayashi, Yasushi

    2016-11-01

    The parietal association cortex comprises the superior and inferior parietal lobules, the precuneus and the cortices in the intraparietal, parietooccipital and lunate sulci. By processing somatic, visual, acoustic and vestibular sensory information, the parietal association cortex plays a pivotal role in spatial cognition and motor control of the eyes and the extremities. Sensory information from the primary and secondary somatosensory areas enters the superior parietal lobule and is transferred to the inferior parietal lobule. Visual information is processed through the dorsal visual pathway and it reaches the inferior parietal lobule, the intraparietal sulcus and the precuneus. Acoustic information is transferred posteriorly from the primary acoustic area, and it reaches the posterior region of the inferior parietal lobule. The areas in the intraparietal sulcus project to the premotor area, the frontal eye fields, and the prefrontal area. These areas are involved in the control of ocular movements, reaching and grasping of the upper extremities, and spatial working memory. The posterior region of the inferior parietal lobule and the precuneus both project either directly, or indirectly via the posterior cingulate gyrus, to the parahippocampal and entorhinal cortices. Both these areas are strongly associated with hippocampal functions for long-term memory formation.

  1. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  2. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  3. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  4. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex.

    Science.gov (United States)

    Pisella, Laure

    2017-06-01

    Visual perception involves complex and active processes. We will start by explaining why visual perception is dependent on visuospatial working memory, especially the spatiotemporal integration of the perceived elements through the ocular exploration of visual scenes. Then we will present neuropsychology, transcranial magnetic stimulation and neuroimaging data yielding information on the specific role of the posterior parietal cortex of the right hemisphere in visuospatial working memory. Within the posterior parietal cortex, neuropsychology data also suggest that there might be dissociated neural substrates for deployment of attention (superior parietal lobules) and spatiotemporal integration (right inferior parietal lobule). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    Pandya, D.N.; Seltzer, B.

    1982-01-01

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  6. CERES: A new cerebellum lobule segmentation method.

    Science.gov (United States)

    Romero, Jose E; Coupé, Pierrick; Giraud, Rémi; Ta, Vinh-Thong; Fonov, Vladimir; Park, Min Tae M; Chakravarty, M Mallar; Voineskos, Aristotle N; Manjón, Jose V

    2017-02-15

    The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Xenomelia: a new right parietal lobe syndrome.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S

    2011-12-01

    Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.

  8. Lobule separator prosthesis to prevent adhesion of reconstructed ear lobe

    Directory of Open Access Journals (Sweden)

    Lokendra Gupta

    2016-01-01

    Full Text Available An adhesion is a band of scar tissue that binds two parts of the tissue together, which develops when the body's repair mechanisms respond to any tissue disturbance, such as surgery, infection, trauma, or radiation. Prevention of unwanted scar bands is of utmost importance to develop esthetic and healthy tissue. This article describes a technique to prevent the adhesion of the surgically reconstructed ear lobule with facial skin, using novel lobule separator prosthesis.

  9. Morphology and digitally aided morphometry of the human paracentral lobule.

    Science.gov (United States)

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  10. Superior Parietal Lobule Dysfunction in a Homogeneous Group of Dyslexic Children with a Visual Attention Span Disorder

    Science.gov (United States)

    Peyrin, C.; Demonet, J. F.; N'Guyen-Morel, M. A.; Le Bas, J. F.; Valdois, S.

    2011-01-01

    A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control…

  11. Is This Hand for Real? Attenuation of the Rubber Hand Illusion by Transcranial Magnetic Stimulation over the Inferior Parietal Lobule

    NARCIS (Netherlands)

    Kammers, M.P.M.; Verhagen, L.; Dijkerman, H.C.; Hogendoorn, H.; Vignemont, F. de; Schutter, D.J.L.G.

    2009-01-01

    In the rubber hand illusion (RHI), participants incorporate a rubber hand into a mental representation of one's body. This deceptive feeling of ownership is accompanied by recalibration of the perceived position of the participant's real hand toward the rubber hand. Neuroimaging data suggest

  12. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  13. CD56+ immune cell infiltration and MICA are decreased in breast lobules with fibrocystic changes.

    Science.gov (United States)

    Kerekes, Daniel; Visscher, Daniel W; Hoskin, Tanya L; Radisky, Derek C; Brahmbhatt, Rushin D; Pena, Alvaro; Frost, Marlene H; Arshad, Muhammad; Stallings-Mann, Melody; Winham, Stacey J; Murphy, Linda; Denison, Lori; Carter, Jodi M; Knutson, Keith L; Degnim, Amy C

    2018-02-01

    While the role of natural killer (NK) cells in breast cancer therapy has been investigated, little information is known about NK cell function and presence in nonmalignant and premalignant breast tissue. Here, we investigate and quantify NK cell marker CD56 and activating ligand MICA in breast tissue with benign breast disease. Serial tissue sections from 88 subjects, 44 with benign breast disease (BBD) who remained cancer-free, and 44 with BBD who later developed cancer, were stained with H&E, anti-MICA, and anti-CD56. Up to ten representative lobules were identified on each section. Using digital image analysis, MICA and CD56 densities were determined for each lobule, reported as percent of pixels in the lobule that registered as stained by each antibody. Analyses were performed on a per-subject and per-lobule basis. Per-subject multivariate analyses showed associations of CD56 and MICA with age: CD56 was increased in older subjects (p = 0.03), while MICA was increased in younger subjects (p = 0.005). Per-lobule analyses showed that CD56 and MICA levels were both decreased in lobules with fibrocystic change, with median levels of CD56 and MICA staining, respectively, at 0.31 and 7.0% in fibrocystic lobules compared to 0.76 and 12.2% in lobules without fibrocystic change (p fibrocystic lobules, proliferative/atypical lobules showed significantly lower expression compared to nonproliferative lobules for MICA (p = 0.02) but not for CD56 (p = 0.80). Levels of CD56+ NK cells and activating ligand MICA were decreased in breast lobules with fibrocystic change, and MICA levels showed a significant stepwise decrease with increasing histopathologic abnormality. MICA levels were also significantly decreased in older subjects, who generally have higher risk of developing cancer. These findings advance a model in which MICA promotes cytotoxic activity in CD56+ NK cells to protect against tumorigenesis in breast lobules, and suggest further research is warranted.

  14. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Tomonori Kagawa

    Full Text Available A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS. Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7, extrastriate cortex (BA18, BA19, and striate cortex (BA17 activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7, extrastriate cortex (BA18, 19, and striate cortex (BA17, as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  16. Altered synthesis of some secretory proteins in pancreatic lobules isolated from streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Duan, R.D.; Erlanson-Albertsson, C.

    1990-01-01

    The in vitro incorporation of [35S]cysteine into lipase, colipase, amylase, procarboxypeptidase A and B, and the serine proteases and total proteins was studied in pancreatic lobules isolated from normal and diabetic rats with or without insulin treatment. The incorporation of [35S]cysteine into total proteins was 65% greater in pancreatic lobules from diabetic animals than from normal rats. The increased incorporation was partly reversed by insulin treatment (2 U/100 g/day for 5 days) of diabetic rats. The relative rates of biosynthesis for amylase and the procarboxypeptidases in diabetic pancreatic lobules were decreased by 75 and 25%, respectively, after 1 h of incubation, while those for lipase, colipase, and the serine proteases were increased by 90, 85, and 35%, respectively. The absolute rates of synthesis for these enzymes changed in the same direction as the relative rates in diabetic lobules, except that for the procarboxypeptidases, which did not change. The changed rates of biosynthesis for the pancreatic enzymes were reversed by insulin treatment of the diabetic rats. Kinetic studies showed that the incorporation of [35S]cysteine into amylase, lipase, and colipase was linear until up to 2 h of incubation in normal pancreatic lobules, while in the diabetic lobules the incorporation into lipase and colipase was accelerated, reaching a plateau level already after 1 h of incubation. It is concluded that the biosynthesis of pancreatic secretory proteins in diabetic rats is greatly changed both in terms of quantity and kinetics

  17. [Repair of soft tissue defect in hand or foot with lobulated medial sural artery perforator flap].

    Science.gov (United States)

    Fengjing, Zhao; Jianmin, Yao; Xingqun, Zhang; Liang, Ma; Longchun, Zhang; Yibo, Xu; Peng, Wang; Zhen, Zhu

    2015-11-01

    To explore the clinical effect of the lobulated medial sural artery perforator flap in repairing soft tissue defect in hand or foot. Since March 2012 to September 2014, 6 cases with soft tissue defects in hands or feet were treated by lobulated medial sural artery flaps pedicled with 1st musculo-cutaneous perforator and 2st musculo-cutaneous perforator of the medial sural artery. The size of the flaps ranged from 4.5 cm x 10.0 cm to 6.0 cm x 17.0 cm. 5 cases of lobulated flap survived smoothly, only 1 lobulated flap had venous articulo, but this flap also survived after the articulo was removed by vascular exploration. All flaps had desirable appearance and sensation and the two-point discrimination was 6 mm in mean with 4 to 12 months follow-up (average, 7 months). Linear scar was left in donor sites in 3 cases and skin scar in 3 cases. There was no malfunction in donor sites. Lobulated medial sural artery perforator flap is feasible and ideal method for the treatment of soft tissue defect in hand or foot with satisfactory effect.

  18. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    Science.gov (United States)

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  19. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  20. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    Science.gov (United States)

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  1. Single Stage Reconstruction of Type IIA Defect of the Ear Lobule ...

    African Journals Online (AJOL)

    its loss causes an obvious aesthetic abnormality.[3,4]. There are key ... The aesthetic results are generally well acceptable and there is a good color match between the neolobule and the surrounding skin. Key words: Ear lobule, Limberg flap, reconstruction, ... burden on the patient from a two‑stage procedure, an unnatural ...

  2. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction

    Directory of Open Access Journals (Sweden)

    Muriel Anne Lobier

    2014-07-01

    Full Text Available The visual attention (VA span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT in dyslexia have yet to be explored. Using fMRI, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric, similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined ROI, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity could predict vOT activity in each group. In the left hemisphere, SPL activity modulated vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity modulated vOT activity only for dyslexic readers. These results bring critical support to the visual attention interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.

  3. Encefalomenigocele atrésico parietal Parietal atresic encephalomeningocele

    Directory of Open Access Journals (Sweden)

    Liliana Rivera Oliva

    2011-09-01

    Full Text Available El encefalocele es una anomalía congénita rara, en la que una porción del encéfalo protruye a través de un orificio craneal (evaginación, generalmente situado en la línea media. Clínicamente se caracteriza por una masa epicraneal, de consistencia blanda, muchas veces acompañada de trastornos psicomotores, convulsiones y trastornos de la visión. Se presenta el caso de un recién nacido con diagnóstico de encefalomeningocele atrésico parietal, intervenido quirúrgicamente y con evolución satisfactoria.The encephalocele is a uncommon congenital anomaly where a portion of encephalon protrudes through a cranial orifice (evagination, generally located in the middle line. Clinically, it is characterized by a soft epicranial mass often accompanied or psychomotor disorders, convulsions and vision disorders. This is the case of a newborn diagnosed with parietal atresic encephalomeningocele operated on with a satisfactory evolution.

  4. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  5. The fMRI study on the front-parietal activation in abacus mental calculation trained children

    International Nuclear Information System (INIS)

    Zhao Kunyuan; Wang Bin; Long Jinfeng; Li Lixin; Shen Xiaojun

    2010-01-01

    Objective: To investigate the difference in front-parietal activation between the trained and untrained children engaged in addition and multiplication with functional magnetic resonance imaging (fMRI), and to explore the role of abacus mental calculation in brain development. Methods: Twenty-four children trained with abacus mental calculation and twelve untrained children performed mental calculation tasks including addition, multiplication and number-object control judging tasks. Blood oxygenation level dependence (BOLD) fMRI was performed when they were calculating. All data were analyzed by SPM2 (statistical parametric mapping 2) to generate the brain activation map. Results: The performance of the trained group had better correctness and shorter reaction time than that of the untrained group. The front-parietal activation between two groups had obvious difference. The activation involved less prefrontal cortex in the trained group than in the untrained group (P<0.05). The parietal activation in the trained group was mainly in the posterior superior parietal lobe/ precuneus, whereas the activation areas focused on the inferior parietal lobule in the untrained group. Conclusion: Abacus mental calculation involves multiple functional areas. and these areas may work together as a whole in processing arithmetic problems. Abacus mental calculation not only enhances the information processing in some brain areas and improves the utilization efficiency of neural resources, but also plays an important role in developing brain. (authors)

  6. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Right parietal cortex and calculation processing: intraoperative functional mapping of multiplication and addition in patients affected by a brain tumor.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo

    2013-11-01

    The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.

  8. Parietal podocytes in normal human glomeruli.

    Science.gov (United States)

    Bariety, Jean; Mandet, Chantal; Hill, Gary S; Bruneval, Patrick

    2006-10-01

    Although parietal podocytes along the Bowman's capsule have been described by electron microscopy in the normal human kidney, their molecular composition remains unknown. Ten human normal kidneys that were removed for cancer were assessed for the presence and the extent of parietal podocytes along the Bowman's capsule. The expression of podocyte-specific proteins (podocalyxin, glomerular epithelial protein-1, podocin, nephrin, synaptopodin, and alpha-actinin-4), podocyte synthesized proteins (vascular endothelial growth factor and novH), transcription factors (WT1 and PAX2), cyclin-dependent kinase inhibitor p57, and intermediate filaments (cytokeratins and vimentin) was tested. In addition, six normal fetal kidneys were studied to track the ontogeny of parietal podocytes. The podocyte protein labeling detected parietal podocytes in all of the kidneys, was found in 76.6% on average of Bowman's capsule sections, and was prominent at the vascular pole. WT1 and p57 were expressed in some parietal cells, whereas PAX2 was present in all or most of them, so some parietal cells coexpressed WT1 and PAX2. Furthermore, parietal podocytes coexpressed WT1 and podocyte proteins. Cytokeratin-positive cells covered a variable part of the capsule and did not express podocyte proteins. Tuft-capsular podocyte bridges were present in 15.5 +/- 3.7% of the glomerular sections. Parietal podocytes often covered the juxtaglomerular arterioles and were present within the extraglomerular mesangium. Parietal podocytes were present in fetal kidneys. Parietal podocytes that express the same epitopes as visceral podocytes do exist along Bowman's capsule in the normal adult kidney. They are a constitutive cell type of the Bowman's capsule. Therefore, their role in physiology and pathology should be investigated.

  9. Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase.

    Science.gov (United States)

    Nakayama, Yuji; Yamaguchi, Naoto

    2005-04-01

    Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation.

  10. Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase

    International Nuclear Information System (INIS)

    Nakayama, Yuji; Yamaguchi, Naoto

    2005-01-01

    Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation

  11. Fat-plug myringoplasty of ear lobule vs abdominal donor sites.

    Science.gov (United States)

    Acar, Mustafa; Yazıcı, Demet; San, Turhan; Muluk, Nuray Bayar; Cingi, Cemal

    2015-04-01

    The purpose of this study is to compare the success rates of fat-graft myringoplasties harvesting adipose grafts from different donor sites (ear lobule vs abdomen). The clinical records of 61 patients (24 males and 37 females) who underwent fat-plug myringoplasty (FPM) were reviewed retrospectively. Fat from ear lobule (FEL) and abdominal fat were used as graft materials. The impact of age, gender, systemic diseases, topography of the perforation, utilization of fat graft materials of different origin on the tympanic membrane closure rate and the effect of FPM on hearing gain was analyzed. Our tympanic membrane (TM) closure rate was 82 %. No statistical significant difference was observed regarding age, gender, comorbidities (septal deviation, hypertension and diabetes mellitus) or habits (smoking). Posterior TM perforations had significantly lower healing rate. The change in TM closure rate considering different adipose tissue donor sites was not statistically significant. The hearing gain of the patients was mostly below 20 dB. Fat-plug myringoplasty (FPM) is a safe, cost-effective and easy operation for selected patients. Abdominal fat graft is as effective as ear lobe fat graft on tympanic membrane healing, has cosmetic advantages and should be taken into consideration when planning fat as the graft source.

  12. Fronto-parietal coding of goal-directed actions performed by artificial agents.

    Science.gov (United States)

    Kupferberg, Aleksandra; Iacoboni, Marco; Flanagin, Virginia; Huber, Markus; Kasparbauer, Anna; Baumgartner, Thomas; Hasler, Gregor; Schmidt, Florian; Borst, Christoph; Glasauer, Stefan

    2018-03-01

    With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment. © 2017 Wiley Periodicals, Inc.

  13. Anatomical substrates of the alerting, orienting and executive control components of attention: focus on the posterior parietal lobe.

    Directory of Open Access Journals (Sweden)

    Xuntao Yin

    Full Text Available Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL is critical for the attention function. However, the unique role of distinct parietal cortical subregions and their underlying white matter (WM remains in question. In this study, we collected both magnetic resonance imaging and diffusion tensor imaging (DTI data in normal participants, and evaluated their attention performance using attention network test (ANT, which could isolate three different attention components: alerting, orienting and executive control. Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions and correlated with behavioural performance. Tract-based spatial statistics (TBSS was used for the voxel-wise statistical analysis. Results indicated structure-behaviour relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, probabilistic tractography demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. We conclude that distinct areas and features within PPL are associated with different components of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.

  14. Microstructural analyses of the posterior cerebellar lobules in relapsing-onset multiple sclerosis and their implication in cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Amandine Moroso

    Full Text Available The posterior cerebellar lobules seem to be the anatomical substrate of cognitive cerebellar processes, but their microstructural alterations in multiple sclerosis (MS remain unclear.To correlate diffusion metrics in lobules VI to VIIIb in persons with clinically isolated syndrome (PwCIS and in cognitively impaired persons with MS (CIPwMS with their cognitive performances.Sixty-nine patients (37 PwCIS, 32 CIPwMS and 36 matched healthy subjects (HS underwent 3T magnetic resonance imaging, including 3D T1-weighted and diffusion tensor imaging (DTI. Fractional anisotropy (FA and mean diffusivity (MD were calculated within each lobule and in the cerebellar peduncles. We investigated the correlations between cognitive outcomes and the diffusion parameters of cerebellar sub-structures and performed multiple linear regression analysis to predict cognitive disability.FA was generally lower and MD was higher in the cerebellum and specifically in the vermis Crus II, lobules VIIb and VIIIb in CIPwMS compared with PwCIS and HS. In hierarchical regression analyses, 31% of the working memory z score variance was explained by FA in the left lobule VI and in the left superior peduncle. Working memory was also associated with MD in the vermis Crus II. FA in the left lobule VI and right VIIIa predicted part of the information processing speed (IPS z scores.DTI indicators of cerebellar microstructural damage were associated with cognitive deficits in MS. Our results suggested that cerebellar lobular alterations have an impact on attention, working memory and IPS.

  15. Functional Heterogeneity in Posterior Parietal Cortex Across Attention and Episodic Memory Retrieval

    Science.gov (United States)

    Hutchinson, J. Benjamin; Uncapher, Melina R.; Weiner, Kevin S.; Bressler, David W.; Silver, Michael A.; Preston, Alison R.; Wagner, Anthony D.

    2014-01-01

    While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes. PMID:23019246

  16. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study

    Science.gov (United States)

    Burra, Nicolas; Kerzel, Dirk; George, Nathalie

    2016-01-01

    Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40–80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces–as opposed to high-pass or low-pas filtered faces–were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis. PMID:27880776

  18. Effect of transcranial magnetic stimulation (TMS on parietal and premotor cortex during planning of reaching movements.

    Directory of Open Access Journals (Sweden)

    Pierpaolo Busan

    Full Text Available BACKGROUND: Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL and premotor cortex (PM, and their activation seems to take place in parallel. METHODOLOGY: The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS during planning of reaching movements under visual guidance. PRINCIPAL FINDINGS: A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation. CONCLUSIONS: This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.

  19. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    Science.gov (United States)

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  20. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory.

    Science.gov (United States)

    Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D

    2018-04-18

    Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.

  1. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Hinson, Vanessa K.; George, Mark S.; Leenders, Klaus L.

    Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic

  2. The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production

    Directory of Open Access Journals (Sweden)

    Stefan eHeim

    2012-12-01

    Full Text Available Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focussed on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions remains to be elucidated. Thus, the present study investigated whether sequencing of hand motor actions vs. speech motor actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables (po-pi-po. Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45. In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a yet little considered role of the superior parietal lobule in the origins of speech, and may be discussed in the light of embodiment of speech and language in the

  3. The mirror mechanism in the parietal lobe.

    Science.gov (United States)

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Regional intercostal bulging of the parietal pleura

    International Nuclear Information System (INIS)

    Jantsch, H.; Greene, R.; Lechner, G.; Mavritz, W.; Pichler, W.; Winkler, M.; Zadrobilek, E.

    1989-01-01

    This paper describes bedside radiographs with localized intercostal bulging as the sole indication of tension pneumothorax in six patients with acute deterioration in gas exchange. Relief of the pneumothorax was followed by a rush of gas from the tension space and a prompt improvement in gas exchange. The authors concluded the regional intercostal bulging of the parietal pleura may be the sole indicator of life-threatening tension pneumothorax in patients on mechanical ventilation

  5. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    Science.gov (United States)

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  6. Altered Parietal Activation during Non-symbolic Number Comparison in Children with Prenatal Alcohol Exposure

    Directory of Open Access Journals (Sweden)

    Keri J. Woods

    2018-01-01

    Full Text Available Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI, we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS/partial FAS, 5 heavily exposed (HE non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years. Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS, bilateral posterior superior parietal lobules (PSPL, and left angular gyrus (left AG, using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non

  7. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia.

    Directory of Open Access Journals (Sweden)

    Enrico Premi

    Full Text Available BACKGROUND: Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI is a promising tool to carefully describe disease signature from the earliest disease phase. OBJECTIVE: To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers to the clinical phase of the disease (GRN- related Frontotemporal Dementia. METHODS: Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo, Fractional Amplitude of Low Frequency Fluctuation (fALFF and Degree Centrality (DC were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy. RESULTS: Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found. CONCLUSIONS: GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.

  8. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  9. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  10. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.

    Science.gov (United States)

    Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon

    2017-05-01

    It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Muscarinic responses of gastric parietal cells

    International Nuclear Information System (INIS)

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G.

    1991-01-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the [Ca]i transient

  12. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    Science.gov (United States)

    Gimbel, Sarah I; Brewer, James B

    2014-01-01

    Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  13. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    Directory of Open Access Journals (Sweden)

    Sarah I Gimbel

    Full Text Available Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7, posterior ventral (BA 39, and anterior ventral (BA 40 regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  14. Bilateral, posterior parietal polymicrogyria as part of speech therapy ...

    African Journals Online (AJOL)

    SA Journal of Radiology ... Magnetic resonance imaging (MRI) has been associated with either diffuse polymicrogyria around the entire extent of the sylvian fissure or in the posterior aspects of the parietal regions, in which case it is called posterior parietal ... This article discusses the possible embryological origin of these

  15. Use of explicit memory cues following parietal lobe lesions.

    Science.gov (United States)

    Dobbins, Ian G; Jaeger, Antonio; Studer, Bettina; Simons, Jon S

    2012-11-01

    The putative role of the lateral parietal lobe in episodic memory has recently become a topic of considerable debate, owing primarily to its consistent activation for studied materials during functional magnetic resonance imaging studies of recognition. Here we examined the performance of patients with parietal lobe lesions using an explicit memory cueing task in which probabilistic cues ("Likely Old" or "Likely New"; 75% validity) preceded the majority of verbal recognition memory probes. Without cues, patients and control participants did not differ in accuracy. However, group differences emerged during the "Likely New" cue condition with controls responding more accurately than parietal patients when these cues were valid (preceding new materials) and trending towards less accuracy when these cues were invalid (preceding old materials). Both effects suggest insufficient integration of external cues into memory judgments on the part of the parietal patients whose cued performance largely resembled performance in the complete absence of cues. Comparison of the parietal patients to a patient group with frontal lobe lesions suggested the pattern was specific to parietal and adjacent area lesions. Overall, the data indicate that parietal lobe patients fail to appropriately incorporate external cues of novelty into recognition attributions. This finding supports a role for the lateral parietal lobe in the adaptive biasing of memory judgments through the integration of external cues and internal memory evidence. We outline the importance of such adaptive biasing through consideration of basic signal detection predictions regarding maximum possible accuracy with and without informative environmental cues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Caracterización del injerto parietal

    Directory of Open Access Journals (Sweden)

    José Manuel Díaz Fernández

    1996-12-01

    Full Text Available Se realizó un estudio descriptivo, longitudinal y prospectivo de 22 pacientes en los que se utilizó el injerto parietal autógeno para reconstruir defectos del cráneo, en los servicios de Cirugía Maxilofacial y Neurocirugía del Hospital Clinicoquirúrgico Docente "Saturnino Lora", de Santiago de Cuba, desde 1988 hasta 1991. El método de extracción del injerto con división in situ resultó el más empleado y el que ofreció las mejores posibilidades de reconstrucción en cuanto a forma, volumen y flexibilidad, por lo que se recomienda en los defectos pequeños y medianos, sobre todo de la región frontal y áreas adyacentes, donde el contorno y la simetría son los 2 aspectos fundamentales que se deben conseguir. El método de división, in vitro se utilizó en las reconstrucciones de las deformidades de grandes dimensiones, particularmente en aquellas que no incluían la frente. El índice de complicaciones fue bajoIt was carried out a descriptive, longitudinal and prospective study of 22 patients in whom an autogenous parietal graft was used to reconstruct cranial defects at the Maxillofacial Surgery and Neurosurgery Department of the "Saturnino Lora" Clinical and Surgical Teaching Hospital, in Santiago de Cuba, from 1988 to 1991. The graft extraction method with division in situ was the most used and offered the best possibilities for reconstruction as regards form, volume and flexibility. Therefore, it is recommended for small and medium defects, particularly of the frontal region and adjacent areas, where contour and symmetry are the two fundamental aspects to be taken into consideration. The method of division in vitro was used to reconstruct large deformities, specially those in which the forehead was not included. The complications index was low

  17. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  18. Uncertain relational reasoning in the parietal cortex.

    Science.gov (United States)

    Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus

    2016-04-01

    The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  20. Intradiploic encephalocele of the left parietal bone: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok [Myongji St. Mary' s Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood.

  1. Intradiploic encephalocele of the left parietal bone: A case report

    International Nuclear Information System (INIS)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok

    2015-01-01

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood

  2. Parietal cortex and representation of the mental Self

    DEFF Research Database (Denmark)

    Lou, Hans C; Luber, Bruce; Crupain, Michael

    2004-01-01

    For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit "autonoetic consciousness" is thought to emerge by retrieval of memory of personally experienced events ("episodic memory"). During episodic retrieval, functional imaging studies consistently show....... The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self...

  3. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  4. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  5. The impact of auditory working memory training on the fronto-parietal working memory network.

    Science.gov (United States)

    Schneiders, Julia A; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.

  6. The impact of auditory working memory training on the fronto-parietal working memory network

    Science.gov (United States)

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously. PMID:22701418

  7. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  8. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  9. Bilateral parietal extradural metastatic ewing's sarcoma simulating acute epidural hematoma

    International Nuclear Information System (INIS)

    Aslam, E.; Imran, M.; Faridi, N.M.

    2006-01-01

    Sarcomas usually metastasize to lugs. The following case report describes an unusual metastasis of Ewing's sarcoma to extradural parietal region bilaterally. The primary was found at lower end of ulna. (author)

  10. Attenuating illusory binding with TMS of the right parietal cortex

    OpenAIRE

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of featur...

  11. Predicting oculomotor behaviour from correlated populations of posterior parietal neurons.

    Science.gov (United States)

    Graf, Arnulf B A; Andersen, Richard A

    2015-01-23

    Oculomotor function critically depends on how signals representing saccade direction and eye position are combined across neurons in the lateral intraparietal (LIP) area of the posterior parietal cortex. Here we show that populations of parietal neurons exhibit correlated variability, and that using these interneuronal correlations yields oculomotor predictions that are more accurate and also less uncertain. The structure of LIP population responses is therefore essential for reliable read-out of oculomotor behaviour.

  12. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques

    NARCIS (Netherlands)

    A.H. Epema; N.M. Gerrits (N.); J. Voogd (Jan)

    1990-01-01

    textabstractThe distribution of vestibular neurons projecting to the flocculus and the nodulus and uvula of the caudal vermis (Larsell's lobules X and IX) was investigated with retrograde axonal transport of horseradish peroxidase and the fluorescent tracers Fast Blue, Nuclear Yellow and Diamidino

  14. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  15. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  16. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  17. Functional segregation and integration within fronto-parietal networks.

    Science.gov (United States)

    Parlatini, Valeria; Radua, Joaquim; Dell'Acqua, Flavio; Leslie, Anoushka; Simmons, Andy; Murphy, Declan G; Catani, Marco; Thiebaut de Schotten, Michel

    2017-02-01

    Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Ba incorporation in benthic foraminifera

    NARCIS (Netherlands)

    de Nooijer, L.J.; Brombacher, Anieke; Mewes, A.; Langer, Gerald; Nehrke, G.; Bijma, Jelle; Reichart, G.J.

    2017-01-01

    Barium (Ba) incorporated in the calcite of many foraminiferal species is proportional to the concentration of Ba in seawater. Since the open ocean concentration of Ba closely follows seawater alkalinity, foraminiferal Ba ∕ Ca can be used to reconstruct the latter. Alternatively, Ba ∕ Ca from

  19. Alpha decay of 114Ba

    International Nuclear Information System (INIS)

    Mazzocchi, C.; Janas, Z.; Batist, L.; Belleguic, V.; Doering, J.; Kapica, M.; Kirchner, R.; Roeckl, E.; Gierlik, M.; Zylicz, J.; Mahmud, H.; Schmidt, K.; Woods, P.J.

    2003-01-01

    The neutron-deficient isotope 114 Ba was produced in a fusion evaporation reaction at the GSI On-Line Mass Separator. We measured the α-particle energy of 114 Ba, the half-life of its daughter nucleus 110 Xe, and the α-decay branching ratios for 114 Ba, 110 Xe and 106 Te. (orig.)

  20. Investigation of Parietal Polysaccharides from Retama raetam Roots ...

    African Journals Online (AJOL)

    These results indicate the presence of the homogalacturonans and rhamnogalacturonans in pectin. This study constitutes the preliminary data obtained in the biochemical analysis of the parietal compounds of the roots of a species which grows in an arid area in comparison with those of its aerial parts. Keywords: Retama ...

  1. Significance of parietal projection in radiosotope scintigraphy of the brain

    International Nuclear Information System (INIS)

    Fomchenkov, E.P.

    1978-01-01

    The diagnostic value of the isotope scintigraphy of the brain in the parieal projection with the change of the dip angle of the gamma-chamber detector to the plane of the physiological horizontal was revealed. The observation was made on 100 patients with suspected presence of the volumetric process of the brain. Three variants of placing were studied: the parietal projection - standard (collimator plane parallel to the plane of physiological horizontal and strictly perpendicular to the sagittal plane); the placing with an angle of 30 deg between the detector plane and the physiological horizontal, opened at the front (posterio-parietal); placing with an angle of 30 deg between the detector plane and the physiological horizontal opened at the back (anterio-parietal). A comparative analysis of scintigrams with focal processes of the brain showed the largest informativeness of the proposed modification of the parietal projection in the form of a change of the dip angle of the gamma-chamber detector plane to the plane of the physiological horizontal opened at the back; this makes it possible to reveal more thoroughly the focus of the increased, pathological accumulation of the isotope in different parts of the skull, where the use of as standard placing is of small informativeness

  2. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  3. Parietal epithelial cells and podocytes in glomerular diseases

    NARCIS (Netherlands)

    Smeets, B.; Moeller, M.J.

    2012-01-01

    In recent years, it has become apparent that parietal epithelial cells (PECs) play an important role within the renal glomerulus, in particular in diseased conditions. In this review, we examine current knowledge about the role of PECs and their interactions with podocytes in development and under

  4. Parietal cells-new perspectives in glomerular disease

    NARCIS (Netherlands)

    Miesen, L.; Steenbergen, E.; Smeets, B.

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and

  5. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  6. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  7. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  8. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Parietal seeding of unsuspected gallbladder carcinoma after laparoscopic cholecystectomy.

    Science.gov (United States)

    Marmorale, C; Scibé, R; Siquini, W; Massa, M; Brunelli, A; Landi, E

    1998-01-01

    Laparoscopic cholecystectomy (VALC) represents the treatment of choice for the symptomatic gallstones. However the occurrence of an adenocarcinoma of the gallbladder results a controindication for this surgical technique. We present a case of a 52 years old woman who underwent a VALC; histology revealed a gallbladder adenocarcinoma. For this reason the patient underwent a second operation that is right hepatic trisegmentectomy. Six months later the patient presented with a parietal recurrence at the extraction site of the gallbladder. We discuss the possible mechanism responsible for carcinomatous dissemination during laparoscopic surgery and we raccommend the use of some procedures in order to limit the risk and eventually to treat a neoplastic parietal seeding. These complications suggest the problem about the utility and the future played by video assisted laparoscopic surgery in the diagnosis and treatment of intraabdominal malignancies.

  10. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  11. Kinesthetic alexia due to left parietal lobe lesions.

    Science.gov (United States)

    Ihori, Nami; Kawamura, Mitsuru; Araki, Shigeo; Kawachi, Juro

    2002-01-01

    To investigate the neuropsychological mechanisms of kinesthetic alexia, we asked 7 patients who showed kinesthetic alexia with preserved visual reading after damage to the left parietal region to perform tasks consisting of kinesthetic written reproduction (writing down the same letter as the kinesthetic stimulus), kinesthetic reading aloud, visual written reproduction (copying letters), and visual reading aloud of hiragana (Japanese phonograms). We compared the performance in these tasks and the lesion sites in each patient. The results suggested that deficits in any one of the following functions might cause kinesthetic alexia: (1) the retrieval of kinesthetic images (motor engrams) of characters from kinesthetic stimuli, (2) kinesthetic images themselves, (3) access to cross-modal association from kinesthetic images, and (4) cross-modal association itself (retrieval of auditory and visual images from kinesthetic images of characters). Each of these factors seemed to be related to different lesion sites in the left parietal lobe. Copyright 2002 S. Karger AG, Basel

  12. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  13. Parietal cells?new perspectives in glomerular disease

    OpenAIRE

    Miesen, Laura; Steenbergen, Eric; Smeets, Bart

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman?s capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertain...

  14. Pneumothorax simulated by detachment of parietal pleura associated with pneumomediastinum

    International Nuclear Information System (INIS)

    Rozeik, C.; Kotterer, O.; Deininger, H.K.

    1994-01-01

    We report a case of blunt chest trauma, where findings on repeated conventional chest radiographs were compatible with pneumothorax developing after 2 days of mechanical high-pressure ventilation. CT showed that the appearance was due to a detachment of the parietal pleura along the lateral, mediastinal and diaphragmatic boundaries of the lungs, imitating a pneumothorax. The case report illustrates the key role of CT in the differential diagnosis of epipleural interstitial air collection versus pneumothorax. (orig./MG)

  15. Pneumothorax simulated by detachment of parietal pleura associated with pneumomediastinum

    Energy Technology Data Exchange (ETDEWEB)

    Rozeik, C. [Radiologie 1, Staedtische Kliniken Darmstadt (Germany); Kotterer, O. [Radiologie 1, Staedtische Kliniken Darmstadt (Germany); Deininger, H.K. [Radiologie 1, Staedtische Kliniken Darmstadt (Germany)

    1994-10-01

    We report a case of blunt chest trauma, where findings on repeated conventional chest radiographs were compatible with pneumothorax developing after 2 days of mechanical high-pressure ventilation. CT showed that the appearance was due to a detachment of the parietal pleura along the lateral, mediastinal and diaphragmatic boundaries of the lungs, imitating a pneumothorax. The case report illustrates the key role of CT in the differential diagnosis of epipleural interstitial air collection versus pneumothorax. (orig./MG)

  16. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair

    OpenAIRE

    Shankland, Stuart J.; Anders, Hans-Joachim; Romagnani, Paola

    2013-01-01

    Purpose of review We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. Recent findings Several new paradigms involving PECs have emerged demonstrating thei...

  17. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  18. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    Science.gov (United States)

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  19. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    Science.gov (United States)

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  20. Differential roles of polar orbital prefrontal cortex and parietal lobes in logical reasoning with neutral and negative emotional content.

    Science.gov (United States)

    Eimontaite, Iveta; Goel, Vinod; Raymont, Vanessa; Krueger, Frank; Schindler, Igor; Grafman, Jordan

    2018-05-14

    To answer the question of how brain pathology affects reasoning about negative emotional content, we administered a disjunctive logical reasoning task involving arguments with neutral content (e.g. Either there are tigers or women in NYC, but not both; There are no tigers in NYC; There are women in NYC) and emotionally laden content (e.g. Either there are pedophiles or politicians in Texas, but not both; There are politicians in Texas; There are no pedophiles in Texas) to 92 neurological patients with focal lesions to various parts of the brain. A Voxel Lesion Symptom Mapping (VLSM) analysis identified 16 patients, all with lesions to the orbital polar prefrontal cortex (BA 10 & 11), as being selectively impaired in the emotional reasoning condition. Another 17 patients, all with lesions to the parietal cortex, were identified as being impaired in the neutral content condition. The reasoning scores of these two patient groups, along with 23 matched normal controls, underwent additional analysis to explore the effect of belief bias. This analysis revealed that the differences identified above were largely driven by trials where there was an incongruency between the believability of the conclusion and the validity of the argument (i.e. valid argument /false conclusion or invalid argument /true conclusion). Patients with lesions to polar orbital prefrontal cortex underperformed in incongruent emotional content trials and over performed in incongruent neutral content trials (compared to both normal controls and patients with parietal lobe lesions). Patients with lesions to parietal lobes underperformed normal controls (at a trend level) in neutral trials where there was a congruency between the believability of the conclusion and the validity of the argument (i.e. valid argument/true conclusion or invalid argument/false conclusion). We conclude that lesions to the polar orbital prefrontal cortex (i) prevent these patients from enjoying any emotionally induced cognitive

  1. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation.

    Directory of Open Access Journals (Sweden)

    Paulina M Kowalewska

    Full Text Available BACKGROUND: The heparan sulfate proteoglycan syndecan-1 (CD138 was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. METHODS: Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2, anti-KC (CXCL1 or anti-MCP-1 (CCL2. RESULTS AND CONCLUSION: Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18, ICAM-1 (CD54 and VCAM-1 (CD106 did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte

  2. Distinct antigenic characteristics of murine parietal yolk sac laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Tichy, D; Damjanov, A

    1987-01-01

    Two monoclonal antibodies (LAM-A and LAM-B) specific for laminin from normal and neoplastic parietal yolk sac (PYS) cells were produced in rats immunized with a mouse yolk sac carcinoma cell line. Both antibodies immunoprecipitated the 400,000- and 200,000-Da chains of laminin and reacted...... with purified PYS laminin in ELISA. LAM-A reacted with mouse and rat PYS laminin, whereas LAM-B reacted only with mouse PYS laminin. Formaldehyde- and methanol-fixed adult and fetal somatic tissues were immunohistochemically unreactive with either of the two antibodies. In acetone-fixed tissue sections, both...

  3. Decay /sup 133/Ba

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K; Hasiza, M L; Grewal, B S; Sahota, H S

    1982-07-01

    The relative gamma ray intensities of transitions in the decay of /sup 133/Ba have been measured using an intrinsic Ge detector. The electron capture branching ratios have been determined for 81, 161, 384 and 437 keV levels. The attenuation effect of long half-life of 81 keV levels has been studied in solid and liquid media. The electron capture decay has been investigated by changing the concentration of ethylene-diamine-tetraacetic acid (EDTA) environment. The 5/2/sup +/ yields 5/2/sup +/ 79.67 keV transition has an E0 to E2 intensity qsub(k)sup(2) <= 0.31. 10 refs., 4 figures.

  4. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Tracey A. Knaus

    2012-01-01

    Full Text Available Autism spectrum disorder (ASD is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years, matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.

  6. Interleukin-17A Promotes Parietal Cell Atrophy by Inducing ApoptosisSummary

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    Full Text Available Background & Aims: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A in causing parietal cell atrophy. Methods: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. Results: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. Conclusions: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a

  7. The BaBar Mini

    International Nuclear Information System (INIS)

    Brown, David N.

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  8. The BaBar mini

    International Nuclear Information System (INIS)

    Brown, David N.; BaBar Collaboration

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  9. Transient contribution of left posterior parietal cortex to cognitive restructuring.

    Science.gov (United States)

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-03-17

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring.

  10. Motor role of parietal cortex in a monkey model of hemispatial neglect.

    Science.gov (United States)

    Kubanek, Jan; Li, Jingfeng M; Snyder, Lawrence H

    2015-04-21

    Parietal cortex is central to spatial cognition. Lesions of parietal cortex often lead to hemispatial neglect, an impairment of choices of targets in space. It has been unclear whether parietal cortex implements target choice at the general cognitive level, or whether parietal cortex subserves the choice of targets of particular actions. To address this question, monkeys engaged in choice tasks in two distinct action contexts--eye movements and arm movements. We placed focused reversible lesions into specific parietal circuits using the GABAA receptor agonist muscimol and validated the lesion placement using MRI. We found that lesions on the lateral bank of the intraparietal sulcus [lateral intraparietal area (LIP)] specifically biased choices made using eye movements, whereas lesions on the medial bank of the intraparietal sulcus [parietal reach region (PRR)] specifically biased choices made using arm movements. This double dissociation suggests that target choice is implemented in dedicated parietal circuits in the context of specific actions. This finding emphasizes a motor role of parietal cortex in spatial choice making and contributes to our understanding of hemispatial neglect.

  11. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Science.gov (United States)

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  12. Effects of n-3 and n-6 polyunsaturated fatty acid-enriched diets on lipid metabolism in periportal and pericentral compartments of female rat liver lobules and the consequences for cell proliferation after partial hepatectomy

    NARCIS (Netherlands)

    van Noorden, C. J.

    1995-01-01

    The effects of a low fat diet or diets enriched with either n-6 or n-3 polyunsaturated fatty acids (safflower or fish oil, respectively) on lipid metabolism in periportal and pericentral zones of female rat liver lobules were investigated in relation with cell proliferation after partial

  13. EFFECTS OF PARTIAL HEPATECTOMY, PHENOBARBITAL AND 3-METHYLCHOLANTHRENE ON KINETIC-PARAMETERS OF GLUCOSE-6-PHOSPHATE AND PHOSPHOGLUCONATE DEHYDROGENASE IN-SITU IN PERIPORTAL, INTERMEDIATE AND PERICENTRAL ZONES OF RAT-LIVER LOBULES

    NARCIS (Netherlands)

    Jonges, G. N.; Vogels, I. M. C.; van Noorden, C. J. F.

    1995-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) are heterogeneously distributed in liver lobules of female rats. The maximum activity of both enzymes is approximately twice higher in intermediate and pericentral zones than in periportal zones. Enzyme activities

  14. AHP 45: REVIEW: PHYUR BA

    Directory of Open Access Journals (Sweden)

    'Brug mo skyid འབྲུག་མོ་སྐྱིད། (Zhoumaoji 周毛吉

    2017-03-01

    Full Text Available Mkha' mo rgyal was born in Dgon gong ma Village, 'Ba' (Tongde County, Mtsho lho (Hainan Tibetan Autonomous Prefecture, Mtsho sngon (Qinghai Province. While attending the Tibetan Studies College of Mtsho sngon Nationalities University she began writing. In addition to editing and translating teaching materials for primary and secondary schools, she has also published short stories and poetry (Mkha' mo rgyal, 2015. Phyur ba is the first Tibetan women's novel (Robin 2016:86 and was recognized as an Outstanding Work by the Qinghai Writers Guild in 2014 (Duojiecairang and Limaoyou 2014. 1 The name, which translates as 'dried cheese' is a food eaten daily by many Tibetans. Made from fermented milk without cream, it is dried in the sun by women in pastoral areas. Both sweet and sour, phyur ba brings to mind the happiness and sadness, ups and downs, laughter and tears that life brings. ...

  15. Attention as the 'glue' for object integration in parietal extinction.

    Science.gov (United States)

    Conci, Markus; Groß, Julia; Keller, Ingo; Müller, Hermann J; Finke, Kathrin

    2018-04-01

    Patients with unilateral, parietal brain damage frequently show visual extinction, which manifests in a failure to identify contralesional stimuli when presented simultaneously with other, ipsilesional stimuli (but full awareness for single stimulus presentations). Extinction reflects an impairment of spatial selective attention, leaving basic preattentive processing unaffected. For instance, access to bilaterally grouped objects is usually spared in extinction, suggesting that grouping occurs at a stage preceding (in the patients: abnormally biased) spatial-attentional selection. Here, we reinvestigated this notion by comparing (largely between participants, but also within a single-case participant) conditions with objects that varied in their dominant direction of grouping: from the attended to the non-attended hemifield (data from Conci et al., 2009) versus from the non-attended to the attended hemifield (new data). We observe complete absence of extinction when shape completion extended from the attended hemifield. By contrast, extinction was not diminished when object groupings propagate from the unattended hemifield. Moreover, we found the individual severity of the attentional impairment (assessed by a standard "inattention" test) to be directly related to the degree of completion in the unattended hemifield. This pattern indicates that grouping can overcome visual extinction only when object integration departs from the attended visual field, implying, contrary to many previous accounts, that attention is crucial for grouping to be initiated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  17. Parietal cells-new perspectives in glomerular disease.

    Science.gov (United States)

    Miesen, Laura; Steenbergen, Eric; Smeets, Bart

    2017-07-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertaining to the maintenance of the filtration barrier and transport, respectively. For PECs, no specific function other than a structural one has been known until recently. Possible important functions for PECs in the fate of the glomerulus in glomerular disease have now become apparent: (1) PECs may be involved in the replacement of lost podocytes; (2) PECs form the basis of extracapillary proliferative lesions and subsequent sclerosis in glomerular disease. In addition to the acknowledgement that PECs are crucial in glomerular disease, knowledge has been gained regarding the molecular processes driving the phenotypic changes and behavior of PECs. Understanding these molecular processes is important for the development of specific therapeutic approaches aimed at either stimulation of the regenerative function of PECs or inhibition of the pro-sclerotic action of PECs. In this review, we discuss recent advances pertaining to the role of PECs in glomerular regeneration and disease and address the major molecular processes involved.

  18. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  19. The structure of the parietal pleura and its relationship to pleural liquid dynamics in sheep.

    Science.gov (United States)

    Albertine, K H; Wiener-Kronish, J P; Staub, N C

    1984-03-01

    We studied the parietal pleura of six sheep to obtain information on pleural structure, blood supply, and lymphatic drainage. In the strict sense, the parietal pleura is composed of a single layer of mesothelial cells and a uniform layer of loose, irregular connective tissue (about 23 micron in width) subjacent to the mesothelial cells. The parietal pleural blood vessels are 10-15 micron from the pleural space. Tracer substances put in the pleural space are removed at specific locations. Colloidal carbon and chick red blood cells are cleared by the parietal pleural lymphatics located over the intercostal spaces at the caudal end of the thoracic wall and over the lateral sides of the pericardial sac. In these areas the mesothelial cells have specialized openings, the stomata, that directly communicate with the underlying lymphatic lacunae. Cells and particulate matter in the pleural space are cleared only by the parietal pleural lymphatics. Compared to the visceral pleura, we believe the thinness of the parietal pleura, the closeness of its blood vessels to the pleural space, and its specialized lymphatic clearance pathways, together indicate that the parietal pleura plays a major role in pleural liquid and protein dynamics in sheep.

  20. Origin of parietal podocytes in atubular glomeruli mapped by lineage tracing.

    Science.gov (United States)

    Schulte, Kevin; Berger, Katja; Boor, Peter; Jirak, Peggy; Gelman, Irwin H; Arkill, Kenton P; Neal, Christopher R; Kriz, Wilhelm; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-01-01

    Parietal podocytes are fully differentiated podocytes lining Bowman's capsule where normally only parietal epithelial cells (PECs) are found. Parietal podocytes form throughout life and are regularly observed in human biopsies, particularly in atubular glomeruli of diseased kidneys; however, the origin of parietal podocytes is unresolved. To assess the capacity of PECs to transdifferentiate into parietal podocytes, we developed and characterized a novel method for creating atubular glomeruli by electrocoagulation of the renal cortex in mice. Electrocoagulation produced multiple atubular glomeruli containing PECs as well as parietal podocytes that projected from the vascular pole and lined Bowman's capsule. Notably, induction of cell death was evident in some PECs. In contrast, Bowman's capsules of control animals and normal glomeruli of electrocoagulated kidneys rarely contained podocytes. PECs and podocytes were traced by inducible and irreversible genetic tagging using triple transgenic mice (PEC- or Pod-rtTA/LC1/R26R). Examination of serial cryosections indicated that visceral podocytes migrated onto Bowman's capsule via the vascular stalk; direct transdifferentiation from PECs to podocytes was not observed. Similar results were obtained in a unilateral ureter obstruction model and in human diseased kidney biopsies, in which overlap of PEC- or podocyte-specific antibody staining indicative of gradual differentiation did not occur. These results suggest that induction of atubular glomeruli leads to ablation of PECs and subsequent migration of visceral podocytes onto Bowman's capsule, rather than transdifferentiation from PECs to parietal podocytes.

  1. TRANSITIVITY AND THE BA CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Pei-Jung Kuo

    2010-06-01

    Full Text Available In this paper, I discuss the legitimacy of positing a Transitivity Projection (= TrP cf. Bowers 1993, 1997, 2001 and 2002 in the BA construction in Mandarin Chinese. BA has been proposed to be a semantically-bleached verb, inserted in the v position (Huang 1997 and Lin 2001. Several pieces of evidence such as manner adverbial placement (cf. Huang, Li and Li 2009 and GEI-insertion (cf. Tang 2001 indicate that there must be a functional projection between the vP and VP to host the BA NP. I propose that a TrP is probably the most apt candidate for the XP. I also argue, in contrast to the proposal by Huang, Li and Li (2009, that the present proposal which employs a TrP captures most of the properties of the BA construction. A comparison with the structure of the BEI construction also shows that the TrP proposal fits into the general picture of current linguistic theory on transitive constructions without extra stipulations.

  2. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  3. Parietal lesions produce illusory conjunction errors in rats

    Directory of Open Access Journals (Sweden)

    Raymond PIERRE Kesner

    2012-05-01

    Full Text Available When several different objects are presented, visual objects are perceived correctly only if their features are identified and then bound together. Illusory-conjunction errors result when an object is correctly identified but is combined incorrectly. The parietal cortex (PPC has been shown repeatedly to play an important role in feature binding. The present study builds on a series of recent studies that have made use of visual search paradigms to elucidate the neural system involved in feature binding. This experiment attempts to define the role the PPC plays in binding the properties of a visual object that varies on the features of color and size in rats. Rats with PPC lesions or control surgery were exposed to three blocks of 20 trials administered over a 1-week period, with each block containing ten-one feature and ten-two feature trials. The target object consisted of one color object (e.g. black and white and one size object (e.g. short and tall. Of the ten one feature trials, five of the trials were tailored specifically for size discrimination and five for color discrimination. In the two-feature condition, the animal was required to locate the targeted object among four objects with two objects differing in size and two objects differing in color. The results showed a significant decrease in learning the task for the PPC lesioned rats compared to controls, especially for the two-feature condition. Based on a subsequent error analysis for color and size, the results showed a significant increase in illusory conjunction errors for the PPC lesioned rats relative to controls for color and relative to color discrimination, suggesting that the PPC may support feature binding as it relates to color. There was an increase in illusory conjunctions errors for both the PPC lesioned and control animals for size, but this appeared to be due to a difficulty with size discrimination.

  4. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman’s capsule expressed podocyte markers, and cells on Bowman’s capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman’s capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman’s capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman’s capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

  5. Podocyte and Parietal Epithelial Cell Interactions in Health and Disease.

    Science.gov (United States)

    Al Hussain, Turki; Al Mana, Hadeel; Hussein, Maged H; Akhtar, Mohammed

    2017-01-01

    The glomerulus has 3 resident cells namely mesangial cells that produce the mesangial matrix, endothelial cells that line the glomerular capillaries, and podocytes that cover the outer surface of the glomerular basement membrane. Parietal epithelial cells (PrECs), which line the Bowman's capsule are not part of the glomerular tuft but may have an important role in the normal function of the glomerulus. A significant progress has been made in recent years regarding our understanding of the role and function of these cells in normal kidney and in kidneys with various types of glomerulopathy. In crescentic glomerulonephritis necrotizing injury of the glomerular tuft results in activation and leakage of fibrinogen which provides the trigger for excessive proliferation of PrECs giving rise to glomerular crescents. In cases of collapsing glomerulopathy, podocyte injury causes collapse of the glomerular capillaries and activation and proliferation of PrECs, which accumulate within the urinary space in the form of pseudocrescents. Many of the noninflammatory glomerular lesions such as focal segmental glomerulosclerosis and global glomerulosclerosis also result from podocyte injury which causes variable loss of podocytes. In these cases podocyte injury leads to activation of PrECs that extend on to the glomerular tuft where they cause segmental and/or global sclerosis by producing excess matrix, resulting in obliteration of the capillary lumina. In diabetic nephropathy, in addition to increased matrix production in the mesangium and glomerular basement membranes, increased loss of podocytes is an important determinant of long-term prognosis. Contrary to prior belief there is no convincing evidence for an active podocyte proliferation in any of the above mentioned glomerulopathies.

  6. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility.

    Science.gov (United States)

    Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus

    2011-10-01

    Spontaneous dissociative alterations in awareness and perception among highly suggestible individuals following a hypnotic induction may result from disruptions in the functional coordination of the frontal-parietal network. We recorded EEG and self-reported state dissociation in control and hypnosis conditions in two sessions with low and highly suggestible participants. Highly suggestible participants reliably experienced greater state dissociation and exhibited lower frontal-parietal phase synchrony in the alpha2 frequency band during hypnosis than low suggestible participants. These findings suggest that highly suggestible individuals exhibit a disruption of the frontal-parietal network that is only observable following a hypnotic induction. Copyright © 2011 Society for Psychophysiological Research.

  7. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum.

    Science.gov (United States)

    Wefers, Annika K; Lindner, Sven; Schulte, Johannes H; Schüller, Ulrich

    2017-02-01

    LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.

  8. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  9. The Oft-Neglected Role of Parietal EEG Asymmetry and Risk for Major Depressive Disorder

    Science.gov (United States)

    Stewart, Jennifer L.; Towers, David N.; Coan, James A.; Allen, John J.B.

    2010-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n = 143) and without (n = 163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity. PMID:20525011

  10. The contribution of the human posterior parietal cortex to episodic memory

    OpenAIRE

    Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio

    2017-01-01

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, poten...

  11. BaMa / Raivo Juurak

    Index Scriptorium Estoniae

    Juurak, Raivo, 1949-

    2002-01-01

    Eesti ülikoolide üleminekust 3+2 süsteemile. Lühend BaMa on tulnud kasutusele seoses Euroopa ülikoolide õppekavade reformimisega ning tähistab õppekava, kus esimese astme läbimise järel omandatakse bakalaureuse- ja teise järel magistrikraad. Õppekavade tüüpidest Eesti ja Euroopa Liidu kõrgkoolides ning Bologna deklaratsioonist

  12. Visuo-spatial construction in patients with frontal and parietal lobe lesions

    Directory of Open Access Journals (Sweden)

    Himani Kashyap

    2011-04-01

    Full Text Available Visuospatial construction, traditionally viewed as a putative parietal function, also requires sustained attention, planning, organization strategies and error correction, and hence frontal lobe mediation. The relative contributions of the frontal and parietal lobes are poorly understood. To examine the contributions of parietal, frontal lobes, as well as right and left cerebral hemispheres to visuospatial construction. The Stick Construction Test for two-dimensional construction and the Block Construction Test for three-dimensional construction were administered pre-surgically to patients with lesions in the parietal lobe (n =9 and the frontal lobe (n=11, along with normal control subjects (n =20 matched to the patients on age (+/- 3 years, gender, education (+/- 3 years and handedness. The patients were significantly slower than the controls on both two-dimensional and three-dimensional tests. Patients with parietal lesions were slower than those with frontal lesions on the test of three-dimensional construction. Within each lobe patients with right and left sided lesions did not differ significantly. It appears that tests of three-dimensional construction might be most sensitive to visuospatial construction deficits. Visuospatial construction involves the mediation of both frontal and parietal lobes. The function does not appear to be lateralized. The networks arising from the parieto-occipital areas and projecting to the frontal cortices (e.g., occipito-frontal fasciculus may be the basis of the mediation of both lobes in visuospatial construction. The present findings need replication from studies with larger sample sizes.

  13. Clinical evidence of parietal cortex dysfunction and correlation with extent of allodynia in CRPS type 1.

    Science.gov (United States)

    Cohen, H; McCabe, C; Harris, N; Hall, J; Lewis, J; Blake, D R

    2013-04-01

    Unusual symptoms such as digit misidentification and neglect-like phenomena have been reported in complex regional pain syndrome (CRPS), which we hypothesized could be explained by parietal lobe dysfunction. Twenty-two patients with chronic CRPS attending an in-patient rehabilitation programme underwent standard neurological examination followed by clinical assessment of parietal lobe function and detailed sensory testing. Fifteen (68%) patients had evidence of parietal lobe dysfunction. Six (27%) subjects failed six or more test categories and demonstrated new clinical signs consistent with their parietal testing impairments, which were impacting significantly on activities of daily living. A higher incidence was noted in subjects with >1 limb involvement, CRPS affecting the dominant side and in left-handed subjects. Eighteen patients (82%) had mechanical allodynia covering 3-57.5% of the body surface area. Allochiria (unilateral tactile stimulation perceived only in the analogous location on the opposite limb), sensory extinction (concurrent bilateral tactile stimulation perceived only in one limb), referred sensations (unilateral tactile stimulation perceived concurrently in another discrete body area) and dysynchiria (unilateral non-noxious tactile stimulation perceived bilaterally as noxious) were present in some patients. Greater extent of body surface allodynia was correlated with worse parietal function (Spearman's rho = -0.674, p = 0.001). In patients with chronic CRPS, detailed clinical examination may reveal parietal dysfunction, with severity relating to the extent of allodynia. © 2012 European Federation of International Association for the Study of Pain Chapters.

  14. Patterns of morphological integration between parietal and temporal areas in the human skull.

    Science.gov (United States)

    Bruner, Emiliano; Pereira-Pedro, Ana Sofia; Bastir, Markus

    2017-10-01

    Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis. © 2017 Wiley Periodicals, Inc.

  15. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

    Science.gov (United States)

    Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya

    2009-10-15

    Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

  16. Phase equilibria in the BaUO3-BaZrO3-BaMoO3 system

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Yamanaka, Shinsuke; Matsuda, Tetsushi; Uno, Masayoshi; Yamamoto, Kazuya; Namekawa, Takashi

    2002-01-01

    The phase equilibria in the pseudo-ternary BaUO 3 -BaZrO 3 -BaMoO 3 system were studied to understand the thermochemical properties of the perovskite type gray oxide phase in high burnup MOX fuel. Thermodynamic equilibrium calculation for the system was performed by using a Chem Sage program under the various oxygen potentials. Solid solutions existing in the system were treated by an ideal solution model. The present calculation results well agreed with the previous reported post irradiation examination results, showing that BaMoO 3 was scarcely included in the gray oxide phase. (author)

  17. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    Science.gov (United States)

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and

  18. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility

    Science.gov (United States)

    Tapia, Evelina; Mazzi, Chiara; Savazzi, Silvia; Beck, Diane M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) applied over the occipital lobe approximately 100 ms after the onset of a stimulus decreases its visibility if it appears in the location of the phosphene. Because phosphenes can also be elicited by stimulation of the parietal regions, we asked if the same procedure that is used to reduce visibility of stimuli with occipital TMS will lead to decreased stimulus visibility when TMS is applied to parietal regions. TMS was randomly applied at 0 to 130 ms after the onset of the stimulus (SOA) in steps of 10 ms in occipital and parietal regions. Participants responded to the orientation of the line stimulus and rated its visibility. We replicate previous reports of phosphenes from both occipital and parietal TMS. As previously reported, we also observed visual suppression around the classical 100 ms window both in the objective line orientation and subjective visibility responses with occipital TMS. Parietal stimulation, on the other hand, did not consistently reduce stimulus visibility in any time window. PMID:24584900

  19. Mass spectrometric determination of stability of gaseous BaMoO2, Ba2MoO4, Ba2MoO5, Ba2Mo2O8 molecules

    International Nuclear Information System (INIS)

    Kudin, L.S.; Balduchchi, Dzh.; Dzhil'i, G.; Gvido, M.

    1982-01-01

    During the mass spectrometric investigation of BaCrO 4 evaporation Cr + , Ba + , BaO + main ions are recorded as well as BaMoO 4 + , BaMoO 3 + , BaMoO 2 + , BaMoO + , BaMoO 4 + , Ba 2 MoO 5 + , BaMo 2 O 8 + ions - the products of ionization of three-component (Ba, Mo, M) molecules, forming as a result of substance chemical interaction with the material of an effusion cell (Mo). Heats of formation of BaMoO 2 , Ba 2 MoO 4 , Ba 2 MoO 5 and Ba 2 Mo 2 O 8 molecules which constituted - 577+-70, -1343+-115, -1464+-70, -2393+-90 k J/mol respectively are determined on the base of the analysis of curves of ionisation efficiency and of reaction heats Ba 2 MoO 5 =BaO+BaMoO 4 , ΔH 0 0 =322+-60 kJ/mol Ba 2 Mo 2 O 8 =2BaMoO 4 , ΔH 0 0 =351+-80 kJ/mol calculated with the use of third low of thermodynamics [ru

  20. BaBar Data Aquisition

    CERN Document Server

    Scott, I; Grosso, P; Hamilton, R T; Huffer, M E; O'Grady, C; Russell, J J

    1998-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by analysing the decays of a very large sample of B and Bbar mesons produced at the high luminosity PEP-11 accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detector subsystems. Data from the front end electronics is read into commercial VME processors via a custom "personality card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data are read out via a non-blocking network switch to a farm of commercial UNIX processors. Careful design of the core data acquisition code has enabled us to sustain events rates in excess of 20 kHz while maintaini...

  1. Transcranial direct current stimulation over the parietal cortex alters bias in item and source memory tasks.

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F

    2016-10-01

    Neuroimaging data have shown that activity in the lateral posterior parietal cortex (PPC) correlates with item recognition and source recollection, but there is considerable debate about its specific contributions. Performance on both item and source memory tasks were compared between participants who were given bilateral transcranial direct current stimulation (tDCS) over the parietal cortex to those given prefrontal or sham tDCS. The parietal tDCS group, but not the prefrontal group, showed decreased false recognition, and less bias in item and source discrimination tasks compared to sham stimulation. These results are consistent with a causal role of the PPC in item and source memory retrieval, likely based on attentional and decision-making biases. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    Directory of Open Access Journals (Sweden)

    Fumi eKatsuki

    2012-05-01

    Full Text Available The dorsolateral prefrontal and posterior parietal cortex are two parts of a broader brain network involved in the control of cognitive functions such as working memory, spatial attention, and decision making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the dorsolateral prefrontal cortex to influence memory performance, attention allocation and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the dorsolateral prefrontal and posterior parietal cortex, and their underlying mechanisms.

  3. Modulation of fronto-parietal connections during the rubber hand illusion

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Ritterband-Rosenbaum, Anina; Christensen, Mark Schram

    2017-01-01

    Accumulating evidence suggests that parieto-frontal connections play a role in adjusting body ownership during the Rubber Hand Illusion (RHI). Using a motor version of the rubber hand illusion paradigm, we applied single-site and dual-site transcranial magnetic stimulation (TMS) to investigate...... and during three RHI conditions: a) agency and ownership, b) agency but no ownership and c) neither agency nor ownership. Parietal-motor communication differed among experimental conditions. The induction of action ownership was associated with an inhibitory parietal-to-motor connectivity, which...... cortico-spinal and parietal-frontal connectivity during perceived rubber hand ownership. Healthy volunteers received a conditioning TMS pulse over left anterior intraparietal sulcus (aIPS) and a test TMS pulse over left primary motor cortex (M1). Motor Evoked Potentials (MEPs) were recorded at rest...

  4. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  5. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    Science.gov (United States)

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-08-16

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception.

  6. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    Science.gov (United States)

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Katrin Hanken

    2016-09-01

    Full Text Available Background: Fatigue in multiple sclerosis (MS patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1,5mA was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20min of a 40min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5mA over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. TDCS was delivered for 20min before patients performed a 20min lasting visual vigilance task.Results: Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in reaction time associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation.Conclusions: Anodal tDCS over the right parietal cortex can counteract the increase in reaction times during vigilance performance but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  8. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Hanken, Katrin; Bosse, Mona; Möhrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1.5 mA) was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20 min of a 40-min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5 mA) over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. tDCS was delivered for 20 min before patients performed a 20-min lasting visual vigilance task. Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in RT associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation. Anodal tDCS over the right parietal cortex can counteract the increase in RTs during vigilance performance, but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  9. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  10. The contribution of the human posterior parietal cortex to episodic memory.

    Science.gov (United States)

    Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio

    2017-02-17

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

  11. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study.

    Science.gov (United States)

    Balestrini, Simona; Francione, Stefano; Mai, Roberto; Castana, Laura; Casaceli, Giuseppe; Marino, Daniela; Provinciali, Leandro; Cardinale, Francesco; Tassi, Laura

    2015-09-01

    The functional complexity of the parietal lobe still represents a challenge for neurophysiological and functional neuroimaging studies. While the somatosensory functions of the anterior parietal cortex are well established, the posterior parietal cortex has a relevant role in processing the sensory information, including visuo-spatial perception, visual attention, visuo-motor transformations and other complex and not completely understood functions. We retrospectively analysed all the clinical manifestations induced by intracerebral bipolar electrical stimulation in 172 patients suffering from drug-resistant focal epilepsy (mean age 25.6, standard deviation 11.6; 44% females and 56% males) with at least one electrode stereotactically implanted in the parietal cortex. A total of 1186 electrical stimulations were included in the analysis, of which 88 were subsequently excluded because of eliciting pathological electric activity or inducing ictal symptomatology. In the dominant parietal lobe, clinical responses were observed for 56 (25%) of the low-frequency stimulations and for 76 (50%) of the high-frequency stimulations. In the non-dominant parietal lobe, 111 (27%) low-frequency and 176 (55%) high-frequency stimulations were associated with a clinical response. Body scheme alteration was the only clinical effect showing a lateralization, as they were evoked only in the non-dominant hemisphere. The occurrence of somatosensory sensations, motor symptoms, dysarthria and multimodal responses were significantly associated with stimulation of the postcentral gyrus (odds ratio: 5.83, P < 0.001; odds ratio: 8.77, P < 0.001; odds ratio: 5.44, P = 0.011; odds ratio: 8.33, P = 0.006; respectively). Stimulation of the intraparietal sulcus was associated with the occurrence of sensory illusions or hallucinations (odds ratio: 8.68, P < 0.001) and eyeball/eyelid movements or sensations (odds ratio: 4.35, P = 0.047). To our knowledge, this is the only currently available complete

  12. Back-contacted BaSi

    NARCIS (Netherlands)

    Vismara, R.; Isabella, O.; Zeman, M.

    2017-01-01

    We present the optical investigation of a novel back-contacted architecture for solar cells based on a thin barium (di)silicide (BaSi2) absorber. First, through the analysis of absorption limits of different semiconducting materials, we show the potential of BaSi2 for

  13. Phonon dispersion curves of BCC Ba

    International Nuclear Information System (INIS)

    Mizuki, J.; Stassis, C.; Zarestky, J.

    1985-01-01

    Ba, as well as Sr and Ca, is a divalent alkaline earth metal. At room temperature and ambient pressure, the structure of Ba is bcc, whereas that of Sr and Ca is fcc. Under pressure, the bcc phase of Ba transforms to an hcp structure at 55 kbar. Also, at 37 kbar Ba becomes a superconductor with T/sub c/ = 0.06 K. These properties are highly dependent on the position of the d bands relative to the Fermi level. Experimental investigation of the elastic and lattice dynamical properties of these metals has been hindered by difficulties in growing single crystals. However, recently the authors were able to grow several single crystals of bcc Ba of sufficient volume for inelastic neutron scattering experiments. Some of the results are summarized here

  14. Temporo-Parietal Junction Activity in Theory-of-Mind Tasks: Falseness, Beliefs, or Attention

    Science.gov (United States)

    Aichhorn, Markus; Perner, Josef; Weiss, Benjamin; Kronbichler, Martin; Staffen, Wolfgang; Ladurner, Gunther

    2009-01-01

    By combining the false belief (FB) and photo (PH) vignettes to identify theory-of-mind areas with the false sign (FS) vignettes, we re-establish the functional asymmetry between the left and right temporo-parietal junction (TPJ). The right TPJ (TPJ-R) is specially sensitive to processing belief information, whereas the left TPJ (TPJ-L) is equally…

  15. Interlaminar differences in the pyramidal cell phenotype in parietal cortex of an Indian bat, cynopterus sphinx.

    Science.gov (United States)

    Srivastava, U C; Pathak, S V

    2010-10-30

    To study interlaminar phenotypic variations in the pyramidal neurons of parietal isocortex in bat (Cynopterus sphinx), Golgi and Nissl methods have been employed. The parietal isocortex is relatively thin in the bat as compared to prototheria with layer III, V and VI accounting for more than two—thirds of total cortical thickness. Thick cell free layer I and thinnest accentuated layer II are quite in connotation with other chiropterids. Poor demarcation of layer III/IV in the present study is also in connotation with primitive eutherian mammal (i.e. prototherian) and other chiropterids. Most of the pyramidal cells in the different layers of the parietal isocortex are of typical type as seen in other eutherians but differ significantly in terms of soma shape and size, extent of dendritic arbor, diameter of dendrites and spine density. Percentage of pyramidal neurons, diameter of apical dendrite and spine density on apical dendrite appear to follow an increasing trend from primitive to advanced mammals; but extent of dendrites are probably governed by the specific life patterns of these mammals. It is thus concluded that 'typical' pyramidal neurons in parietal isocortex are similar in therians but different from those in prototherians. It is possible that these cells might have arisen among early eutherians after divergence from prototherian stock.

  16. Parietal Lobe Volume Deficits in Adolescents with Schizophrenia and Adolescents with Cannabis Use Disorders

    Science.gov (United States)

    Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin

    2012-01-01

    Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that…

  17. Spatial summation in macaque parietal area 7a follows a winner-take-all rule

    NARCIS (Netherlands)

    Oleksiak, Anna; Klink, P. Christiaan; Postma, Albert; van der Ham, Ineke J.M.; Lankheet, Martin J.M.; van Wezel, Richard Jack Anton

    2011-01-01

    While neurons in posterior parietal cortex have been found to signal the presence of a salient stimulus among multiple items in a display, spatial summation within their receptive field in the absence of an attentional bias has never been investigated. This information, however, is indispensable

  18. Autoimmune gastritis and parietal cell reactivity in two children with abnormal intestinal permeability

    NARCIS (Netherlands)

    Greenwood, Deanne L. V.; Crock, Patricia; Braye, Stephen; Davidson, Patricia; Sentry, John W.

    Autoimmune gastritis is characterised by lymphocytic infiltration of the gastric submucosa, with loss of parietal and chief cells and achlorhydria. Often, gastritis is expressed clinically as cobalamin deficiency with megaloblastic anaemia, which is generally described as a disease of the elderly.

  19. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    Science.gov (United States)

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  20. An atretic parietal cephalocele associated with multiple intracranial and eye anomalies

    International Nuclear Information System (INIS)

    Saatci, I.; Yelgec, S.; Aydin, K.; Akalan, N.

    1998-01-01

    We present the cranial MRI findings in a 4-month-old girl with an atretic parietal cephalocele associated with multiple cerebral and ocular anomalies including lobar holoprosencephaly, a Dandy-Walker malformation, agenesis of the corpus callosum, grey-matter heterotopia, extra-axial cysts in various locations, bilateral microphthalmia and a retroocular cyst. (orig.)

  1. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    Science.gov (United States)

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…

  2. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  3. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  4. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  5. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells.

    NARCIS (Netherlands)

    Smeets, B.; Uhlig, S.; Fuss, A.; Mooren, F.; Wetzels, J.F.M.; Floege, J.; Moeller, M.J.

    2009-01-01

    Cellular lesions form in Bowman's space in both crescentic glomerulonephritis and collapsing glomerulopathy. The pathomechanism and origin of the proliferating cells in these lesions are unknown. In this study, we examined proliferating cells by lineage tracing of either podocytes or parietal

  6. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.

    Directory of Open Access Journals (Sweden)

    Peter J Fried

    Full Text Available Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3 and a handful of specialized visual regions (V4, V5/MT+ in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.

  7. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  8. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  9. The Effects of Maternal Hyperthyroidism on Histologic Changes in Parietal Lobe in Rat Embryos

    OpenAIRE

    Fatemeh Mirsafi; Gholamreza Kaka; Mahnaz Azarnia

    2017-01-01

    Background Maternal hyperthyroidism causes developmental defects on the nervous system of fetuses. Objectives The present study was designed to study the effects of maternal hyperthyroidism on the development of the parietal lobe in the brain of rat embryos. Methods In this experimental study, thirty Sprague-Dawley rats were randomly divided into three groups. The control group rec...

  10. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  11. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  12. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task.

    Science.gov (United States)

    Li, Xin; Wang, Wenxiao; Wang, Ailin; Li, Peng; Zhang, Junying; Tao, Wuhai; Zhang, Zhanjun

    2017-05-01

    Hypertension is related with cognitive decline in the elderly. The frontal-parietal executive system plays an important role in cognitive aging and is also vulnerable to damage in elderly patients with hypertension. Examination of the brain's functional characteristics in frontal-parietal regions of hypertension is likely to be important for understanding the neural mechanisms of hypertension's effect on cognitive aging. We address this issue by comparing hypertension and control-performers in a functional MRI study. Twenty-eight hypertensive patients and 32 elderly controls were tested with n-back task with two load levels. The hypertensive patients exhibited worse executive and memory abilities than control subjects. The patterns of brain activation changed under different working memory loads in the hypertensive patients, who exhibited reduced activation only in the precentral gyrus under low loads and reduced activation in the middle frontal gyrus, left medial superior frontal gyrus and right precuneus under high loads. Thus, more regions of diminished activation were observed in the frontal and parietal regions with increasing task difficulty. More importantly, we found that lower activation in changed frontal and parietal regions was associated with worse cognitive function in high loads. The results demonstrate the relationship between cognitive function and frontoparietal functional activation in hypertension and their relevance to cognitive aging risk. Our findings provide a better understanding of the mechanism of cognitive decline in hypertension and highlight the importance of brain protection in hypertension.

  13. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  14. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning

    Directory of Open Access Journals (Sweden)

    Pierre-Michel Bernier

    2017-05-01

    Full Text Available The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.

  15. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.

    Science.gov (United States)

    Samaha, Jason; Gosseries, Olivia; Postle, Bradley R

    2017-03-15

    Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time

  16. Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.

    Science.gov (United States)

    Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon

    2017-06-09

    Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.

    Science.gov (United States)

    Becke, Andreas; Müller, Notger; Vellage, Anne; Schoenfeld, Mircea Ariel; Hopf, Jens-Max

    2015-04-15

    Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Examining the role of the temporo-parietal network in memory, imagery and viewpoint transformations

    Directory of Open Access Journals (Sweden)

    Kiret eDhindsa

    2014-09-01

    Full Text Available The traditional view of the medial temporal lobe (MTL focuses on its role in episodic memory. However, some of the underlying functions of the MTL can be ascertained from its wider role in supporting spatial cognition in concert with parietal and prefrontal regions. The MTL is strongly implicated in the formation of enduring allocentric representations (e.g. O’Keefe (1976; Ekstrom et al. (2003; King et al. (2002. According to our BBB model (Byrne et al. (2007, these representations must interact with head-centered and body-centered representations in posterior parietal cortex via a transformation circuit involving retrosplenial areas. Egocentric sensory representations in parietal areas can then cue the recall of allocentric spatial representations in long-term memory and, conversely, the products of retrieval in MTL can generate mental imagery within a parietal ’window’. Such imagery is necessarily egocentric and forms part of visuospatial working memory, where it can be manipulated for the purpose of planning/imagining the future. Recent fMRI evidence (Lambrey et al. (2012; Zhang et al. (2012 supports the BBB model. To further test the model, we had participants learn the locations of objects in a virtual scene and tested their spatial memory under conditions that impose varying demands on the transformation circuit. We analyzed how brain activity correlated with accuracy in judging the direction of an object 1 from visuospatial working memory (we assume working memory due to the order of tasks and the consistency viewpoint, but long-term memory is also possible, 2 after a rotation of viewpoint, or 3 after a rotation and translation (judgement of relative direction. We found performance-related activity in both tasks requiring viewpoint rotation in the core medial temporal to medial parietal. These results are consistent with the BBB model and shed further light on the mechanisms underlying spatial memory, mental imagery and viewpoint

  19. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Agustina Birba

    2017-06-01

    Full Text Available Recent works evince the critical role of visual short-term memory (STM binding deficits as a clinical and preclinical marker of Alzheimer’s disease (AD. These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer’s patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a the usefulness of the task to target prodromal stages of AD; (b the role of a posterior network in STM binding and in AD; and (c the potential opportunity to improve STM binding through brain stimulation.

  20. Matrix Metalloproteinase-9 Expression Is Enhanced in Renal Parietal Epithelial Cells of Zucker Diabetic Fatty Rats and Is Induced by Albumin in In Vitro Primary Parietal Cell Culture

    Science.gov (United States)

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  1. Haptically guided grasping. FMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution

    Directory of Open Access Journals (Sweden)

    Mattia eMarangon

    2016-01-01

    Full Text Available The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks. None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  2. Polarizabilities of Ba and Ba2: Comparison of molecular beam experiments with relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Schaefer, Sascha; Mehring, Max; Schaefer, Rolf; Schwerdtfeger, Peter

    2007-01-01

    The dielectric response to an inhomogeneous electric field has been investigated for Ba and Ba 2 within a molecular beam experiment. The ratio of the polarizabilities per atom of Ba 2 and Ba is determined to be 1.30±0.13. The experimental result is compared to a high level ab initio quantum chemical coupled cluster calculation with an energy-consistent scalar relativistic small-core pseudopotential for Ba. For the barium atom a polarizability of 40.82 A 3 is obtained and the isotropic value of the polarizability calculated for Ba 2 is 97.88 A 3 , which is in good agreement with the experimental results, demonstrating that a quantitative understanding of the interaction between two closed-shell heavy element metal atoms has been achieved

  3. The BaBar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-01-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented

  4. Temporo-Parietal and Fronto-Parietal Lobe Contributions to Theory of Mind and Executive Control: An fMRI Study of Verbal Jokes

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChan

    2015-09-01

    Full Text Available ‘Getting a joke’ always requires resolving an apparent incongruity but the particular cognitive operations called upon vary depending on the nature of the joke itself. Previous research has identified the primary neural correlates of the cognitive and affective processes called upon to respond to humor generally, but little work has been done on the substrates underlying the distinct cognitive operations required to comprehend particular joke types. This study explored the neural correlates of the cognitive processes required to successfully comprehend three joke types: bridging-inference jokes, exaggeration jokes and ambiguity jokes. For all joke types, the left dlPFC appeared to support common cognitive mechanisms, such as script-shifting, while the vACC was associated with affective appreciation. The temporo-parietal lobe (TPJ and MTG was associated with bridging-inference jokes, suggesting involvement of these regions with ‘theory of mind’ processing. The ventral fronto-parietal lobe (IPL and IFG was associated with both exaggeration and ambiguity jokes, suggesting that it supports executive control processes such as retrieval from episodic memory, self-awareness, and language-based decoding. The social-affective appreciation of verbal jokes was associated with activity in the orbitofrontal cortex, amygdala, ventral anterior cingulate cortex (vACC, and parahippocampal gyrus. These results allow a more precise account of the neural

  5. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  6. Parietal intradiploic encephalocele: Report of a case and review of the literature.

    Science.gov (United States)

    Arevalo-Perez, Julio; Millán-Juncos, José M

    2015-06-01

    Encephaloceles consist of brain tissue and meninges that has herniated through a skull defect, usually located in the midline. They are seen more commonly in children and very rarely in adults. We present a case of an 84-year-old patient who was incidentally diagnosed with a lytic bone lesion in the right parietal intradiploic space, after computed tomography of the head was performed. A magnetic resonance imaging scan of the brain showed herniation of brain tissue through the defect. Magnetic resonance imaging was crucial in demonstrating the presence of parenchyma and its continuity with the rest of the brain, consequently distinguishing it from other entities. We report the imaging findings of a parietal indradiploic encephalocele with its differential diagnosis and a review of the relevant literature. © The Author(s) 2015.

  7. Parietal and occipital encephalocele in same child: A rarest variety of double encephalocele.

    Science.gov (United States)

    Sharma, Somnath; Ojha, Bal Krishan; Chandra, Anil; Singh, Sunil Kumar; Srivastava, Chhitij

    2016-05-01

    An encephalocele is a protrusion of the brain and/or meninges through a defect in the skull. Based on the location of the skull defect they are classified into sincipital, basal, occipital or parietal varieties. Occurrence of more than one Encephalocele in a patient is very rare and very few cases of double encephalocele are reported. We report an interesting case where a parietal and an occipital encephalocele were present together. The patient was a 2 months boy who was brought to us with complaints of two swelling on the scalp since birth. Neuroimaging studies confirmed it to be a case of double encephalocele. The rarity of the findings prompted us to report this case. The presentation and management of the case along with and review of the relevant literature is presented. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Metabolic Hyperactivity of the Medial Posterior Parietal Lobes in Psychogenic Tremor

    Directory of Open Access Journals (Sweden)

    Peter Hedera

    2012-05-01

    Full Text Available Background: The pathophysiology of psychogenic movement disorders, including psychogenic tremor (PT, is only emerging. Case Report: This is a single case report of a patient who met diagnostic criteria for PT. He underwent positron emission tomography (PET of brain with 18F-deoxyglucose at resting state. His PET study showed symmetrically increased 18F-deoxyglucose uptake in both posterior medial parietal lobes. There was no corresponding abnormality on structural imaging. Discussion: Hypermetabolism of the medial aspects of posterior parietal lobes bilaterally may reflect abnormal activity of sensory integration that is important in the pathogenesis of PT. This further supports the idea that non-organic movement disorders may be associated with detectable functional brain abnormalities.

  9. Posterior parietal cortex and long-term memory: some data from laboratory animals

    OpenAIRE

    Myskiw, Jociane C.; Izquierdo, Iván

    2012-01-01

    The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determin...

  10. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  11. Trepanation and enlarged parietal foramen on skulls from the Loyalty Islands (Melanesia).

    Science.gov (United States)

    Vasilyev, Sergey V; Sviridov, Alexey A

    2017-06-01

    The goal of this study is a comprehensive examination of openings discovered on two skulls in the collection of skeletal remains from the Loyalty Islands (Melanesia). The skull No. 1524 displayed an evidence of successful trepanation, and the skull No. 7985 revealed openings that were reminiscent of a trepanation, however, we are inclined to believe that in the latter case we are dealing with a rare genetic anomaly - enlarged parietal foramen.

  12. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    Science.gov (United States)

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  14. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  15. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    OpenAIRE

    Katrin Hanken; Katrin Hanken; Mona Bosse; Kim Möhrke; Paul Eling; Andreas Kastrup; Andrea Antal; Helmut Hildebrandt; Helmut Hildebrandt

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anoda...

  16. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation

    OpenAIRE

    Hanken, Katrin; Bosse, Mona; M?hrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    BACKGROUND: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. OBJECTIVES: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. METHODS: In study I, a randomized double-blind placebo-controll...

  17. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  18. Frontal Parietal Control Network Regulates the Anti-Correlated Default and Dorsal Attention Networks

    OpenAIRE

    Gao, Wei; Lin, Weili

    2011-01-01

    Recent reports demonstrate the anti-correlated behaviors between the default and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing net...

  19. Metaplasia of the parietal layer of Bowman's capsule. A histopathological survey of the human kidney

    OpenAIRE

    Haensly, William E.; Lee, J.C.

    1986-01-01

    Human kidney sections taken at autopsy were examined to determine the incidence of metaplasia of the Bowman's parietal epithelium. Autopsy records were consulted to determine if there was any correlation between clinical disease, histopathological changes in organ systems and metaplasia of Bowman's capsule. The sections represented both sexes in 9 age groups from 2 to 87 years. The sections were fixed in neutral formalin, embedded in paraffin, sectioned at 6 pm...

  20. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  1. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation.

    Science.gov (United States)

    Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian

    2014-10-15

    This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory.

    Science.gov (United States)

    Galeano Weber, Elena M; Hahn, Tim; Hilger, Kirsten; Fiebach, Christian J

    2017-02-01

    Limitations in visual working memory (WM) quality (i.e., WM precision) may depend on perceptual and attentional limitations during stimulus encoding, thereby affecting WM capacity. WM encoding relies on the interaction between sensory processing systems and fronto-parietal 'control' regions, and differences in the quality of this interaction are a plausible source of individual differences in WM capacity. Accordingly, we hypothesized that the coupling between perceptual and attentional systems affects the quality of WM encoding. We combined fMRI connectivity analysis with behavioral modeling by fitting a variable precision and fixed capacity model to the performance data obtained while participants performed a visual delayed continuous response WM task. We quantified functional connectivity during WM encoding between occipital and parietal brain regions activated during both perception and WM encoding, as determined using a conjunction of two independent experiments. The multivariate pattern of voxel-wise inter-areal functional connectivity significantly predicted WM performance, most specifically the mean of WM precision but not the individual number of items that could be stored in memory. In particular, higher occipito-parietal connectivity was associated with higher behavioral mean precision. These results are consistent with a network perspective of WM capacity, suggesting that the efficiency of information flow between perceptual and attentional neural systems is a critical determinant of limitations in WM quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acute parietal lobe infarction presenting as Gerstmann’s syndrome and cognitive decline mimicking senile dementia

    Directory of Open Access Journals (Sweden)

    Chen TY

    2013-07-01

    Full Text Available Tien-Yu Chen,1 Chun-Yen Chen,1,3 Che-Hung Yen,2,3 Shin-Chang Kuo,1,3 Yi-Wei Yeh,1,3 Serena Chang,1 San-Yuan Huang1,31Department of Psychiatry, 2Department of Neurology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, 3Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of ChinaAbstract: Gerstmann’s syndrome encompasses the tetrad of finger agnosia, agraphia, acalculia, and right-left confusion. An elderly man with a history of several cardiovascular diseases was initially brought to the psychiatric outpatient department by his family because of worsening of recent memory, executive function, and mixed anxious-depressive mood. Gerstmann’s syndrome without obvious motor function impairment and dementia-like features could be observed at first. Emergent brain computed tomography scan revealed new left-middle cerebral artery infarction over the left posterior parietal lobe. This case reminds us that acute cerebral infarction involving the parietal lobe may present as Gerstmann’s syndrome accompanied by cognitive decline mimicking dementia. As a result, emergent organic workups should be arranged, especially for elderly patients at high risk for cerebral vascular accident.Keywords: Gerstmann’s syndrome, dementia, parietal lobe infarction

  4. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Matteo Filippini

    2018-04-01

    Full Text Available Summary: The posterior parietal cortex is well known to mediate sensorimotor transformations during the generation of movement plans, but its ability to control prosthetic limbs in 3D environments has not yet been fully demonstrated. With this aim, we trained monkeys to perform reaches to targets located at various depths and directions and tested whether the reach goal position can be extracted from parietal signals. The reach goal location was reliably decoded with accuracy close to optimal (>90%, and this occurred also well before movement onset. These results, together with recent work showing a reliable decoding of hand grip in the same area, suggest that this is a suitable site to decode the entire prehension action, to be considered in the development of brain-computer interfaces. : Filippini et al. show that it is possible to use parietal cortex activity to predict in which direction the arm will move and how far it will reach. This opens up the possibility of neural prostheses that can accurately guide reach and grasp using signals from this part of the brain. Keywords: neuroprosthetics, offline neural decoding, reaching in depth, monkey, V6A, machine learning, visuomotor transformations, hand guidance, prehension, robotics

  5. Noninvasive brain stimulation of the parietal lobe for improving neurologic, neuropsychologic, and neuropsychiatric deficits.

    Science.gov (United States)

    Bolognini, Nadia; Miniussi, Carlo

    2018-01-01

    Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) are noninvasive brain stimulation (NIBS) tools that are now widely used in neuroscientific research in humans. The fact that both TMS and tES are able to modulate brain plasticity and, in turn, affect behavior is opening up new horizons in the treatment of brain circuit and plasticity disorders. In the present chapter, we will first provide the reader with a brief background on the basic principles of NIBS, describing the electromagnetic and physical foundations of TMS and tES, as well as the current knowledge of the neurophysiologic basis of their effects on brain activity and plasticity. In the main part, we will outline studies aimed at improving persistent symptoms and deficits in patients suffering from neurologic and neuropsychiatric disorders featured by dysfunction of the parietal lobe. The emerging view is that NIBS of parietal areas holds the promise to overcome various sensory, motor, and cognitive disorders that are often refractory to standard medical or behavioral therapies. The chapter closes with an outlook on further developments in this realm, discussing novel therapeutic approaches that could lead to more effective rehabilitation procedures, better suited for the specific parietal lobe dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  7. Bilateral fronto-parietal integrity in young chronic cigarette smokers: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    Full Text Available Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF.We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.

  8. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    Science.gov (United States)

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  9. Gas1 expression in parietal cells of Bowman's capsule in experimental diabetic nephropathy.

    Science.gov (United States)

    Luna-Antonio, Brenda I; Rodriguez-Muñoz, Rafael; Namorado-Tonix, Carmen; Vergara, Paula; Segovia, Jose; Reyes, Jose L

    2017-07-01

    Gas1 (Growth Arrest-Specific 1) is a pleiotropic protein with novel functions including anti-proliferative and proapoptotic activities. In the kidney, the expression of Gas1 has been described in mesangial cells. In this study, we described that renal parietal cells of Bowman's capsule (BC) and the distal nephron cells also express Gas1. The role of Gas1 in the kidney is not yet known. There is a subpopulation of progenitor cells in Bowman's capsule with self-renewal properties which can eventually differentiate into podocytes as a possible mechanism of regeneration in the early stages of diabetic nephropathy. We analyzed the expression of Gas1 in the parietal cells of Bowman's capsule in murine experimental diabetes. We found that diabetes reduced the expression of Gas1 and increased the expression of progenitor markers like NCAM, CD24, and SIX1/2, and mesenchymal markers like PAX2 in the Bowman's capsule. We also analyzed the expression of WT1 (a podocyte-specific marker) on BC and observed an increase in the number of WT1 positive cells in diabetes. In contrast, nephrin, another podocyte-specific protein, decreases its expression in the first week of diabetes in the glomerular tuft, which is gradually restored during the second and third weeks of diabetes. These results suggest that in diabetes the decrease of Gas1 promotes the activation of parietal progenitor cells of Bowman's capsule that might differentiate into podocytes and compensate their loss observed in this pathology.

  10. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available As a subfamily of matrix metalloproteinases (MMPs, gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive

  12. Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases.

    Directory of Open Access Journals (Sweden)

    Heather M Wild

    Full Text Available Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG, angular gyrus (AG, superior parietal lobe (supPL and postcentral gyrus (postCG. There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ separating SMG and AG was identified in nearly all (59/60 hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2% larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled T1-weighted brain images, we applied multi-atlas label propagation software (MAPER in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%. Stereotaxic

  13. Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations.

    Science.gov (United States)

    Dhindsa, Kiret; Drobinin, Vladislav; King, John; Hall, Geoffrey B; Burgess, Neil; Becker, Suzanna

    2014-01-01

    The traditional view of the medial temporal lobe (MTL) focuses on its role in episodic memory. However, some of the underlying functions of the MTL can be ascertained from its wider role in supporting spatial cognition in concert with parietal and prefrontal regions. The MTL is strongly implicated in the formation of enduring allocentric representations (e.g., O'Keefe, 1976; King et al., 2002; Ekstrom et al., 2003). According to our BBB model (Byrne et al., 2007), these representations must interact with head-centered and body-centered representations in posterior parietal cortex via a transformation circuit involving retrosplenial areas. Egocentric sensory representations in parietal areas can then cue the recall of allocentric spatial representations in long-term memory and, conversely, the products of retrieval in MTL can generate mental imagery within a parietal "window." Such imagery is necessarily egocentric and forms part of visuospatial working memory, in which it can be manipulated for the purpose of planning/imagining the future. Recent fMRI evidence (Lambrey et al., 2012; Zhang et al., 2012) supports the BBB model. To further test the model, we had participants learn the locations of objects in a virtual scene and tested their spatial memory under conditions that impose varying demands on the transformation circuit. We analyzed how brain activity correlated with accuracy in judging the direction of an object (1) from visuospatial working memory (we assume transient working memory due to the order of tasks and the absence of change in viewpoint, but long-term memory retrieval is also possible), (2) after a rotation of viewpoint, or (3) after a rotation and translation of viewpoint (judgment of relative direction). We found performance-related activity in both tasks requiring viewpoint rotation (ROT and JRD, i.e., conditions 2 and 3) in the core medial temporal to medial parietal circuit identified by the BBB model. These results are consistent with the

  14. Refinement of crystal structures of CaHCl, SrHCl, BaHCl, BaHBr, and BaHI

    International Nuclear Information System (INIS)

    Beck, H.P.; Limmer, A.

    1983-01-01

    The structures of CaHCl, SrHCl, BaHBr, BaHCl, and BaHI have been refined using single crystal data. The comparison of the parameters with the corresponding data of isotypic fluorohalide compounds gives a valuable insight into the bonding interactions in this structure type. (author)

  15. Refinement of crystal structures of CaHCl, SrHCl, BaHCl, BaHBr, and BaHI

    Energy Technology Data Exchange (ETDEWEB)

    Beck, H.P.; Limmer, A. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Anorganische Chemie)

    1983-07-01

    The structures of CaHCl, SrHCl, BaHBr, BaHCl, and BaHI have been refined using single crystal data. The comparison of the parameters with the corresponding data of isotypic fluorohalide compounds gives a valuable insight into the bonding interactions in this structure type.

  16. El contexto del arte parietal. La tecnología de los artistas en la Cueva de Tito Bustillo (Asturias

    Directory of Open Access Journals (Sweden)

    Moure Romanillo, Alfonso

    1988-12-01

    Full Text Available This study overlaps in part with a communication presented to the «Colloque International d'Art Parietal Paléolithique» held at Perigueux-Le Thot in december 1984. The technological responses contained in a decorated zone of the cave of Tito Bustillo are analyzed, as well as the activities carried out on living floors related to the preparation and completion of the parietal art.

    El trabajo coincide parcialmente con la comunicación presentada al «Colloque International d'Art Parietal Paléolithique» celebrado en Perigueux-Le Thot, en diciembre de 1984. Se analizan las respuestas tecnológicas contenidas en un área de decoración de la cueva de Tito Bustillo (Asturias, así como las actividades en áreas de estancia relacionadas con la preparación y ejecución del arte parietal.

  17. Laserspectroscopic studies of collective properties of neutron deficient Ba nuclei

    International Nuclear Information System (INIS)

    Bekk, K.; Andl, A.; Goering, S.; Hanser, A.; Nowicki, G.; Rebel, H.; Schatz, G.

    1979-01-01

    Isotope shifts and hyperfine structure of the BaI resonance-line (lambda=553.6 nm) have been measured by dye laser induced resonance fluorescence on an atomic beam for sup(135m,129g,129m,126) Ba thus extending previous high resolution measurements of neutron deficient Ba nuclides (N - isomers sup(135m) Ba and sup(135m) Ba show a decreased staggering. Conspicuously the isomer shift of the g 7/2 + isomer sup(129m) Ba proves to be negative. The nuclear structure information is discussed in the context of gamma-spectroscopic studies of transitional nuclei with 50 [de

  18. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    Science.gov (United States)

    Wu, Xiu-Jie; Xing, Song; Trinkaus, Erik

    2013-01-01

    We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF) in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao) site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right) parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen). In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  19. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    Directory of Open Access Journals (Sweden)

    Xiu-Jie Wu

    Full Text Available We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen. In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  20. Particle-hole states in 138Ba

    International Nuclear Information System (INIS)

    Bondarenko, V.A.; Khitrov, V.A.; Popov, Yu.P.; Brant, S.; Paar, V.; Simicic, L.

    1995-01-01

    The thermal-neutron-capture gamma rays and γγ-coincidences were measured by means of Ge detectors. Using primary and secondary (n, γ) data, the level scheme of 138 Ba was established with 63 levels up to an excitation energy of 5 MeV. The level energies and (d, p) transfer data were compared with model predictions of the interacting boson-fermion-fermion model. As shown, this model provides a basic understanding of the neutron particle-hole states of 138 Ba in the energy range of 3.5-5.0 MeV. ((orig.))

  1. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual

  2. Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.

    Science.gov (United States)

    Kizilirmak, Jasmin M; Rösler, Frank; Bien, Siegfried; Khader, Patrick H

    2015-07-21

    The attention to memory theory (AtoM) proposes that the same brain regions might be involved in selective processing of perceived stimuli (selective attention) and memory representations (selective retrieval). Although this idea is compelling, given consistently found neural overlap between perceiving and remembering stimuli, recent comparisons brought evidence for overlap as well as considerable differences. Here, we present a paradigm that enables the investigation of the AtoM hypothesis from a novel perspective to gain further insight into the neural resources involved in AtoM. Selective attention in perception is often investigated as a control process that shows lingering effects on immediately following trials. Here, we employed a paradigm capable of modulating selective retrieval in a similarly dynamic manner as in such selective-attention paradigms by inducing trial-to-trial shifts between relevant and irrelevant memory representations as well as changes of the width of the internal focus on memory. We found evidence for an involvement of bilateral inferior parietal lobe and right inferior frontal gyrus in reorienting the attentional focus on previously accessed memory representations. Moreover, we could dissociate the right inferior from the parietal activation in separate contrasts, suggesting that the right inferior frontal gyrus plays a role in facilitating attentional reorienting to memory representations when competing representations have been activated in the preceding trial, potentially by resolving this competition. Our results support the AtoM theory, i.e. that ventral frontal and parietal regions are involved in automatic attentional reorienting in memory, and highlight the importance of further investigations of the overlap and differences between regions involved in internal (memory) and external (perceptual) attentional selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Body-centred map in parietal eye fields - functional MRI study

    International Nuclear Information System (INIS)

    Brotchie, P.; Chen, D.Y.; Bradley, W.G.

    2002-01-01

    Full text: In order for us to interact with our environment we need to know where objects are around us, relative to our body. In monkeys, a body-centred map of visual space is known to exist within the parietal eye fields. This map is formed by the modulation of neuronal activity by eye and head position (Brotchie et al, Nature 1995; Synder et al, Nature 1998). In humans no map of body centred space has been demonstrated. By using functional MRI we have localised a region along the intraparietal sulcus which has properties similar to the parietal eye fields of monkeys (Brotchie et al, ISMRM, 2000). The aim of this study was to determine if activity in this region is modulated by head position, consistent with a body centered representation of visual space. Functional MRI was performed on 6 subjects performing simple visually guided saccades using a 1.5 Tesla GE Echospeed scanner. 10 scans were performed on the 6 subjects at left and right body orientations. Regions of interest were selected around the intraparietal sulcus proper (IPSP) of both hemispheres and voxels with BOLD signal which correlated with the paradigm (r>0.35) were selected for further analysis. Comparisons of percentage signal change were made between the left and right IPSP using Student t test. Of the 10 MRI examinations, 6 demonstrated statistically significant differences in the amount of signal change between left and right IPSP. In each of these 6 cases, the signal change was greater within the IPSP contralateral to the direction of head position relative to the body. This indicates a modulation of activity within the IPSP related to head position, most likely reflecting modulation of the underlying neuronal activity and suggests the existence of a body-centred encoding of space within the parietal eye fields of humans. Copyright (2002) Blackwell Science Pty Ltd

  5. Fronto-parietal contributions to phonological processes in successful artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Dariya Goranskaya

    2016-11-01

    Full Text Available Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar (AG learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e. of syllables or letters. In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI, participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes.

  6. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  7. Observational learning of new movement sequences is reflected in fronto-parietal coherence.

    Directory of Open Access Journals (Sweden)

    Jurjen van der Helden

    Full Text Available Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha and motor (mu rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for

  8. The Effects of Maternal Hyperthyroidism on Histologic Changes in Parietal Lobe in Rat Embryos

    Directory of Open Access Journals (Sweden)

    Fatemeh Mirsafi

    2017-05-01

    Full Text Available Background Maternal hyperthyroidism causes developmental defects on the nervous system of fetuses. Objectives The present study was designed to study the effects of maternal hyperthyroidism on the development of the parietal lobe in the brain of rat embryos. Methods In this experimental study, thirty Sprague-Dawley rats were randomly divided into three groups. The control group received no injections, the sham group received intraperitoneal injections of distilled water solution containing salt and polysorbate (solvent of levothyroxine, and the experimental group received once-daily, intraperitoneal injections of 0.5 mg/kg levothyroxine for a 10-day period to become hyperthyroid rats. The hyperthyroid rats were then mated, and all pregnant rats were killed on the 20th day of gestation. Fetuses were removed, fixed, and processed for histological procedures. The fetuses were sagitally sectioned at 5 µ thickness and stained with hematoxylin-eosin (H and E technique. The sections were examined using a light microscope and Motic software. Results The results showed no significant difference in the studied variables between the sham and control groups. A significantly increase in body weight and a significant decrease in crown-rump length of embryos was observed in the experimental group when compared to the control group. The mean total thickness of the parietal cortex, ventricular layer, and intermediate layer of embryos showed a significant decrease in the experimental group compared to the control and sham groups. The mean number of cells also showed a significant decrease in the intermediate and ventricular layers in the experimental group compared to the control and sham groups. Conclusions This study showed that maternal hyperthyroidism leads to a reduction in development of the parietal cortex in embryos. Maternal hyperthyroidism can disturb the growth and development of embryos.

  9. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  10. The Acid-Secreting Parietal Cell as an Endocrine Source of Sonic Hedgehog During Gastric Repair

    Science.gov (United States)

    Engevik, Amy C.; Feng, Rui; Yang, Li

    2013-01-01

    Sonic Hedgehog (Shh) has been shown to regulate wound healing in various tissues. Despite its known function in tissue regeneration, the role of Shh secreted from the gastric epithelium during tissue repair in the stomach remains unknown. Here we tested the hypothesis that Shh secreted from the acid-secreting parietal cell is a fundamental circulating factor that drives gastric repair. A mouse model expressing a parietal cell-specific deletion of Shh (PC-ShhKO) was generated using animals bearing loxP sites flanking exon 2 of the Shh gene (Shhflx/flx) and mice expressing a Cre transgene under the control of the H+,K+-ATPase β-subunit promoter. Shhflx/flx, the H+,K+-ATPase β-subunit promoter, and C57BL/6 mice served as controls. Ulcers were induced via acetic acid injury. At 1, 2, 3, 4, 5, and 7 days after the ulcer induction, gastric tissue and blood samples were collected. Parabiosis experiments were used to establish the effect of circulating Shh on ulcer repair. Control mice exhibited an increased expression of Shh in the gastric tissue and plasma that correlated with the repair of injury within 7 days after surgery. PC-ShhKO mice showed a loss of ulcer repair and reduced Shh tissue and plasma concentrations. In a parabiosis experiment whereby a control mouse was paired with a PC-ShhKO littermate and both animals subjected to gastric injury, a significant increase in the circulating Shh was measured in both parabionts. Elevated circulating Shh concentrations correlated with the repair of gastric ulcers in the PC-ShhKO parabionts. Therefore, the acid-secreting parietal cell within the stomach acts as an endocrine source of Shh during repair. PMID:24092639

  11. Posterior parietal cortex mediates encoding and maintenance processes in change blindness.

    Science.gov (United States)

    Tseng, Philip; Hsu, Tzu-Yu; Muggleton, Neil G; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung

    2010-03-01

    It is commonly accepted that right posterior parietal cortex (PPC) plays an important role in updating spatial representations, directing visuospatial attention, and planning actions. However, recent studies suggest that right PPC may also be involved in processes that are more closely associated with our visual awareness as its activation level positively correlates with successful conscious change detection (Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645-650.). Furthermore, disruption of its activity increases the occurrences of change blindness, thus suggesting a causal role for right PPC in change detection (Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16, 712-717.). In the context of a 1-shot change detection paradigm, we applied transcranial magnetic stimulation (TMS) during different time intervals to elucidate the temporally precise involvement of PPC in change detection. While subjects attempted to detect changes between two image sets separated by a brief time interval, TMS was applied either during the presentation of picture 1 when subjects were encoding and maintaining information into visual short-term memory, or picture 2 when subjects were retrieving information relating to picture 1 and comparing it to picture 2. Our results show that change blindness occurred more often when TMS was applied during the viewing of picture 1, which implies that right PPC plays a crucial role in the processes of encoding and maintaining information in visual short-term memory. In addition, since our stimuli did not involve changes in spatial locations, our findings also support previous studies suggesting that PPC may be involved in the processes of encoding non-spatial visual information (Todd, J.J. & Marois, R. (2004). Capacity limit of visual short-term memory in human

  12. Subnitride chemistry: A first-principles study of the NaBa3N, Na5Ba3N, and Na16Ba6N phases

    International Nuclear Information System (INIS)

    Oliva, Josep M.

    2005-01-01

    An ab initio study on the electronic structure of the subnitrides NaBa 3 N, Na 5 Ba 3 N, and Na 16 Ba 6 N is performed for the first time. The NaBa 3 N and Na 5 Ba 3 N phases consist of infinite 1 ∞ [NBa 6/2 ] strands composed of face-sharing NBa 6 octahedra surrounded by a 'sea' of sodium atoms. The Na 16 Ba 6 N phase consist of discrete [NBa 6 ] octahedra arranged in a body-cubic fashion, surrounded by a 'sea' of sodium atoms. Our calculations suggest that the title subnitrides are metals. Analysis of the electronic structure shows partial interaction of N(2s) with Ba(5p) electrons in the lower energy region for NaBa 3 N and Na 5 Ba 3 N. However, no dispersion is observed for the N(2s) and Ba(5p) bands in the cubic phase Na 16 Ba 6 N. The metallic band below the Fermi level shows a strong mixing of N(2p), Ba(6s), Ba(5d), Ba(6p), Na(3s) and Na(3p) orbitals. The metallic character in these nitrides stems from delocalized electrons corresponding to hybridized 5d l 6s m 6p n barium orbitals which interact with hybridized 3s n 3p m sodium orbitals. Analysis of the electron density and electronic structure in these nitrides shows two different regions: a metallic matrix corresponding to the sodium atoms and the regions around them and heteropolar bonding between nitrogen and barium within the infinite 1 ∞ [NBa 6/2 ] strands of the NaBa 3 N and Na 5 Ba 3 N phases, and within the isolated [NBa 6 ] octahedra of the Na 16 Ba 6 N phase. The nitrogen atoms inside the strands and octahedra are negatively charged, the anionic character of nitrogens being larger in the isolated octahedra of the cubic phase Na 16 Ba 6 N, due to the lack of electron delocalization along one direction as opposed to the other phases. The sodium and barium atoms appear to be slightly negatively and positively charged, the latter to a larger extent. From the computed Ba-N overlap populations as well as the analysis of the contour maps of differences between total density and superposition of

  13. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Lee, Hweeling

    2017-01-01

    -parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... affect participants' performance accuracy, it affected how observers adjusted their response times after making an error. We therefore suggest that activation increases in superior frontal gyri for misses relative to correct responses may not be critical for signal detection performance, but rather...

  14. Study of the paleolithic parietal art from the archaeological perspective: old ghosts / new approaches

    Directory of Open Access Journals (Sweden)

    Clara Hernando Álvarez

    2010-03-01

    Full Text Available This paper aims to analyse the parietal palaeolithic graphic designs from an archaeological perspective, leaving aside the aesthetic ties of traditional historiography. Traditional European analysis techniques of palaeolithic rock art will be contrasted with new interdisciplinary applications, looking for an archaeological knowledge about the artistic graphic expression of prehistoric societies. Finally, a methodological trial will be suggestedapplying the Harris Matrix in the reading and arrangement (ordination of the palaeolithic graphic designs of the central panel of Llonin's cave (Peñamellera Alta, Asturias.

  15. Symptomatic Parietal Intradiploic Encephalocele—A Case Report and Literature Review

    Science.gov (United States)

    Shi, Chen; Flores, Bruno; Fisher, Stephen; Barnett, Samuel L

    2017-01-01

    Encephalocele is a rare condition that consists of herniation of cerebral matter through openings of dura and skull. A majority of encephaloceles are congenital and manifest in childhood. We present a case of a 45-year-old man presenting with contralateral hemiparesis and found to have an extremely rare phenomenon of a symptomatic posttraumatic parietal intradiploic encephalocele (IE) manifesting 36 years following pediatric traumatic head injury. Computed tomography and magnetic resonance imaging confirmed herniation of brain tissue into the intradiploic space. Surgical treatment with reduction of the encephalocele achieved near resolution of preoperative hemiparesis on follow-up. The pathogenesis and a literature review of IE are discussed. PMID:28316901

  16. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    Directory of Open Access Journals (Sweden)

    Hua Su

    2015-01-01

    Full Text Available The glomerular parietal epithelial cells (PECs have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.

  17. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    Science.gov (United States)

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  18. Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness.

    Science.gov (United States)

    Todd, J Jay; Fougnie, Daryl; Marois, René

    2005-12-01

    The right temporo-parietal junction (TPJ) is critical for stimulus-driven attention and visual awareness. Here we show that as the visual short-term memory (VSTM) load of a task increases, activity in this region is increasingly suppressed. Correspondingly, increasing VSTM load impairs the ability of subjects to consciously detect the presence of a novel, unexpected object in the visual field. These results not only demonstrate that VSTM load suppresses TPJ activity and induces inattentional blindness, but also offer a plausible neural mechanism for this perceptual deficit: suppression of the stimulus-driven attentional network.

  19. Is Urgent Evoke a Digital Ba?

    DEFF Research Database (Denmark)

    Wichmand, Mette

    2018-01-01

    of such a platform, the World Bank’s online game Urgent Evoke, which has been designed with the pur- pose of engaging citizens in developing innovative solutions for sociopolitical problems like poverty. The analysis is based on Nonaka’s concept of Ba, which means “place” and is described as a platform for advancing...

  20. The BaBar electromagnetic calorimeter

    CERN Document Server

    Lewandowski, B

    2002-01-01

    The BaBar electromagnetic calorimeter is a hermetic, total-absorption array of CsI(Tl)-crystals, operated at the asymmetric e sup - e sup + -collider PEP-II at SLAC. The design and the status of the performance as of February 2002 is presented.

  1. Systemic acanthamoebiasis associated with canine distemper in dogs in the semiarid region of Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Maria T.S. Frade

    2015-02-01

    Full Text Available Infections by free-living amoebae can cause systemic disease in animals and humans. We describe the epidemiological, clinical and pathological aspects of disseminated acanthamoebiasis associated with canine distemper in three dogs of the semiarid region of Paraíba, Northeastern Brazil. Affected dogs developed progressive neurological and respiratory signs that progressed to death within in two to 20 days. Gross lesions were irregular and with yellow-reddish nodules randomly distributed in the lungs, heart, kidneys, spleen, lymph nodes, adrenals, and intestine. One dog had foci of malacia in the parietal cortex and another one in nucleus of brain basis. Histologically, pyogranulomas with areas of necrosis and hemorrhage in all organs affected were observed, associated with myriads of intralesional amoebic trophozoites. All three cases were concomitant canine distemper, that possibly triggered immunosuppression in the dogs. The diagnosis was performed through microscopic findings of infection by free-living amoebae and confirmed Acanthamoeba sp. by immunohistochemistry

  2. Electronic structure of Ca, Sr, and Ba under pressure.

    Science.gov (United States)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  3. Ultrasonographic analysis in vitro of parietal thickness of lower limb varicose veins.

    Science.gov (United States)

    Bruschi, E; Como, G; Zuiani, C; Segatto, E; Rocco, M; Biasi, G; Bazzocchi, M

    2006-09-01

    The aim of this study was to evaluate the ability of ultrasound (US) to measure the parietal thickness of varicose veins. In a blind in vitro analysis, 28 great saphenous veins, obtained after stripping surgery from 28 patients with chronic venous insufficiency, were examined with a digital US scanner ATL-HDI5000, linear 5-1 to 2-MHz broadband probe, compound imaging technique and analogic-digital zooming. We obtained one to three progressive measurements for each vein wall (total 67 parietal thicknesses). The samples, fixed in formalin, were sent to the pathology laboratory: sections were obtained at the same level of the sonographic planes, and images were obtained by digital camera mounted on an optical microscope. Measurements obtained at histology were considered as the gold standard. K-statistic was applied to compare sonographic and histologic measurements. Considering only the hypoechoic wall portion, 29/29 (100%) diagnoses of hypotrophy (K=0.91), 19/22 (86%) diagnoses of normotrophy (K=0,47) and 12/16 (75%) diagnoses of hypertrophy (K=0.7) were obtained by sonography. In our preliminary experience, the in vitro study of varicose veins allows precise, at least morphological, detection of hypotrophic walls. If these preliminary data are confirmed in vivo, sonography could be used to discriminate patients eligible for conservative treatment instead of surgery.

  4. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid

    Directory of Open Access Journals (Sweden)

    Ilsione Ribeiro de Sousa Filho

    Full Text Available Abstract Background: Angiotensin II (Ang II, the primary effector hormone of the renin-angiotensin system (RAS, acts systemically or locally, being produced by the action of angiotensin-converting-enzyme (ACE on angiotensin I. Although several tissue RASs, such as cardiac RAS, have been described, little is known about the presence of an RAS in the pericardial fluid and its possible sources. Locally produced Ang II has paracrine and autocrine effects, inducing left ventricular hypertrophy, fibrosis, heart failure and cardiac dysfunction. Because of the difficulties inherent in human pericardial fluid collection, appropriate experimental models are useful to obtain data regarding the characteristics of the pericardial fluid and surrounding tissues. Objectives: To evidence the presence of constituents of the Ang II production paths in bovine pericardial fluid and parietal pericardium. Methods: Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE and gels stained with coomassie blue. Duplicates of gels were probed with anti-ACE antibody. In the pericardial membranes, ACE was detected by use of immunofluorescence. Results: Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in the bovine pericardial fluid. On the pericardial membrane sections, ACE was immunolocalized in the mesothelial layer. Conclusions: The ACE isoform in the bovine pericardial fluid and parietal pericardium should account at least partially for the production of Ang II in the pericardial space, and should be considered when assessing the cardiac RAS.

  5. Visual feature integration indicated by pHase-locked frontal-parietal EEG signals.

    Science.gov (United States)

    Phillips, Steven; Takeda, Yuji; Singh, Archana

    2012-01-01

    The capacity to integrate multiple sources of information is a prerequisite for complex cognitive ability, such as finding a target uniquely identifiable by the conjunction of two or more features. Recent studies identified greater frontal-parietal synchrony during conjunctive than non-conjunctive (feature) search. Whether this difference also reflects greater information integration, rather than just differences in cognitive strategy (e.g., top-down versus bottom-up control of attention), or task difficulty is uncertain. Here, we examine the first possibility by parametrically varying the number of integrated sources from one to three and measuring phase-locking values (PLV) of frontal-parietal EEG electrode signals, as indicators of synchrony. Linear regressions, under hierarchical false-discovery rate control, indicated significant positive slopes for number of sources on PLV in the 30-38 Hz, 175-250 ms post-stimulus frequency-time band for pairs in the sagittal plane (i.e., F3-P3, Fz-Pz, F4-P4), after equating conditions for behavioural performance (to exclude effects due to task difficulty). No such effects were observed for pairs in the transverse plane (i.e., F3-F4, C3-C4, P3-P4). These results provide support for the idea that anterior-posterior phase-locking in the lower gamma-band mediates integration of visual information. They also provide a potential window into cognitive development, seen as developing the capacity to integrate more sources of information.

  6. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  7. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  8. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  9. Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye movements.

    Science.gov (United States)

    Zangemeister, W H; Canavan, A G; Hoemberg, V

    1995-11-01

    Transcranial magnetic stimulation (TMS) of human motor cortex typically evoked motor responses. TMS has failed to elicit eye movements in humans, whereas prolongations of saccadic latency have been reported with TMS. In previous studied we demonstrated that saccades can be abolished or saccadic trajectories can be changed through TMS in the 100 msec before saccade onset. This effect was especially marked when TMS was applied parietally. TMS never influenced a saccade in flight. Simulations of predictive experimental saccades that were impaired through TMS of the frontal or parietal cortex demonstrated especially that the dynamics of small saccades were markedly influenced, resulting in a significant decrease in acceleration and amplitude, or an almost complete inhibition. The impact of inhibition through TMS was critically dependent on timing: early TMS (-70 msec) had a much larger inhibitory effect than late TMS (-20 msec) on experimental saccades. Differential timing of TMS in influencing the cortical control signal is demonstrated through simulations of a reciprocally innervated eye movement model that paralleled empirically determined changes in eye movement dynamics after real TMS. There is a reasonable match between the model and the experimental data. We conclude that the inhibitory action of a presaccadic disturbance, such as a TMS pulse, on saccadic programming is inversely related to timing and amplitude of the predicted saccade.

  10. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Directory of Open Access Journals (Sweden)

    Bradley Russell Buchsbaum

    2011-07-01

    Full Text Available The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such recency effects have shown that activation in the lateral inferior parietal cortex (LIPC tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging (fMRI we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and expectancy hypotheses, respectively -- of the parietal lobe recency effect.

  11. Perceptual difficulty in source memory encoding and retrieval: prefrontal versus parietal electrical brain activity.

    Science.gov (United States)

    Kuo, Trudy Y; Van Petten, Cyma

    2008-01-01

    It is well established that source memory retrieval--remembering relationships between a core item and some additional attribute of an event--engages prefrontal cortex (PFC) more than simple item memory. In event-related potentials (ERPs), this is manifest in a late-onset difference over PFC between studied items which mandate retrieval of a second attribute, and unstudied items which can be immediately rejected. Although some sorts of attribute conjunctions are easier to remember than others, the role of source retrieval difficulty on prefrontal activity has received little attention. We examined memory for conjunctions of object shape and color when color was an integral part of the depicted object, and when monochrome objects were surrounded by colored frames. Source accuracy was reliably worse when shape and color were spatially separated, but prefrontal activity did not vary across the object-color and frame-color conditions. The insensitivity of prefrontal ERPs to this perceptual manipulation of difficulty stands in contrast to their sensitivity to encoding task: deliberate voluntary effort to integrate objects and colors during encoding reduced prefrontal activity during retrieval, but perceptual organization of stimuli did not. The amplitudes of ERPs over parietal cortex were larger for frame-color than object-color stimuli during both study and test phases of the memory task. Individual variability in parietal ERPs was strongly correlated with memory accuracy, which we suggest reflects a contribution of visual working memory to long-term memory. We discuss multiple bottlenecks for source memory performance.

  12. Hippocampal and posterior parietal contributions to developmental increases in visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter

    2014-10-01

    Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.

  13. Mechanisms within the Parietal Cortex Correlate with the Benefits of Random Practice in Motor Adaptation

    Directory of Open Access Journals (Sweden)

    Benjamin Thürer

    2017-08-01

    Full Text Available The motor learning literature shows an increased retest or transfer performance after practicing under unstable (random conditions. This random practice effect (also known as contextual interference effect is frequently investigated on the behavioral level and discussed in the context of mechanisms of the dorsolateral prefrontal cortex and increased cognitive efforts during movement planning. However, there is a lack of studies examining the random practice effect in motor adaptation tasks and, in general, the underlying neural processes of the random practice effect are not fully understood. We tested 24 right-handed human subjects performing a reaching task using a robotic manipulandum. Subjects learned to adapt either to a blocked or a random schedule of different force field perturbations while subjects’ electroencephalography (EEG was recorded. The behavioral results showed a distinct random practice effect in terms of a more stabilized retest performance of the random compared to the blocked practicing group. Further analyses showed that this effect correlates with changes in the alpha band power in electrodes over parietal areas. We conclude that the random practice effect in this study is facilitated by mechanisms within the parietal cortex during movement execution which might reflect online feedback mechanisms.

  14. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment

    Science.gov (United States)

    Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Sarasso, Simone; Scarpelli, Serena; Mangiaruga, Anastasia; D'Atri, Aurora; Tempesta, Daniela; Ferrara, Michele; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2016-01-01

    Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development. PMID:27066274

  15. A micromethod for the assay of cellular secretory physiology: Application to rabbit parietal cells

    International Nuclear Information System (INIS)

    Adrian, T.E.; Goldenring, J.R.; Oddsdottir, M.; Zdon, M.J.; Zucker, K.A.; Lewis, J.J.; Modlin, I.M.

    1989-01-01

    A micromethod for investigating secretory physiology in isolated cells was evaluated. The method utilized a specially designed polycarbonate incubation chamber to provide constant oxygenation to cells incubating in a 96-well microtiter plate. Cells were rapidly separated from media by vacuum filtration. Isolated parietal cells were utilized to demonstrate the versatility of the method for assay of intracellular accumulation of [ 14 C]-aminopyrine, secretion of intrinsic factor into the medium, and assay of intracellular cAMP. Histamine stimulated the uptake of [ 14 C]aminopyrine and intrinsic factor secretion in a sustained and linear fashion. At the end of the 2-h period uptake of aminopyrine and secretion of intrinsic factor were increased 17- and 5-fold, respectively. This response to histamine was accompanied by a rapid and sustained 3-fold rise in intracellular cyclic AMP. In contrast, carbamylcholine caused a transient increase in [ 14 C]aminopyrine accumulation and intrinsic factor secretion which was most pronounced during the first 10 min and had almost ceased by 30 min. Carbamylcholine had no effect on intracellular cAMP levels. This new method, which can handle 400 replicates using parietal cells from the fundic mucosa of a single rabbit, is suitable for studying the time course of intracellular events which accompany general secretory processes

  16. Parietal disruption alters audiovisual binding in the sound-induced flash illusion.

    Science.gov (United States)

    Kamke, Marc R; Vieth, Harrison E; Cottrell, David; Mattingley, Jason B

    2012-09-01

    Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. The flash illusion is a widely studied multisensory phenomenon in which a single flash of light is falsely perceived as multiple flashes in the presence of irrelevant sounds. We investigated the hypothesis that extrastriate regions involved in selective attention, specifically within the right parietal cortex, exert an influence on the multisensory integrative processes that cause the flash illusion. We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Imaging the neurobiological substrate of atypical depression by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Nardo, Davide [University of Rome La Sapienza, Department of Psychology, Rome (Italy); Jonsson, Cathrine; Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Gardner, Ann [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm (Sweden)

    2007-01-15

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in {sup 99m}Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  18. Imaging the neurobiological substrate of atypical depression by SPECT

    International Nuclear Information System (INIS)

    Pagani, Marco; Salmaso, Dario; Nardo, Davide; Jonsson, Cathrine; Larsson, Stig A.; Jacobsson, Hans; Gardner, Ann

    2007-01-01

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in 99m Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  19. Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus.

    Science.gov (United States)

    Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare

    2010-07-30

    Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  1. Dynamics of photoexcited Ba+ cations in 4He nanodroplets

    International Nuclear Information System (INIS)

    2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" >Leal, Antonio; 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" >Pi, Martí; Zhang, Xiaohang; Drabbels, Marcel; 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France))" >Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo

    2016-01-01

    We present a joint experimental and theoretical study on the desolvation of Ba + cations in 4 He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba + cations and Ba + He n exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba + He n exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba + . In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba + cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba + cations or exciplexes, even when relaxation pathways to lower lying states are included.

  2. Baština Starog grada Zrinskih

    OpenAIRE

    Kovač, Ivana

    2017-01-01

    Stari grad Zrinskih priča bogate, zanimljive i velike priče u svakom svojem kutku. Dvorac je prepun kulturne baštine koja će svakog ostaviti bez daha i dat će nam nove poglede na hrvatsku povijest, a još više na međimursku povijest. U ovom završnom radu pisat ću o ljepotama kraja, povijesnim zbivanjima i kulturnoj baštini grada, od samog početka pa do danas. Posebno ću se posvetiti predmetima koji su nam ostavili naši preci, a najviše umjetnosti grada i okolice. Čakovečki stari grad ima djelo...

  3. Topological phases in Ba-Borate glasses

    Science.gov (United States)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Modulated- DSC and Raman scattering experiments were undertaken systematically as function of BaO content (x). Calorimetric measurements reveal Tg(x) to show a broad maximum and the non-reversing enthalpy to show a Gaussian-like reversibility window2, both centered near x = 28%. Raman scattering displays rich lineshapes with modes similar to those observed in Na-Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  4. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    Science.gov (United States)

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  5. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size

    Science.gov (United States)

    Andersen, Lau Møller; Blicher, Jakob Udby

    2017-01-01

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  6. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children

    DEFF Research Database (Denmark)

    Klarborg, Brith; Skak Madsen, Kathrine; Vestergaard, Martin

    2013-01-01

    Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting...... the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d......' and the coefficient of variation in reaction times (RT(CV) ). Diffusion-weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as well as equivalent...

  7. Chemical correlations in Caetite (BA) region, Brazil

    International Nuclear Information System (INIS)

    Gennari, R.F.; Almeida, Geangela M.; Souza, S.O.

    2013-01-01

    Brazil's economic situation is responsible for an urgent demand for energy. There are several ways to generate energy, in some localities of our country, energy generation occurs almost exclusively by nuclear route, as in Rio de Janeiro state. Brazil has the sixth largest reserve of the uranium ore in the world. Nowadays there is only one mine under exploration (Uraniferous District of Lagoa Real - Caetite-BA). Unfortunately, nuclear power generation is better known, by common citizen, more for its unwanted effects than for its benefits. This fact is also powered by some Non-Governmental Organizations (NGOs), such as Greenpeace, who claim the uranium mine is dangerous since it causes environmental contamination. However, Industrias Nucleares do Brasil (INB) rejected these accusations. In a previous study, we demonstrated that doses of the Caetite (BA) population are consistent with those usually found in other countries. We stated also the higher concentration of 238 U determined, in only one water sample, is probably due to natural processes, as soil leaching. In order to verify the existing natural processes, macro and micro chemical elements present in water and soil samples collected in the Caetite (BA) region were determined by ICP-MS. The results were transformed into dendrograms where chemical correlations are evidenced and they are consistent with existing natural chemical processes. It was also possible to observe a correlation between samples corroborating with the Geographic Information Systems data to be presented in this same scientific event. (author)

  8. Chemical correlations in Caetite (BA) region, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gennari, R.F., E-mail: rgennari@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear; Campos, S.S., E-mail: simaracampos@gmail.com [Universidade Estadual do Sudoeste da Bahia (UESB), Itapetinga, BA, (Brazil); Almeida, Geangela M.; Souza, S.O., E-mail: susanasouzalalic@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica

    2013-07-01

    Brazil's economic situation is responsible for an urgent demand for energy. There are several ways to generate energy, in some localities of our country, energy generation occurs almost exclusively by nuclear route, as in Rio de Janeiro state. Brazil has the sixth largest reserve of the uranium ore in the world. Nowadays there is only one mine under exploration (Uraniferous District of Lagoa Real - Caetite-BA). Unfortunately, nuclear power generation is better known, by common citizen, more for its unwanted effects than for its benefits. This fact is also powered by some Non-Governmental Organizations (NGOs), such as Greenpeace, who claim the uranium mine is dangerous since it causes environmental contamination. However, Industrias Nucleares do Brasil (INB) rejected these accusations. In a previous study, we demonstrated that doses of the Caetite (BA) population are consistent with those usually found in other countries. We stated also the higher concentration of {sup 238}U determined, in only one water sample, is probably due to natural processes, as soil leaching. In order to verify the existing natural processes, macro and micro chemical elements present in water and soil samples collected in the Caetite (BA) region were determined by ICP-MS. The results were transformed into dendrograms where chemical correlations are evidenced and they are consistent with existing natural chemical processes. It was also possible to observe a correlation between samples corroborating with the Geographic Information Systems data to be presented in this same scientific event. (author)

  9. The BaBar Data Acquisition System

    CERN Document Server

    Scott, I; Grosso, P; Huffer, M E; O'Grady, C; Russell, J J

    1999-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform a search for CP violation by ana-lyzing the decays of a very large sample of B and B(Bar) mesons produced at the high luminosity PEP-II accelerator. The data acquisition system must cope with a sustained high event rate, while supporting real time feature extraction and data compression with minimal dead time. The BaBar data acquisition system is based around a common VME interface to the electronics read-out of the separate detec-tor subsystems. Data from the front end electronics is read into commercial VME processors via a custom "Personality Card" and PCI interface. The commercial CPUs run the Tornado operating system to provide a platform for detector subsystem code to perform the necessary data processing. The data is read out via a non-blocking network switch to a farm of commercial UNIX processors. The current implementation of the BaBar data acquisition sys-tem has been shown to sustain a Level 1 trigger rate of 1.3...

  10. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    Science.gov (United States)

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  11. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  12. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    Science.gov (United States)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  13. Surface Reconstruction from Parallel Curves with Application to Parietal Bone Fracture Reconstruction.

    Directory of Open Access Journals (Sweden)

    Abdul Majeed

    Full Text Available Maxillofacial trauma are common, secondary to road traffic accident, sports injury, falls and require sophisticated radiological imaging to precisely diagnose. A direct surgical reconstruction is complex and require clinical expertise. Bio-modelling helps in reconstructing surface model from 2D contours. In this manuscript we have constructed the 3D surface using 2D Computerized Tomography (CT scan contours. The fracture part of the cranial vault are reconstructed using GC1 rational cubic Ball curve with three free parameters, later the 2D contours are flipped into 3D with equidistant z component. The constructed surface is represented by contours blending interpolant. At the end of this manuscript a case report of parietal bone fracture is also illustrated by employing this method with a Graphical User Interface (GUI illustration.

  14. Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information.

    Science.gov (United States)

    Elman, Jeremy A; Cohn-Sheehy, Brendan I; Shimamura, Arthur P

    2013-03-01

    In fMRI analyses, the posterior parietal cortex (PPC) is particularly active during the successful retrieval of episodic memory. To delineate the neural correlates of episodic retrieval more succinctly, we compared retrieval of recently learned spatial locations (photographs of buildings) with retrieval of previously familiar locations (photographs of familiar campus buildings). Episodic retrieval of recently learned locations activated a circumscribed region within the ventral PPC (anterior angular gyrus and adjacent regions in the supramarginal gyrus) as well as medial PPC regions (posterior cingulated gyrus and posterior precuneus). Retrieval of familiar locations activated more posterior regions in the ventral PPC (posterior angular gyrus, LOC) and more anterior regions in the medial PPC (anterior precuneus and retrosplenial cortex). These dissociable effects define more precisely PPC regions involved in the retrieval of recent, contextually bound information as opposed to regions involved in other processes, such as visual imagery, scene reconstruction, and self-referential processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cingulate, Frontal and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Bush, George

    2011-01-01

    Functional and structural neuroimaging have identified abnormalities of the brain that are likely to contribute to the neuropathophysiology of attention-deficit/hyperactivity disorder (ADHD). In particular, hypofunction of the brain regions comprising the cingulo-frontal-parietal (CFP) cognitive-attention network have been consistently observed across studies. These are major components of neural systems that are relevant to ADHD, including cognitive/attention networks, motor systems and reward/feedback-based processing systems. Moreover, these areas interact with other brain circuits that have been implicated in ADHD, such as the “default mode” resting state network. ADHD imaging data related to CFP network dysfunction will be selectively highlighted here to help facilitate its integration with the other information presented in this special issue. Together, these reviews will help shed light on the neurobiology of ADHD. PMID:21489409

  16. Parietal and early visual cortices encode working memory content across mental transformations.

    Science.gov (United States)

    Christophel, Thomas B; Cichy, Radoslaw M; Hebart, Martin N; Haynes, John-Dylan

    2015-02-01

    Active and flexible manipulations of memory contents "in the mind's eye" are believed to occur in a dedicated neural workspace, frequently referred to as visual working memory. Such a neural workspace should have two important properties: The ability to store sensory information across delay periods and the ability to flexibly transform sensory information. Here we used a combination of functional MRI and multivariate decoding to indentify such neural representations. Subjects were required to memorize a complex artificial pattern for an extended delay, then rotate the mental image as instructed by a cue and memorize this transformed pattern. We found that patterns of brain activity already in early visual areas and posterior parietal cortex encode not only the initially remembered image, but also the transformed contents after mental rotation. Our results thus suggest that the flexible and general neural workspace supporting visual working memory can be realized within posterior brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan.

    Science.gov (United States)

    Richardson, Fiona M; Thomas, Michael S C; Filippi, Roberto; Harth, Helen; Price, Cathy J

    2010-05-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in teenagers but not adults. This region was not activated during auditory or visual sentence processing, and activation was unrelated to vocabulary skills. Its gray matter density may reflect the use of an explicit learning strategy that links new words to lexical or conceptual equivalents, as used in formal education and second language acquisition. By contrast, in left posterior temporal regions, gray matter as well as auditory and visual sentence activation correlated with vocabulary knowledge throughout lifespan. We propose that these effects reflect the acquisition of vocabulary through context, when new words are learnt within the context of semantically and syntactically related words.

  18. Activation of right parietal cortex during memory retrieval of nonlinguistic auditory stimuli.

    Science.gov (United States)

    Klostermann, Ellen C; Loui, Psyche; Shimamura, Arthur P

    2009-09-01

    In neuroimaging studies, the left ventral posterior parietal cortex (PPC) is particularly active during memory retrieval. However, most studies have used verbal or verbalizable stimuli. We investigated neural activations associated with the retrieval of short, agrammatical music stimuli (Blackwood, 2004), which have been largely associated with right hemisphere processing. At study, participants listened to music stimuli and rated them on pleasantness. At test, participants made old/new recognition judgments with high/low confidence ratings. Right, but not left, ventral PPC activity was observed during the retrieval of these music stimuli. Thus, rather than indicating a special status of left PPC in retrieval, both right and left ventral PPC participate in memory retrieval, depending on the type of information that is to be remembered.

  19. Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis

    Science.gov (United States)

    Smeets, Bart; Kuppe, Christoph; Sicking, Eva-Maria; Fuss, Astrid; Jirak, Peggy; van Kuppevelt, Toin H.; Endlich, Karlhans; Wetzels, Jack F.M.; Gröne, Hermann-Josef; Floege, Jürgen

    2011-01-01

    The pathogenesis of the development of sclerotic lesions in focal segmental glomerulosclerosis (FSGS) remains unknown. Here, we selectively tagged podocytes or parietal epithelial cells (PECs) to determine whether PECs contribute to sclerosis. In three distinct models of FSGS (5/6-nephrectomy + DOCA-salt; the murine transgenic chronic Thy1.1 model; or the MWF rat) and in human biopsies, the primary injury to induce FSGS associated with focal activation of PECs and the formation of cellular adhesions to the capillary tuft. From this entry site, activated PECs invaded the affected segment of the glomerular tuft and deposited extracellular matrix. Within the affected segment, podocytes were lost and mesangial sclerosis developed within the endocapillary compartment. In conclusion, these results demonstrate that PECs contribute to the development and progression of the sclerotic lesions that define FSGS, but this pathogenesis may be relevant to all etiologies of glomerulosclerosis. PMID:21719782

  20. El arte parietal, espejo de las sociedades paleolíticas

    Directory of Open Access Journals (Sweden)

    Georges SAUVET

    2009-12-01

    Full Text Available RESUMEN: El presente trabajo aboga por un estudio del arte parietal como instrumento del conocimiento de la geografía humana de las sociedades de cazadores y de la evolución de sus redes de alianza, durante el Paleolítico superior. Tomando como ejemplo el componente figurativo de este arte y un amplio corpus de 3981 figuras procedentes de 154 yacimientos franceses y españoles, se demuestra que las asociaciones entre especies animales diferentes obedecen a reglas simples y coherentes, que se dejan fácilmente exprimir por un modelo formal. El análisis de doce sub-conjuntos sincrónicos y diacrónicos evidencia la movilidad de las connexiones interregionales (por ejemplo el desarrollo del Solutrense cantábrico en relación con los centros peninsulares y con escaso contacto con el sudoeste francés, al contrario de la situación que prevalece durante el Magdaleniense medio-superior. Sin embargo conforta la idea que las variaciones regionales operan dentro de un sistema de pensamiento religioso relativamente estable. Una segunda fase del trabajo se propone describir la estructuración del arte parietal a un nivel mucho más fino, teniendo en cuenta la diversidad formal de cada figura y sus relaciones topológicas con las demás. Una larga base de datos está en curso de elaboración para su tratamiento con las técnicas de "extracción de conocimiento" (Knowledge Discovery in Databases. Unos resultados preliminares dejan esperar que una base de datos de este tipo servirá el objetivo y proporcionará une visión más precisa y segura de la historia de los pueblos paleolíticos, dado que la fuente del estilo propio de cada grupo debe buscarse en la construcción gráfica de paneles complejos.ABSTRACT: This paper pleads in favour of the study of parietal art as a means to investigate the human geography of palaeolithic hunter-gatherers in Europe and the evolution of their alliance networks. Taking the example of the figurative component of Rock

  1. [Signal transudation pathways in parietal cells of the gastric mucosa in experimental stomach ulcer].

    Science.gov (United States)

    Ostapchenko, L I; Drobins'ka, O V; Chaĭka, V O; Bohun, L I; Bohdanova, O V; Kot, L I; Haĭda, L M

    2009-01-01

    The goal of the presented work was the research of signal transduction mechanism in the rat gastric parietal cells under stomach ulcer conditions. In these cells activation of adenylate cyclase (increase of cAMP level and proteinkinase A activity) and phosphoinositide (increases [Ca2+]i; cGMP and phoshatidylinocitole levels; proteinkinase C, proteinkinase G, and calmodulin-dependent-proteinkinase activity) of signals pathway was shown. An increase of plasma membrane phospholipids (PC, PS, PE, PI, LPC) level was shown. Under conditions of influence of the stress factor the membran enzymes activity (H+, K+ -ATPase, 5'-AMPase, Na+, K+ -ATPase, Ca2+, Mg2+ -ATPase and H+, K+ -ATPase) was considerably increased. The intensification of lipid peroxidation processes in rats was demonstrated.

  2. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    Science.gov (United States)

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  3. Seeing without the Occipito-Parietal Cortex: Simultagnosia as a Shrinkage of the Attentional Visual Field

    Directory of Open Access Journals (Sweden)

    François Michel

    2004-01-01

    Full Text Available Following bi-parietal lesions patient AT showed a severe inability to relocate her attention within a visual field which perimetry proved to be near-normal. An experimental approach with tasks testing visuo-spatial attention demonstrated a shrinkage of A.T.’s attentional visual field. With her visual attention narrowed to a kind of functional tunnel vision, the patient exhibited simultanagnosia (Wolpert, 1924, a symptom previously described in 1909 by Balint under the label of Psychic paralysis of “Gaze”. In striking contrast AT showed an efficient and effortless perception of complex natural scenes, which, according to recent work in normal subjects, necessitate few if any attentional resources.

  4. Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans.

    Directory of Open Access Journals (Sweden)

    Alberto Gallace

    Full Text Available The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level.

  5. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells.

    Science.gov (United States)

    Smeets, Bart; Uhlig, Sandra; Fuss, Astrid; Mooren, Fieke; Wetzels, Jack F M; Floege, Jürgen; Moeller, Marcus J

    2009-12-01

    Cellular lesions form in Bowman's space in both crescentic glomerulonephritis and collapsing glomerulopathy. The pathomechanism and origin of the proliferating cells in these lesions are unknown. In this study, we examined proliferating cells by lineage tracing of either podocytes or parietal epithelial cells (PECs) in the nephrotoxic nephritis model of inflammatory crescentic glomerulonephritis. In addition, we traced the fate of genetically labeled PECs in the Thy-1.1 transgenic mouse model of collapsing glomerulopathy. In both models, cellular bridges composed of PECs were observed between Bowman's capsule and the glomerular tuft. Genetically labeled PECs also populated larger, more advanced cellular lesions. In these lesions, we detected de novo expression of CD44 in activated PECs. In contrast, we rarely identified genetically labeled podocytes within the cellular lesions of crescentic glomerulonephritis. In conclusion, PECs constitute the majority of cells that compose early extracapillary proliferative lesions in both crescentic glomerulonephritis and collapsing glomerulopathy, suggesting similar pathomechanisms in both diseases.

  6. Effects of marijuana use on prefrontal and parietal volumes and cognition in emerging adults.

    Science.gov (United States)

    Price, Jenessa S; McQueeny, Tim; Shollenbarger, Skyler; Browning, Erin L; Wieser, Jon; Lisdahl, Krista M

    2015-08-01

    Chronic marijuana (MJ) use among adolescents has been associated with structural and functional abnormalities, particularly in developing regions responsible for higher order cognition. This study investigated prefrontal (PFC) and parietal volumes and executive function in emerging adult MJ users and explored potential gender differences. Participants (ages 18-25) were 27 MJ users and 32 controls without neurologic or psychiatric disorders or heavy other drug use. A series of multiple regressions examined whether group status, past year MJ use, and their interactions with gender predicted ROI volumes. Post hoc analyses consisted of brain-behavior correlations between volumes and cognitive variables and Fisher's z tests to assess group differences. MJ users demonstrated significantly smaller medial orbitofrontal (mOFC; p = 0.004, FDR p = 0.024) and inferior parietal volumes (p = 0.04, FDR p = 0.12); follow-up regressions found that increased past year MJ use did not significantly dose-dependently predict smaller mOFC volume in a sub-sample of individuals with at least one past year MJ use. There were no significant gender interactions. There was a significant brain-behavior difference by group, such that smaller mOFC volumes were associated with poorer complex attention for MJ users (p < 0.05). Smaller mOFC volumes among MJ users suggest disruption of typical neurodevelopmental processes associated with regular MJ use for both genders. These results highlight the need for longitudinal, multi-modal imaging studies providing clearer information on timing of neurodevelopmental processes and neurocognitive impacts of youth MJ initiation.

  7. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Subtle gray matter changes in temporo-parietal cortex associated with cardiovascular risk factors.

    Science.gov (United States)

    de Toledo Ferraz Alves, Tânia Corrêa; Scazufca, Márcia; Squarzoni, Paula; de Souza Duran, Fábio Luiz; Tamashiro-Duran, Jaqueline Hatsuko; Vallada, Homero P; Andrei, Anna; Wajngarten, Mauricio; Menezes, Paulo R; Busatto, Geraldo F

    2011-01-01

    Vascular risk factors may play an important role in the pathophysiology of Alzheimer's disease (AD). While there is consistent evidence of gray matter (GM) abnormalities in earlier stages of AD, the presence of more subtle GM changes associated with vascular risk factors in the absence of clinically significant vascular events has been scarcely investigated. This study aimed to examine GM changes in elderly subjects with cardiovascular risk factors. We predicted that the presence of cardiovascular risk would be associated with GM abnormalities involving the temporal-parietal cortices and limbic structures. We recruited 248 dementia-free subjects, age range 66-75 years, from the population-based "São Paulo Ageing and Health Study", classified in accordance to their Framingham Coronary Heart Disease Risk (FCHDR) score to undergo an MRI scan. We performed an overall analysis of covariance, controlled to total GM and APOE4 status, to investigate the presence of regional GM abnormalities in association with FCHDR subgroups (high-risk, medium-risk, and low-risk), and followed by post hoc t-test. We also applied a co-relational design in order to investigate the presence of linear progression of the GM vulnerability in association with cardiovascular risk factor. Voxel-based morphometry showed that the presence of cardiovascular risk factors were associated with regional GM loss involving the temporal cortices bilaterally. Those results retained statistical significance after including APOE4 as a covariate of interest. We also observed that there was a negative correlation between FCHDR scores and rGM distribution in the parietal cortex. Subclinical cerebrovascular abnormalities involving GM loss may provide an important link between cardiovascular risk factors and AD.

  9. Resting-state functional connectivity of ventral parietal regions associated with attention reorienting and episodic recollection

    Directory of Open Access Journals (Sweden)

    Sander M Daselaar

    2013-02-01

    Full Text Available In functional neuroimaging studies, ventral parietal cortex (VPC is recruited by very different cognitive tasks. Explaining the contributions VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction—TPJ and in the angular gyrus (AG, respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be

  10. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  11. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    Science.gov (United States)

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.

  12. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  13. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    Science.gov (United States)

    Wendelken, Carter

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to

  14. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  15. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display

    Directory of Open Access Journals (Sweden)

    Mickaël Desvaux

    2018-02-01

    Full Text Available The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria is formed of a cytoplasmic membrane (CM and a cell wall (CW. While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226, i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658, i.e., the lipoproteins. At the CW (GO: 0009275, cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.

  16. Meta-analysis: How does posterior parietal cortex contribute to reasoning?

    Directory of Open Access Journals (Sweden)

    Carter eWendelken

    2015-01-01

    Full Text Available Reasoning depends on the contribution of posterior parietal cortex (PPC. But PPC is involved in many basic operations -- including spatial attention, mathematical cognition, working memory, long-term memory, and language -- and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: 1 reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing, 2 reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC, and 3 reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest. Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL. Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific

  17. Object integration requires attention: Visual search for Kanizsa figures in parietal extinction.

    Science.gov (United States)

    Gögler, Nadine; Finke, Kathrin; Keller, Ingo; Müller, Hermann J; Conci, Markus

    2016-11-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective attention. Here, we combined these two approaches to investigate object integration in visual search in a group of five patients with left-sided parietal extinction. Our search paradigm was designed to assess the effect of left- and right-grouped nontargets on detecting a Kanizsa target square. The results revealed comparable reaction time (RT) performance in patients and controls when they were presented with displays consisting of a single to-be-grouped item that had to be classified as target vs. nontarget. However, when display size increased to two items, patients showed an extinction-specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these findings demonstrate a competitive advantage for right-grouped objects, which in turn indicates that in parietal extinction, attentional competition between objects particularly limits integration processes in the contralesional, i.e., left hemifield. These findings imply a crucial contribution of selective attentional resources to visual object integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. High spin structure in 130,131Ba

    International Nuclear Information System (INIS)

    Kaur, Navneet; Kumar, A.; Singh, Amandeep; Kumar, S.; Kaur, Rajbir; Singh, Varinderjit; Behera, B.R.; Singh, K.P.; Singh, G.; Mukherjee, G.; Sharma, H.P.; Kumar, Suresh; Kumar Raju, M.; Madhusudhan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, N.; Bhowmik, R.K.

    2014-01-01

    High spin states of 130,131 Ba have been investigated via fusion evaporation reactions 122 Sn( 13 C,4n) 131 Ba and 122 Sn( 13 C, 5n) 130 Ba at E beam =65 MeV. The level schemes of 130,131 Ba have been extended by placing several new γ transitions. A few interband transitions connecting two negative-parity bands, which are the experimental fingerprints of signature partners, have been established in 130 Ba. Spin and parity of a side band have been assigned in 131 Ba and this dipole band is proposed to have a three-quasiparticle configuration, νh 11/2 x πh 11/2 x πg 7/2 . The observed band structures and nuclear shape evolution as a function of the angular momentum have been discussed in the light of Total-Routhian-Surface calculations. (orig.)

  19. 10 Hz rTMS over right parietal cortex alters sense of agency during self-controlled movements

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Karabanov, Anke N; Christensen, Mark Schram

    2014-01-01

    A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC) is important for sensorimotor integration and sense of agency (SoA). We used repetitive transcranial magnetic stimulation (rTMS) to explore the role of the IPC during a validated SoA detection...

  20. Posterior Parietal Cortex and Episodic Encoding: Insights from fMRI Subsequent Memory Effects and Dual Attention Theory

    Science.gov (United States)

    Uncapher, Melina; Wagner, Anthony D.

    2010-01-01

    The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591

  1. Right Fronto-Parietal Dysfunction in Children with ADHD and Developmental Dyslexia as Determined by Line Bisection Judgements

    Science.gov (United States)

    Waldie, Karen E.; Hausmann, Markus

    2010-01-01

    Visual line bisection is a reliable and valid laterality task that is typically used with patients with acquired brain damage to assess right hemisphere functioning. Neurologically normal individuals tend to bisect lines to the left of the objective midline whereas those with right parietal damage bisect lines to the right. In this study children…

  2. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic

  3. Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory.

    Science.gov (United States)

    Uncapher, Melina R; Wagner, Anthony D

    2009-02-01

    The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.

  4. Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Laman, D.M.; Honk, E.J. van; Vergouwen, A.C.M.; Koerselman, F.

    2009-01-01

    The aim of this treatment study was to evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) over the right parietal cortex in depression. In a double-blind, sham-controlled design ten consecutive sessions of 2 Hz rTMS (inter-pulse interval 0.5 s) at 90% motor

  5. Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies-Methodological considerations

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2017-01-01

    the effect of transient perturbations on functional brain organization. This concurrent TMS-fMRI study applied TMS perturbation to occipital and parietal cortices with the aim to 'mimick' neglect and hemianopia. Based on the challenges and interpretational limitations of our own study we aim to provide...

  6. Hadronic Physics Studies at BaBar

    International Nuclear Information System (INIS)

    Stroili, R.

    2006-01-01

    A new resonance Y(4260) with a mass of 4259 ± 8 -6 +2 MeV/c 2 and J PC = 1 -- , discovered by the BaBar experiment shows peculiar behavior in his decay mode. The Λ c + baryon mass has been measured, using its decays to ΛK S 0 K + and Σ 0 K S 0 K + , and its value is 2286.46 ± 0.14 MeV/c 2 , the precision is greatly improved w.r.t. PDG value. Ξ c 0 and (Omega) c 0 decays and production have been studied with results greatly improved w.r.t. PDG

  7. Structural Correlates of Openness and Intellect: Implications for the Contribution of Personality to Creativity

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Wertz, Christopher J; Flores, Renee A.

    2018-01-01

    results demonstrated that Openness was correlated inversely with cortical thickness and volume in left middle frontal gyrus (BA 6), middle temporal gyrus (MTG, BA 21), and superior temporal gyrus (BA 41), and exclusively with cortical thickness in left inferior parietal lobule (BA 40), right inferior...... reflects perceived intelligence and intellectual engagement, Openness reflects engagement with fantasy, perception, and aesthetics. We investigated the extent to which Openness and Intellect are associated with variations in brain structure as measured by cortical thickness, area, and volume (N = 185). Our...... frontal gyrus (IFG, BA 45), and MTG (BA 37). When age and sex were statistically controlled for, the inverse correlations between Openness and cortical thickness remained statistically significant for all regions except left MTG, whereas the correlations involving cortical volume remained statistically...

  8. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  9. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study

    Science.gov (United States)

    Ferri, Stefania; Rizzolatti, Giacomo

    2015-01-01

    Abstract The present fMRI study examined whether upper‐limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object‐related (e.g., grasping), skin‐displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three‐level network including occipito‐temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin‐displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution. Hum Brain Mapp 36:3845–3866, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley

  10. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    Science.gov (United States)

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  11. Parietal pleural invasion/adhesion of subpleural lung cancer: Quantitative 4-dimensional CT analysis using dynamic-ventilatory scanning

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Kotaro, E-mail: ksakuma@ohara-hp.or.jp [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan); Yamashiro, Tsuneo, E-mail: clatsune@yahoo.co.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Moriya, Hiroshi, E-mail: hrshmoriya@gmail.com [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Murayama, Sadayuki, E-mail: sadayuki@med.u-ryukyu.ac.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Ito, Hiroshi, E-mail: h-ito@fmu.ac.jp [Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan)

    2017-02-15

    Highlights: • 4DCT can be used for assessment of pleural invasion/adhesion by lung cancer. • Quantitative 4DCT indices of lung cancer and adjacent structures are described. • An automatic analysis of pleural invasion/adhesion would be developed in the future. - Abstract: Purpose: Using 4-dimensional dynamic-ventilatory scanning by a 320-row computed tomography (CT) scanner, we performed a quantitative assessment of parietal pleural invasion and adhesion by peripheral (subpleural) lung cancers. Methods: Sixteen patients with subpleural lung cancer underwent dynamic-ventilation CT during free breathing. Neither parietal pleural invasion nor adhesion was subsequently confirmed by surgery in 10 patients, whereas the other 6 patients were judged to have parietal pleural invasion or adhesion. Using research software, we tracked the movements of the cancer and of an adjacent structure such as the rib or aorta, and converted the data to 3-dimensional loci. The following quantitative indices were compared by the Mann-Whitney test: cross-correlation coefficient between time curves for the distances moved from the inspiratory frame by the cancer and the adjacent structure, the ratio of the total movement distances (cancer/adjacent structure), and the cosine similarities between the inspiratory and expiratory vectors (from the cancer to the adjacent structure) and between vectors of the cancer and of the adjacent structure (from inspiratory to expiratory frames). Results: Generally, the movements of the loci of the lung cancer and the adjacent structure were similar in patients with parietal pleural invasion/adhesion, while they were independent in patients without. There were significant differences in all the parameters between the two patient groups (cross-correlation coefficient and the movement distance ratio, P < 0.01; cosine similarities, P < 0.05). Conclusion: These observations suggest that quantitative indices by dynamic-ventilation CT can be utilized as a

  12. Parietal scalp is another affected area in female pattern hair loss: an analysis of hair density and hair diameter

    Directory of Open Access Journals (Sweden)

    Rojhirunsakool S

    2017-12-01

    Full Text Available Salinee Rojhirunsakool, Poonkiat Suchonwanit Department of Medicine, Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Purpose: Female pattern hair loss (FPHL is a common hair disease. However, studies of the quantitative measurement of FPHL are still limited. The aim of this study was to investigate the characteristics of hair density and hair diameter in normal women and FPHL patients, and further correlate the quantitative measurement with the clinical presentation of FPHL.Patients and methods: An evaluation of 471 FPHL patients and 236 normal women was carried out according to the Ludwig classification, and analysis was performed by using a computerized handheld USB camera with computer-assisted software. Various areas of the scalp, including frontal, parietal, midscalp, and occipital, were analyzed for hair density, non-vellus hair diameter, and percentage of miniaturized hair.Results: The hair density in normal women was the highest and the lowest in the midscalp and parietal areas, respectively. The FPHL group revealed the lowest hair density in the parietal area. Significant differences in hair density, non-vellus hair diameter, and percentage of miniaturized hair between the normal and FPHL groups were observed, especially in the midscalp and parietal areas.Conclusion: The parietal area is another important affected area in FPHL in addition to the midscalp area. This finding provides novel important information of FPHL and will be useful for hair transplant surgeons choosing the optimal donor sites for hair transplantation in women. Keywords: androgenetic alopecia, alopecia, phototrichogram, miniaturization

  13. Strain induced optical properties of BaReO3

    Science.gov (United States)

    Kumavat, Sandip R.; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    Here, we have performed strain induce optical properties of BaReO3 by using density functional theory (DFT). We noticed that after applying intrinsic and extrinsic strain to the BaReO3, it shows the metallic behavior. We also studied optical properties, which show good activity in the ultraviolet region. The results show that after applying intrinsic and extrinsic strain to BaReO3 the absorption peaks are shifted towards the high UV region of the spectrum. Thus, we concluded that, BaReO3 material with extrinsic strain can be useful for high frequency UV device and optoelectronic devices.

  14. Incorporation of Ba in Al and Fe pollucite

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Eric R., E-mail: erv@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); Gregg, Daniel J.; Griffiths, Grant J. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); Gaugliardo, Paul R. [Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 (Australia); Grant, Charmaine [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia)

    2016-09-15

    Ba, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs{sub (1−2x)}Ba{sub x}AlSi{sub 2}O{sub 6} aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl{sub 2}Si{sub 2}O{sub 8} phases. The effect of Ba substitution in pollucite-structured CsFeSi{sub 2}O{sub 6} was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe{sup 2+} formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs{sup +} + Fe{sup 3+} ↔ Ba{sup 2+} + Ni{sup 2+} scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi{sub 2}O{sub 6} to be very leach resistant. - Highlights: • Barium can be incorporated into aluminium pollucite. • Positron annihilation lifetime spectroscopy supports a charge vacancy mechanism of incorporation. • Iron pollucite does not appear to incorporate any barium with either vacancy or charge compensation mechanisms. • Leaching data suggest iron pollucite is very leach resistant.

  15. Syntheses and crystal structures of BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica C.; Ibers, James A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM-UMR 5257 CNRS/CEA/UM2/ENSCM, Bat 426, BP 17171, 30207 Bagnols/Ceze (France)

    2015-06-15

    Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}, were synthesized by the reactions of the elements at 1173-1273 K. For CsAgUTe{sub 3} CsCl flux was used. Their crystal structures were determined by single-crystal X-ray diffraction studies. The sulfide BaAgTbS{sub 3} crystallizes in the BaAgErS{sub 3} structure type in the monoclinic space group C{sup 3},{sub 2h}-C2/m, whereas the tellurides BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3} crystallize in the KCuZrS{sub 3} structure type in the orthorhombic space group D{sup 1},{sub 2}{sup 7},{sub h}-Cmcm. The BaAgTbS{sub 3} structure consists of edge-sharing [TbS{sub 6}{sup 9-}] octahedra and [AgS{sub 5}{sup 9-}] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features {sup 2}{sub ∞}[MLnTe{sub 3}{sup 2-}] layers for BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and {sup 2}{sub ∞}[AgUTe{sub 3}{sup 1-}] layers for CsAgUTe{sub 3}. These layers comprise [MTe{sub 4}] tetrahedra and [LnTe{sub 6}] or [UTe{sub 6}] octahedra. Ba or Cs atoms separate these layers. As there are no short Q..Q (Q = S or Te) interactions these compounds achieve charge balance as Ba{sup 2+}M{sup +}Ln{sup 3+}(Q{sup 2-}){sub 3} (Q = S and Te) and Cs{sup +}Ag{sup +}U{sup 4+}(Te{sup 2-}){sub 3}. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Chemiluminescence from the reaction of Ba 3D with nitric oxide

    International Nuclear Information System (INIS)

    Johnson, S.A.; Solarz, R.W.; Dubrin, J.W.; Brotzmann, R.

    1977-01-01

    The reaction of laser excited Ba*( 3 D) states with nitric oxide is presented. BaO product is not detected, although the channel is thermodynamically open, and instead chemiluminescence is observed. Experiments which suggest that radiative recombination, Ba + NO → BaNO* → BaNO, is the observed reaction channel will also be presented

  17. Multicenter prospective randomized study comparing the technique of using a bovine pericardium biological prosthesis reinforcement in parietal herniorrhaphy (Tutomesh TUTOGEN) with simple parietal herniorrhaphy, in a potentially contaminated setting.

    Science.gov (United States)

    Nedelcu, Marius; Verhaeghe, Pierre; Skalli, Mehdi; Champault, Gerard; Barrat, Christophe; Sebbag, Hugues; Reche, Fabian; Passebois, Laurent; Beyrne, Daniel; Gugenheim, Jean; Berdah, Stephane; Bouayed, Amine; Michel Fabre, Jean; Nocca, David

    2016-03-01

    The use of parietal synthetic prosthetic reinforcement material in potentially contaminated settings is not recommended, as there is a risk that the prosthesis may become infected. Thus, simple parietal herniorrhaphy, is the conventional treatment, even though there is a significant risk that the hernia may recur. Using new biomaterials of animal origin presently appears to offer a new therapeutic solution, but their effectiveness has yet to be demonstrated. The purpose of this multicenter prospective randomized single-blind study was to compare the surgical treatment of inguinal hernia or abdominal incisional hernia by simple parietal herniorrhaphy without prosthetic reinforcement (Group A), with Tutomesh TUTOGEN biological prosthesis reinforcement parietal herniorrhaphy (Group B), in a potentially contaminated setting. We examined early postoperative complications in the first month after the operation, performed an assessment after one year of survival without recurrence and analyzed the quality of life and pain of the patients (using SF-12 health status questionnaire and Visual Analog Pain Scale) at 1, 6, and 12 months, together with an economic impact study. Hundred and thirty four patients were enrolled between January 2009 and October 2010 in 20 French hospitals. The groups were comparable with respect to their enrollment characteristics, their history, types of operative indications and procedures carried out. At one month post-op, the rate of infectious complications (n(A) = 11(18.33%) vs. n(B) = 12(19.05%), p = 0.919) was not significantly different between the two groups. The assessment after one year of survival without recurrence revealed that survival was significantly greater in Group B (Group A recurrence: 10, Group B: 3; p = 0.0475). No difference in the patients' quality of life was demonstrated at 1, 6, or 12 months. However, at the 1 month follow-up, the "perceived health" rating seemed better in the group with Tutomesh (p

  18. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  19. Hyperfine structure and isotope shift of the neutron-rich barium isotopes 139-146Ba and 148Ba

    International Nuclear Information System (INIS)

    Wendt, K.; Ahmad, S.A.; Klempt, W.; Neugart, R.; Otten, E.W.

    1988-01-01

    The hyperfine structure and isotope shift in the 6s 2 S 1/2 -6p 2 P 3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes 139-146 Ba and 148 Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope 148 Ba (T 1/2 = 0.64 s) could be studied for the first time, yielding δ 2 > 138,148 = 1.245(3) fm 2 . (orig.)

  20. Ischemia-induced glomerular parietal epithelial cells hyperplasia: Commonly misdiagnosed cellular crescent in renal biopsy.

    Science.gov (United States)

    Zeng, Yeting; Wang, Xinrui; Xie, Feilai; Zheng, Zhiyong

    2017-08-01

    Ischemic pseudo-cellular crescent (IPCC) that is induced by ischemia and composed of hyperplastic glomerular parietal epithelial cells resembles cellular crescent. In this study, we aimed to assess the clinical and pathological features of IPCC in renal biopsy to avoid over-diagnosis and to determine the diagnostic basis. 4 IPCC cases diagnosed over a 4-year period (2012-2015) were evaluated for the study. Meanwhile, 5 cases of ANCA-associated glomerulonephritis and 5 cases of lupus nephritis (LN) were selected as control. Appropriate clinical data, morphology, and immunohistochemical features of all cases were retrieved. Results showed that the basement membrane of glomerulus with IPCC appeared as a concentric twisted ball, and glomerular cells of the lesion were reduced even entirely absent, and the adjacent afferent arterioles showed sclerosis or luminal stenosis. Furthermore, immune globulin deposition, vasculitis, and fibrinous exudate have not been observed in IPCC. While the cellular crescents showed diverse characteristics in both morphology and immunostaining in the control group. Therefore, these results indicated that IPCC is a sort of ischemic reactive hyperplasia and associated with sclerosis, stenosis, or obstruction of adjacent afferent arterioles, which is clearly different from cellular crescents result from glomerulonephritis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  2. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  3. Virtual lesions of the inferior parietal cortex induce fast changes of implicit religiousness/spirituality.

    Science.gov (United States)

    Crescentini, Cristiano; Aglioti, Salvatore M; Fabbro, Franco; Urgesi, Cosimo

    2014-05-01

    Religiousness and spirituality (RS) are two ubiquitous aspects of human experience typically considered impervious to scientific investigation. Nevertheless, associations between RS and frontoparietal neural activity have been recently reported. However, much less is known about whether such activity is causally involved in modulating RS or just epiphenomenal to them. Here we combined two-pulse (10 Hz) Transcranial Magnetic Stimulation (TMS) with a novel, ad-hoc developed RS-related, Implicit Association Test (IAT) to investigate whether implicit RS representations, although supposedly rather stable, can be rapidly modified by a virtual lesion of inferior parietal lobe (IPL) and dorsolateral prefrontal cortex (DLPFC). A self-esteem (SE) IAT, focused on self-concepts nonrelated to RS representations, was developed as control. A specific increase of RS followed inhibition of IPL demonstrating its causative role in inducing fast plastic changes of religiousness/spirituality. In contrast, DLPFC inhibition had more widespread effects probably reflecting a general role in the acquisition or maintenance of task-rules or in controlling the expression of self-related representations not specific to RS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Excitatory stimulation of the right inferior parietal cortex lessens implicit religiousness/spirituality.

    Science.gov (United States)

    Crescentini, Cristiano; Di Bucchianico, Marilena; Fabbro, Franco; Urgesi, Cosimo

    2015-04-01

    Although religiousness and spirituality (RS) are considered two fundamental constituents of human life, neuroscientific investigation has long avoided the study of their neurocognitive basis. Nevertheless, recent investigations with brain imaging and brain damaged patients, and more recently with brain stimulation methods, have documented important associations between RS beliefs and experiences and frontoparietal neural activity. In this study, we further investigated how individuals' implicit RS self-representations can be modulated by changes in right inferior parietal lobe (IPL) excitability, a key region associated to RS. To this end, we combined continuous theta burst stimulation (cTBS), intermittent TBS (iTBS), and sham TBS with RS-related, Implicit Association Test (IAT) and with a control self-esteem (SE) IAT in a group of fourteen healthy adult individuals. A specific decrease of implicit RS, as measured with the IAT effect, was induced by increasing IPL excitability with iTBS; conversely cTBS, which is supposedly inhibitory, left participants' implicit RS unchanged. The performance in the control SE-IAT was left unchanged by any TBS stimulation. These data showed the causative role of right IPL functional state in mediating plastic changes of implicit RS. Implications of these results are also discussed in the light of the variability of behavioral effects associated with TBS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.

    Directory of Open Access Journals (Sweden)

    Benjamin T Dunkley

    Full Text Available Post-traumatic stress disorder (PTSD is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18 versus a military control (all males, mean age = 33.05, n = 19 group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.

  6. Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory.

    Science.gov (United States)

    Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano

    2015-12-01

    The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions. © 2015 Wiley Periodicals, Inc.

  7. Diminishing parochialism in intergroup conflict by disrupting the right temporo-parietal junction.

    Science.gov (United States)

    Baumgartner, Thomas; Schiller, Bastian; Rieskamp, Jörg; Gianotti, Lorena R R; Knoch, Daria

    2014-05-01

    Individuals react to violation of social norms by outgroup members differently than to transgressions of those same norms by ingroup members: namely outgroup perpetrators are punished much more harshly than ingroup perpetrators. This parochial punishment pattern has been observed and extensively studied in social psychology and behavioral economics. Despite progress in recent years, however, little is known about the neural underpinnings of this intergroup bias. Here, we demonstrate by means of transcranial magnetic stimulation (TMS) that the transient disruption of the right, but not the left temporo-parietal junction (TPJ), reduces parochial punishment in a third-party punishment paradigm with real social groups. Moreover, we show that this observed TMS effect on parochial punishment is mediated by a classical punishment motive, i.e. retaliation. Finally, our data suggests that a change in perspective-taking might be the underlying mechanism that explains the impact of right TPJ disruption on retaliation motivation and parochial punishment. These findings provide the first causal evidence that the right TPJ plays a pivotal role in the implementation of parochial behaviors.

  8. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions.

    Science.gov (United States)

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-08-04

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.

  9. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    Science.gov (United States)

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  10. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  11. The role of inferior parietal and inferior frontal cortex in working memory.

    Science.gov (United States)

    Baldo, Juliana V; Dronkers, Nina F

    2006-09-01

    Verbal working memory involves two major components: a phonological store that holds auditory-verbal information very briefly and an articulatory rehearsal process that allows that information to be refreshed and thus held longer in short-term memory (A. Baddeley, 1996, 2000; A. Baddeley & G. Hitch, 1974). In the current study, the authors tested two groups of patients who were chosen on the basis of their relatively focal lesions in the inferior parietal (IP) cortex or inferior frontal (IF) cortex. Patients were tested on a series of tasks that have been previously shown to tap phonological storage (span, auditory rhyming, and repetition) and articulatory rehearsal (visual rhyming and a 2-back task). As predicted, IP patients were disproportionately impaired on the span, rhyming, and repetition tasks and thus demonstrated a phonological storage deficit. IF patients, however, did not show impairment on these storage tasks but did exhibit impairment on the visual rhyming task, which requires articulatory rehearsal. These findings lend further support to the working memory model and provide evidence of the roles of IP and IF cortex in separable working memory processes. ((c) 2006 APA, all rights reserved).

  12. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia.

    Science.gov (United States)

    Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David

    2017-10-01

    Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fronto-parietal network oscillations reveal relationship between working memory capacity and cognitive control

    Directory of Open Access Journals (Sweden)

    Rasa eGulbinaite

    2014-09-01

    Full Text Available Executive-attention theory proposes a close relationship between working memory capacity (WMC and cognitive control abilities. However, conflicting results are documented in the literature, with some studies reporting that individual variations in WMC predict differences in cognitive control and trial-to-trial control adjustments (operationalized as the size of the congruency effect and congruency sequence effects, respectively, while others report no WMC-related differences. We hypothesized that brain network dynamics might be a more sensitive measure of WMC-related differences in cognitive control abilities. Thus, in the present study, we measured human EEG during the Simon task to characterize WMC-related differences in the neural dynamics of conflict processing and adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally, there were substantial WMC-related differences in theta (4-8 Hz and delta (1-3 Hz connectivity in fronto-parietal networks. Group differences in local theta and delta power were relatively less pronounced. These results suggest that the relationship between WMC and cognitive control abilities is more strongly reflected in large-scale oscillatory network dynamics than in spatially localized activity or in behavioral task performance.

  14. Agnosia for mirror stimuli: a new case report with a small parietal lesion.

    Science.gov (United States)

    Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier

    2014-11-01

    Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  16. Enhancing creative cognition with a rapid right-parietal neurofeedback procedure.

    Science.gov (United States)

    Agnoli, Sergio; Zanon, Marco; Mastria, Serena; Avenanti, Alessio; Corazza, Giovanni Emanuele

    2018-02-14

    The present article describes an innovative neurofeedback training (NFT) procedure aimed at increasing creative cognition through the enhancement of specific brain activities previously associated with divergent thinking. We designed and tested two NFT protocols based on training alpha and beta EEG oscillations selectively measured over the right parietal region. A total of 80 participants were involved, 40 in the alpha NFT protocol and 40 in the beta NFT protocol. The NFT loop was closed on a video stream that would advance only when oscillation power exceeded a normalized threshold. The total duration of the protocol was two hours in a single day, hence its classification as rapid. Changes in ideational fluency and originality, measured with a divergent thinking task, were compared between participants receiving real video feedback and participants receiving sham feedback. We controlled for individual differences in creative achievement level. Results showed that the protocols were effective at enhancing alpha and beta activities in the targeted area. Differences between the two protocols emerged in their effectiveness at promoting divergent thinking. While no significant changes in originality resulted from the rapid alpha NFT, increases in both originality and fluency emerged as a consequence of the rapid beta NFT. These results were particularly evident in participants starting with a low creative achievement level. Possible interpretations and future directions are proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    Science.gov (United States)

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A.; Zennig, Corinna; Benca, Ruth M.; Lutz, Antoine; Davidson, Richard J.; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function. PMID:24015304

  18. Parietal and temporal activity during a multimodal dance video game: an fNIRS study.

    Science.gov (United States)

    Tachibana, Atsumichi; Noah, J Adam; Bronner, Shaw; Ono, Yumie; Onozuka, Minoru

    2011-10-03

    Using functional near infrared spectroscopy (fNIRS) we studied how playing a dance video game employs coordinated activation of sensory-motor integration centers of the superior parietal lobe (SPL) and superior temporal gyrus (STG). Subjects played a dance video game, in a block design with 30s of activity alternating with 30s of rest, while changes in oxy-hemoglobin (oxy-Hb) levels were continuously measured. The game was modified to compare difficult (4-arrow), simple (2-arrow), and stepping conditions. Oxy-Hb levels were greatest with increased task difficulty. The quick-onset, trapezoidal time-course increase in SPL oxy-Hb levels reflected the on-off neuronal response of spatial orienting and rhythmic motor timing that were required during the activity. Slow-onset, bell-shaped increases in oxy-Hb levels observed in STG suggested the gradually increasing load of directing multisensory information to downstream processing centers associated with motor behavior and control. Differences in temporal relationships of SPL and STG oxy-Hb concentration levels may reflect the functional roles of these brain structures during the task period. NIRS permits insights into temporal relationships of cortical hemodynamics during real motor tasks. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis.

    Science.gov (United States)

    Dijkman, Henry; Smeets, Bart; van der Laak, Jeroen; Steenbergen, Eric; Wetzels, Jack

    2005-10-01

    Focal segmental glomerulosclerosis (FSGS) is one of the most common patterns of glomerular injury encountered in human renal biopsies. Epithelial hyperplasia, which can be prominent in FSGS, has been attributed to dedifferentiation and proliferation of podocytes. Based on observations in a mouse model of FSGS, we pointed to the role of parietal epithelial cells (PECs). In the present study we investigated the relative role of PECs and podocytes in human idiopathic FSGS. We performed a detailed study of lesions from a patient with recurrent idiopathic FSGS by serial sectioning, marker analysis and three-dimensional reconstruction of glomeruli. We have studied the expression of markers for podocytes, PECs, mesangial cells, endothelium, and myofibroblasts. We also looked at proliferation and composition of the deposited extracellular matrix (ECM). We found that proliferating epithelial cells in FSGS lesions are negative for podocyte and macrophage markers, but stain for PEC markers. The composition of the matrix deposited by these cells is identical to Bowman's capsule. Our study demonstrates that PECs are crucially involved in the pathogenesis of FSGS lesions.

  20. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    Science.gov (United States)

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  1. [Brodmann Areas 39 and 40: Human Parietal Association Area and Higher Cortical Function].

    Science.gov (United States)

    Sakurai, Yasuhisa

    2017-04-01

    The anatomy and function of the angular gyrus (Brodmann Area 39) and supramarginal gyrus (Brodmann Area 40) are described here. Both gyri constitute the inferior part of the parietal lobe. Association fibers from the angular gyrus project to the dorsolateral prefrontal cortex via the superior longitudinal fasciculus (SLF) II/arcuate fasciculus (AF), whereas those from the supramarginal gyrus project to the ventrolateral prefrontal cortex via SLF III/AF. Damage to the left angular gyrus causes kanji agraphia (lexical agraphia) and mild anomia, whereas damage to the left supramarginal gyrus causes kana alexia (phonological dyslexia) and kana agraphia (phonological agraphia). Damage to either gyrus causes Gerstmann's syndrome (finger agnosia, left-right disorientation, agraphia and acalculia) and verbal short-term memory impairment. "Angular alexia with agraphia" results from damage to the middle occipital gyrus posterior to the angular gyrus. Alexia and agraphia, with lesions in the angular or supramarginal gyrus, are characterized by kana transposition errors in reading words, which suggests the impairment of sequential phonological processing.

  2. Mental reversal of imagined melodies: a role for the posterior parietal cortex.

    Science.gov (United States)

    Zatorre, Robert J; Halpern, Andrea R; Bouffard, Marc

    2010-04-01

    Two fMRI experiments explored the neural substrates of a musical imagery task that required manipulation of the imagined sounds: temporal reversal of a melody. Musicians were presented with the first few notes of a familiar tune (Experiment 1) or its title (Experiment 2), followed by a string of notes that was either an exact or an inexact reversal. The task was to judge whether the second string was correct or not by mentally reversing all its notes, thus requiring both maintenance and manipulation of the represented string. Both experiments showed considerable activation of the superior parietal lobe (intraparietal sulcus) during the reversal process. Ventrolateral and dorsolateral frontal cortices were also activated, consistent with the memory load required during the task. We also found weaker evidence for some activation of right auditory cortex in both studies, congruent with results from previous simpler music imagery tasks. We interpret these results in the context of other mental transformation tasks, such as mental rotation in the visual domain, which are known to recruit the intraparietal sulcus region, and we propose that this region subserves general computations that require transformations of a sensory input. Mental imagery tasks may thus have both task or modality-specific components as well as components that supersede any specific codes and instead represent amodal mental manipulation.

  3. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    Science.gov (United States)

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  4. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis

    Science.gov (United States)

    Eng, Diana G.; Sunseri, Maria W.; Kaverina, Natalya; Roeder, Sebastian S.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2015-01-01

    Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative. PMID:25993321

  5. Expression of a novel stress-inducible protein, sestrin 2, in rat glomerular parietal epithelial cells

    Science.gov (United States)

    Hamatani, Hiroko; Sakairi, Toru; Takahashi, Satoshi; Watanabe, Mitsuharu; Maeshima, Akito; Ohse, Takamoto; Pippin, Jeffery W.; Shankland, Stuart J.; Nojima, Yoshihisa

    2014-01-01

    Sestrin 2, initially identified as a p53 target protein, accumulates in cells exposed to stress and inhibits mammalian target of rapamycin (mTOR) signaling. In normal rat kidneys, sestrin 2 was selectively expressed in parietal epithelial cells (PECs), identified by the marker protein gene product 9.5. In adriamycin nephropathy, sestrin 2 expression decreased in PECs on day 14, together with increased expression of phosphorylated S6 ribosomal protein (P-S6RP), a downstream target of mTOR. Sestrin 2 expression was markedly decreased on day 42, coinciding with glomerulosclerosis and severe periglomerular fibrosis. In puromycin aminonucleoside nephropathy, decreased sestrin 2 expression, increased P-S6RP expression, and periglomerular fibrosis were observed on day 9, when massive proteinuria developed. These changes were transient and nearly normalized by day 28. In crescentic glomerulonephritis, sestrin 2 expression was not detected in cellular crescents, whereas P-S6RP increased. In conditionally immortalized cultured PECs, the forced downregulation of sestrin 2 by short hairpin RNA resulted in increased expression of P-S6RP and increased apoptosis. These data suggest that sestrin 2 is involved in PEC homeostasis by regulating the activity of mTOR. In addition, sestrin 2 could be a novel marker of PECs, and decreased expression of sestrin 2 might be a marker of PEC injury. PMID:25056347

  6. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  7. Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence.

    Science.gov (United States)

    Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E

    2018-04-01

    The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The Role of Angiotensin II in Parietal Epithelial Cell Proliferation and Crescent Formation in Glomerular Diseases.

    Science.gov (United States)

    Rizzo, Paola; Novelli, Rubina; Rota, Cinzia; Gagliardini, Elena; Ruggiero, Barbara; Rottoli, Daniela; Benigni, Ariela; Remuzzi, Giuseppe

    2017-11-01

    Crescentic glomerulonephritis (GN) is a devastating disease with rapidly progressive deterioration in kidney function, which, histologically, manifests as crescent formation in most glomeruli. We previously found that crescents derive from the aberrant proliferation and migration of parietal epithelial cells (PECs)/progenitor cells, and that the angiotensin (ang) II/ang II type-1 (AT 1 ) receptor pathway may participate, together with the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor 4 axis, in the development of those lesions. Herein, we elucidated sequential events and cellular and molecular interactions occurring during crescentic lesion onset and evolution. By analyzing kidney biopsy specimens of patients with extracapillary GN, divided according to the grade of glomerular lesions, we found that the accumulation of macrophages expressing matrix metalloproteinase-12 started manifesting in glomeruli affected by early-stage lesions, whereas AT 1 receptor expression could not be detected. In glomeruli with advanced lesions, AT 1 receptor expression increased markedly, and the up-regulation of SDF-1, and its receptor C-X-C chemokine receptor 7, was documented on podocytes and PECs, respectively. In vitro studies were instrumental to demonstrating the role of ang II in inducing podocyte SDF-1 production, which ultimately activates PECs. The present findings support the possibility that angiotensin-converting enzyme inhibitor treatment might limit PEC activation and reduce the frequency and extension of crescents in extracapillary GN. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Effect of substituted benzimidazoles on acid secretion in isolated and enriched guinea pig parietal cells.

    Science.gov (United States)

    Sewing, K F; Harms, P; Schulz, G; Hannemann, H

    1983-01-01

    The inhibitory effect of the three benzimidazole derivatives timoprazole, picoprazole, and omeprazole on histamine and dbcAMP stimulated 14C-aminopyrine accumulation (= H+ secretion) has been studied in isolated and enriched guinea-pig parietal cells. All compounds tested inhibited H+ secretion in a concentration dependent manner with IC50 values of 8.5 +/- 1.9 mumol/l for timoprazole, 3.9 +/- 0.7 mumol/l for picoprazole, and 0.13 +/- 0.03 mumol/l for omeprazole. The IC50 of timoprazole, when dbcAMP was used as a stimulus, did not differ significantly from that of histamine stimulation. The type of inhibition was of a non-competitive nature. The full acid response to histamine after temporary exposure of the cells to the benzimidazoles could be restored by washing the cells twice; this suggests that the inhibition is reversible. The data - among others - indicate that the properties of the benzimidazoles described here would allow these compounds to be used as effective antisecretagogues. PMID:6303916

  10. Task-irrelevant memory load induces inattentional blindness without temporo-parietal suppression.

    Science.gov (United States)

    Matsuyoshi, Daisuke; Ikeda, Takashi; Sawamoto, Nobukatsu; Kakigi, Ryusuke; Fukuyama, Hidenao; Osaka, Naoyuki

    2010-08-01

    We often fail to consciously detect an unexpected object when we are engaged in an attention-demanding task (inattentional blindness). The inattentional blindness which is induced by visual short-term memory (VSTM) load has been proposed to result from a suppression of temporo-parietal junction (TPJ) activity that involves stimulus-driven attention. However, the fact that, inversely proportional to TPJ activity, intraparietal sulcus (IPS) activity correlates with VSTM load renders questionable the account of inattentional blindness based only on TPJ activity. Here, we investigated whether the TPJ is solely responsible for inattentional blindness by decoupling IPS and TPJ responses to VSTM load and then using the same manipulation to test the behavioral inattentional blindness performance. Experiment 1 showed that TPJ activity was not suppressed by task-irrelevant load while the IPS responded to both task-relevant and task-irrelevant load. Although the TPJ account of inattentional blindness predicts that the degree of inattentional blindness should track TPJ activity, we found in Experiment 2 that inattentional blindness was induced not only by task-relevant load but also by task-irrelevant load, showing inconsistency between the extent of inattentional blindness and TPJ response. These findings suggest that inattentional blindness can be induced without suppression of TPJ activity and seem to offer the possibility that the IPS contributes to conscious perception. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Glomerular parietal epithelial cell activation induces collagen secretion and thickening of Bowman's capsule in diabetes.

    Science.gov (United States)

    Holderied, Alexander; Romoli, Simone; Eberhard, Jonathan; Konrad, Lukas A; Devarapu, Satish K; Marschner, Julian A; Müller, Susanna; Anders, Hans-Joachim

    2015-03-01

    The metabolic and hemodynamic alterations in diabetes activate podocytes to increase extracellular matrix (ECM) production, leading to thickening of the glomerular basement membrane (GBM). We hypothesized that diabetes would activate parietal epithelial cells (PECs) in a similar manner and cause thickening of Bowman's capsules. Periodic acid Schiff staining of human kidney biopsies of 30 patients with diabetic nephropathy (DN) revealed a significantly thicker Bowman's capsule as compared with 20 non-diabetic controls. The average thickness was 4.55±0.21 μm in the group of patients with DN compared with 2.92±0.21 μm in the group of non-diabetic controls (PBowman's capsule showed strong association with CD44-positive PECs. In summary, metabolic alterations in diabetes activate PECs to increase the expression and secretion of Bowman's capsule proteins. This process may contribute to the thickening of the Bowman's capsule, similar to the thickening of the GBM that is driven by activated podocytes. These data may also imply that activated PECs contribute to ECM production once they migrate to the glomerular tuft, a process resulting in glomerular scaring, for example, in diabetic glomerulosclerosis.

  12. The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy.

    Science.gov (United States)

    Andeen, Nicole K; Nguyen, Tri Q; Steegh, Floor; Hudkins, Kelly L; Najafian, Behzad; Alpers, Charles E

    2015-11-01

    Reversal of diabetic nephropathy (DN) has been achieved in humans and mice, but only rarely and under special circumstances. As progression of DN is related to podocyte loss, reversal of DN requires restoration of podocytes. Here, we identified and quantified potential glomerular progenitor cells that could be a source for restored podocytes. DN was identified in 31 human renal biopsy cases and separated into morphologically early or advanced lesions. Markers of podocytes (WT-1, p57), parietal epithelial cells (PECs) (claudin-1), and cell proliferation (Ki-67) were identified by immunohistochemistry. Podocyte density was progressively reduced with DN. Cells marking as podocytes (p57) were present infrequently on Bowman's capsule in controls, but significantly increased in histologically early DN. Ki-67-expressing cells were identified on the glomerular tuft and Bowman's capsule in DN, but rarely in controls. Cells marking as PECs were present on the glomerular tuft, particularly in morphologically advanced DN. These findings show evidence of phenotypic plasticity in podocyte and PEC populations and are consistent with studies in the BTBR ob/ob murine model in which reversibility of DN occurs with podocytes potentially regenerating from PEC precursors. Thus, our findings support, but do not prove, that podocytes may regenerate from PEC progenitors in human DN. If so, progression of DN may represent a modifiable net balance between podocyte loss and regeneration.

  13. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis.

    Science.gov (United States)

    Eng, Diana G; Sunseri, Maria W; Kaverina, Natalya V; Roeder, Sebastian S; Pippin, Jeffrey W; Shankland, Stuart J

    2015-11-01

    As adult podocytes cannot adequately proliferate following depletion in disease states, there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine whether parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PEC-rtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, whereas in disease (cytotoxic sheep anti-podocyte antibody) labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14, and 28. Early in disease, the majority of PECs in the tuft coexpressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs coexpressed podocyte proteins but not CD44. Neither labeled PECs on the tuft nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype, which is likely reparative.

  14. The significance of caveolin-1 expression in parietal epithelial cells of Bowman's capsule.

    Science.gov (United States)

    Ostalska-Nowicka, D; Nowicki, M; Zachwieja, J; Kasper, M; Witt, M

    2007-11-01

    To analyse the expression of caveolin-1 in normal human kidney and during diseases leading to nephrotic syndrome in children and to compare its pattern with those observed in control samples, both human and animal. The study group was composed of 104 children diagnosed with minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), lupus glomerulonephritis (LGN) and Schönlein-Henoch glomerulopathy (SH). The research protocol employed direct immunohistochemical assay with the use of mono- and polyclonal antibodies against caveolins. Kidney samples of Wistar rats, wild-type mice and caveolin-1-deficient mice were also analysed. In the control human samples, caveolin-1 was most abundant in the muscle layer of blood vessels and parietal epithelial cells (PECs). Its expression in PECs was significantly lower in children diagnosed with FSGS and LGN than in those with MCD, SH or in controls. In the control animal tissues, except for knock-out mice, caveolin-1 was present in distal convoluted tubules, PECs, endothelial cells and muscle. Caveolae are extremely stable elements of PECs and can be excluded from their cell membrane only in response to the dramatic cell reconstruction observed in FSGS and LGN.

  15. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Amir Kheradmand

    2017-10-01

    Full Text Available We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i neurobehavioral aspects of orientation constancy, (ii sensory models that address the neurophysiology underlying perception of upright, and (iii the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function.

  16. Lateralization of the posterior parietal cortex for internal monitoring of self- versus externally generated movements.

    Science.gov (United States)

    Ogawa, Kenji; Inui, Toshio

    2007-11-01

    Internal monitoring or state estimation of movements is essential for human motor control to compensate for inherent delays and noise in sensorimotor loops. Two types of internal estimation of movements exist: self-generated movements, and externally generated movements. We used functional magnetic resonance imaging to investigate differences in brain activity for internal monitoring of self- versus externally generated movements during visual occlusion. Participants tracked a sinusoidally moving target with a mouse cursor. On some trials, vision of either target (externally generated) or cursor (self-generated) movement was transiently occluded, during which subjects continued tracking by estimating current position of either the invisible target or cursor on screen. Analysis revealed that both occlusion conditions were associated with increased activity in the presupplementary motor area and decreased activity in the right lateral occipital cortex compared to a control condition with no occlusion. Moreover, the right and left posterior parietal cortex (PPC) showed greater activation during occlusion of target and cursor movements, respectively. This study suggests lateralization of the PPC for internal monitoring of internally versus externally generated movements, fully consistent with previously reported clinical findings.

  17. The role of the right temporo-parietal junction in social decision-making.

    Science.gov (United States)

    Bitsch, Florian; Berger, Philipp; Nagels, Arne; Falkenberg, Irina; Straube, Benjamin

    2018-03-26

    Identifying someone else's noncooperative intentions can prevent exploitation in social interactions. Hence, the inference of another person's mental state might be most pronounced in order to improve social decision-making. Here, we tested the hypothesis that brain regions associated with Theory of Mind (ToM), particularly the right temporo-parietal junction (rTPJ), show higher neural responses when interacting with a selfish person and that the rTPJ-activity as well as cooperative tendencies will change over time. We used functional magnetic resonance imaging (fMRI) and a modified prisoner's dilemma game in which 20 participants interacted with three fictive playing partners who behaved according to stable strategies either competitively, cooperatively or randomly during seven interaction blocks. The rTPJ and the posterior-medial prefrontal cortex showed higher activity during the interaction with a competitive compared with a cooperative playing partner. Only the rTPJ showed a high response during an early interaction phase, which preceded participants increase in defective decisions. Enhanced functional connectivity between the rTPJ and the left hippocampus suggests that social cognition and learning processes co-occur when behavioral adaptation seems beneficial. © 2018 Wiley Periodicals, Inc.

  18. Enhanced Neuroactivation during Working Memory Task in Postmenopausal Women Receiving Hormone Therapy: A Coordinate-Based Meta-Analysis.

    Science.gov (United States)

    Li, Ke; Huang, Xiaoyan; Han, Yingping; Zhang, Jun; Lai, Yuhan; Yuan, Li; Lu, Jiaojiao; Zeng, Dong

    2015-01-01

    Hormone therapy (HT) has long been thought beneficial for controlling menopausal symptoms and human cognition. Studies have suggested that HT has a positive association with working memory, but no consistent relationship between HT and neural activity has been shown in any cognitive domain. The purpose of this meta-analysis was to assess the convergence of findings from published randomized control trials studies that examined brain activation changes in postmenopausal women. A systematic search for fMRI studies of neural responses during working memory tasks in postmenopausal women was performed. Studies were excluded if they were not treatment studies and did not contain placebo or blank controls. For the purpose of the meta-analysis, 8 studies were identified, with 103 postmenopausal women taking HT and 109 controls. Compared with controls, postmenopausal women who took HT increased activation in the left frontal lobe, including superior frontal gyrus (BA 8), right middle frontal gyrus (BA 9), anterior lobe, paracentral lobule (BA 7), limbic lobe, and anterior cingulate (BA 32). Additionally, decreased activation is noted in the right limbic lobe, including parahippocampal gyrus (BA 28), left parietal lobe, and superior parietal lobule (BA 7). All regions were significant at p ≤ 0.05 with correction for multiple comparisons. Hormone treatment is associated with BOLD signal activation in key anatomical areas during fMRI working memory tasks in healthy hormone-treated postmenopausal women. A positive correlation between activation and task performance suggests that hormone use may benefit working memory.

  19. Effect of local environment on crossluminescence kinetics in SrF{sub 2}:Ba and CaF{sub 2}:Ba solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Terekhin, M.A. [P.N. Lebedev Physical Institute, Leninskij Prospekt 53, 119991 Moscow (Russian Federation); Makhov, V.N., E-mail: makhov@sci.lebedev.ru [P.N. Lebedev Physical Institute, Leninskij Prospekt 53, 119991 Moscow (Russian Federation); Lebedev, A.I.; Sluchinskaya, I.A. [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2015-10-15

    Spectral and kinetic properties of extrinsic crossluminescence (CL) in SrF{sub 2}:Ba (1%) and CaF{sub 2}:Ba (1%) are compared with those of intrinsic CL in BaF{sub 2} and are analyzed taking into account EXAFS data obtained at the Ba L{sub III} edge and results of first-principles calculations. The CL decay time was revealed to be longer in SrF{sub 2}:Ba and CaF{sub 2}:Ba compared to BaF{sub 2}. This fact contradicts the expected acceleration of luminescence decay which could result from an increased overlap of wave functions in solid solutions due to shortening of the Ba-F distance obtained in both EXAFS measurements and first-principles calculations. This discrepancy is explained by the effect of migration and subsequent non-radiative decay of the Ba (5p) core holes in BaF{sub 2} and by decreasing of the probability of optical transitions between Ba (5p) states and the valence band in SrF{sub 2}:Ba and CaF{sub 2}:Ba predicted by first-principles calculations. - Highlights: • The crossluminescence kinetics in SrF{sub 2}:Ba and CaF{sub 2}:Ba is slower than in BaF{sub 2}. • Ba{sup 2+} ions substitute for host Ca{sup 2+}(Sr{sup 2+}) ions in the on-center positions. • The nearest Ba-F distances in SrF{sub 2}:Ba and CaF{sub 2}:Ba are shorter than in BaF{sub 2}. • EXAFS data and first-principles calculations of the local structure agree well. • First-principles calculations explain slower luminescence decay in solid solutions.

  20. A Dubious Distinction? The BA versus the BS in Psychology

    Science.gov (United States)

    Pfund, Rory A.; Norcross, John C.; Hailstorks, Robin; Aiken, Leona S.; Stamm, Karen E.; Christidis, Peggy

    2016-01-01

    Previous studies have documented small differences between the bachelor of arts (BA) and the bachelor of science (BS) psychology degrees in their general education core requirements, particularly mathematics and science courses. But are there differences between the BA and BS degrees within the psychology curriculum? Using data from the…

  1. Intertextuality in Ba's So Long a Letter and Umunnakwe's Dear ...

    African Journals Online (AJOL)

    Intertextuality takes for granted the interdependence of literary texts because every artistic creation is a re-echoing of past knowledge. Mariama Ba's So Long A Letter and Ndubisi Umunnakwe's Dear Ramatoulaye are African examples. This work examines how Ba's So Long A Letter intertextualises with Umunnakwe's Dear ...

  2. Proton microbeam irradiation effects on PtBA polymer

    Indian Academy of Sciences (India)

    Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface ...

  3. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  4. Crystal structure of a new natural (Ba, Nb) silicate

    International Nuclear Information System (INIS)

    Yamnova, N.A.; Pushcharovskii, D.Yu.; Voloshin, A.V.

    1990-01-01

    The structure of a new mineral Ba 3 (Ti 1.2 Nb 4.8 ) Si 4 O 25.4 is determined (166 reflections, method of least squares in anisotropic approximation, R = 0.040). The crystallographic parameters are: a = 9.03(1), c = 7.868(6) angstrom, Z = 1, space group P anti 62m. Like the previously investigated synthetic analogs Ba 3 Si 4 Nb 6 O 26 , Ba 3 Si 4 Ti 6 O 23 , and Ba 3 Si 4 Ta 6 O 26 , the structure contains a mixed framework of octahedral columns of triangular section, bound to the diortho groups [Si 2 O 7 ], of which the cavities contain the Ba atoms

  5. Thermoelectric properties of doped BaHfO_3

    International Nuclear Information System (INIS)

    Dixit, Chandra Kr.; Bhamu, K. C.; Sharma, Ramesh

    2016-01-01

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO_3 by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO_3 doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO_3 is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO_3 is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  6. Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.

    Science.gov (United States)

    Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng

    2017-10-01

    Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Hirano, Masaharu

    1998-01-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  8. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    1998-11-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  9. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM study.

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka

    Full Text Available Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  11. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2018-05-01

    Full Text Available Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG time frequency (TF analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  12. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.

    Science.gov (United States)

    Jiang, Jun; Bailey, Kira; Xiao, Xiao

    2018-01-01

    Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG) time frequency (TF) analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs) revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  13. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately...... following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions......Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...

  14. Flora da Paraíba, Brasil: Loganiaceae Flora of Paraíba, Brazil: Loganiaceae

    Directory of Open Access Journals (Sweden)

    Kiriaki Nurit

    2005-06-01

    Full Text Available Neste trabalho apresenta-se o tratamento taxonômico da família Loganiaceae, como parte do projeto "Flora da Paraíba", que vem sendo realizado com o objetivo de identificar e catalogar as espécies da flora local. Realizouse coletas e observações de campo para as identificações, descrições e ilustrações botânicas que foram efetuadas após estudos morfológicos, com o auxílio da bibliografia especializada, complementados pela análise de fotos de tipos, espécimes dos herbários EAN, JPB e IPA, e comparação com material identificado por especialistas. Registrou-se para a Paraíba quatro espécies: Spigelia anthelmia L., com ampla distribuição, e três espécies de Strychnos, somente coletadas em remanescentes de Mata Atlântica, S. atlantica Krukoff & Barneby, S. parvifolia A. DC. e S. trinervis (Vell. Mart.This work constitutes a taxonomic treatment of the Loganiaceae family as part of the project "Flora da Paraíba", which have been carried out with the objective to identify and catalogue the species of the local flora. The botanical identifications and illustrations were made by morphological studies supported by bibliography, analysis of the types, specimens from herbaria EAN, JPB and IPA, and comparison with samples previously identified by specialists, complemented by field observations. Four species of Loganiaceae belonging two genera were found in State of Paraíba: Spigelia anthelmia L. that has wide distribution and three species of Strychnos, found on remains of Atlantic forest, which are S. atlantica Krukoff & Barneby, S. parvifolia A. DC. and S. trinervis (Vell. Mart.

  15. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  16. A parietal biomarker for ADHD liability:As predicted by The Distributed Effects Perspective Model of ADHD

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2015-05-01

    Full Text Available Background: We previously hypothesized that poor task-directed sensory information processing should be indexed by increased weighting of right hemisphere (RH biased attention and visuo-perceptual brain functions during task operations, and have demonstrated this phenotype in ADHD across multiple studies, using multiple methodologies. However, in our recent Distributed Effects Model of ADHD, we surmised that this phenotype is not ADHD specific, but rather more broadly reflective of any circumstance that disrupts the induction and maintenance of an emergent task-directed neural architecture. Under this view, increased weighting of RH biased attention and visuo-perceptual brain functions is expected to generally index neurocognitive sets that are not optimized for task-directed thought and action, and when durable expressed, liability for ADHD. Method: The current study tested this view by examining whether previously identified rightward parietal EEG asymmetry in ADHD was associated with common ADHD characteristics and comorbidities (i.e., ADHD risk factors. Results: Barring one exception (non-right handedness, we found that it was. Rightward parietal asymmetry was associated with carrying the DRD4-7R risk allele, being male, having mood disorder, and having anxiety disorder. However, differences in the specific expression of rightward parietal asymmetry were observed, which are discussed in relation to possible unique mechanisms underlying ADHD liability in different ADHD RFs. Conclusion: Rightward parietal asymmetry appears to be a durable feature of ADHD liability, as predicted by the Distributed Effects Perspective Model of ADHD. Moreover, variability in the expression of this phenotype may shed light on different sources of ADHD liability.

  17. Repair of large frontal temporal parietal skull defect with digitally reconstructed titanium mesh: a report of 20 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2013-09-01

    Full Text Available Objective To explore the clinical effect and surgical technique of the repair of large defect involving frontal, temporal, and parietal regions using digitally reconstructed titanium mesh. Methods Twenty patients with large frontal, temporal, and parietal skull defect hospitalized in Air Force General Hospital from November 2006 to May 2012 were involved in this study. In these 20 patients, there were 13 males and 7 females, aged 18-58 years (mean 39 years, and the defect size measured from 7.0cm×9.0cm to 11.5cm×14.0cm (mean 8.5cm×12.0cm. Spiral CT head scan and digital three-dimensional reconstruction of skull were performed in all the patients. The shape and geometric size of skull defect was traced based on the symmetry principle, and then the data were transferred into digital precision lathe to reconstruct a titanium mesh slightly larger (1.0-1.5cm than the skull defect, and the finally the prosthesis was perfected after pruning the border. Cranioplasty was performed 6-12 months after craniotomy using the digitally reconstructed titanium mesh. Results The digitally reconstructed titanium mesh was used in 20 patients with large frontal, temporal, parietal skull defect. The surgical technique was relatively simple, and the surgical duration was shorter than before. The titanium mesh fit to the defect of skull accurately with satisfactory molding effect, good appearance and symmetrical in shape. No related complication was found in all the patients. Conclusion Repair of large frontal, temporal, parietal skull defect with digitally reconstructed titanium mesh is more advantageous than traditional manual reconstruction, and it can improve the life quality of patients.

  18. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    OpenAIRE

    Masahiro eKawasaki; Masahiro eKawasaki; Masahiro eKawasaki; Keiichi eKitajo; Keiichi eKitajo; Yoko eYamaguchi

    2014-01-01

    In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from...

  19. Metaplasia of the parietal layer of Bowman's capsule in the human kidney. Incidence in alcoholic liver disease and hypertension

    OpenAIRE

    Haensly, William E.

    1988-01-01

    This report is the second of two surveys to determine the incidence of metaplasia of Bowman's parietal epithelium in the human kidney. Human kidney sections obtained at autopsy at the Department of Pathology, University of Texas Medical Branch, Galveston, Texas, were examined with the light microscope. The kidneys were fixed in neutral formalin, sectioned at 6 pm and stained with hematoxylin and eosin. Autopsy records were consulted after kidney section exa...

  20. Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning.

    Science.gov (United States)

    Grabner, Roland H; Rütsche, Bruno; Ruff, Christian C; Hauser, Tobias U

    2015-07-01

    The successful acquisition of arithmetic skills is an essential step in the development of mathematical competencies and has been associated with neural activity in the left posterior parietal cortex (PPC). It is unclear, however, whether this brain region plays a causal role in arithmetic skill acquisition and whether arithmetic learning can be modulated by means of non-invasive brain stimulation of this key region. In the present study we addressed these questions by applying transcranial direct current stimulation (tDCS) over the left PPC during a short-term training that simulates the typical path of arithmetic skill acquisition (specifically the transition from effortful procedural to memory-based problem-solving strategies). Sixty participants received either anodal, cathodal or sham tDCS while practising complex multiplication and subtraction problems. The stability of the stimulation-induced learning effects was assessed in a follow-up test 24 h after the training. Learning progress was modulated by tDCS. Cathodal tDCS (compared with sham) decreased learning rates during training and resulted in poorer performance which lasted over 24 h after stimulation. Anodal tDCS showed an operation-specific improvement for subtraction learning. Our findings extend previous studies by demonstrating that the left PPC is causally involved in arithmetic learning (and not only in arithmetic performance) and that even a short-term tDCS application can modulate the success of arithmetic knowledge acquisition. Moreover, our finding of operation-specific anodal stimulation effects suggests that the enhancing effects of tDCS on learning can selectively affect just one of several cognitive processes mediated by the stimulated area. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex.

    Science.gov (United States)

    Liang, Wei-Kuang; Juan, Chi-Hung

    2012-08-01

    The right posterior parietal cortex (rPPC) has been found to be critical in shaping visual selection and distractor-induced saccade curvature in the context of predictive as well as nonpredictive visual cues by means of transcranial magnetic stimulation (TMS) interference. However, the dynamic details of how distractor-induced saccade curvatures are affected by rPPC TMS have not yet been investigated. This study aimed to elucidate the key dynamic properties that cause saccades to curve away from distractors with different degrees of curvature in various TMS and target predictability conditions. Stochastic optimal feedback control theory was used to model the dynamics of the TMS saccade data. This allowed estimation of torques, which was used to identify the critical dynamic mechanisms producing saccade curvature. The critical mechanisms of distractor-induced saccade curvatures were found to be the motor commands and torques in the transverse direction. When an unpredictable saccade target occurred with rPPC TMS, there was an initial period of greater distractor-induced torque toward the side opposite the distractor in the transverse direction, immediately followed by a relatively long period of recovery torque that brought the deviated trace back toward the target. The results imply that the mechanisms of distractor-induced saccade curvature may be comprised of two mechanisms: the first causing the initial deviation and the second bringing the deviated trace back toward the target. The pattern of the initial torque in the transverse direction revealed the former mechanism. Conversely, the later mechanism could be well explained as a consequence of the control policy in this model. To summarize, rPPC TMS increased the initial torque away from the distractor as well as the recovery torque toward the target.

  2. Attention and alcohol cues: a role for medial parietal cortex and shifting away from alcohol features?

    Directory of Open Access Journals (Sweden)

    Thomas Edward Gladwin

    2013-12-01

    Full Text Available Attention plays a central role in theories of alcohol dependence; however, its precise role in alcohol-related biases is not yet clear. In the current study, social drinkers performed a spatial cueing task designed to evoke conflict between automatic processes due to incentive salience and control exerted to follow task-related goals. Such conflict is a potentially important task feature from the perspective of dual-process models of addiction. Subjects received instructions either to direct their attention towards pictures of alcoholic beverages, and away from non-alcohol beverages; or to direct their attention towards pictures of non-alcoholic beverages, and away from alcohol beverages. A probe stimulus was likely to appear at the attended location, so that both spatial and non-spatial interference was possible. Activation in medial parietal cortex was found during Approach Alcohol versus Avoid Alcohol blocks. This region is associated with the, possibly automatic, shifting of attention between stimulus features, suggesting that subjects may have shifted attention away from certain features of alcoholic cues when attention had to be directed towards an upcoming stimulus at their location. Further, activation in voxels close to this region was negatively correlated with riskier drinking behavior. A tentative interpretation of the results is that risky drinking may be associated with a reduced tendency to shift attention away from potentially distracting task-irrelevant alcohol cues. The results suggest novel hypotheses and directions for future study, in particular towards the potential therapeutic use of training the ability to shifting attention away from alcohol-related stimulus features.

  3. Functional development of fronto-striato-parietal networks associated with time perception

    Directory of Open Access Journals (Sweden)

    Anna eSmith

    2011-11-01

    Full Text Available Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision-making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralised dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralised fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas and cerebellum subserve fine-temporal processing functions in children

  4. Consciousness and the prefrontal parietal network: insights from attention, working memory, and chunking.

    Science.gov (United States)

    Bor, Daniel; Seth, Anil K

    2012-01-01

    Consciousness has of late become a "hot topic" in neuroscience. Empirical work has centered on identifying potential neural correlates of consciousness (NCCs), with a converging view that the prefrontal parietal network (PPN) is closely associated with this process. Theoretical work has primarily sought to explain how informational properties of this cortical network could account for phenomenal properties of consciousness. However, both empirical and theoretical research has given less focus to the psychological features that may account for the NCCs. The PPN has also been heavily linked with cognitive processes, such as attention. We describe how this literature is under-appreciated in consciousness science, in part due to the increasingly entrenched assumption of a strong dissociation between attention and consciousness. We argue instead that there is more common ground between attention and consciousness than is usually emphasized: although objects can under certain circumstances be attended to in the absence of conscious access, attention as a content selection and boosting mechanism is an important and necessary aspect of consciousness. Like attention, working memory and executive control involve the interlinking of multiple mental objects and have also been closely associated with the PPN. We propose that this set of cognitive functions, in concert with attention, make up the core psychological components of consciousness. One related process, chunking, exploits logical or mnemonic redundancies in a dataset so that it can be recoded and a given task optimized. Chunking has been shown to activate PPN particularly robustly, even compared with other cognitively demanding tasks, such as working memory or mental arithmetic. It is therefore possible that chunking, as a tool to detect useful patterns within an integrated set of intensely processed (attended) information, has a central role to play in consciousness. Following on from this, we suggest that a key

  5. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.

    Science.gov (United States)

    Lebon, Florent; Horn, Ulrike; Domin, Martin; Lotze, Martin

    2018-04-01

    Motor imagery (MI) is the mental simulation of action frequently used by professionals in different fields. However, with respect to performance, well-controlled functional imaging studies on MI training are sparse. We investigated changes in fMRI representation going along with performance changes of a finger sequence (error and velocity) after MI training in 48 healthy young volunteers. Before training, we tested the vividness of kinesthetic and visual imagery. During tests, participants were instructed to move or to imagine moving the fingers of the right hand in a specific order. During MI training, participants repeatedly imagined the sequence for 15 min. Imaging analysis was performed using a full-factorial design to assess brain changes due to imagery training. We also used regression analyses to identify those who profited from training (performance outcome and gain) with initial imagery scores (vividness) and fMRI activation magnitude during MI at pre-test (MI pre ). After training, error rate decreased and velocity increased. We combined both parameters into a common performance index. FMRI activation in the left inferior parietal lobe (IPL) was associated with MI and increased over time. In addition, fMRI activation in the right IPL during MI pre was associated with high initial kinesthetic vividness. High kinesthetic imagery vividness predicted a high performance after training. In contrast, occipital activation, associated with visual imagery strategies, showed a negative predictive value for performance. Our data echo the importance of high kinesthetic vividness for MI training outcome and consider IPL as a key area during MI and through MI training. © 2018 Wiley Periodicals, Inc.

  6. Anodal transcranial direct current stimulation of parietal cortex enhances action naming in Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Rosa eManenti

    2015-04-01

    Full Text Available Background: Corticobasal Syndrome (CBS is a neurodegenerative disorder that overlaps both clinically and neuropathologically with Frontotemporal dementia and is characterized by apraxia, alien limb phenomena, cortical sensory loss, cognitive impairment, behavioural changes and aphasia. It has been recently demonstrated that transcranial direct current stimulation (tDCS improves naming in healthy subjects and in subjects with language deficits.Objective: The aim of the present study was to explore the extent to which anodal transcranial direct current stimulation (anodal tDCS over the parietal cortex (PARC could facilitate naming performance in CBS subjects. Methods: Anodal tDCS was applied to the left and right PARC during object and action naming in seventeen patients with a diagnosis of possible CBS. Participants underwent two sessions of anodal tDCS (left and right and one session of placebo tDCS. Vocal responses were recorded and analyzed for accuracy and vocal Reaction Times (vRTs. Results: A shortening of naming latency for actions was observed only after active anodal stimulation over the left PARC, as compared to placebo and right stimulations. No effects have been reported for accuracy.Conclusions: Our preliminary finding demonstrated that tDCS decreased vocal reaction time during action naming in a sample of patients with CBS. A possible explanation of our results is that anodal tDCS over the left PARC effects the brain network implicated in action observation and representation. Further studies, based on larger patient samples, should be conducted to investigate the usefulness of tDCS as an additional treatment of linguistic deficits in CBS patients.

  7. Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory.

    Science.gov (United States)

    Lee, Hongmi; Chun, Marvin M; Kuhl, Brice A

    2017-04-01

    Mean fMRI activation in ventral posterior parietal cortex (vPPC) during memory encoding often negatively predicts successful remembering. A popular interpretation of this phenomenon is that vPPC reflects "off-task" processing. However, recent fMRI studies considering distributed patterns of activity suggest that vPPC actively represents encoded material. Here, we assessed the relationships between pattern-based content representations in vPPC, mean activation in vPPC, and subsequent remembering. We analyzed data from two fMRI experiments where subjects studied then recalled word-face or word-scene associations. For each encoding trial, we measured 1) mean univariate activation within vPPC and 2) the strength of face/scene information as indexed by pattern analysis. Mean activation in vPPC negatively predicted subsequent remembering, but the strength of pattern-based information in the same vPPC voxels positively predicted later memory. Indeed, univariate amplitude averaged across vPPC voxels negatively correlated with pattern-based information strength. This dissociation reflected a tendency for univariate reductions to maximally occur in voxels that were not strongly tuned for the category of encoded stimuli. These results indicate that vPPC activity patterns reflect the content and quality of memory encoding and constitute a striking example of lower univariate activity corresponding to stronger pattern-based information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  9. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age

    Science.gov (United States)

    Roeder, Sebastian S.; Stefanska, Ania; Eng, Diana G.; Kaverina, Natalya; Sunseri, Maria W.; McNicholas, Bairbre A.; Rabinovitch, Peter; Engel, Felix B.; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W.

    2015-01-01

    Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. PMID:26017974

  10. Amygdala, Pulvinar & Inferior Parietal Cortex Contribute to Early Processing of Faces without Awareness

    Directory of Open Access Journals (Sweden)

    Vanessa eTroiani

    2013-06-01

    Full Text Available The goals of the present study were twofold. First, we wished to investigate the neural correlates of stimulus-driven processing of stimuli strongly suppressed from awareness and in the absence of top-down influences. We accomplished this using a novel approach in which participants performed an orthogonal task atop a flash suppression noise image to prevent top-down search. Second, we wished to investigate the extent to which amygdala responses differentiate between suppressed stimuli (fearful faces and houses based on their motivational relevance. Using continuous flash suppression in conjunction with fMRI, we presented fearful faces, houses, and a no stimulus control to one eye while participants performed an orthogonal task that appeared atop the flashing Mondrian image presented to the opposite eye. In 29 adolescents, we show activation in subcortical regions, including the superior colliculus, amygdala, thalamus, and hippocampus for suppressed objects (fearful faces and houses compared to a no stimulus control. Suppressed stimuli showed less activation compared to a no stimulus control in early visual cortex, indicating that object information was being suppressed from this region. Additionally, we find no activation in regions associated with conscious processing of these percepts (fusiform gyrus and/or parahippocampal cortex as assessed by mean activations and multi-voxel patterns. A psychophysiological interaction analysis that seeded the amygdala showed task-specific (fearful faces greater than houses modulation of right pulvinar and left inferior parietal cortex. Taken together, our results support a role for the amygdala in stimulus-driven attentional guidance towards objects of relevance and a potential mechanism for successful suppression of rivalrous stimuli.

  11. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex.

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro; Cammarota, Martín; Vianna, Monica R M; Izquierdo, Iván; Medina, Jorge H

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.

  12. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  13. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    Directory of Open Access Journals (Sweden)

    Claire eWardak

    2012-06-01

    Full Text Available The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP and of the frontal eye field (FEF in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF.In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: 1 different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; 2 LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioural strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future

  14. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks.

    Science.gov (United States)

    Gao, Wei; Lin, Weili

    2012-01-01

    Recent reports demonstrate the anti-correlated behaviors between the default (DF) and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing networks-FT for DA whereas MW for default. We hypothesized that FPC will selectively augment/suppress either network depending on how the task targets the specific network; FPC will positively correlate with the target network, but negatively correlate with the network anti-correlated with the target network. We further hypothesized that significant causal links from FPC to both DA and DF are present during all three experimental conditions, supporting the initiative regulating role of FPC over the two opposing systems. Consistent with our hypotheses, FPC exhibited a significantly higher positive correlation with DA (P = 0.0095) whereas significantly more negative correlation with default (P = 0.0025) during FT when compared to resting. Completely opposite to that observed during FT, the FPC was significantly anti-correlated with DA (P = 2.1e-6) whereas positively correlated with default (P = 0.0035) during MW. Furthermore, extensive causal links from FPC to both DA and DF were observed across all three experimental states. Together, our results strongly support the notion that the FPC regulates the anti-correlated default and DA networks. Copyright © 2011 Wiley Periodicals, Inc.

  15. Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Directory of Open Access Journals (Sweden)

    Andrew D. Robertson

    2017-09-01

    Full Text Available Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL magnetic resonance imaging (MRI in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF and the spatial coefficient of variation of CBF (sCoV were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73 and excellent reliability for sCoV (ICC = 0.94. In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036. The greatest change occurred in the parietal lobe (+18 ± 12%. Gray matter sCoV, however, did not change following training (P = 0.31. This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries.

  16. Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Science.gov (United States)

    Robertson, Andrew D.; Marzolini, Susan; Middleton, Laura E.; Basile, Vincenzo S.; Oh, Paul I.; MacIntosh, Bradley J.

    2017-01-01

    Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL) magnetic resonance imaging (MRI) in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF) and the spatial coefficient of variation of CBF (sCoV) were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC) indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73) and excellent reliability for sCoV (ICC = 0.94). In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036). The greatest change occurred in the parietal lobe (+18 ± 12%). Gray matter sCoV, however, did not change following training (P = 0.31). This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries. PMID:29033829

  17. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.

    Science.gov (United States)

    Chen, Jessie; Reitzen, Shari D; Kohlenstein, Jane B; Gardner, Esther P

    2009-12-01

    Studies of hand manipulation neurons in posterior parietal cortex of monkeys suggest that their spike trains represent objects by the hand postures needed for grasping or by the underlying patterns of muscle activation. To analyze the role of hand kinematics and object properties in a trained prehension task, we correlated the firing rates of neurons in anterior area 5 with hand behaviors as monkeys grasped and lifted knobs of different shapes and locations in the workspace. Trials were divided into four classes depending on the approach trajectory: forward, lateral, and local approaches, and regrasps. The task factors controlled by the animal-how and when he used the hand-appeared to play the principal roles in modulating firing rates of area 5 neurons. In all, 77% of neurons studied (58/75) showed significant effects of approach style on firing rates; 80% of the population responded at higher rates and for longer durations on forward or lateral approaches that included reaching, wrist rotation, and hand preshaping prior to contact, but only 13% distinguished the direction of reach. The higher firing rates in reach trials reflected not only the arm movements needed to direct the hand to the target before contact, but persisted through the contact, grasp, and lift stages. Moreover, the approach style exerted a stronger effect on firing rates than object features, such as shape and location, which were distinguished by half of the population. Forty-three percent of the neurons signaled both the object properties and the hand actions used to acquire them. However, the spread in firing rates evoked by each knob on reach and no-reach trials was greater than distinctions between different objects grasped with the same approach style. Our data provide clear evidence for synergies between reaching and grasping that may facilitate smooth, coordinated actions of the arm and hand.

  18. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia.

    Science.gov (United States)

    Iuculano, Teresa; Cohen Kadosh, Roi

    2014-01-01

    Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small-yet constant-current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education.

  19. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Teresa eIuculano

    2014-02-01

    Full Text Available Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD, which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small – yet constant – current through the brain, a non-invasive technique named transcranial electrical stimulation (tES. Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC. The first subject (DD1 received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance’s improvements in healthy subjects. The second subject (DD2 received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i automaticity of number processing; and (ii mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation

  20. Antigastric parietal cell and antithyroid autoantibodies in patients with desquamative gingivitis.

    Science.gov (United States)

    Chang, Julia Yu-Fong; Chiang, Chun-Pin; Wang, Yi-Ping; Wu, Yang-Che; Chen, Hsin-Ming; Sun, Andy

    2017-04-01

    Desquamative gingivitis (DG) is principally associated with erosive oral lichen planus (EOLP), mucous membrane pemphigoid (MMP), and pemphigus vulgaris (PV). Serum autoantibodies including antigastric parietal cell antibody (GPCA), antithyroglobulin antibody (TGA), and antithyroid microsomal antibody (TMA) were measured in 500 patients with DG, 287 EOLP without DG (EOLP/DG - ) patients, and 100 healthy control subjects. The 500 patients with DG were diagnosed as having EOLP in 455 (91%), PV in 40 (8%), and MMP in five (1%) patients. We found that 37.0%, 43.6%, and 42.6% of 500 patients with DG, 39.6%, 46.4%, and 45.1% of 455 EOLP with DG (EOLP/DG) patients, and 18.5%, 27.5%, and 30.3% of 287 EOLP/DG - patients had the presence of GPCA, TGA, and TMA in their sera, respectively. DG, EOLP/DG, and EOLP/DG - patients all had a significantly higher frequency of GPCA, TGA, or TMA positivity than healthy control subjects (all P-values < 0.001). Moreover, 455 EOLP/DG patients had a significantly higher frequency of GPCA, TGA, or TMA positivity than 287 EOLP/DG - patients (all P-values < 0.001). Of 210 TGA/TMA-positive patients with DG whose serum thyroid-stimulating hormone (TSH) levels were measured, 84.3%, 6.7%, and 9.0% patients had normal, lower, and higher serum TSH levels, respectively. We conclude that 73.4% DG, 77.1% EOLP/DG, and 47.4% EOLP/DG - patients may have GPCA/TGA/TMA positivity in their sera. Because part of GPCA-positive patients may develop pernicious anemia, autoimmune atrophic gastritis, and gastric carcinoma, and part of TGA/TMA-positive patients may have thyroid dysfunction, these patients should be referred to medical department for further management. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The glomerular parietal epithelial cell's responses are influenced by SM22 alpha levels.

    Science.gov (United States)

    Naito, Shokichi; Pippin, Jeffrey W; Shankland, Stuart J

    2014-11-06

    Studies have shown in several diseases initially affecting podocytes, that the neighboring glomerular parietal epithelial cells (PECs) are secondarily involved. The PEC response might be reparative under certain circumstances, yet injurious under others. The factors governing these are not well understood. We have shown that SM22α, an actin-binding protein considered a marker of smooth muscle differentiation, is upregulated in podocytes and PECs in several models of podocyte disease. However, the impact of SM22α levels on PECs is not known. Experimental glomerular disease, characterized by primary podocyte injury, was induced in aged-matched SM22α+/+ and SM22α-/-mice by intraperitoneal injection of sheep anti-rabbit glomeruli antibody. Immunostaining methods were employed on days 7 and 14 of disease. The number of PEC transition cells, defined as cells co-expressing a PEC protein (PAX2) and podocyte protein (Synaptopodin) was higher in diseased SM22α-/-mice compared with SM22α+/+mice. WT1 staining along Bowman's capsule is higher in diseased SM22α-/-mice. This was accompanied by increased PEC proliferation (measured by ki-67 staining), and an increase in immunostaining for the progenitor marker NCAM, in a subpopulation of PECs in diseased SM22α-/-mice. In addition, immunostaining for vimentin and alpha smooth muscle actin, markers of epithelial-to-mesenchymal transition (EMT), was lower in diseased SM22α-/-mice compared to diseased SM22α+/+mice. SM22α levels may impact how PECs respond following a primary podocyte injury in experimental glomerular disease. Absent/lower levels favor an increase in PEC transition cells and PECs expressing a progenitor marker, and a lower EMT rate compared to SM22α+/+mice, where SM22 levels are markedly increased in PECs.

  2. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age.

    Science.gov (United States)

    Roeder, Sebastian S; Stefanska, Ania; Eng, Diana G; Kaverina, Natalya; Sunseri, Maria W; McNicholas, Bairbre A; Rabinovitch, Peter; Engel, Felix B; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W; Shankland, Stuart J

    2015-07-15

    Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. Copyright © 2015 the American Physiological Society.

  3. Consciousness and the prefrontal parietal network: Insights from attention, working memory and chunking

    Directory of Open Access Journals (Sweden)

    Daniel eBor

    2012-03-01

    Full Text Available Consciousness has of late become a hot topic in neuroscience. Empirical work has centred on identifying potential neural correlates of consciousness (NCCs, with a converging view that the prefrontal parietal network (PPN is closely associated with this process. Theoretical work has primarily sought to explain how informational properties of this cortical network could account for phenomenal properties of consciousness. However, both empirical and theoretical research has given less focus to the psychological features that may account for the NCCs. The PPN has also been heavily linked with cognitive processes, such as attention. We describe how this literature is under-appreciated in consciousness science, in part due to the increasingly entrenched assumption of a strong dissociation between attention and consciousness. We argue instead that there is more common ground between attention and consciousness than is usually emphasized: although objects can under certain circumstances be attended to in the absence of conscious access, attention as a content selection and boosting mechanism is an important and necessary aspect of consciousness. Like attention, working memory and executive control involve the interlinking of multiple mental objects and have also been closely associated with the PPN. We propose that this set of cognitive functions, in concert with attention, make up the core psychological components of consciousness. One related process, chunking, has been shown to activate PPN particularly robustly, even compared with other cognitively demanding tasks, such as working memory or mental arithmetic. It is therefore possible that chunking, as a tool to detect useful patterns within an integrated set of intensely processed (attended information, has a central role to play in consciousness. Following on from this, we suggest that the main evolutionary purpose of consciousness may be to provide innovative solutions to complex or novel problems.

  4. Chalcogenidosilicates: Ba/sub 2/SiTe/sub 4/ and Ba/sub 2/SiSe/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, C; Eisenmann, B; Schaefer, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1985-05-01

    The new compounds Ba/sub 2/SiSe/sub 4/ and Ba/sub 2/SiTe/sub 4/ crystallize in the monoclinic system, space group: P2/sub 1//m (No. 11) with the lattice constants Ba/sub 2/SiSe/sub 4/: a = 918.4(5) pm, b = 703.3(3) pm, c = 687.2(3) pm, ..beta.. = 109.2(1)/sup 0/, Ba/sub 2/SiTe/sub 4/: a = 965.0(5) pm, b = 762.6(3) pm, c = 746.6(3) pm, ..beta.. = 108.9(1)/sup 0/. Both compounds are isotypic to the Sr/sub 2/GeS/sub 4/ structure. Ba/sub 2/SiTe/sub 4/ is the first o-telluridosilicate with discrete SiTe/sub 4//sup 4 -/ anions.

  5. The parietal memory network activates similarly for true and associative false recognition elicited via the DRM procedure.

    Science.gov (United States)

    McDermott, Kathleen B; Gilmore, Adrian W; Nelson, Steven M; Watson, Jason M; Ojemann, Jeffrey G

    2017-02-01

    Neuroimaging investigations of human memory encoding and retrieval have revealed that multiple regions of parietal cortex contribute to memory. Recently, a sparse network of regions within parietal cortex has been identified using resting state functional connectivity (MRI techniques). The regions within this network exhibit consistent task-related responses during memory formation and retrieval, leading to its being called the parietal memory network (PMN). Among its signature patterns are: deactivation during initial experience with an item (e.g., encoding); activation during subsequent repetitions (e.g., at retrieval); greater activation for successfully retrieved familiar words than novel words (e.g., hits relative to correctly-rejected lures). The question of interest here is whether novel words that are subjectively experienced as having been recently studied would elicit PMN activation similar to that of hits. That is, we compared old items correctly recognized to two types of novel items on a recognition test: those correctly identified as new and those incorrectly labeled as old due to their strong associative relation to the studied words (in the DRM false memory protocol). Subjective oldness plays a strong role in driving activation, as hits and false alarms activated similarly (and greater than correctly-rejected lures). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    Science.gov (United States)

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  7. Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles.

    Science.gov (United States)

    Beil, W.; Sewing, K. F.

    1984-01-01

    The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold greater in this fraction than in a crude parietal cell homogenate. The substituted benzimidazoles, omeprazole and picoprazole, inhibited K+-ATPase (IC50 1.8 +/- 0.5 mumol l-1 and 3.1 +/- 0.4 mumol l-1, respectively). Detailed kinetic analysis indicated that these compounds were non-competitive and reversible inhibitors of the enzyme. In contrast cimetidine and verapamil were without effect on the enzyme. The relevance of the inhibition of K+-ATPase to the antisecretory activity of the benzimidazoles, in experimental animals and man, is discussed. PMID:6146367

  8. Nuclear spectroscopy of doubly-even130,132Ba

    Science.gov (United States)

    Gupta, Anuradha; Gupta, Surbhi; Singh, Suram; Bharti, Arun

    2018-05-01

    A comparative study of some high-spin characteristic nuclear structure properties of doubly-even 130,132Ba nuclei has been made using two microscopic frameworks - CHFB and PSM. The yrast spectra, intrinsic quadrupole moment and deformation systematics of these nuclei have been successfully calculated. Further, the calculated data from both the frameworks is also compared with the available experimental data and a good agreement has been obtained. The present CHFB calculations describes very well the low spin structure of even-even 130,132Ba nuclei whereas PSM calculations provide a qualitative description of the high-spin band structure of doubly-even 130,132Ba nuclei.

  9. Processing of R-Ba-Cu-O superconductors

    International Nuclear Information System (INIS)

    Wu, H.

    1998-01-01

    Precipitation processes were developed to introduce second phases as flux pinning centers in Gd-Ba-Cu-O and Nd-Ba-Cu-O superconductors. In Gd-Ba-Cu-O, precipitation is caused by the decrease of the upper solubility limit of Gd 1+x Ba 2-x Cu 3 O 7 solid solution (Gd123ss) in low oxygen partial pressure. Processing of supersaturated Gd 1.2 Ba 1.8 Cu 3 O 7 in low oxygen partial pressure can produce dispersed second phases. Gd211 is formed as a separate phase while extensive Gd124 type stacking fault is formed instead of a separate CuO phase. As a result of the precipitation reaction, the transition temperature and critical current density are increased. In Nd-Ba-Cu-O, precipitation is caused by the decrease of the lower solubility limit of Nd 1+x Ba 2-x Cu 3 O 7 solid solution (Nd123ss) in oxygen. DTA results reveal the relative stability of Nd123ss in different oxygen partial pressures. In 1 bar oxygen partial pressure, Nd123ss with x = 0.1 is the most stable phase. In lower oxygen partial pressures, the most stable composition shifts towards the stoichiometric composition. The relative stability changes faster with decreasing oxygen partial pressure. Therefore, processing in oxygen and air tends to produce broad superconducting transitions but sharp transitions can be achieved in 0.01 bar and 0.001 bar oxygen partial pressures. While the lower solubility limits in 0.01 bar and 0.001 bar oxygen partial pressures remain at x = 0.00, the solubility limits in oxygen and air show a narrowing with decreasing temperature. Because of the narrowing of the solubility range in oxygen, oxygen annealing of Nd123 initially processed in low oxygen partial pressures will result in precipitation of second phases. The equilibrium second phase is BaCuO 2 for temperature above 608 C, and at lower temperatures the equilibrium second phases are Ba 2 CuO 3.3 and Ba 2 Cu 3 O 5+y . However, annealing at low temperature may produce a fine metastable transition phase. A coherent intermediate

  10. Syntheses, crystal structure, and electronic properties of the five ABaMQ{sub 4} compounds RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM, UMR 5257 CEA / CNRS / UM / ENSCM, Site de Marcoule-Bâtiment 426, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Prakash, Jai [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Rocca, Dario; Lebègue, Sébastien [Laboratoire de Cristallographie, Résonance Magnétique, et Modélisations CRM2 (UMR UHP-CNRS 7036), Faculté des Sciences et Techniques, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy Cedex (France); Beard, Jessica C.; Lewis, Benjamin A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Ibers, James A., E-mail: ibers@chem.northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States)

    2016-01-15

    Five new compounds belonging to the ABaMQ{sub 4} family were synthesized by solid-state chemistry at 1123 K. The compounds RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4} are isostructural and have the TlEuPS{sub 4} structure type. They crystallize in space group D{sup 16}{sub 2h} – Pnma of the orthorhombic system. Their structure consists isolated MQ{sub 4} tetrahedra separated by A and Ba atoms to form a salt-like structure. Density Functional Theory (DFT) calculations of the electronic structures with the use of the HSE functional suggest that the compounds are semiconductors with calculated band gaps of 3.3 eV (RbBaPS{sub 4}), 3.4 eV (CsBaPS{sub 4}), 2.3 eV (CsBaVS{sub 4}), and 1.6 eV (RbBaVSe{sub 4}). - Graphical abstract: General view of the ABaMQ{sub 4} structure down the a axis. - Highlights: • Five new ABaMQ{sub 4} compounds were synthesized by solid-state chemistry at 1123 K. • RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4} have the TlEuPS{sub 4} structure type. • The compounds are semiconductors with calculated band gaps ranging from 1.6 to 3.4 eV.

  11. Cl- channels of the gastric parietal cell that are active at low pH.

    Science.gov (United States)

    Cuppoletti, J; Baker, A M; Malinowska, D H

    1993-06-01

    HCl secretion across mammalian gastric parietal cell apical membrane may involve Cl- channels. H(+)-K(+)-ATPase-containing membranes isolated from gastric mucosa of histamine-stimulated rabbits were fused to planar lipid bilayers. Channels were recorded with symmetric 800 mM CsCl solutions, pH 7.4. A linear current-voltage (I-V) relationship was obtained, and conductance was 28 +/- 1 pS at 800 mM CsCl. Conductance was 6.9 +/- 2 pS at 150 mM CsCl. Reversal potential was +22 mV with a fivefold cis-trans CsCl concentration gradient, indicating that the channel was anion selective with a discrimination ratio of 6:1 for Cl- over Cs+. Anion selectivity of the channel was I- > Cl- > or = Br- > NO3-, and gluconate was impermeant. Channels obtained at pH 7.4 persisted when pH of medium bathing the trans side of the bilayer (pHtrans) was reduced to pH 3, without a change in conductance, linearity of I-V relationship, or ion selectivity. In contrast, asymmetric reduction of pH of medium bathing the cis side of the bilayer from 7.4 to 3 always resulted in loss of channel activity. At pH 7.4, open probability (Po) of the channel was voltage dependent, i.e., predominantly open at +80 mV but mainly closed at -80 mV. In contrast, with low pHtrans, channel Po at -80 mV was increased 3.5-fold. The Cl- channel was Ca2+ indifferent. In absence of ionophores, ion selectivity for support of H(+)-K(+)-ATPase activity and H+ transport was consistent with that exhibited by the channel and could be limited by substitution with NO3-, whereas maximal H(+)-K(+)-ATPase activity was indifferent to anion present, demonstrating that anion transport can be rate limiting. Cl- channels with similar characteristics (conductance, linear I-V relationship, and ion selectivity) were also present in H(+)-K(+)-ATPase-containing vesicles isolated from resting (cimetidine-treated) gastric mucosa, exhibiting at -80 mV a pH-independent approximately 3.5-fold lower Po than stimulated vesicle channels. At -80 m

  12. Influence of Closure & Non-Closure of the Visceral and Parietal Peritoneum on Post Cesarean Morbidity

    Directory of Open Access Journals (Sweden)

    Tabasi Z.

    2010-01-01

    Full Text Available AbstractBackground and Objectives: One of the most important issues in promoting mother and child health is reducing the morbidity rate after cesarean section. The aim of this study was to investigate the influence of closure and non-closure of the visceral and parietal peritoneum on post cesarean morbidity in women attending Shabihkhani Maternity Hospital in Kashan, Iran.Methods: This study was conducted with a single blind randomized clinical trial method on 100 parturient women that underwent emergency or elective cesarean section. Patients with previous cesarean section and or abdominal surgery, diseases such as hypertension, diabetes mellitus and premature rupture of membrane and pre operative bleeding, were excluded from this study. Then, the participants were randomly divided into two groups: in one group both peritoneal layers were closed while in the other group, they were not closed. Post operative morbidity including fever, bleeding, post operative pain, analgesic consumption and time of operation were assessed. Data were analyzed with t-tests, and χ2 and a P<0.05 were considered significant.Results: In this study, there were no significant differences between the two groups with respect to age, gestational age, the reason for caesarean section and gravidity, nor were there any differences with respect to the incidence of fever or bleeding and was similar between the two groups, but there was a significant difference between the two groups regarding to feeling of severe pain (P=0.0003, analgesic consumption (P=0.0003 and time of operation (P=0.004. In the non-closure group, dose of analgesic drugs, pain severity and time of operation were less than those of the other group.Conclusion: The Findings showed that non-closure of peritoneal layers as a shorter and simpler procedure has no influence on increasing post cesarean morbidity. Therefore, due to maternal health promotion and early neonatal breastfeeding, non closure of peritoneal

  13. Influence of Closure & Non-Closure of the Visceral and Parietal Peritoneum on Post Cesarean Morbidity

    Directory of Open Access Journals (Sweden)

    Z Tabasi

    2012-05-01

    Full Text Available

    Background and Objectives: One of the most important issues in promoting mother and child health is reducing the morbidity rate after cesarean section. The aim of this study was to investigate the influence of closure and non-closure of the visceral and parietal peritoneum on post cesarean morbidity in women attending Shabihkhani Maternity Hospital in Kashan, Iran.

    Methods: This study was conducted with a single blind randomized clinical trial method on 100 parturient women that underwent emergency or elective cesarean section. Patients with previous cesarean section and or abdominal surgery, diseases such as hypertension, diabetes mellitus and premature rupture of membrane and pre operative bleeding, were excluded from this study. Then, the participants were randomly divided into two groups: in one group both peritoneal layers were closed while in the other group, they were not closed. Post operative morbidity including fever, bleeding, post operative pain, analgesic consumption and time of operation were assessed. Data were analyzed with t-tests, and χ2 and a P<0.05 were considered significant.

    Results: In this study, there were no significant differences between the two groups with respect to age, gestational age, the reason for caesarean section and gravidity, nor were there any differences with respect to the incidence of fever or bleeding and was similar between the two groups, but there was a significant difference between the two groups regarding to feeling of severe pain (P=0.0003, analgesic consumption (P=0.0003 and time of operation (P=0.004. In the non-closure group, dose of analgesic drugs, pain severity and time of operation were less than those of the other group.

    Conclusion: The
  14. Modulation of Speech Motor Learning with Transcranial Direct Current Stimulation of the Inferior Parietal Lobe

    Directory of Open Access Journals (Sweden)

    Mickael L. D. Deroche

    2017-12-01

    Full Text Available The inferior parietal lobe (IPL is a region of the cortex believed to participate in speech motor learning. In this study, we investigated whether transcranial direct current stimulation (tDCS of the IPL could influence the extent to which healthy adults (1 adapted to a sensory alteration of their own auditory feedback, and (2 changed their perceptual representation. Seventy subjects completed three tasks: a baseline perceptual task that located the phonetic boundary between the vowels /e/ and /a/; a sensorimotor adaptation task in which subjects produced the word “head” under conditions of altered or unaltered feedback; and a post-adaptation perceptual task identical to the first. Subjects were allocated to four groups which differed in current polarity and feedback manipulation. Subjects who received anodal tDCS to their IPL (i.e., presumably increasing cortical excitability lowered their first formant frequency (F1 by 10% in opposition to the upward shift in F1 in their auditory feedback. Subjects who received the same stimulation with unaltered feedback did not change their production. Subjects who received cathodal tDCS to their IPL (i.e., presumably decreasing cortical excitability showed a 5% adaptation to the F1 alteration similar to subjects who received sham tDCS. A subset of subjects returned a few days later to reiterate the same protocol but without tDCS, enabling assessment of any facilitatory effects of the previous tDCS. All subjects exhibited a 5% adaptation effect. In addition, across all subjects and for the two recording sessions, the phonetic boundary was shifted toward the vowel /e/ being repeated, consistently with the selective adaptation effect, but a correlation between perception and production suggested that anodal tDCS had enhanced this perceptual shift. In conclusion, we successfully demonstrated that anodal tDCS could (1 enhance the motor adaptation to a sensory alteration, and (2 potentially affect the

  15. The gastric acid secretagogue gastrin-releasing peptide and the inhibitor oxyntomodulin do not exert their effect directly on the parietal cell in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J

    1988-01-01

    in vitro by measuring [14C]-aminopyrine accumulation, a reliable index of H+ generation, in isolated rat parietal cells. However, neither gastrin-releasing peptide nor oxyntomodulin influenced basal acid secretion or histamine-stimulated gastric acid secretion. Electron-microscopic studies of unstimulated...... and histamine-stimulated parietal cells confirmed that the cells retained the normal morphology of intracellular organelles and that the cells responded to physiological stimulation by marked expansion of the intracellular canaliculi....

  16. Leptonic B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Monorchio, Diego; /INFN, Naples /Naples U.

    2011-09-13

    The authors will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)} {nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be payed in order to perform a model independent analysis. A B-Factory provides an unique environment where to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  17. Leptonic B Decays at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Baracchini, Elisabetta; /Rome U. /INFN, Rome

    2011-11-10

    We will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)}{nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be paid in order to perform a model independent analysis. A B-Factory provides an unique environment to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  18. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.

    Science.gov (United States)

    Marangon, Mattia; Kubiak, Agnieszka; Króliczak, Gregory

    2015-01-01

    The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  19. Ferroelectric relaxor Ba(TiCe)O3

    International Nuclear Information System (INIS)

    Chen Ang; Zhi Jing; Yu Zhi

    2002-01-01

    The dielectric behaviour of Ba(Ti 1-y Ce y )O 3 solid solutions (y=0-0.3) has been studied. A small amount of Ce doping (y=0.02) has weak influence on the dielectric behaviour of Ba(Ti 1-y Ce y )O 3 . With increasing Ce concentration, three phase transitions of pure BaTiO 3 are pinched into one rounded dielectric peak with frequency dispersion, and the relaxation time follows the Vogel-Fulcher relation. The evolution from a normal ferroelectric to a ferroelectric relaxor is emphasized. High strains (S=∼0.1-0.19%) with a small hysteresis under ac fields are obtained in ferroelectric relaxors Ba(Ti 1-y Ce y )O 3 . The physical mechanism of the relaxation process, the pinching effect of the phase transitions and their influence on the ferroelectric and electrostrictive behaviour are discussed. (author)

  20. Operability test report for 211BA flow proportional sampler

    International Nuclear Information System (INIS)

    Weissenfels, R.D.

    1995-01-01

    This operability report will verify that the 211-BA flow proportional sampler functions as intended by design. The sampler was installed by Project W-007H and is part of BAT/AKART for the BCE liquid effluent stream

  1. The sixth sense in mammalian forerunners: Variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    2016-12-01

    Full Text Available In some extant ectotherms, the third eye (or pineal eye is a photosensitive organ located in the parietal foramen on the midline of the skull roof. The pineal eye sends information regarding exposure to sunlight to the pineal complex, a region of the brain devoted to the regulation of body temperature, reproductive synchrony, and biological rhythms. The parietal foramen is absent in mammals but present in most of the closest extinct relatives of mammals, the Therapsida. A broad ranging survey of the occurrence and size of the parietal foramen in different South African therapsid taxa demonstrates that through time the parietal foramen tends, in a convergent manner, to become smaller and is absent more frequently in eutherocephalians (Akidnognathiidae, Whaitsiidae, and Baurioidea and non-mammaliaform eucynodonts. Among the latter, the Probainognathia, the lineage leading to mammaliaforms, are the only one to achieve the complete loss of the parietal foramen. These results suggest a gradual and convergent loss of the photoreceptive function of the pineal organ and degeneration of the third eye. Given the role of the pineal organ to achieve fine-tuned thermoregulation in ectotherms (i.e., “cold-blooded” vertebrates, the gradual loss of the parietal foramen through time in the Karoo stratigraphic succession may be correlated with the transition from a mesothermic metabolism to a high metabolic rate (endothermy in mammalian ancestry. The appearance in the eye of melanopsin-containing retinal ganglion cells replacing the photoreceptive role of the pineal eye could also have accompanied its loss.

  2. Automatic and Intentional Number Processing Both Rely on Intact Right Parietal Cortex: A Combined fMRI and Neuronavigated TMS Study

    Science.gov (United States)

    Cohen Kadosh, Roi; Bien, Nina; Sack, Alexander T.

    2012-01-01

    Practice and training usually lead to performance increase in a given task. In addition, a shift from intentional toward more automatic processing mechanisms is often observed. It is currently debated whether automatic and intentional processing is subserved by the same or by different mechanism(s), and whether the same or different regions in the brain are recruited. Previous correlational evidence provided by behavioral, neuroimaging, modeling, and neuropsychological studies addressing this question yielded conflicting results. Here we used transcranial magnetic stimulation (TMS) to compare the causal influence of disrupting either left or right parietal cortex during automatic and intentional numerical processing, as reflected by the size congruity effect and the numerical distance effect, respectively. We found a functional hemispheric asymmetry within parietal cortex with only the TMS-induced right parietal disruption impairing both automatic and intentional numerical processing. In contrast, disrupting the left parietal lobe with TMS, or applying sham stimulation, did not affect performance during automatic or intentional numerical processing. The current results provide causal evidence for the functional relevance of right, but not left, parietal cortex for intentional, and automatic numerical processing, implying that at least within the parietal cortices, automatic, and intentional numerical processing rely on the same underlying hemispheric lateralization. PMID:22347175

  3. Ba-bah on tulnud / Liina Jänes

    Index Scriptorium Estoniae

    Jänes, Liina, 1977-

    2005-01-01

    Eesti noori disainereid-sisearhitekte ühendavast disainiagentuurist Ba-bah, selle eesmärgist. Agentuuri juhib Veiko Jääger. Mais 2005 Disaini- ja Arhitektuurigaleriis toimunud Ba-bahi avanäitusest, kus oli väljas töid EKA sisearhitektuuri, klaasi-, ehte- ja sepakunsti eriala üliõpilastelt ning metallmööbli valmistajalt Kalle Pruudenilt

  4. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-10-01

    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395... Observation for Biodiversity Assessment (EO-BA) programme is designed to enhance biodiversity assessment and conservation through the application of earth observation data, with particular focus on the African continent. MISSION To initiate and develop...

  5. X-ray photoelectron spectroscopy study of BaWO{sub 4} and Ba{sub 2}CaWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Capece, Angela M., E-mail: acapece@pppl.gov [California Institute of Technology, Pasadena, CA (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Shepherd, Joseph E. [California Institute of Technology, Pasadena, CA (United States)

    2014-12-15

    Highlights: • XPS reference spectra for Ba{sub 2}CaWO{sub 6} and BaWO{sub 4} are presented. • Binding energies of Ba 3d and W 4f lines are 0.7 eV higher for BaWO{sub 4} than Ba{sub 2}CaWO{sub 6}. • Ca 2p spectrum contains two sets of Ca 2p doublets attributed to Ba{sub 2}CaWO{sub 6} and CaCO{sub 3}. - Abstract: XPS reference spectra for Ba{sub 2}CaWO{sub 6} and BaWO{sub 4} are presented, including high resolution spectra of the Ba 3d, W 4f, C 1s, Ca 2p, and O 1s lines. The peak locations and full widths at half maximum are also given. The binding energies of the Ba 3d and W 4f lines are 0.7 eV higher for BaWO{sub 4} than for Ba{sub 2}CaWO{sub 6}. The Ca 2p spectrum contains two sets of Ca 2p doublets that were attributed to Ba{sub 2}CaWO{sub 6} and CaCO{sub 3}.

  6. Thermochemical investigations into the system Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Neuschuetz, D.; Zimmermann, E.; Hack, K.; Boudene, A.; Mohammad, A.

    1992-01-01

    For a consistent thermodynamic description of the quaternary system Y-Ba-Cu-O, the binary and ternary subsystems must be known. The metallic binaries and the ternary system Y-Ba-Cu have been evaluated by the authors. Discrepancies within the Cu-O system made a thorough experimental re-investigation necessary, leading to a new consistent thermodynamic data set for copper-oxygen which can now serve as a basis for the description of phase equilibria of all high temperature superconductors. Extensive experimental work on the ternaries Y-Cu-O and Ba-Cu-O, which are oxygen partial pressure dependent, revealed liquid phases down to 790degC. The ternary Y-Ba-O could be described more easily on the basis of literature values and present experimental results, because it does not contain any liquid phases at relevant temperatures. The representation of the quaternary Y-Ba-Cu-O is complicated both by its dependence on the oxygen potential and the existence of liquid oxide phases. In contrast to common practice, the present investigations had to start from Cu-free Ba-Y-O in order to avoid unknown liquid phases in the experiments. The present results being insufficient for a complete description of the quaternary system, the work is being continued within an EC joint research project. (orig.) With 84 refs., 8 tabs., 47 figs [de

  7. Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication

    Directory of Open Access Journals (Sweden)

    Domenica Veniero

    2017-06-01

    Full Text Available Transcranial electrical stimulation (tES is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two “inhibitory” tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each with a montage targeting right parietal cortex (right parietal–left frontal, electrode-sizes: 3cm × 3cm–7 cm × 5 cm, while performing a perceptual line bisection (landmark task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control. In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS (expected to entrain “inhibitory” alpha oscillations and to cathodal transcranial direct current stimulation (c-tDCS (shown to suppress neuronal spiking activity. In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham. However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice.

  8. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  9. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  10. Individual Differences in Reasoning and Visuospatial Attention are Associated with Prefrontal and Parietal White Matter Tracts in Healthy Older Adults

    Science.gov (United States)

    Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren

    2016-01-01

    Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750

  11. Visuospatial information processing load and the ratio between parietal cue and target P3 amplitudes in the Attentional Network Test.

    Science.gov (United States)

    Abramov, Dimitri M; Pontes, Monique; Pontes, Adailton T; Mourao-Junior, Carlos A; Vieira, Juliana; Quero Cunha, Carla; Tamborino, Tiago; Galhanone, Paulo R; deAzevedo, Leonardo C; Lazarev, Vladimir V

    2017-04-24

    In ERP studies of cognitive processes during attentional tasks, the cue signals containing information about the target can increase the amplitude of the parietal cue P3 in relation to the 'neutral' temporal cue, and reduce the subsequent target P3 when this information is valid, i.e. corresponds to the target's attributes. The present study compared the cue-to-target P3 ratios in neutral and visuospatial cueing, in order to estimate the contribution of valid visuospatial information from the cue to target stages of the task performance, in terms of cognitive load. The P3 characteristics were also correlated with the results of individuals' performance of the visuospatial tasks, in order to estimate the relationship of the observed ERP with spatial reasoning. In 20 typically developing boys, aged 10-13 years (11.3±0.86), the intelligence quotient (I.Q.) was estimated by the Block Design and Vocabulary subtests from the WISC-III. The subjects performed the Attentional Network Test (ANT) accompanied by EEG recording. The cued two-choice task had three equiprobable cue conditions: No cue, with no information about the target; Neutral (temporal) cue, with an asterisk in the center of the visual field, predicting the target onset; and Spatial cues, with an asterisk in the upper or lower hemifield, predicting the onset and corresponding location of the target. The ERPs were estimated for the mid-frontal (Fz) and mid-parietal (Pz) scalp derivations. In the Pz, the Neutral cue P3 had a lower amplitude than the Spatial cue P3; whereas for the target ERPs, the P3 of the Neutral cue condition was larger than that of the Spatial cue condition. However, the sums of the magnitudes of the cue and target P3 were equal in the spatial and neutral cueing, probably indicating that in both cases the equivalent information processing load is included in either the cue or the target reaction, respectively. Meantime, in the Fz, the analog ERP components for both the cue and target

  12. Glucose phosphorylation rate in rat parietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    Energy Technology Data Exchange (ETDEWEB)

    Broendsted, H.E.; Gjedde, A. (Department of General Physiology and Biophysics, Panum Institute, University of Copenhagen (Denmark))

    1990-01-01

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using (6-{sup 14}C)glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO{sub 2} and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author).

  13. CONTRAST STUDY ON CT AND BA IN DIAGNOSIS OF PATIENTS WITH ATHEROTHROMBOTIC BRAIN INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Mingshun Liu; Haixiang Gao; Xiaomei Fu; Po Ma

    2007-01-01

    Objectives: To explore applied value on CT and BA in diagnosis of patients with atherothrombotic brain infarction. Methods:CT and BA were examined in 246 patients with atherothrombotic brain infarction. Results:The different change of CT and BA were showed in 246 patients with atherothrombotic brain infarction. Conclusions: There were separately different advantage and shortcoming in CT and BA in diagnosis of atherothrombotic brain infarction. The value of clinical application of BA was important in diagnosis of atherothrombotic brain infarction.

  14. Nuclear charge radii and nuclear moments of neutron deficient Ba isotopes from high resolution laser spectroscopy

    International Nuclear Information System (INIS)

    Nowicki, G.; Bekk, K.; Goering, S.; Hanser, A.; Rebel, H.; Schatz, G.

    1978-07-01

    Isotope shifts and hyperfine structure of the BaI 6s 2 1 S 0 -6s6p 1 P 1 transitions (lambda = 553.6 nm) in neutron deficient Ba nuclides (N 131 Ba, 128 Ba, in addition to remeasurements of all stable Ba nuclides. The extracted values of delta 2 >, the observed odd-even staggering and the nuclear moments are discussed in the light of other theoretical and experimental nuclear structure studies of the region 50 [de

  15. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  16. Investigating the Functional Utility of the Left Parietal ERP Old/New Effect: Brain Activity Predicts within But Not between Participant Variance in Episodic Recollection

    Directory of Open Access Journals (Sweden)

    Catherine A. MacLeod

    2017-12-01

    Full Text Available A success story within neuroimaging has been the discovery of distinct neural correlates of episodic retrieval, providing insight into the processes that support memory for past life events. Here we focus on one commonly reported neural correlate, the left parietal old/new effect, a positive going modulation seen in event-related potential (ERP data that is widely considered to index episodic recollection. Substantial evidence links changes in the size of the left parietal effect to changes in remembering, but the precise functional utility of the effect remains unclear. Here, using forced choice recognition of verbal stimuli, we present a novel population level test of the hypothesis that the magnitude of the left parietal effect correlates with memory performance. We recorded ERPs during old/new recognition, source accuracy and Remember/Know/Guess tasks in two large samples of healthy young adults, and successfully replicated existing within participant modulations of the magnitude of the left parietal effect with recollection. Critically, however, both datasets also show that across participants the magnitude of the left parietal effect does not correlate with behavioral measures of memory – including both subjective and objective estimates of recollection. We conclude that in these tasks, and across this healthy young adult population, the generators of the left parietal ERP effect do not index performance as expected. Taken together, these novel findings provide important constraints on the functional interpretation of the left parietal effect, suggesting that between group differences in the magnitude of old/new effects cannot always safely be used to infer differences in recollection.

  17. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Science.gov (United States)

    Hoekert, Marjolijn; Bais, Leonie; Kahn, René S; Aleman, André

    2008-05-21

    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half

  18. Metaplasia mieloide do baço na Ancilostomose

    Directory of Open Access Journals (Sweden)

    W. O. Cruz

    1934-06-01

    Full Text Available Pesquizamos, no figado e baço de dez casos puros de ancilostomose, elementos hemocitopoieticos; verificamos o peso do baço em 23 casos de individuos com idades compreendidas entre 3 e 60 anos; não encontramos, em nenhum caso, celulas hemoformadoras no figado. Em sete casos, encontramos, no baço, elementos da série vermelha em adiantado estado de evolução (eritroblastos ortocromaticos de nucleo picnotico. Em alguns destes casos observamos megacariocitos e numerosos mielocitos eosinofilos. Os tres casos que não apresentavam metaplasia mieloide no baço, eram os de individuos acima de 50 anos de idade. Entretanto, em outro caso de um individuo com 59 anos esta metaplasia foi verificada. Em individuos acima de 20 anos, o peso médio do baço, em nove casos, mostrou-se igual ao peso normal. Em 14 casos, compreendidos entre 3 e 14 anos, o peso deste orgão foi sempre sensivelmente mais elevado que nos normais de idade correspondente. Estes resultados sugerem a possibilidade de ser a metaplasia mieloide responsavel pelos aumentos de pezo nos baços de individuos jovens, vitimados pela anemia ancilostomica. A notavel proliferação dos eritroblastos ortocromaticos mostra que o grão e a rapidez da regeneração sanguinea, após a administração de ferro, são devidos, essencialmente, á grande quantidade de hemoglobina já preformada no baço e na medula ossea dos organismos ancilostomados.

  19. Posterior parietal cortex is critical for the encoding, consolidation, and retrieval of a memory that guides attention for learning.

    Science.gov (United States)

    Schiffino, Felipe L; Zhou, Vivian; Holland, Peter C

    2014-02-01

    Within most contemporary learning theories, reinforcement prediction error, the difference between the obtained and expected reinforcer value, critically influences associative learning. In some theories, this prediction error determines the momentary effectiveness of the reinforcer itself, such that the same physical event produces more learning when its presentation is surprising than when it is expected. In other theories, prediction error enhances attention to potential cues for that reinforcer by adjusting cue-specific associability parameters, biasing the processing of those stimuli so that they more readily enter into new associations in the future. A unique feature of these latter theories is that such alterations in stimulus associability must be represented in memory in an enduring fashion. Indeed, considerable data indicate that altered associability may be expressed days after its induction. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event, and to the subsequent expression of that altered associability in more rapid learning. Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  1. An impaired attentional dwell time after parietal and frontal lesions related to impaired selective attention not unilateral neglect.

    Science.gov (United States)

    Correani, Alessia; Humphreys, Glyn W

    2011-07-01

    The attentional blink, a measure of the temporal dynamics of visual processing, has been documented to be more pronounced following brain lesions that are associated with visual neglect. This suggests that, in addition to their spatial bias in attention, neglect patients may have a prolonged dwell time for attention. Here the attentional dwell time was examined in patients with damage focused on either posterior parietal or frontal cortices. In three experiments, we show that there is an abnormally pronounced attentional dwell time, which does not differ in patients with posterior parietal and with frontal lobe lesions, and this is associated with a measure of selective attention but not with measures of spatial bias in selection. These data occurred both when we attempted to match patients and controls for overall differences in performance and when a single set stimulus exposure was used across participants. In Experiments 1 and 2, requiring report of colour-form conjunctions, there was evidence that the patients were also impaired at temporal binding, showing errors in feature combination across stimuli and in reporting in the correct temporal order. In Experiment 3, requiring only the report of features but introducing task switching led to similar results. The data suggest that damage to a frontoparietal network can compromise temporal selection of visual stimuli; however, this is not necessarily related to a deficit in hemispatial visual attention but it is to impaired target selection. We discuss the implications for understanding visual selection.

  2. Normal variation of focal T2 Hyperintensities in anterior parietal periventricular white matter: Another 'Terminal Zones of Myelination'

    International Nuclear Information System (INIS)

    Park, Jong Oag; Woo, Je Ho; Ki, Tae Sung; Lee, Jong Hwa; Chung, Jin Woo; Lee, Don Young

    1994-01-01

    It has been known that there are several areas of T2 hyperintensity in normal white matter of brain, such as terminal zones of myelination, ependymitis granularis, ones of posterior internal capsule, and perivascular space. The aim of our study is to demonstrate another region of T2 hyperintensities in normal pediatric age group. We have studied brain MR for 10 normal volunteers and 35 patients without having intracranial lesions in pediatric age group(3-19 years). In 5 among 45 cases, focal T2 hyperintensities were seen in the parietal periventricular white matter beneath the postcentral gyri. They were noted as poorly defined, 5-10 mm sized areas of increased signal intensities on T2-weighted axial images. They were also characterized by bilateral, posteromedially oriented, short band-like or oval areas. Interestingly, they were directly continuous with the T2 hyperintensity of posterior internal capsule. In spite of the relatively highly frequency in the pediatric population as in our study, this finding has not been reported in the asymptomatic adults. The results show that the bilateral anterior parietal hyperintense areas may be another terminal zones of delayed myelination affecting the parietopontine tract. They should be differentiated from pathologic T2 hyperintensities by their characteristic findings

  3. No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices.

    Science.gov (United States)

    Robison, Matthew K; McGuirk, William P; Unsworth, Nash

    2017-08-01

    The present study examined the relative contributions of the prefrontal cortex (PFC) and posterior parietal cortex (PPC) to visual working memory. Evidence from a number of different techniques has led to the theory that the PFC controls access to working memory (i.e., filtering), determining which information is encoded and maintained for later use whereas the parietal cortex determines how much information is held at 1 given time, regardless of relevance (i.e., capacity; McNab & Klingberg, 2008; Vogel, McCollough, & Machizawa, 2005). To test this theory, we delivered transcranial DC stimulation (tDCS) to the right PFC and right PPC and measured visual working memory capacity and filtering abilities both during and immediately following stimulation. We observed no evidence that tDCS to either the PFC or PPC significantly improved visual working memory. Although the present results did not allow us to make firm theoretical conclusions about the roles of the PFC and PPC in working memory, the results add to the growing body of literature surrounding tDCS and its associated behavioral and neurophysiological effects. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Operability test procedure for 211BA flow proportional sampler

    International Nuclear Information System (INIS)

    Weissenfels, R.D.

    1994-01-01

    The purpose of this operability test procedure (OTP) is to verify the 211-BA flow proportional sampler system and components function correctly as intended by design. System test will include the sampling system, all associated instrumentation, and Facility Process Monitor and Control System (FPMCS). The combined chemical sewer stream from B Plant flows through sump 211BA-SMP-01 located in 211-BA and is continuously monitored for gamma and beta radiation and pH. 211-BA has been upgraded to include a flow proportional sampler. A specified sample volume will be withdrawn at programmed intervals from the 211BA sump and deposited in a 19 liter plastic carboy. The sampler will be programmed per the vendor installation and operations manual by B Plant instrument maintenance personnel. Samples will be taken during five consecutive sample cycles with the sample volumes and sample frequencies recorded for comparison purposes. Additional tests related to the sampler include the alarm circuitry for loss of power and failure to obtain sample

  6. Thermoelectric properties of doped BaHfO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow-229001, U.P India (India); Bhamu, K. C. [Department of Physics, Goa University, Goa-403 206 (India); Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Feroze Gandhi Institute of Engineering & Technology, Raebareli-229001, U.P India (India)

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  7. An approach to WWER fuels with BaCo

    International Nuclear Information System (INIS)

    Marino, A.; Demarco, G.

    2008-01-01

    BaCo is a code for the simulation of the behaviour of a nuclear fuel rod under operation conditions. BaCo, a quasi 2D code based on a finite differences scheme, has been used for simulating PHWR, CANDU, PWR, BWR, MOX, WWER, and experimental fuel rods. We improve the performance of BaCo with a set of tools based on the method of finite elements for 3D analysis of the stress-strain state. We can simulate any UO 2 pellet geometry. Standard WWER-440 fuel assemblies irradiated in the Kola-3 reactor of the CRP FUMEX II of the IAEA were the first WWER simulations with BaCo. We find a very good agreement among our calculations, the experimental results and other qualified fuel codes. We present the BaCo code and our results for PWR and WWER fuels of the CRP FUMEX II, the 3D analysis of WWER fuel pellet and the projections of these results with the Argentinean nuclear fuels development. (authors)

  8. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  9. The Analysis for Activations in the Brain during Hearing the Amplitude-Modulated Tone by fMRI Measurement

    Science.gov (United States)

    Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi

    In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (pvs. unmodulated tone, the bilaterally superior frontal gyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (p<0.021, uncorrected). Activations of visual perception due to eye-opened state were detected in some parts of activations. As a result, we inferred that modulated tone was recognized in the medial frontal gyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.

  10. The Neural Basis of Postural Instability Gait Disorder Subtype of Parkinson's Disease: A PET and fMRI Study.

    Science.gov (United States)

    Zhang, Li; Li, Tian-Nv; Yuan, Yong-Sheng; Jiang, Si-Ming; Tong, Qing; Wang, Min; Wang, Jian-Wei; Chen, Hua-Jun; Ding, Jian; Xu, Qin-Rong; Zhang, Ke-Zhong

    2016-05-01

    The aim of this study is to further uncover the neural basis of postural instability gait disorder (PIGD) subtype of Parkinson's disease. With F-18 fluorodeoxyglucose PET (FDG-PET), brain glucose metabolism of patients with PIGD (n = 15) was compared with healthy controls (n = 17) and tremor-dominant (TD) patients (n = 15), and the correlation between metabolism and PIGD symptoms was also assessed. Within PIGD symptom-correlated hypometabolic areas, the relationship of functional connectivity (FC) with motor and cognitive symptoms was examined by using functional MRI. Compared with controls, patients with PIGD displayed a distributed pattern of brain hypometabolism including striatal, frontal, and parietal areas. Relative to the pattern of TD patients, the pattern of patients with PIGD had additional metabolic decreases in caudate and inferior parietal lobule (IPL, Brodmann area [BA] 40). In PIGD group, the metabolic reductions in IPL (BA 40), middle frontal gyrus (MFG, BA 9) and fusiform gyrus (FG, BA 20) were associated with severe PIGD symptoms. Regions showing such correlation were chosen for further seed-based FC analysis. Decreased FC within the prefrontal-parietal network (between the MFG and IPL) was associated with severe PIGD symptoms. The involvement of the caudate, FG, and prefrontal-parietal network may be associated with the prominent gait impairments of PIGD subtype. Our findings expand the pathophysiological knowledge of PIGD subtype and provide valuable information for potential neuromodulation therapies alleviating gait disorders. © 2016 John Wiley & Sons Ltd.

  11. Thin film hybrid Josephson junctions with Co doped Ba-122

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Stefan; Doering, Sebastian; Schmidl, Frank; Tympel, Volker; Grosse, Veit; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, 07743 Jena (Germany); Haindl, Silvia; Iida, Kazumasa; Kurth, Fritz; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, Helmholtzstrasse 20, 01069 Dresden (Germany); Moench, Ingolf [IFW Dresden, Institut fuer Integrative Nanowissenschaften, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2011-07-01

    Josephson junctions are a strong tool to investigate fundamental superconducting properties, such as gap behaviour, dependencies from external fields and the order parameter symmetry. Finding secure values enables the possibility of theoretical descriptions to understand the physical processes within the new iron-based superconductors. Based on Co-doped BaFe{sub 2}As{sub 2} (Ba-122) layers produced via pulsed laser deposition (PLD) on (La,Sr)(Al,Ta)O{sub 3} substrates, we manufactured superconductor-normal conductor-superconductor (S-N-S) junctions structures by using photolithography, ion beam etching as well as insulating SiO{sub 2} layers. We present working Ba-122/Au/PbIn thin film Josephson junctions with different contact areas and barrier thicknesses, their temperature dependence and response to microwave irradiation. The calculated I{sub c}R{sub N} product is in the range of a couple of microvolts.

  12. The BaBar instrumented flux return performance: lessons learned

    CERN Document Server

    Anulli, F; Baldini, R; Band, H R; Bionta, R; Brau, J E; Brigljevic, V; Buzzo, A; Calcaterra, A; Carpinelli, M; Cartaro, C; Cavallo, N; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Eichenbaum, A; Fabozzi, F; Falciai, D; Ferrarotto, F; Ferroni, F; Finocchiaro, G; Forti, F; Frey, R; Gatto, C; Graug; Iakovlev, N I; Iwasaki, M; Johnson, J R; Lange, D J; Lista, L; Lo Vetere, M; Lü, C; Macri, M; Messner, R; Moore, T B; Morganti, S; Neal, H; Neri, N; Palano, A; Paoloni, E; Paolucci, P; Passaggio, S; Pastore, F C; Patteri, P; Peruzzi, I; Piccolo, D; Piccolo, M; Piredda, G; Robutti, E; Roodman, A; Santroni, A; Sciacca, C; Sinev, N B; Soha, A; Strom, D; Tosi, S; Vavra, J; Wisniewski, W J; Wright, D M; Xie, Y; Zallo, A

    2002-01-01

    The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000 m sup 2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.

  13. Concentrations of Se, Ba, Zn and Mn in Brazil nuts

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria José A.; Maihara, Vera A.; Cardoso, Paulo S.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cozollino, Silvia M.F., E-mail: marmelin@ipen.br, E-mail: vmaihara@ipen.br, E-mail: msaiki@ipen.br, E-mail: pscsilva@ipen.br, E-mail: smfcozzo@usp.br [Universidade de São Paulo (USP), SP (Brazil). Faculdade de Ciências Farmacêuticas

    2017-07-01

    The concentrations of Se, Ba, Zn and Mn were determined in samples of Brazil nuts collected in two ways: a) in a production farm predominantly for export and, b) in various points of sale from different regions of Brazil. Instrumental neutron activation analysis was the analytical technique used in this study. Results indicate that the concentrations of Se and Ba varied greatly among the Brazil nut samples analyzed. This large variability may be related to the soil characteristics from which the nuts were produced. An inverse correlation was observed between the concentrations of Se and Ba. On the other hand, the concentrations of Zn and Mn did not show significant differences among these samples. (author)

  14. Concentrations of Se, Ba, Zn and Mn in Brazil nuts

    International Nuclear Information System (INIS)

    Armelin, Maria José A.; Maihara, Vera A.; Cardoso, Paulo S.; Saiki, Mitiko; Cozollino, Silvia M.F.

    2017-01-01

    The concentrations of Se, Ba, Zn and Mn were determined in samples of Brazil nuts collected in two ways: a) in a production farm predominantly for export and, b) in various points of sale from different regions of Brazil. Instrumental neutron activation analysis was the analytical technique used in this study. Results indicate that the concentrations of Se and Ba varied greatly among the Brazil nut samples analyzed. This large variability may be related to the soil characteristics from which the nuts were produced. An inverse correlation was observed between the concentrations of Se and Ba. On the other hand, the concentrations of Zn and Mn did not show significant differences among these samples. (author)

  15. Growth and scintillation properties of BaMgF4

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Sugiyama, Makoto; Furuya, Yuki; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira; Chani, Valery

    2010-01-01

    By using the micro-pulling down (μ-PD) method, the barium magnesium fluoride (BaMgF 4 ) single crystalline scintillator was produced. The crystal was cut and mirror polished to the physical dimensions of 1x2x10 mm 3 for examination of scintillation properties. BaMgF 4 demonstrated ∼70% transmittance in wavelength range above 170 nm, and strong emission peaking around 205 nm was observed under X-ray excitation. The absolute light yield of BaMgF 4 was 1300±100 ph/MeV, and the decay time profile showed two components as 0.57±0.01 (70%) and 2.2±0.31 (30%) ns at room temperature.

  16. Synthesis of BaTiO3 nanoparticles from TiO2-coated BaCO3 particles derived using a wet-chemical method

    Directory of Open Access Journals (Sweden)

    Yuuki Mochizuki

    2014-03-01

    Full Text Available BaCO3 particles coated with amorphous TiO2 precursor are prepared by a wet chemical method to produce BaTiO3 nanoparticles at low temperatures. Subsequently, we investigate the formation behavior of BaTiO3 particles and the particle growth behavior when the precursor is subjected to heat treatment. The state of the amorphous TiO2 coating on the surface of BaCO3 particles depends on the concentration of NH4HCO3, and the optimum concentration is found to be in the range 0.5–1.0 M. Thermogravimetric curves of the BaCO3 particles coated with the TiO2 precursor, prepared from BaCO3 particles of various sizes, show BaTiO3 formation occurring mainly at 550–650 °C in the case of fine BaCO3 particles. However, as evidenced from the curves, the temperature of formation of BaTiO3 shifts to higher values with an increase in the size of the BaCO3 particles. The average particle size of single phase BaTiO3 at heat-treatment temperature of 650–900 °C is observed to be in the range 60–250 nm.

  17. The interaction of NO2 with BaO: from cooperative adsorption to Ba(NO3)2 formation

    International Nuclear Information System (INIS)

    Yi, Cheol-Woo W.; Kwak, Ja Hun H.; Szanyi, Janos

    2007-01-01

    The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. The conversion of surface to bulk Ba-nitrates is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials

  18. Modeling of effusion in the presence of a turbulent parietal flow. Application to the thermal protection of walls; Modelisation de l`effusion en presence d`un ecoulement parietal turbulent. Application a la protection thermique des parois

    Energy Technology Data Exchange (ETDEWEB)

    Belletre, J.; Bataille, F.; Lallemaned, A. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    The effusion of a cold gas through a porous wall submitted to a hot turbulent parietal flow is studied in order to reduce the convective heat fluxes between the wall and the hot fluid. A modeling of the turbulent dynamical and thermal boundary layer is obtained using a RNG k-{epsilon} model. The cold gas injection through the porous plate and the fluid-wall friction are taken into account using a discrete succession of pores and solid elements. For a 1% injection rate, the modeling results agree with experiments performed in a test-duct. On the other hand, convective heat fluxes on the porous plate are calculated using semi-empirical correlations and different injection rates and temperatures of the hot flow. (J.S.) 23 refs.

  19. Scintillation and radiation damage of doped BaF2 crystals

    International Nuclear Information System (INIS)

    Gong Zufang; Xu Zizong; Chang Jin

    1992-01-01

    The emission spectra and the radiation damage of BaF 2 crystals doped Ce and Dy have been studied. The results indicate that the doped BaF 2 crystals have the intrinsic spectra of impurity besides the intrinsic spectra of BaF 2 crystals. The crystals colored and the transmissions decrease with the concentration of impurity in BaF 2 crystals after radiation by γ-ray of 60 Co. The doped Ce BaF 2 irradiated by ultraviolet has faster recover of transmissions but for doped Dy the effect is not obvious. The radiation resistance is not good as pure BaF 2 crystals

  20. Posterior parietal cortex role in a sensorimotor task performance Papel do córtex parietal posterior na realização de uma tarefa sensório-motora

    Directory of Open Access Journals (Sweden)

    Sergio Nader

    2008-06-01

    Full Text Available This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when individuals had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG alpha absolute power changes. The sample was composed for 23 health subjects, both sexes, with ages varying between 25 and 40 years, absence of mental and physical illness, right handed and don't make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position factors in left parietal posterior cortex (PPC (p=0.001. Through the experimental task employed, this area demonstrated a differentiated activity involving expectation, planning and preparedness in the ball's drop task.O estudo tentou elucidar mecanismos eletrofisiológicos e corticais envolvidos em ações antecipatórias quando os sujeitos testados tiveram que apreender bolas em queda livre; especificamente através de mudanças na potência absoluta na banda alfa da eletrencefalografia quantitativa (EEGq. A amostra foi composta por 23 sujeitos sadios, ambos os sexos, idade entre variando entre 25 e 40 anos, sem comprometimento físico e mental, destros, e não fazer uso de nenhuma substância psicoativa ou psicotrópicos até o momento do estudo. O experimento consistiu de uma tarefa de apreensão de bolas em queda livre. A análise three-way ANOVA demonstrou uma interação entre os fatores momento e posição no córtex parietal posterior (CPP esquerdo (p=0,001. Através da tarefa experimental empregada, esta área demonstrou uma atividade diferenciada envolvendo expectativa, planejamento e prontidão na tarefa de queda de bolas.

  1. What is said or how it is said makes a difference: role of the right fronto-parietal operculum in emotional prosody as revealed by repetitive TMS.

    Science.gov (United States)

    van Rijn, Sophie; Aleman, André; van Diessen, Eric; Berckmoes, Celine; Vingerhoets, Guy; Kahn, René S

    2005-06-01

    Emotional signals in spoken language can be conveyed by semantic as well as prosodic cues. We investigated the role of the fronto-parietal operculum, a somatosensory area where the lips, tongue and jaw are represented, in the right hemisphere to detection of emotion in prosody vs. semantics. A total of 14 healthy volunteers participated in the present experiment, which involved transcranial magnetic stimulation (TMS) in combination with frameless stereotaxy. As predicted, compared with sham stimulation, TMS over the right fronto-parietal operculum differentially affected the reaction times for detection of emotional prosody vs. emotional semantics, showing that there is a dissociation at a neuroanatomical level. Detection of withdrawal emotions (fear and sadness) in prosody was delayed significantly by TMS. No effects of TMS were observed for approach emotions (happiness and anger). We propose that the right fronto-parietal operculum is not globally involved in emotion evaluation, but sensitive to specific forms of emotional discrimination and emotion types.

  2. Deficits in visual search for conjunctions of motion and form after parietal damage but with spared hMT+/V5.

    Science.gov (United States)

    Dent, Kevin; Lestou, Vaia; Humphreys, Glyn W

    2010-02-01

    It has been argued that area hMT+/V5 in humans acts as a motion filter, enabling targets defined by a conjunction of motion and form to be efficiently selected. We present data indicating that (a) damage to parietal cortex leads to a selective problem in processing motion-form conjunctions, and (b) that the presence of a structurally and functional intact hMT+/V5 is not sufficient for efficient search for motion-form conjunctions. We suggest that, in addition to motion-processing areas (e.g., hMT+/V5), the posterior parietal cortex is necessary for efficient search with motion-form conjunctions, so that damage to either brain region may bring about deficits in search. We discuss the results in terms of the involvement of the posterior parietal cortex in the top-down guidance of search or in the binding of motion and form information.

  3. History of the Balkan Stomatological Society (BaSS

    Directory of Open Access Journals (Sweden)

    Todorović Ljubomir

    2014-11-01

    Full Text Available Some of the main activities of the Balkan Stomatological Society (BaSS over a rich 19-year history are presented. These activities have been aimed at improving oral health care provided by the dentists throughout the Balkans, and to establish ties of friendship and collaboration between researchers and clinicians in this region, creating a foundation for mutual understanding and peace. To accomplish these goals, the BaSS annually organizes congresses and publishes a scientific journal, beside many other activities, such as public oral health promotion, bringing into accordance study programmes and curricula, supporting student exchange programmes, etc.

  4. Development of BaSO4:Eu thermoluminescence phosphor

    International Nuclear Information System (INIS)

    Madhusoodanan, U.; Jose, M.T.; Lakshmanan, A.R.

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low γ-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO 4 :Dy phosphor. The other salient features of this BaSO 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear γ-ray dose response

  5. The Danish Microbiology Database (MiBa) 2010 to 2013.

    Science.gov (United States)

    Voldstedlund, M; Haarh, M; Mølbak, K

    2014-01-09

    The Danish Microbiology Database (MiBa) is a national database that receives copies of reports from all